Swept Frequency Laser Metrology System
NASA Technical Reports Server (NTRS)
Zhao, Feng (Inventor)
2010-01-01
A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.
Geoscience laser altimeter system-stellar reference system
NASA Astrophysics Data System (ADS)
Millar, Pamela S.; Sirota, J. Marcos
1998-01-01
GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.
Heterodyne laser spectroscopy system
Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas
1990-01-01
A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.
Heterodyne laser spectroscopy system
Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas
1989-01-01
A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.
An auto-locked diode laser system for precision metrology
NASA Astrophysics Data System (ADS)
Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.
2017-05-01
We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.
Off-line-locked laser diode species monitor system
NASA Technical Reports Server (NTRS)
Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)
1995-01-01
An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.
Accelerating the Kill Chain via Future Unmanned Aircraft
2007-04-01
Controller JTRS Joint Tactical Radio System Lasercom Laser communications LDHD Low Density High Demand LEO Low Earth Orbit LGB Laser Guided Bomb...published the Unmanned Aircraft Systems Roadmap 2005 that included the terms Unmanned Aircraft System (UAS) and Unmanned Aircraft (UA). This...comprehensive publication used the term Unmanned Aircraft Systems when referring to the entire system and the term Unmanned Aircraft when referring only to the
Portable remote laser sensor for methane leak detection
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D., Jr. (Inventor)
1984-01-01
A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.
Phasing surface emitting diode laser outputs into a coherent laser beam
Holzrichter, John F [Berkeley, CA
2006-10-10
A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S.S.; Max, C.E.; Friedman, H.W.
1997-07-14
Atmospheric turbulence severely limits the resolution of ground-based telescopes. Adaptive optics can correct for the aberrations caused by the atmosphere, but requires a bright wavefront reference source in close angular proximity to the object being imaged. Since natural reference stars of the necessary brightness are relatively rare, methods of generating artificial reference beacons have been under active investigation for more than a decade. In this paper, we report the first significant image improvement achieved using a sodium-layer laser guide star as a wavefront reference for a high- order adaptive optics system. An artificial beacon was created by resonant scattering frommore » atomic sodium in the mesosphere, at an altitude of 95 km. Using this laser guide star, an adaptive optics system on the 3 m Shane Telescope at Lick Observatory produced a factor of 2.4 increase in peak intensity and a factor of 2 decrease in full width at half maximum of a stellar image, compared with image motion compensation alone. The Strehl ratio when using the laser guide star as the reference was 65% of that obtained with a natural guide star, and the image full widths at half maximum were identical, 0.3 arc sec, using either the laser or the natural guide star. This sodium-layer laser guide star technique holds great promise for the world`s largest telescopes. 24 refs., 4 figs., 1 tab.« less
The LIFE Laser Design in Context: A Comparison to the State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R J; Bayramian, A J; Erlandson, A C
2011-03-21
The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with themore » laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.« less
Effect of laser frequency noise on fiber-optic frequency reference distribution
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1989-01-01
The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.
A novel high-resolution chaotic lidar with optical injection to chaotic laser diode
NASA Astrophysics Data System (ADS)
Wang, Yun-cai; Wang, An-bang
2008-03-01
A novel chaotic lidar with high resolution is proposed and studied theoretically. In chaotic lidar system, the chaotic laser emitted from chaotic laser diode is split into two beams: the probe and the reference light. The ranging is achieved by correlating the reference waveform with the delayed probe waveform backscattered from the target. In chaotic lidar systems presented previously, the chaotic signal source is laser diode with optical feedback or with optical injection by another one. The ranging resolution is limited by the bandwidth of chaotic laser which determined by the configuration of chaotic signal source. We proposed a novel chaotic lidar which ranging resolution is enhanced significantly by external optical injected chaotic laser diode. With the bandwidth-enhanced chaotic laser, the range resolution of the chaotic lidar system with optical injection is roughly two times compared with that of without optical injection. The resolution increases with injection strength increasing in a certain frequency detuning range.
NASA Astrophysics Data System (ADS)
Gacheva, Lazarina I.; Deneva, Margarita A.; Kalbanov, Mihail H.; Nenchev, Marin N.
2008-12-01
We present two original, all optical techniques, to produce a narrowline laser light, fixed at the frequency of a chosen reference atomic absorption transition. The first type of systems is an essential improvement of our method 3,4 for laser spectral locking using a control by two frequency scanned, competitive injections with disturbed power ratio by the absorption at the reference line. The new development eliminates the narrowing limiting problem, related with the fixed laser longitudinal mode structure. We have proposed an original new technique for continuously tunable single mode laser operation in combination with synchronously and equal continuous tuning of the modes of the amplifier. By adapting the laser differential rate equations, the system is analyzed theoretically in details and is shown its feasibility. The results are in agreement with previous our experiments. The essential advantage, except simplicity of realization, is that the laser line can be of order of magnitude and more narrowed than the absorption linewidth. The second system is based of the laser amplifier arrangement with a gain knock-down from the competitive frequency scanned pulse, except at the wavelength of the desired absorption reference line. The essential advantages of the last system are that the problem of fixing laser mode presence is naturally avoided. The theoretical modeling and the numerical investigations show the peculiarity and advantages of the system proposed. The developed approaches are of interest for applications in spectroscopy, in DIAL monitoring of the atmospheric pollutants, in isotope separation system and potentially - for creation of simple, all optical, frequency standards for optical communications. Also, the continuously tunable single mode laser (and the combination with the simultaneously tunable amplifier) presents itself the interest for many practical applications in spectroscopy, metrology, and holography. We compare the action and the advantages of the two systems proposed.
Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1989-01-01
The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.
NASA Technical Reports Server (NTRS)
Jumper, Judith K.
1994-01-01
The Laser Velocimeter Data Acquisition System (LVDAS) in the Langley 14- by 22-Foot Tunnel is controlled by a comprehensive software package. The software package was designed to control the data acquisition process during wind tunnel tests which employ a laser velocimeter measurement system. This report provides detailed explanations on how to configure and operate the LVDAS system to acquire laser velocimeter and static wind tunnel data.
Laser frequency stabilization using a transfer interferometer
NASA Astrophysics Data System (ADS)
Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.
2018-03-01
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.
Direct-to-digital holography and holovision
Thomas, Clarence E.; Baylor, Larry R.; Hanson, Gregory R.; Rasmussen, David A.; Voelkl, Edgar; Castracane, James; Simkulet, Michelle; Clow, Lawrence
2000-01-01
Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.
Virtual mask digital electron beam lithography
Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.
1999-04-06
Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.
Virtual mask digital electron beam lithography
Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.
1999-01-01
Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.
Chemical lasers: a comprehensive literature survey.
Arnold, S J; Rojeska, H
1973-02-01
A bibliography of chemical laser publications covering the period 1964 through 1971 has been compiled. The chronologically listed references are followed by tables showing the chemical systems exhibiting laser action and by an alphabetical author index.
Chemical Lasers: A Comprehensive Literature Survey,
A bibliography of chemical laser publications covering the period 1964 through 1971 has been compiled. The chronologically listed references are followed by tables showing the chemical systems exhibiting laser action and by an alphabetical author index . (Author)
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
1980-01-01
lasers see A. V. Phelps, JILA Report 110, "Tunable Gas Lasers Using Ground State Dissociation," (1972) and references therein. 2. This requires highly...possibility of using GaXe as a laser if the Ga can be obtained from dissociation of Gal 3 . Consequently the GaKr curves should also be of intrinsic interest... laser transitions The interest in the group IIIB-rare gas systems arises from the possibility of their use as visible laser systems. In order to judge
Direct laser additive fabrication system with image feedback control
Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
Antares reference telescope system
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.
Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.
Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation
NASA Technical Reports Server (NTRS)
Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri
2002-01-01
The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.
Active solution of homography for pavement crack recovery with four laser lines.
Xu, Guan; Chen, Fang; Wu, Guangwei; Li, Xiaotao
2018-05-08
An active solution method of the homography, which is derived from four laser lines, is proposed to recover the pavement cracks captured by the camera to the real-dimension cracks in the pavement plane. The measurement system, including a camera and four laser projectors, captures the projection laser points on the 2D reference in different positions. The projection laser points are reconstructed in the camera coordinate system. Then, the laser lines are initialized and optimized by the projection laser points. Moreover, the plane-indicated Plücker matrices of the optimized laser lines are employed to model the laser projection points of the laser lines on the pavement. The image-pavement homography is actively determined by the solutions of the perpendicular feet of the projection laser points. The pavement cracks are recovered by the active solution of homography in the experiments. The recovery accuracy of the active solution method is verified by the 2D dimension-known reference. The test case with the measurement distance of 700 mm and the relative angle of 8° achieves the smallest recovery error of 0.78 mm in the experimental investigations, which indicates the application potentials in the vision-based pavement inspection.
Light-Directed Ranging System Implementing Single Camera System for Telerobotics Applications
NASA Technical Reports Server (NTRS)
Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1997-01-01
A laser-directed ranging system has utility for use in various fields, such as telerobotics applications and other applications involving physically handicapped individuals. The ranging system includes a single video camera and a directional light source such as a laser mounted on a camera platform, and a remotely positioned operator. In one embodiment, the position of the camera platform is controlled by three servo motors to orient the roll axis, pitch axis and yaw axis of the video cameras, based upon an operator input such as head motion. The laser is offset vertically and horizontally from the camera, and the laser/camera platform is directed by the user to point the laser and the camera toward a target device. The image produced by the video camera is processed to eliminate all background images except for the spot created by the laser. This processing is performed by creating a digital image of the target prior to illumination by the laser, and then eliminating common pixels from the subsequent digital image which includes the laser spot. A reference point is defined at a point in the video frame, which may be located outside of the image area of the camera. The disparity between the digital image of the laser spot and the reference point is calculated for use in a ranging analysis to determine range to the target.
Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications
NASA Technical Reports Server (NTRS)
Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)
1995-01-01
The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end-effector in response to commands generated by an operator. In one embodiment, the system provides a real-time image of the target for the operator as the robot approaches the object. The system is also adapted for use in virtual reality systems in which a remote object or workpiece is to be acted upon by a remote robot arm or other mechanism controlled by an operator.
Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies.
Littler, Ian C M; Gray, Malcolm B; Chow, Jong H; Shaddock, Daniel A; McClelland, David E
2009-06-22
An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
A novel collinear optical system with annulus mirrors for holographic disc driver
NASA Astrophysics Data System (ADS)
Wang, Ye
2008-12-01
This paper focus on a novel collinear lens system with annulus mirrors for holographic disc driver, both information beam and reference beam are use same laser beam. The expanded and parallel laser beam, center part of it as the information beam then through Fourier transform lens, the beam around center part as a reference beam. On this axis, the ring reference beam reflected by two annulus shaped mirrors, then became a convergent beam, together with the information beam which through the first Fourier transform lens then produce holographic pattern to be write into the holographic disc behind of them, this lens system with two mirrors made the angle between information beam and reference beam more wide, can improved the multiplex level of holographic storage. Pair of Fourier transform lens with advance performance is designed in this paper.
NASA Astrophysics Data System (ADS)
Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.
2017-11-01
In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.
Holographic memory using beam steering
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)
2006-01-01
A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) or Micro-Electro-Mechanical Systems (MEMS) mirrors steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.
Molecular laser stabilization for LISA
NASA Astrophysics Data System (ADS)
Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar
2017-11-01
The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.
International Laser Ranging Service (ILRS) 2003-2004 Annual Report
NASA Technical Reports Server (NTRS)
Pearlman, Michael (Editor); Noll, Carey (Editor)
2005-01-01
The International Laser Ranging Service (ILRS) organizes and coordinates Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) to support programs in geodetic, geophysical, and lunar research activities and provides the International Earth Rotation and Reference Systems Service (IERS) with products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). This reference frame provides the stability through which systematic measurements of the Earth can be made over thousands of kilometers, decades of time, and evolution of measurement technology. This 2003-2004 ILRS annual report is comprised of individual contributions from ILRS components within the international geodetic community for the years 2003-2004. The report documents changes and progress of the ILRS and is also available on the ILRS Web site at http://ilrs.gsfc.nasa.gov/reports/ilrs_reports/ilrsar_2003.html.
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Generating Artificial Reference Images for Open Loop Correlation Wavefront Sensors
NASA Astrophysics Data System (ADS)
Townson, M. J.; Love, G. D.; Saunter, C. D.
2018-05-01
Shack-Hartmann wavefront sensors for both solar and laser guide star adaptive optics (with elongated spots) need to observe extended objects. Correlation techniques have been successfully employed to measure the wavefront gradient in solar adaptive optics systems and have been proposed for laser guide star systems. In this paper we describe a method for synthesising reference images for correlation Shack-Hartmann wavefront sensors with a larger field of view than individual sub-apertures. We then show how these supersized reference images can increase the performance of correlation wavefront sensors in regimes where large relative shifts are induced between sub-apertures, such as those observed in open-loop wavefront sensors. The technique we describe requires no external knowledge outside of the wavefront-sensor images, making it available as an entirely "software" upgrade to an existing adaptive optics system. For solar adaptive optics we show the supersized reference images extend the magnitude of shifts which can be accurately measured from 12% to 50% of the field of view of a sub-aperture and in laser guide star wavefront sensors the magnitude of centroids that can be accurately measured is increased from 12% to 25% of the total field of view of the sub-aperture.
Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.
2005-01-01
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)
2009-01-01
A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Tang, Shoou-Yu (Inventor)
2011-01-01
A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1981-01-01
Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.
Acquisition and replay systems for direct-to-digital holography and holovision
Thomas, Clarence E.; Hanson, Gregory R.
2003-02-25
Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.
Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.
Nagano, Shigeo; Kumagai, Motohiro; Li, Ying; Ido, Tetsuya; Ishii, Shoken; Mizutani, Kohei; Aoki, Makoto; Otsuka, Ryohei; Hanado, Yuko
2016-08-22
We disseminated an ultra-broadband optical frequency reference based on a femtosecond (fs)-laser optical comb through a kilometer-scale fiber link. Its spectrum ranged from 1160 nm to 2180 nm without additional fs-laser combs at the end of the link. By employing a fiber-induced phase noise cancellation technique, the linewidth and fractional frequency instability attained for all disseminated comb modes were of order 1 Hz and 10-18 in a 5000 s averaging time. The ultra-broad optical frequency reference, for which absolute frequency is traceable to Japan Standard Time, was applied in the frequency stabilization of an injection-seeded Q-switched 2051 nm pulse laser for a coherent light detection and ranging LIDAR system.
Retrieval of the 1964 Laser Literature Using MIT's Project Tip.
ERIC Educational Resources Information Center
Keenan, Stella; Terry, Edward
Reported are the performance characteristics of the Massachusetts Institute of Technology Technical Information Program (TIP) system based on a study involving three search strategies in retrieval o f laser articles published in 1964. The TIP system provides access to (1) title, (2) author(s), (3) bibliographic references, and (4) literature…
Phased laser array for generating a powerful laser beam
Holzrichter, John F.; Ruggiero, Anthony J.
2004-02-17
A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.
Visualization of evolving laser-generated structures by frequency domain tomography
NASA Astrophysics Data System (ADS)
Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael
2011-10-01
We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.
Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo
2017-08-16
Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.
Patton, Gail Y.; Torgerson, Darrel D.
1987-01-01
An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.
Holographic memory using beam steering
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)
2007-01-01
A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
NASA Astrophysics Data System (ADS)
Hazarika, D.; Pegu, D. S.
2013-03-01
This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
NASA Technical Reports Server (NTRS)
Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)
2011-01-01
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)
Initial conceptual design study of self-critical nuclear pumped laser systems
NASA Technical Reports Server (NTRS)
Rodgers, R. J.
1979-01-01
An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
Monolithically integrated absolute frequency comb laser system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanke, Michael C.
2016-07-12
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.
ERIC Educational Resources Information Center
O'Shea, Donald C.; Peckham, Donald C.
1981-01-01
Following a brief introduction, an annotated listing of literature and teaching aids on lasers is presented. Categories include: Background Materials; Historical References; General References and Textbooks; Specialized References; Reviews; Articles; Films; Laser Courses; Equipment, Demonstrations, and Experiments; Laser Safety; and Lasers and…
Satellite power system concept development and evaluation program. Volume 2: System definition
NASA Technical Reports Server (NTRS)
1981-01-01
The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.
Frequency References for Gravitational Wave Missions
NASA Technical Reports Server (NTRS)
Preston, Alix; Thrope, J. I.; Donelan, D.; Miner, L.
2012-01-01
The mitigation of laser frequency noise is an important aspect of interferometry for LISA-like missions. One portion of the baseline mitigation strategy in LISA is active stabilization utilizing opto-mechanical frequency references. The LISA optical bench is an attractive place to implement such frequency references due to its environmental stability and its access to primary and redundant laser systems. We have made an initial investigation of frequency references constructed using the techniques developed for the LISA and LISA Pathfinder optical benches. Both a Mach-Zehnder interferometer and triangular Fabry-Perot cavity have been successfully bonded to a Zerodur baseplate using the hydroxide bonding method. We will describe the construction of the bench along with preliminary stability results.
The simulation study on optical target laser active detection performance
NASA Astrophysics Data System (ADS)
Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen
2014-12-01
According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.
Antares Reference Telescopes System
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.
1983-11-01
Antares is a 24-beam, 40-TW carbon-dioxide laser fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300-1000 pm in diameter) located approximately at the center of a 7.3-m diameter by 9.3-m long vacuum (10-6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: 1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; 2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; 3) an adjustable front-lighting subsystem which illuminates tne target; and 4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.
Stenz, Ulrich; Neumann, Ingo
2017-01-01
Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less. PMID:28812998
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
A Structured Light Sensor System for Tree Inventory
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Zemek, Michael C.
2000-01-01
Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.
Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell
NASA Astrophysics Data System (ADS)
Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.
2010-04-01
We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to <2.4MHz (stabilized). The 2.05 μm laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.
Personal medical information system using laser card
NASA Astrophysics Data System (ADS)
Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook
1996-04-01
The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.
Characterization of electrical noise limits in ultra-stable laser systems.
Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H
2016-12-01
We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.
Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning
NASA Technical Reports Server (NTRS)
Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)
2015-01-01
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.
NASA Technical Reports Server (NTRS)
Martino, Anthony J.; Cornwell, Donald M.
1998-01-01
A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.
Constructing a Laser Stabilization System for a Parity Non-Conservation Experiment with Francium
NASA Astrophysics Data System (ADS)
Dehart, A. C.; Gwinner, Gerald; Kossin, Michael; Behr, John; Gorelov, Alexandre; Kalita, Mukut; Pearson, Matthew; Aubin, Seth; Gomez Garcia, Eduardo; Orozco, Luis
2017-04-01
We are developing an experiment at TRIUMF to test the Standard model at low energies by measuring Parity Non-Conservation (PNC) effects in francium. Current efforts include preparations to study the 7s - 8s electric dipole (E1) forbidden transition in francium at 507 nm under the influence of an electric field. Fr has no stable isotope; therefore to frequency-stabilize our laser at 507 nm, we are developing a laser stabilization system by using the Pound-Drever-Hall technique with a Fabry-Perot cavity made of Ultra Low Expansion Glass (ULE) as our stable frequency reference. The system will stabilize a 1014 nm laser, which will be frequency doubled to 507 nm, before sending the light to our cold and trapped francium sample. We will report on our recent experiences with the laser stabilization system. Supported by NSERC, NRC/TRIUMF, DOE, NSF, CONACYT, Fulbright, and U. of Manitoba.
Automatic alignment of double optical paths in excimer laser amplifier
NASA Astrophysics Data System (ADS)
Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun
2013-05-01
A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.
NASA Astrophysics Data System (ADS)
Bai, Jiandong; Wang, Jieying; He, Jun; Wang, Junmin
2017-04-01
We demonstrate frequency stabilization of a tunable 318.6 nm ultraviolet (UV) laser system using electronic sideband locking. By indirectly changing the frequency of a broadband electro-optic phase modulator, the laser can be continuously tuned over 4 GHz, while a 637.2 nm laser is directly stabilized to a high-finesse ultra-stable optical cavity. The doubling cavity also remains locked to the 637.2 nm light. We show that the tuning range depends mainly on the gain-flattening region of the modulator and the piezo-tunable range of the seed laser. The frequency-stabilized tunable UV laser system is able to compensate for the offset between reference and target frequencies, and has potential applications in precision spectroscopy of cold atoms.
Frequency stability measurement of pulsed superradiance from strontium
NASA Astrophysics Data System (ADS)
Norcia, Matthew; Cline, Julia; Robinson, John; Ye, Jun; Thompson, James
2017-04-01
Superradiant laser light from an ultra-narrow optical transition holds promise as a next-generation of active frequency references. We have recently demonstrated pulsed lasing on the milliHertz linewidth clock transition in strontium. Here, we present the first frequency comparisons between such a superradiant source and a state of the art stable laser system. We characterize the stability of the superradiant system, and demonstrate a reduction in sensitivity to cavity frequency fluctuations of nearly five orders of magnitude compared to a conventional laser. DARPA QUASAR, NIST, NSF PFC.
Study on verifying the angle measurement performance of the rotary-laser system
NASA Astrophysics Data System (ADS)
Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui
2018-04-01
An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.
2011-03-24
6 2.4.1 Reference Frames . . . . . . . . . . . . . . . . . 6 2.4.2 Line and Feature Extraction . . . . . . . . . . . 7 2.4.3 SLAM ...Positioning System . . . . . . . . . . . . . . . . . . 1 LADAR Laser Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LiDAR Light Detection and...Ranging . . . . . . . . . . . . . . . . 2 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 2 ANT Advanced Navigation Technology
NASA Astrophysics Data System (ADS)
Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard
2018-04-01
LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Adventures in Laser Produced Plasma Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, M
2006-01-13
In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.
NASA Astrophysics Data System (ADS)
Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.
2018-02-01
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.
Method and apparatus for analyzing the fill characteristics of a packaging container
Rodriguez, J.G.
1998-10-13
A system is described for analyzing the fill characteristics of a container. A container having a filling material therein is positioned adjacent a sound generator. Sound waves from the generator are applied to the container, causing it to vibrate. A vibration detector is used to determine the amount of container vibration. A preferred vibration detector involves a laser vibrometer which applies a reference laser beam to the vibrating container. The reference beam is reflected off of the container to generate a reflected laser beam. The reflected beam experiences a Doppler frequency shift compared with the reference beam which is caused by container vibration. The Doppler shift of the reflected beam is then compared with standardized Doppler shift data from a control container. Repeated Doppler shift measurements may also be undertaken which are converted into a vibration profile that is compared with a standardized vibration profile from a control container. 4 figs.
Method and apparatus for analyzing the fill characteristics of a packaging container
Rodriguez, Julio G.
1998-01-01
A system for analyzing the fill characteristics of a container. A container having a filling material therein is positioned adjacent a sound generator. Sound waves from the generator are applied to the container, causing it to vibrate. A vibration detector is used to determine the amount of container vibration. A preferred vibration detector involves a laser vibrometer which applies a reference laser beam to the vibrating container. The reference beam is reflected off of the container to generate a reflected laser beam. The reflected beam experiences a Doppler frequency shift compared with the reference beam which is caused by container vibration. The Doppler shift of the reflected beam is then compared with standardized Doppler shift data from a control container. Repeated Doppler shift measurements may also be undertaken which are converted into a vibration profile that is compared with a standardized vibration profile from a control container.
Development of Laser Based Remote Sensing System for Inner-Concrete Defects
NASA Astrophysics Data System (ADS)
Shimada, Yoshinori; Kotyaev, Oleg
Laser-based remote sensing using a vibration detection system has been developed using a photorefractive crystal to reduce the effect of concrete surface-roughness. An electric field was applied to the crystal and the reference beam was phase shifted to increase the detection efficiency (DE). The DE increased by factor of 8.5 times compared to that when no voltage and no phase shifting were applied. Vibration from concrete defects can be detected at a distance of 5 m from the system. A vibration-canceling system has also developed that appears to be promising for canceling vibrations between the laser system and the concrete. Finally, we have constructed a prototype system that can be transported in a small truck.
Research for the jamming mechanism of high-frequency laser to the laser seeker
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming
2013-08-01
High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
Stabilized diode seed laser for flight and space-based remote lidar sensing applications
NASA Astrophysics Data System (ADS)
McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd
2017-08-01
AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.
Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID
2007-07-10
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Scott, Jill R.; Tremblay, Paul L.
2004-11-23
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Japanese aerospace science and technology 1992. A bibliography with indexes
NASA Technical Reports Server (NTRS)
1993-01-01
This report contains 4271 annotated references to reports and journal articles of Japaness intellectual origin entered into the NASA scientific and technical information system during 1992. Representative subject areas of interest include: adaptive control, antireflection coatings, fiber reinforced composites, gallium arsenide lasers, laser interferometry, reduced gravity (microgravity), and VHSIC (circuits).
NASA Technical Reports Server (NTRS)
Zhang, Kuanshou; Xie, Changde; Peng, Kunchi
1996-01-01
The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.
Method for laser-based two-dimensional navigation system in a structured environment
Boultinghouse, Karlan D.; Schoeneman, J. Lee; Tise, Bertice L.
1989-01-01
A low power, narrow laser beam, generated by a laser carried by a mobile vehicle, is rotated about a vertical reference axis as the vehicle navigates within a structured environment. At least three stationary retroreflector elements are located at known positions, preferably at the periphery of the structured environment, with one of the elements having a distinctive retroreflection. The projected rotating beam traverses each retroreflector in succession, and the corresponding retroreflections are received at the vehicle and focussed on a photoelectric cell to generate corresponding electrical signals. The signal caused by the distinctive retroreflection serves as an angle-measurement datum. An angle encoder coupled to the apparatus rotating the projected laser beam provides the angular separation from this datum of the lines connecting the mobile reference axis to successive retroreflectors. This real-time angular data is utilized with the known locations of the retroreflectors to trigonometrically compute using three point resection, the exact real-time location of the mobile reference axis (hence the navigating vehicle) vis-a-vis the structured environment, e.g., in terms of two-dimensional Cartesian coordinates associated with the environment.
Iodine-stabilized single-frequency green InGaN diode laser.
Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen
2018-01-01
A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.
Synchronization of an optomechanical system to an external drive
NASA Astrophysics Data System (ADS)
Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph
2017-05-01
Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.
Localization of a mobile laser scanner via dimensional reduction
NASA Astrophysics Data System (ADS)
Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas
2016-11-01
We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.
REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation
NASA Astrophysics Data System (ADS)
Gordiets, B. F.; Panchenko, Vladislav Ya
1986-07-01
CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717
Experimental investigation of terahertz quantum cascade laser with variable barrier heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu
2014-04-28
We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less
Veligdan, James T.
2000-11-14
A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.
Overview of a Hybrid Underwater Camera System
2014-07-01
meters), in increments of 200ps. The camera is also equipped with 6:1 motorized zoom lens. A precision miniature attitude, heading reference system ( AHRS ...LUCIE Control & Power Distribution System AHRS Pulsed LASER Gated Camera -^ Sonar Transducer (b) LUCIE sub-systems Proc. ofSPIEVol. 9111
Laser propulsion to earth orbit. Has its time come?
NASA Technical Reports Server (NTRS)
Kantrowitz, Arthur
1989-01-01
Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.
NASA Astrophysics Data System (ADS)
Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.
1995-01-01
The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.
Laser Eye Protection Groupware Application Information System
1998-11-01
Q^ Concenlralion ^ Data & Program Res ■>i Excfted Stele Cross-Section ’^> EKtrnction Coefficient ^s Ground Stale Cross-Section ?> Reference...2nd Level (2nd column) 4 Chemical Compound Bio material name 3nd Level (3rd column) 4th Level (4th column) Figure 14A. Reference Date View
A Survey of Laser Lightning Rod Techniques
1991-08-21
impossibility of the LLR concept. 4 REFERENCES 1. Hagen, 1969: "Diffraction-limited high irradiance Nd- glass laser system, J. Appl. Phys., 40, 511-516. 2. Greig...study", Air Force Flight Dynamics Laboratory,, Technical Report AFFDL-TR-78-60. AD A063 847. 8. Schubert, C.N., Jr. and J.R. Lippert , 1979...pp. 132-135. 9. Lippert , J.R.,1978: "Laser-Induced Lightning Concept Exper- iment", Air Force Flight Dynamics Laboratory, Technical Report AFFDL-TR
NASA Technical Reports Server (NTRS)
Page, Norman A.; Tubbs, Eldred F.
1994-01-01
Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.
Development of an extended straightness measurement reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenz, R.F.; Griffith, L.V.; Sommargren, G.E.
1988-09-06
The most accurate diamond turning machines have used physical straightness references. These references commonly are made of optical materials, such as Zerodur, and are flat enough to permit straightness measurements with an accuracy of 100--150 nm (4--6 microinches) p-v. In most cases, the flatness error is stable and can be accommodated by using a calibration table. The straightedges for the Large Optics Diamond Turning Machine (LODTM) at Lawrence Livermore National Laboratory (LLNL) are 1.1 meters in length and allow a straightness reference accuracy of 25--50 nm (1--2 microinches) p-v after calibration. Fabrication problems become insurmountable when a straightness reference formore » a length of up to 4 meters is desired. Moreover, the method of calibration by straightedge reversal does not account for gravitational sag when the sensing direction is vertical. Vertical sensing would be required in a four meter system and sag would become unacceptably large. Recent developments published in the literature suggest that the use of a laser beam for a reference may be feasible. Workers at Osaka University have reported a laser beam straightness reference that has a resolution of 3.5 nm, although tests were done only over a 200 mm length. LLNL has begun an investigation on the use of a directionally stabilized laser beam as a straightness measurement reference. The goal of the investigation is to provide a reference that is accurate to 25 nm (1 microinch) over a four meter distance. 3 refs., 2 figs.« less
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
EOS Laser Atmosphere Wind Sounder (LAWS) investigation
NASA Technical Reports Server (NTRS)
1996-01-01
In this final report, the set of tasks that evolved from the Laser Atmosphere Wind Sounder (LAWS) Science Team are reviewed, the major accomplishments are summarized, and a complete set of resulting references provided. The tasks included preparation of a plan for the LAWS Algorithm Development and Evolution Laboratory (LADEL); participation in the preparation of a joint CNES/NASA proposal to build a space-based DWL; involvement in the Global Backscatter Experiments (GLOBE); evaluation of several DWL concepts including 'Quick-LAWS', SPNDL and several direct detection technologies; and an extensive series of system trade studies and Observing System Simulation Experiments (OSSE's). In this report, some of the key accomplishments are briefly summarized with reference to interim reports, special reports, conference/workshop presentations, and publications.
Requirements for DGPS-based TSPI system used in aircraft noise certification tests
DOT National Transportation Integrated Search
1997-04-30
This letter report addresses that portion of a noise certification applicants Differential Global Positioning System (DGPS-based), Time Space Position Information (TSPI) system which is to be used as a position reference in place of a laser tracke...
Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration
NASA Technical Reports Server (NTRS)
Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve
2003-01-01
This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.
Frequency locking of compact laser-diode modules at 633 nm
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin
2018-02-01
This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.
NASA Astrophysics Data System (ADS)
Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis
2018-02-01
We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1984-01-01
Some objectives of this geodynamic program are: (1) optimal utilization of laser and VLBI observations as reference frames for geodynamics, (2) utilization of range difference observations in geodynamics, and (3) estimation techniques in crustal deformation analysis. The determination of Earth rotation parameters from different space geodetic systems is studied. Also reported on is the utilization of simultaneous laser range differences for the determination of baseline variation. An algorithm for the analysis of regional or local crustal deformation measurements is proposed along with other techniques and testing procedures. Some results of the reference from comparisons in terms of the pole coordinates from different techniques are presented.
Three-D multilateration: A precision geodetic measurement system
NASA Technical Reports Server (NTRS)
Escobal, P. R.; Ong, K. M.; Vonroos, O. H.; Shumate, M. S.; Jaffe, R. M.; Fliegel, H. F.; Muller, P. M.
1973-01-01
A technique of satellite geodesy for determining the relative three dimensional coordinates of ground stations within one centimeter over baselines of 20 to 10,000 kilometers is discussed. The system is referred to as 3-D Multilateration and has applications in earthquake hazard assessment, precision surveying, plate tectonics, and orbital mechanics. The accuracy is obtained by using pulsed lasers to obtain simultaneous slant ranges between several ground stations and a moving retroreflector with known trajectory for aiming the lasers.
Absolute metrology for space interferometers
NASA Astrophysics Data System (ADS)
Salvadé, Yves; Courteville, Alain; Dändliker, René
2017-11-01
The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.
State-of-the-art satellite laser range modeling for geodetic and oceanographic applications
NASA Technical Reports Server (NTRS)
Klosko, Steve M.; Smith, David E.
1993-01-01
Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.
The Space Technology-7 Disturbance Reduction Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad
2004-01-01
The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.
NASA Astrophysics Data System (ADS)
Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej
2016-11-01
We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.
a Light-Weight Laser Scanner for Uav Applications
NASA Astrophysics Data System (ADS)
Tommaselli, A. M. G.; Torres, F. M.
2016-06-01
Unmanned Aerial Vehicles (UAV) have been recognized as a tool for geospatial data acquisition due to their flexibility and favourable cost benefit ratio. The practical use of laser scanning devices on-board UAVs is also developing with new experimental and commercial systems. This paper describes a light-weight laser scanning system composed of an IbeoLux scanner, an Inertial Navigation System Span-IGM-S1, from Novatel, a Raspberry PI portable computer, which records data from both systems and an octopter UAV. The performance of this light-weight system was assessed both for accuracy and with respect to point density, using Ground Control Points (GCP) as reference. Two flights were performed with the UAV octopter carrying the equipment. In the first trial, the flight height was 100 m with six strips over a parking area. The second trial was carried out over an urban park with some buildings and artificial targets serving as reference Ground Control Points. In this experiment a flight height of 70 m was chosen to improve target response. Accuracy was assessed based on control points the coordinates of which were measured in the field. Results showed that vertical accuracy with this prototype is around 30 cm, which is acceptable for forest applications but this accuracy can be improved using further refinements in direct georeferencing and in the system calibration.
Performance of laser guide star adaptive optics at Lick Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S.S.; An, J.; Avicola, K.
1995-07-19
A sodium-layer laser guide star adaptive optics system has been developed at Lawrence Livermore National Laboratory (LLNL) for use on the 3-meter Shane telescope at Lick Observatory. The system is based on a 127-actuator continuous-surface deformable mirror, a Hartmann wavefront sensor equipped with a fast-framing low-noise CCD camera, and a pulsed solid-state-pumped dye laser tuned to the atomic sodium resonance line at 589 nm. The adaptive optics system has been tested on the Shane telescope using natural reference stars yielding up to a factor of 12 increase in image peak intensity and a factor of 6.5 reduction in image fullmore » width at half maximum (FWHM). The results are consistent with theoretical expectations. The laser guide star system has been installed and operated on the Shane telescope yielding a beam with 22 W average power at 589 nm. Based on experimental data, this laser should generate an 8th magnitude guide star at this site, and the integrated laser guide star adaptive optics system should produce images with Strehl ratios of 0.4 at 2.2 {mu}m in median seeing and 0.7 at 2.2 {mu}m in good seeing.« less
1987-10-31
measurement. A cube beam splitter divided incident laser light, I, into two beams , IR and I0, of approximately equal intensity. The reference laser...scattered molecules were found to be strongly dependent on beam kinetic energy. These distributions are markedly non -Boltzmann and indicate that the...satisfy these requirements has been developed. The system, named OBIR for optical beam induced reflectance, is non -destructive and operates at 20C in
NASA Astrophysics Data System (ADS)
Schwarzer, H.; Börner, A.; Fix, A.; Günther, B.; Hübers, H.-W.; Raugust, M.; Schrandt, F.; Wirth, M.
2007-09-01
At the German Aerospace Center an airborne multi-wavelength differential absorption LIDAR for the measurement of atmospheric water vapour is currently under development. This instrument will enable the retrieval of the complete humidity profile from the surface up to the lowermost stratosphere with high vertical and horizontal resolution at a systematic error below 5%. The LIDAR will work in the wavelength region around 935 nm at three different water vapour absorption lines and one reference wavelength. A major sub-system of this instrument is a highly frequency stabilized seed laser system for the optical parametrical oscillators which generate the narrowband high energy light pulses. The development of the seed laser system includes the control software, the electronic control unit and the opto-mechanical layout. The seed lasers are Peltier-cooled distributed feedback laser diodes with bandwidths of about 30 MHz, each one operating for 200 μs before switching to the next one. The required frequency stability is +/- 30 MHz ≅ +/- 10 -4 nm under the rough environmental conditions aboard an aircraft. It is achieved by locking the laser wavelength to a water vapour absorption line. The paper describes the opto-mechanical layout of the seed laser system, the stabilization procedure and the results obtained with this equipment.
Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies.
Jackson, Michael; Zink, Lyndon R
2015-12-18
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 10(7). Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength.
Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies
Jackson, Michael; Zink, Lyndon R.
2015-01-01
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 107. Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength. PMID:26709957
Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data
Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula
2009-01-01
We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorpe, J. I.; Livas, J.; Maghami, P.
Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priorimore » knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.« less
Current Trends and Challenges in Satellite Laser Ranging
NASA Astrophysics Data System (ADS)
Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.
2016-12-01
Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and greatly enhancing efficiency. Discussions are ongoing with some missions that will allow the SLR network stations to provide crucial, but energy-safe, range measurements to optically vulnerable satellites. New retro-reflector designs are improving the signal link and enable daylight ranging that is now the norm for many stations. We discuss many of these laser ranging activities and some of the tough challenges that the SLR network currently faces.
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1981-01-01
The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.
NASA Astrophysics Data System (ADS)
Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin
2016-11-01
Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.
Influence of the platform jitter on intensity fluctuation for laser launch system
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Qiao, Chunhong; Huang, Tong; Zhang, Jinghui; Fan, Chengyu
2017-10-01
The jitter of the transmitting system can cause the light intensity fluctuation at the target position of the laser transmission, which affects the performance of the laser communication, imaging and the adaptive optical system. In this paper, the platform jitter is modeled by Gaussian random fluctuation phase and the analytic expression of the system jitter effect on the fluctuation of light intensity is obtained under the vacuum condition based on extended Huygens-Fresnel principle. The numerical simulation is compared with the theoretical expression and the consistency is obtained. At the same time, the influence of the jitter of the launch system on the intensity fluctuation of the target system under different turbulence conditions is analyzed by numerical simulation. The result show that normalized intensity fluctuation variance induced by platform jitter seems to be unrestricted. The jitter of the transmitting system has a more important influence on the fluctuation of the target position caused by the atmospheric turbulence, as the jitter increase. This result provides a reference for the application of the actual laser transmission system.
Auto-locking waveguide amplifier system for lidar and magnetometric applications
NASA Astrophysics Data System (ADS)
Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.
2018-02-01
We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.
Study of Fourier transform spectrometer based on Michelson interferometer wave-meter
NASA Astrophysics Data System (ADS)
Peng, Yuexiang; Wang, Liqiang; Lin, Li
2008-03-01
A wave-meter based on Michelson interferometer consists of a reference and a measurement channel. The voice-coiled motor using PID means can realize to move in stable motion. The wavelength of a measurement laser can be obtained by counting interference fringes of reference and measurement laser. Reference laser with frequency stabilization creates a cosine interferogram signal whose frequency is proportional to velocity of the moving motor. The interferogram of the reference laser is converted to pulse signal, and it is subdivided into 16 times. In order to get optical spectrum, the analog signal of measurement channel should be collected. The Analog-to-Digital Converter (ADC) for measurement channel is triggered by the 16-times pulse signal of reference laser. So the sampling rate is constant only depending on frequency of reference laser and irrelative to the motor velocity. This means the sampling rate of measurement channel signals is on a uniform time-scale. The optical spectrum of measurement channel can be processed with Fast Fourier Transform (FFT) method by DSP and displayed on LCD.
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology
Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.
2016-01-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176
Brillouin scattering-induced rogue waves in self-pulsing fiber lasers
Hanzard, Pierre-Henry; Talbi, Mohamed; Mallek, Djouher; Kellou, Abdelhamid; Leblond, Hervé; Sanchez, François; Godin, Thomas; Hideur, Ammar
2017-01-01
We report the experimental observation of extreme instabilities in a self-pulsing fiber laser under the influence of stimulated Brillouin scattering (SBS). Specifically, we observe temporally localized structures with high intensities that can be referred to as rogue events through their statistical behaviour with highly-skewed intensity distributions. The emergence of these SBS-induced rogue waves is attributed to the interplay between laser operation and resonant Stokes orders. As this behaviour is not accounted for by existing models, we also present numerical simulations showing that such instabilities can be observed in chaotic laser operation. This study opens up new possibilities towards harnessing extreme events in highly-dissipative systems through adapted laser cavity configurations. PMID:28374840
Brillouin scattering-induced rogue waves in self-pulsing fiber lasers.
Hanzard, Pierre-Henry; Talbi, Mohamed; Mallek, Djouher; Kellou, Abdelhamid; Leblond, Hervé; Sanchez, François; Godin, Thomas; Hideur, Ammar
2017-04-04
We report the experimental observation of extreme instabilities in a self-pulsing fiber laser under the influence of stimulated Brillouin scattering (SBS). Specifically, we observe temporally localized structures with high intensities that can be referred to as rogue events through their statistical behaviour with highly-skewed intensity distributions. The emergence of these SBS-induced rogue waves is attributed to the interplay between laser operation and resonant Stokes orders. As this behaviour is not accounted for by existing models, we also present numerical simulations showing that such instabilities can be observed in chaotic laser operation. This study opens up new possibilities towards harnessing extreme events in highly-dissipative systems through adapted laser cavity configurations.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Utilization of a Terrestrial Laser Scanner for the Calibration of Mobile Mapping Systems
Hong, Seunghwan; Park, Ilsuk; Lee, Jisang; Lim, Kwangyong; Choi, Yoonjo; Sohn, Hong-Gyoo
2017-01-01
This paper proposes a practical calibration solution for estimating the boresight and lever-arm parameters of the sensors mounted on a Mobile Mapping System (MMS). On our MMS devised for conducting the calibration experiment, three network video cameras, one mobile laser scanner, and one Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) were mounted. The geometric relationships between three sensors were solved by the proposed calibration, considering the GNSS/INS as one unit sensor. Our solution basically uses the point cloud generated by a 3-dimensional (3D) terrestrial laser scanner rather than using conventionally obtained 3D ground control features. With the terrestrial laser scanner, accurate and precise reference data could be produced and the plane features corresponding with the sparse mobile laser scanning data could be determined with high precision. Furthermore, corresponding point features could be extracted from the dense terrestrial laser scanning data and the images captured by the video cameras. The parameters of the boresight and the lever-arm were calculated based on the least squares approach and the precision of the boresight and lever-arm could be achieved by 0.1 degrees and 10 mm, respectively. PMID:28264457
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-02-08
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.
A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging
Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling
2016-01-01
Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197
NASA Astrophysics Data System (ADS)
Stalcup, Thomas Eugene, Jr.
Adaptive optics using natural guide stars can produce images of amazing quality, but is limited to a small fraction of the sky due to the need for a relatively bright guidestar. Adaptive optics systems using a laser generated artificial reference can be used over a majority of the sky, but these systems have some attendant problems. These problems can be reduced by increasing the altitude of the laser return, and indeed a simple, single laser source focused at an altitude of 95 km on a layer of atmospheric sodium performs well for the current generation of 8--10 m telescopes. For future giant telescopes in the 20--30 m class, however, the errors due to incorrect atmospheric sampling and spot elongation will prohibit such a simple system from working. The system presented in this dissertation provides a solution to these problems. Not only does it provide the 6.5m MMT with a relatively inexpensive laser guide star system with unique capabilities, it allows research into solving many of the problems faced by laser guide star systems on future giant telescopes. The MMT laser guidestar system projects a constellation of five doubled Nd:YAG laser beams focused at a mean height of 25 km, with a dynamic refocus system that corrects for spot elongation and allows integrating the return from a 10 km long range gate. It has produced seeing limited spot sizes in ˜1 arcsecond seeing conditions, and has enabled the first on-sky results of Ground Layer Adaptive Optics (GLAO).
Pardue, R.M.; Williams, R.R.
1980-09-12
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Pardue, Robert M.; Williams, Richard R.
1982-01-01
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Mobile 3D laser scanning technology application in the surveying of urban underground rail transit
NASA Astrophysics Data System (ADS)
Han, Youmei; Yang, Bogang; Zhen, Yinan
2016-11-01
Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System
2015-03-26
through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing
Engineering a laser remote sensor for atmospheric pressure and temperature
NASA Technical Reports Server (NTRS)
Kalshoven, J. E., Jr.; Korb, C. L.
1978-01-01
A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.
Liu, Xiao-jing; Li, Qian-qian; Pang, Yuan-jie; Tian, Kai-yue; Xie, Zheng; Li, Zi-li
2015-06-01
As computer-assisted surgical design becomes increasingly popular in maxillofacial surgery, recording patients' natural head position (NHP) and reproducing it in the virtual environment are vital for preoperative design and postoperative evaluation. Our objective was to test the repeatability and accuracy of recording NHP using a multicamera system and a laser level. A laser level was used to project a horizontal reference line on a physical model, and a 3-dimensional image was obtained using a multicamera system. In surgical simulation software, the recorded NHP was reproduced in the virtual head position by registering the coordinate axes with the horizontal reference on both the frontal and lateral views. The repeatability and accuracy of the method were assessed using a gyroscopic procedure as the gold standard. The interclass correlation coefficients for pitch and roll were 0.982 (0.966, 0.991) and 0.995 (0.992, 0.998), respectively, indicating a high degree of repeatability. Regarding accuracy, the lack of agreement in orientation between the new method and the gold standard was within the ranges for pitch (-0.69°, 1.71°) and for roll (-0.92°, 1.20°); these have no clinical significance. This method of recording and reproducing NHP with a multicamera system and a laser level is repeatable, accurate, and clinically feasible. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.
Becker, J S; Tenzler, D
2001-07-01
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.
High-Energy Passive Mode-Locking of Fiber Lasers
Ding, Edwin; Renninger, William H.; Wise, Frank W.; Grelu, Philippe; Shlizerman, Eli; Kutz, J. Nathan
2012-01-01
Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings. PMID:22866059
Scott, Paul A; Chow, Whitney; Ellis, Elizabeth; Morgan, John M; Roberts, Paul R
2009-11-01
Both electrosurgical dissection (EDS) and laser tools are effective in the extraction of chronic implanted endovascular leads. It is unclear which is superior. We undertook a retrospective single-centre study to assess this. In our institution from 2000 to 2004, all extractions requiring an ablative sheath were performed using the EDS system. In 2004, an excimer laser system was acquired, which became the first choice. Consecutive patients undergoing extraction requiring an ablative sheath (EDS or laser) were studied. From 2000 to 2007, 140 leads were extracted from 74 patients (EDS 31 and laser 43). Procedural success was non-significantly higher in the laser vs. the EDS group (95 vs. 87%). In the EDS group, one patient suffered tamponade requiring surgery; in the laser group, one patient suffered a significant pericardial effusion treated conservatively. There were no deaths. Procedure and fluoroscopy times were similar between groups. More patients were referred for primary surgical extraction in the EDS vs. the laser era (7 vs. 0, P = 0.003). Lead extraction using an ablative sheath is safe and effective. In our small study, there were no significant differences between EDS and laser sheaths in terms of success, time, or safety.
Frequency stabilization of multiple lasers on a single medium-finesse cavity
NASA Astrophysics Data System (ADS)
Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye
2018-04-01
We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.
A non-contact temperature measurement system for controlling photothermal medical laser treatments
NASA Astrophysics Data System (ADS)
Kaya, Ã.-zgür; Gülsoy, Murat
2016-03-01
Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.
Enhancements to the timing of the OMEGA laser system to improve illumination uniformity
NASA Astrophysics Data System (ADS)
Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.
2016-09-01
Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.
Design and realization of the optical and electron beam alignment system for the HUST-FEL oscillator
NASA Astrophysics Data System (ADS)
Fu, Q.; Tan, P.; Liu, K. F.; Qin, B.; Liu, X.
2018-06-01
A Free Electron Laser(FEL) oscillator with radiation wavelength at 30-100 μ m is under commissioning at Huazhong University of Science and Technology (HUST). This work presents the schematic design and realization procedures for the optical and beam alignment system in the HUST FEL facility. The optical cavity misalignment effects are analyzed with the code OPC + Genesis 1.3, and the tolerance of misalignment is proposed with the simulation result. Depending on undulator mechanical benchmarks, a laser indicating system has been built up as reference datum. The alignment of both optical axis and beam trajectory were achieved by this alignment system.
Optical synchronization system for femtosecond X-ray sources
Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE
2011-12-13
Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.
Multi-chord fiber-coupled interferometer with a long coherence length laser
NASA Astrophysics Data System (ADS)
Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.
2012-03-01
This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Astrophysics Data System (ADS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1989-04-01
This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.
Field precision machining technology of target chamber in ICF lasers
NASA Astrophysics Data System (ADS)
Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi
2016-10-01
In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.
NASA Astrophysics Data System (ADS)
Baren, Randall E.; Parrish, Milton E.; Shafer, Kenneth H.; Harward, Charles N.; Shi, Quan; Nelson, David D.; McManus, J. Barry; Zahniser, Mark S.
2004-12-01
A compact, fast response, infrared spectrometer using four pulsed quantum cascade (QC) lasers has been applied to the analysis of gases in mainstream (MS) and sidestream (SS) cigarette smoke. QC lasers have many advantages over the traditional lead-salt tunable diode lasers, including near room temperature operation with thermoelectric cooling and single mode operation with improved long-term stability. The new instrument uses two 36 m, 0.3 l multiple pass absorption gas cells to obtain a time response of 0.1 s for the MS smoke system and 0.4 s for the SS smoke system. The concentrations of ammonia, ethylene, nitric oxide, and carbon dioxide for three different reference cigarettes were measured simultaneously in MS and SS smoke. A data rate of 20 Hz provides sufficient resolution to determine the concentration profiles during each 2 s puff in the MS smoke. Concentration profiles before, during and after the puffs also have been observed for these smoke constituents in SS smoke. Also, simultaneous measurements of CO 2 from a non-dispersive infrared (NDIR) analyzer are obtained for both MS and SS smoke. In addition, during this work, nitrous oxide was detected in both the MS and SS smoke for all reference cigarettes studied.
Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field
Kaartinen, Harri; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Hyyppä, Hannu
2012-01-01
The performance of various mobile laser scanning systems was tested on an established urban test field. The test was connected to the European Spatial Data Research (EuroSDR) project “Mobile Mapping—Road Environment Mapping Using Mobile Laser Scanning”. Several commercial and research systems collected laser point cloud data on the same test field. The system comparisons focused on planimetric and elevation errors using a filtered digital elevation model, poles, and building corners as the reference objects. The results revealed the high quality of the point clouds generated by all of the tested systems under good GNSS conditions. With all professional systems properly calibrated, the elevation accuracy was better than 3.5 cm up to a range of 35 m. The best system achieved a planimetric accuracy of 2.5 cm over a range of 45 m. The planimetric errors increased as a function of range, but moderately so if the system was properly calibrated. The main focus on mobile laser scanning development in the near future should be on the improvement of the trajectory solution, especially under non-ideal conditions, using both improvements in hardware and software. Test fields are relatively easy to implement in built environments and they are feasible for verifying and comparing the performance of different systems and also for improving system calibration to achieve optimum quality.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.
2016-06-01
For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.
Satellite power systems (SPS) concept definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
System definition studies resulted in a further definition of the reference system using gallium arsenide solar arrays, analysis of alternative subsystem options for the reference concept, preliminary solid state microwave concept studies, and an environmental analysis of laser transmission systems. The special emphasis studies concentrated on satellite construction, satellite construction base definition, satellite construction base construction, and rectenna construction. Major emphasis in the transportation studies was put on definition of a two stage parallel burn, vertical takeoff/horizontal landing concept. The electric orbit transfer vehicle was defined in greater detail. Program definition included cost analyses and schedule definition.
Nondestructive inspection of aerospace composites by a fiber-coupled laser ultrasonics system
NASA Astrophysics Data System (ADS)
Vandenrijt, J.-F.; Languy, F.; Thizy, C.; Georges, M. P.
2017-06-01
Laser ultrasonics is a technique currently studied for nondestructive inspection of aerospace composite structures based on carbon fibers. It combines a pulsed laser impacting the surface generates an ultrasound inside the material, through the nondestructive thermoelastic effect. Second a detection interferometer probes the impacted point in order to measure the displacement of the surface resulting from the emitted ultrasound wave and the echo coming back from the different interfaces of the structure. Laser ultrasonics is of interest for inspecting complex shaped composites. We have studied the possibility of using frequency doubled YAG laser for the generation and which is fiber-coupled, together with a fibercoupled interferometric probe using a YAG laser in the NIR. Our final system is a lightweight probe attached to a robot arm and which is able to scan complex shapes. The performances of the system are compared for different wavelengths of generations. Also we have studied some experimental parameters of interest such as tolerance to angle and focus distance, and different geometries of generation beams. We show some examples of inspection of reference parts with known defects. In particular C-scans of curved composites structures are presented.
Using Stars to Align a Steered Laser System for Cosmic Ray Simulation
NASA Astrophysics Data System (ADS)
Krantz, Harry; Wiencke, Lawrence
2016-03-01
Ultra high energy cosmic rays (UHECRs) are the highest energy cosmic particles with kinetic energy above 1018eV . UHECRs are detected from the air shower of secondary particles and UV florescence that results from interaction with the atmosphere. A high power UV laser beam can be used to simulate the optical signature of a UHCER air shower. The Global Light System (GLS) is a planned network of ground-based light sources including lasers to support the planned space-based Extreme Universe Space Observatory (EUSO). A portable prototype GLS laser station has been constructed at the Colorado School of Mines. Currently the laser system uses reference targets on the ground but stars can be used to better align the beam by providing a complete hemisphere of targets. In this work, a CCD camera is used to capture images of known stars through the steering head optics. The images are analyzed to find the steering head coordinates of the target star. The true coordinates of the star are calculated from the location and time of observation. A universal adjustment for the steering head is determined from the differences between the two pairs of coordinates across multiple stars. This laser system prototype will also be used for preflight tests of the ESUO Super Pressure Balloon mission.
Broadband Laser Ranging for Position Measurements in Shock Physics Experiments
NASA Astrophysics Data System (ADS)
Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie
2017-06-01
Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Max, C.E.; Gavel, D.T.; Olivier, S.S.
1995-08-03
A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less
Laser ablation in analytical chemistry - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Richard E.; Mao, Xianglei; Liu, Haichen
Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less
Optical frequency stabilization in infrared region using improved dual feed-back loop
NASA Astrophysics Data System (ADS)
Ružička, B.; Číp, O.; Lazar, J.
2007-03-01
Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550 nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-IR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelengthmeters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
Tunable, Highly Stable Lasers for Coherent Lidar
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.
2006-01-01
Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.
Preliminary results from the portable standard satellite laser ranging intercomparison with MOBLAS-7
NASA Technical Reports Server (NTRS)
Selden, Michael; Varghese, Thomas K.; Heinick, Michael; Oldham, Thomas
1993-01-01
Conventional Satellite Laser Ranging (SLR) instrumentation has been configured and successfully used to provide high-accuracy laboratory measurements on the LAGEOS-2 and TOPEX cube-corner arrays. The instrumentation, referred to as the Portable Standard, has also been used for field measurements of satellite ranges in tandem with MOBLAS-7. Preliminary results of the SLR measurements suggest that improved range accuracy can be achieved using this system. Results are discussed.
Airborne water vapor DIAL system and measurements of water and aerosol profiles
NASA Technical Reports Server (NTRS)
Higdon, Noah S.; Browell, Edward V.
1991-01-01
The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.
Microwave systems analysis, solar power satellite. [alignment of the antenna array
NASA Technical Reports Server (NTRS)
1979-01-01
Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.
Noise suppressing capillary separation system
Yeung, Edward S.; Xue, Yongjun
1996-07-30
A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.
Noise suppressing capillary separation system
Yeung, E.S.; Xue, Y.
1996-07-30
A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.
Characterization of CNRS Fizeau wedge laser tuner
NASA Technical Reports Server (NTRS)
1984-01-01
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.
Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.
Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J
2016-11-01
The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Transparent silicon strip sensors for the optical alignment of particle detector systems
NASA Astrophysics Data System (ADS)
Blum, W.; Kroha, H.; Widmann, P.
1996-02-01
Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimized for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics.
Near-IR laser frequency standard stabilized using FM-spectroscopy
NASA Astrophysics Data System (ADS)
Ružička, Bohdan; Číp, Ondřej; Lazar, Josef
2006-02-01
At the present time fiber-optics and optical communication are in rapid progress. Modern technologies such as DWDM (Dense Wavelength Division Multiplex) need precise stability of laser frequencies. According to this fact, requirements of new etalons of optical frequencies in the telecommunication band is rapidly growing. Lasers working in near infrared telecommunication band (1500-1600 nm) can be stabilized to 12C IIH II or 13C IIH II (acetylene) gas absorption lines. The acetylene gas absorption has been widely studied and accepted by international bodies of standardization as a primary wavelength reference in the near infrared band around 1550nm. Our aim was to design and develop a compact fibre optics laser system generating coherent light in near-JR band with high frequency stability (at least 1.10 -8). This system should become a base for realization of a primary frequency standard for optical communications in the Czech Republic. Such an etalon will be needed for calibration of wavelength-meters and spectral analysers for DWDM communication systems. We are co-operating with CMI (Czech Metrology Institute) on this project. We present stabilized laser system based on a single frequency DFB (Distributed Feedback) laser diode with a narrow spectral profile. The laser is pre-stabilized by means of the FM-spectroscopy on a passive resonator. Thanks to a fast feed-back loop we are able to improve spectral characteristics of the laser. The laser frequency is locked by a relatively slow second feed-back loop on an absorption line of acetylene vapour which is sealed in a cell under the optimised pressure.
Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer
Fuentes, D.; Oden, J. T.; Diller, K. R.; Hazle, J. D.; Elliott, A.; Shetty, A.; Stafford, R. J.
2014-01-01
An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging (MRTI). The system is built on what can be referred to as cyberinfrastructure - a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in-vivo, canine prostate. Over the course of an 18 minute laser induced thermal therapy (LITT) performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5°C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post operative histology of the canine prostate reveal that the damage region was within the targeted 1.2cm diameter treatment objective. PMID:19148754
Computational modeling and real-time control of patient-specific laser treatment of cancer.
Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J
2009-04-01
An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.
Performance Evaluation Of The Antares Reference Telescope System
NASA Astrophysics Data System (ADS)
Parker, J. R.; Woodfin, G. L.; Viswanathan, V. K.
1985-11-01
The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 μm of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 μm to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This "cross telescope" configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 1p/mm and a positioning precision of 25 μm can be obtained.
Performance evaluation of the Antares reference telescope system
NASA Astrophysics Data System (ADS)
Parker, J. R.; Woodfin, G. L.; Viswanathan, V. K.
The Antares Reference Telescope System is a complicated electro-optical-mechanical system whose main purpose is to enable positioning of targets used in the Antares Laser System to within 10 microns of a selected nominal position. To date, it has been used successfully to position targets ranging in size from 300 microns to 2 mm. The system consists of two electro-optical systems positioned in a nearly orthogonal manner. This cross telescope configuration facilitates accurate positioning in three planes. The results obtained so far in resolution and positioning of targets using this system are discussed. It is shown that a resolution of 200 lp/mm and a positioning precision of 25 microns can be obtained.
NASA Astrophysics Data System (ADS)
Sorg, H.
Among the topics discussed are: drift and scale factor tests on the SEL fiber gyro; integrated optical rate sensor development; and the beam geometry of a ring laser gyro in relation to its performance. Consideration is also given to: a fast filtering technique for measuring random walk in a laser gyro; vibratory gyroscopic sensors; a redundant strapdown reference for advanced aircraft flight control systems; and a low-cost piezoelectric rate/acceleration sensor. Additional topics include: an inertial guidance system for a Low-Earth-Orbit (LEO) vehicle; and signal disturbance effects in a strapdown northfinder.
Cotton-Mouton polarimeter with HCN laser on CHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, T.; Kawahata, K.; Ito, Y.
Polarimeters based on the Cotton-Mouton effect hold promise for electron density measurements. We have designed and installed a Cotton-Mouton polarimeter on the Compact Helical System. The Cotton-Mouton effect is measured as the phase difference between probe and reference beams. In this system, an interferometric measurement can be performed simultaneously with the same probe chord. The light source is a HCN laser (wavelength of 337 {mu}m). Digital complex demodulation is adopted for small phase analysis. The line averaged density evaluated from the polarimeter along a plasma center chord is almost consistent with that from the interferometer.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1988-01-01
Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.
Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn
NASA Technical Reports Server (NTRS)
Brasunas, John C.
2012-01-01
The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.
Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna
2017-01-01
Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods. PMID:28672795
Osada, Edward; Sośnica, Krzysztof; Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna
2017-06-24
Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods.
Ultra-stable clock laser system development towards space applications.
Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe
2016-09-26
The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.
NASA Astrophysics Data System (ADS)
Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.
2012-09-01
Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.
NASA Astrophysics Data System (ADS)
Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing
2015-02-01
In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.
0.26-Hz-linewidth ultrastable lasers at 1557 nm
Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng
2016-01-01
Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10−16 at 1–30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10−15 is achieved on the long time scale of 100–4000 s. PMID:27117356
Current Trends in Satellite Laser Ranging
NASA Technical Reports Server (NTRS)
Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.
2010-01-01
Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster detectors are implemented. Automation and pass interleaving at some stations is already expanding temporal coverage. Web-based safety keys are allowing the SLR network stations to range to optically vulnerable satellites. Some stations are experimenting with two-wavelength operation as a means of better understanding the atmospheric refraction and with very low power laser to improve eye-safety conditions. New retroreflector designs are improving the signal link and enable daylight ranging. Dramatic improvements have also been made with lunar ranging with the new APOLLO Site in New ?Mexico, USA and the upgraded lunar station "MEO" in Grasse,
Yu, Charles Q; Manche, Edward E
2015-04-01
To compare laser in situ keratomileusis (LASIK) outcomes between 2 femtosecond lasers for flap creation in the treatment of myopia up to 1 year. University eye clinic. Prospective randomized eye-to-eye study. Consecutive myopic patients were treated with wavefront-guided LASIK. One eye had a flap created by the Intralase FS 60 kHz femtosecond laser, and the fellow eye was treated with the Intralase iFS 150 kHz femtosecond laser. Eyes were randomized according to ocular dominance. Evaluations included measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity, contrast sensitivity and wavefront aberrometry. The study enrolled 122 eyes of 61 patients. The mean preoperative spherical equivalent refraction was -4.62 diopters (D) ± 2.32 (SD) and -4.66 ± 2.30 D in the 150 kHz group and 60 kHz group, respectively. Patients preferred the 150 kHz laser to the 60 kHz laser intraoperatively (52.5% versus 26.2%) (P = .005). One week postoperatively, UDVA was 20/16 or better in 85.2% in the 150 kHz group and 70.5% in the 60 kHz group; the difference was statistically significant (P < .05). At 12 months, there were no significant differences in refractive outcomes or higher-order aberrations between the 2 groups. Flap creation with the 150 kHz system and the 60 kHz system resulted in excellent LASIK outcomes. Intraoperatively, patients preferred the 150 kHz system, which yielded better UDVA in the early postoperative period. There were no significant differences at 1 year between the 2 laser systems. Proprietary or commercial disclosures are listed after the references. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Contribution of Multi-GNSS Constellation to SLR-Derived Terrestrial Reference Frame
NASA Astrophysics Data System (ADS)
Sośnica, K.; Bury, G.; Zajdel, R.
2018-03-01
All satellites of new Global Navigation Satellite Systems (GNSS) are equipped with laser retroreflectors dedicated to Satellite Laser Ranging (SLR). This paper demonstrates the contribution of SLR tracking of multi-GNSS constellations to the improved SLR-derived reference frame and scientific products. We show a solution strategy with estimating satellite orbits, SLR station coordinates, geocenter coordinates, and Earth rotation parameters using SLR observations to 2 Laser Geodynamics Satellites (LAGEOS) and 55 GNSS satellites: 1 GPS, 31 Globalnaya Navigatsionnaya Sputnikovaya Sistema, 18 Galileo, 3 BeiDou Inclined Geosynchronous Orbit, 1 BeiDou Medium Earth Orbit, and 1 Quasi-Zenith Satellite System satellite for the period 2014.0-2017.4. Due to a substantial number of GNSS observations, the number of weekly solutions for some SLR stations, for example, Arkhyz, Komsomolsk, Altay, and Brasilia, is larger up to 41% in the combined LAGEOS + GNSS solution when compared to the LAGEOS-only solution. The SLR observations to GNSS can transfer the orientation of the reference frame from GNSS to SLR solutions. As a result, the SLR-derived pole coordinates and length-of-day estimates become more consistent with GNSS microwave-based results. The root-mean-square errors of length-of-day are reduced from 122.5 μs/d to 43.0 μs/d, whereas mean offsets are reduced from -81.6 μs/d to 0.5 μs/d in LAGEOS only and in the combined LAGEOS + GNSS solutions, respectively.
Patient identification using a near-infrared laser scanner
NASA Astrophysics Data System (ADS)
Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris
2017-03-01
We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.
Beam shaping for laser-based adaptive optics in astronomy.
Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani
2014-06-02
The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.
Laser hazards bibliography, January 1991
NASA Astrophysics Data System (ADS)
Sliney, David H.; Robinson, Anita; Sparks, Shawn
1991-01-01
The Laser Hazards Bibliography consists of 3414 references in the open literature broken into subject categories which relate to general biological effects, the eye, the skin, laser safety, laser propagation in the atmosphere, and laser measurements.
Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser
NASA Astrophysics Data System (ADS)
Sheng, Wang; Jin-Hai, Si; Jun, Shao; Zhi-yun, Hu; Jing-feng, Ye; Jing-Ru, Liu
2017-11-01
In order to achieve the two-dimensional (2-D) velocity measurement of a flow field at extreme condition, a 2-D interferometric Rayleigh scattering (IRS) velocimetry using a multibeam probe laser was developed. The method using a multibeam probe laser can record the reference interference signal and the flow interference signal simultaneously. What is more, this method can solve the problem of signal overlap using the laser sheet detection method. The 2-D IRS measurement system was set up with a multibeam probe laser, aspherical lens collection optics, and a solid Fabry-Perot etalon. A multibeam probe laser with 0.5-mm intervals was formed by collimating a laser sheet passing through a cylindrical microlens arrays. The aspherical lens was used to enhance the intensity of the Rayleigh scattering signal. The 2-D velocity field results of a Mach 1.5 air flow were obtained. The velocity in the flow center is about 450 m/s. The reconstructed results fit well with the characteristic of flow, which indicate the validity of this technique.
Adaptive Optics Imaging in Laser Pointer Maculopathy.
Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M
2016-08-01
The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.
2015-12-01
Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.
Fiber optic geophysical sensors
Homuth, Emil F.
1991-01-01
A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.
New International Agreements About Space Techniques Among Argentina, China and France
NASA Astrophysics Data System (ADS)
Pacheco, A. M.; Podestá, R.; Actis, E.; Adarvez, S.; Quinteros, J.; Li, J.; Saunier, J.; Podestá, F.; Ramos, F.; Aguilera, J.; Sosa, G.; Hauser, D.
2018-01-01
The International Earth Rotation and Reference Systems (IERS) is in charge of defining and materializing celestial reference systems (ICRS - ICRF) and terrestrial reference systems (ITRS - ITRF). In order to perform this task it uses data from the following techniques: Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite System (GNSS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). Nowadays, the Observatorio Astronómico Félix Aguilar (OAFA) has two instruments with these advanced techniques: SLR and a permanent GNSS station. In the nearby future a 40 m diameter radio telescope will be available that will be operated in VLBI mode along with a DORIS buoy which will be co-localized with a SLR telescope and GNSS antennas. In this way OAFA will become a zero station, first class, of the ITRF 2014 frame.
Optical Measurement of Mass Flow of a Two-Phase Fluid
NASA Technical Reports Server (NTRS)
Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don
2008-01-01
An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical coupler along the same slant. Light collected by each receiving optical coupler is sent, via a multimode fiber-optic cable, to a detector module similar to the reference detector module. The outputs of the photodiodes in each detector module are digitized and processed, similarly to those of the reference detector module, to obtain indications of the amounts of light of each wavelength scattered to the corresponding receiving position. The value for each wavelength at each position is also normalized to the reference laser-power level for that wavelength. From these normalized values, the density and the mass flow rate of the fluid are estimated.
Wavelength meter having single mode fiber optics multiplexed inputs
Hackel, R.P.; Paris, R.D.; Feldman, M.
1993-02-23
A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.
Wavelength meter having single mode fiber optics multiplexed inputs
Hackel, Richard P.; Paris, Robert D.; Feldman, Mark
1993-01-01
A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.
Candidates for direct laser cooling of diatomic molecules with the simplest 1Σ -1Σ electronic system
NASA Astrophysics Data System (ADS)
Li, Chuanliang; Li, Yachao; Ji, Zhonghua; Qiu, Xuanbing; Lai, Yunzhong; Wei, Jilin; Zhao, Yanting; Deng, Lunhua; Chen, Yangqin; Liu, Jinjun
2018-06-01
We propose to utilize the 1Σ-1Σ electronic transition system for direct laser cooling of heteronuclear diatomic molecules. AgH, as well as its deuterium isotopolog AgD, is used as an example to illustrate the cooling schemes. Potential-energy curves and relevant molecular parameters of both AgH and AgD, including the spin-orbit constants and the electronic transition dipole moments, are determined in internally contracted multiconfiguration-reference configuration interaction calculations. The highly diagonal Franck-Condon matrices of the A 1Σ+-X 1Σ+ transitions predicted by the calculations suggest the existence of quasi-closed-cycle transitions, which renders these molecules suitable for direct laser cooling. By solving rate equations numerically, we demonstrated that both AgH and AgD molecules can be cooled from 25 K to 2 mK temperature in approximately 20 ms. Our investigation elucidates and supports the hypothesis that molecules in the simplest 1Σ-1Σ system can serve as favorable candidates for direct laser cooling.
Current Status of Study on Hydrogen Production with Space Solar Power Systems (SSPS)
NASA Astrophysics Data System (ADS)
Mori, M.; Kagawa, H.; Nagayama, H.; Saito, Y.
2004-12-01
Japan Aerospace Exploration Agency (JAXA) has been conducting studies on Space Solar Power Systems (SSPS) using microwave and laser beams for years since FY1998 organizing a special committee and working groups. The microwave based SSPS are huge solar power systems that generate GW power by solar cells. The electric power is transmitted via microwave from the SSPS to the ground. In the laser based SSPS, a solar condenser equipped with lenses or mirrors and laser-generator would be put into orbit. A laser beam would be sent to Earth-based hydrogen generating device. We are proposing a roadmap that consists of a stepwise approach to achieve commercial SSPS in 20-30 years. The first step is 50kW class Technology Demonstration Satellite to demonstrate microwave power transmission. The second step is to demonstrate robotic assembly of 10MW class large scale flexible structure in space on ISS co-orbit. The third step is to build a prototype SSPS in GEO. The final step is to build commercial SSPS in GEO. We continue the study of SSPS concepts and architectures, technology flight demonstration and major technology development. System design of tens of kW class Technology Demonstration Satellite and conceptual study of 10MW class demonstration system on ISS co-orbit are also conducted. Several key technologies which are needed to be developed in appropriate R&D roadmap, such as high-voltage solar cell array, fiber type of direct solar pumping solid-state laser, high efficiency magnetron, thermal control technology and control technology of large scale flexible structure etc. are also investigated. In the study of concept design of commercial SSPS mentioned above, we have studied some configurations of both microwave based SSPS and laser based SSPS. In case of microwave based SSPS, the solar energy must be converted to electricity and then converted to a microwave beam. The on-ground rectifying antenna will collect the microwave beam and convert it to electricity to connect to commercial power grids. From the past experiences of the conceptual design of the1GW class SSPS, it is clear that system with the mirrors and modularized unit which integrated solar cells and microwave power transmitters is promising. In this type of SSPS, the solar lights are directed to the energy conversion unit integrated solar cells and microwave power transmitters using mirrors. The key factor in designing systems is feasibility of thermal system. Considering above these factors, some reference models are being considered now. FY2003 reference model is the model for formation flight without the center truss which connect to primary mirrors to energy conversion unit. Using this model as basis, we are carrying out examination from various viewpoints aiming at the cost minimum to build and maintain the systems. In case of laser based SSPS, the laser beam would be directly produced from the solar light using the direct solar pumping solid-state laser device. This laser beams would be collected on ground and used to produce hydrogen from seawater. The receiving / energy conversion station is settled on an ocean, and producing hydrogen can be stored and transported by ships to consumers. In designing laser based SSPS, conversion efficiency of the direct solar pumping solid-state laser and feasibility of thermal system are critical factors. Since magnification of solar concentrator is very high, improvement of thermal control system is important. Feasibility of its ground facilities and production technology of hydrogen using laser beams has been also studied. Both hydrogen generating systems with photo-catalyst device and electrolytic ones have been examined. From the past experiences of this study, high efficient electric power generating technology using the solar cell which suited the wavelength of laser is promising. The life cycle cost model of laser based SSPS was created and evaluated its validity. Sensitivity analysis of laser based SSPS are also continued aiming at hydrogen generating cost of around 20 cent per Nm3 . This paper presents a summary of studies on SSPS that JAXA has examined.
Laser hazards bibliography, 12 edition
NASA Astrophysics Data System (ADS)
Sliney, David H.; Galoff, Penelope K.; Robinson, Anita; Rush, Jody
1986-10-01
The Laser Hazards Bibliography consists of 2,979 references in the open literature broken into subject categories which relate to general biological effects, the eye, the skin, laser safety, laser propagation in the atmosphere, and laser measurements.
Arm-Locking with the GRACE Follow-On Laser Ranging Instrument
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; Mckenzie, Kirk
2016-01-01
Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Arm locking with the GRACE follow-on laser ranging interferometer
NASA Astrophysics Data System (ADS)
Thorpe, James Ira; McKenzie, Kirk
2016-02-01
Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Iodine absorption cells quality evaluation methods
NASA Astrophysics Data System (ADS)
Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej
2016-12-01
The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.
GNSS-SLR satellite co-location for the estimate of local ties
NASA Astrophysics Data System (ADS)
Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio
2013-04-01
The current realization of the International Terrestrial Reference Frame (ITRF) is based on four different space-geodetic techniques, so that the benefits brought by each observing system to the definition of the frame can compensate for the drawbacks of the others and technique-specific systematic errors might be identified. The strategy used to combine the observations from the different techniques is then of prominent importance for the realization of a precise and stable reference frame. This study concentrates, in particular, on the combination of Satellite Laser Ranging (SLR) and Global Navigation Satellite System (GNSS) observations by exploiting satellite co-locations. This innovative approach is based on the fact that laser tracking of GNSS satellites, carrying on board laser reflector arrays, allows for the combination of optical and microwave signals in the determination of the spacecraft orbit. Besides, the use of satellite co-locations differs quite significantly from the traditional combination method in which each single technique solution is carried out autonomously and is interrelated in a second step. One of the benefits of the approach adopted in this study is that it allows for an independent validation of the local tie, i.e. of the vector connecting the SLR and GNSS reference points in a multi-techniques station. Typically, local ties are expressed by a single value, measured with ground-based geodetic techniques and taken as constant. In principle, however, local ties might show time variations likely caused by the different monumentation characteristics of the GNSS antennas with respect to those of a SLR system. This study evaluates the possibility of using the satellite co-location approach to generate local-ties time series by means of observations available for a selected network of ILRS stations. The data analyzed in this study were acquired as part of the NASA's Earth Science Data Systems and are archived and distributed by the Crustal Dynamics Data Information System (CDDIS).
Station coordinates, baselines, and earth rotation from Lageos laser ranging - 1976-1984
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Schultz, B. E.; Eanes, R. J.
1985-01-01
The orbit of the Lageos satellite is well suited as a reference frame for studying the rotation of the earth and the relative motion of points on the earth's crust. The satellite laser measurements can determine the location of a set of tracking stations in an appropriate terrestrial coordinate system. The motion of the earth's rotation axis relative to this system can be studied on the basis of the established tracking station locations. The present investigation is concerned with an analysis of 7.7 years of Lageos laser ranging data. In the first solution considered, the entire data span was used to adjust a single set of station positions simultaneously with orbit and earth rotation parameters. Attention is given to the accuracy of earth rotation parameters which are determined as an inherent part of the solution process.
Basic mechanisms in the laser control of non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.
2018-03-01
Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.
Noncontact true temperature measurement. [of levitated sample using laser pyrometer
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Allen, James L.
1987-01-01
A laser pyrometer has been developed for acquiring the true temperature of a levitated sample. The laser beam is first expanded to cover the entire cross-sectional surface of the target. For calibration of such a system, the reflectivity signal of an ideal 0.95 cm diameter gold-coated sphere (reflectivity = 0.99) is used as the reference for any other real targets. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of a blackbody furnace (emissivity = 1.0) at a known, arbitrary temperature. Since the photo sensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. Preliminary results indicate that true temperatures thus obtained are in excellent correlation with thermocouple measured temperatures.
Historical MOBLAS system characterization
NASA Technical Reports Server (NTRS)
Husson, Van S.
1993-01-01
This paper is written as a direct response to the published NASA Laser Geodynamic Satellite (LAGEOS) orbital solution SL7.1, in order to close the data information loop with an emphasis on the NASA Mobile Laser Ranging System's (MOBLAS) LAGEOS full rate data since November 1, 1983. A preliminary analysis of the supporting information (i.e. satellite laser ranging system eccentricities and system dependent range and time bias corrections) contained in SL7.1 indicated centimeter (cm) level discrepancies. In addition, a preliminary analysis of the computed monthly MOBLAS range biases from SL7.1 appear to show cm level systematic trends, some of which appear to be 'real', particularly in the 1984 to 1987 time period. This paper is intended to be a reference document for known MOBLAS systematic errors (magnitude and direction) and for supporting MOBLAS information (eccentricities, hardware configurations, and potential data problem periods). Therefore, this report is different than your typical system characterization report, but will be more valuable to the user. The MOBLAS error models and supporting information contained in this paper will be easily accessible from the Crustal Dynamics Data Information System (CDDIS).
Laser Opto-Electronic Correlator for Robotic Vision Automated Pattern Recognition
NASA Technical Reports Server (NTRS)
Marzwell, Neville
1995-01-01
A compact laser opto-electronic correlator for pattern recognition has been designed, fabricated, and tested. Specifically it is a translation sensitivity adjustable compact optical correlator (TSACOC) utilizing convergent laser beams for the holographic filter. Its properties and performance, including the location of the correlation peak and the effects of lateral and longitudinal displacements for both filters and input images, are systematically analyzed based on the nonparaxial approximation for the reference beam. The theoretical analyses have been verified in experiments. In applying the TSACOC to important practical problems including fingerprint identification, we have found that the tolerance of the system to the input lateral displacement can be conveniently increased by changing a geometric factor of the system. The system can be compactly packaged using the miniature laser diode sources and can be used in space by the National Aeronautics and Space Administration (NASA) and ground commercial applications which include robotic vision, and industrial inspection of automated quality control operations. The personnel of Standard International will work closely with the Jet Propulsion Laboratory (JPL) to transfer the technology to the commercial market. Prototype systems will be fabricated to test the market and perfect the product. Large production will follow after successful results are achieved.
New ultra-high resolution dye laser spectrometer utilizing a non-tunable reference resonator
NASA Astrophysics Data System (ADS)
Helmcke, J.; Snyder, J. J.; Morinaga, A.; Mensing, F.; Gläser, M.
1987-06-01
A new dye laser spectrometer utilizing a non-tunable reference resonator is described. The resonator consists of two Zerodur mirrors optically contacted to a Zerodur spacer. Frequency scanning of the laser is provided by acoustooptic modulation. Residual drifts of the resonator frequency — measured on line — are compensated automatically by corresponding corrections of the modulation frequency. The stability during several hours and the resettability of the dye laser frequency are±2.5 kHz and±10 kHz, respectively.
Fiber optic geophysical sensors
Homuth, E.F.
1991-03-19
A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.
NASA Astrophysics Data System (ADS)
Acero, R.; Santolaria, J.; Pueo, M.; Aguilar, J. J.; Brau, A.
2015-11-01
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures.
Novel target design for enhanced laser driven proton acceleration
NASA Astrophysics Data System (ADS)
Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.
2017-09-01
We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.
Lauritzen, Ted
1982-01-01
A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.
Lauritzen, T.
A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.
Automatic concrete cracks detection and mapping of terrestrial laser scan data
NASA Astrophysics Data System (ADS)
Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef
2013-12-01
Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.
Laser ablation U-Th-Sm/He dating of detrital apatite
NASA Astrophysics Data System (ADS)
Guest, B.; Pickering, J. E.; Matthews, W.; Hamilton, B.; Sykes, C.
2016-12-01
Detrital apatite U-Th-Sm/He thermochronology has the potential to be a powerful tool for conducting basin thermal history analyses as well as complementing the well-established detrital zircon U-Pb approach in source to sink studies. A critical roadblock that prevents the routine application of detrital apatite U-Th-Sm/He thermochronology to solving geological problems is the costly and difficult whole grain approach that is generally used to obtain apatite U-Th-Sm/He data. We present a new analytical method for laser ablation thermochronology on apatite. Samples are ablated using a Resonetics™ 193 nm excimer laser and liberated 4He is measured using an ASI (Australian Scientific Instruments) Alphachron™ quadrupole mass spectrometer system; collectively known as the Resochron™. The ablated sites are imaged using a Zygo ZescopeTM optical profilometer and ablated pit volume measured using PitVol, a custom MatLabTM algorithm. The accuracy and precision of the method presented here was confirmed using well-characterized Durango apatite and Fish Canyon Tuff (FCT) apatite reference materials, with Durango apatite used as a primary reference and FCT apatite used as a secondary reference. The weighted average of our laser ablation Durango ages (30.5±0.35 Ma) compare well with ages obtained using conventional whole grain degassing and dissolution U-Th-Sm/He methods (32.56±0.43 Ma) (Jonckheere et.al., 1 993; Farley, 2000; McDowell et.al., 2005) for chips of the same Durango crystal. These Durango ages were used to produce a K-value to correct the secondary references and unknown samples. After correction, FCT apatite has a weighted average age of 28.37 ± 0.96 Ma, which agrees well with published ages. As a further test of this new method we have conducted a case study on a set of samples from the British Mountains of the Yukon Territory in NW Canada. Sandstone samples collected across the British Mountains were analyzed using conventional U-Th-Sm/He whole grain methods and then reanalyzed using our new Laser ablation approach. The laser ablation results are consistent with those obtained using conventional methods, confirming that apatite laser ablation U-Th-Sm/He thermochronology is a viable alternative for collecting large low temperature thermochronology data sets from detrital samples.
NASA Astrophysics Data System (ADS)
Clairon, A.; Dahmani, B.; Acef, O.; Granveaud, M.; Domnin, Yu S.; Pouchkine, S. B.; Tatarenkov, V. M.; Felder, R.
1988-01-01
Comparison of the VNIIFTRI and LPTF frequency multiplication chains has been carried out through the measurement of the frequency of a portable VNIIFTRI (He-Ne)/CH4 laser. Agreement is within 100 Hz (1.1 parts in 1012) and is secured by the very good medium-term frequency repeatability of the (He-Ne)/CH4 VNIIFTRI portable laser (a few parts in 1013). On the same occasion a measurement of the frequency of the BIPM (He-Ne)/CH4 reference laser (B.3) has been performed at LPTF. Other experiments carried out on the BIPM laser show that the reproducibility of the (He-Ne)/CH4 system could be improved by a systematic study and then by a better control of the various perturbing factors which influence the shape of the methane-saturated absorption peak.
Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M
2013-11-15
We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.
Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.
1986-01-01
The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.
Boulyga, Sergei F; Heilmann, Jens; Heumann, Klaus G
2005-08-01
Inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with direct laser-assisted introduction of isotope-diluted samples into the plasma, using a laser ablation system with high ablation rates, was developed for accurate sulfur determinations in different petroleum products such as 'sulfur-free' premium gasoline, diesel fuel, and heating oil. Two certified gas oil reference materials were analyzed for method validation. Two different 34S-enriched spike compounds, namely, elementary sulfur dissolved in xylene and dibenzothiophene in hexane, were synthesized and tested for their usefulness in this isotope dilution technique. The isotope-diluted sample was adsorbed on a filter-paper-like material, which was fixed in a special holder for irradiation by the laser beam. Under these conditions no time-dependent spike/analyte fractionation was only observed for the dibenzothiophene spike during the laser ablation process, which means that the measured 34S/32S isotope ratio of the isotope-diluted sample remained constant-a necessary precondition for accurate results with the isotope dilution technique. A comparison of LA-ICP-IDMS results with the certified values of the gas oil reference materials and with results obtained from ICP-IDMS analyses with wet sample digestion demonstrated the accuracy of the new LA-ICP-IDMS method in the concentration range of 9.2 microg g(-1) ('sulfur-free' premium gasoline) to 10.4 mg g(-1) (gas oil reference material BCR 107). The detection limit for sulfur by LA-ICP-IDMS is 0.04 microg g(-1) and the analysis time is only about 10 min, which therefore also qualifies this method for accurate determinations of low sulfur contents in petroleum products on a routine level.
Adhesive Bonding for Optical Metrology Systems in Space Applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus
2015-05-01
Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.
Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C
2016-01-27
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.
Yi, X.; Vahala, K.; Li, J.; Diddams, S.; Ycas, G.; Plavchan, P.; Leifer, S.; Sandhu, J.; Vasisht, G.; Chen, P.; Gao, P.; Gagne, J.; Furlan, E.; Bottom, M.; Martin, E. C.; Fitzgerald, M. P.; Doppmann, G.; Beichman, C.
2016-01-01
An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope. PMID:26813804
Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants
NASA Astrophysics Data System (ADS)
Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.
2015-05-01
Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.
NASA Astrophysics Data System (ADS)
Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng
2017-09-01
The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.
Compact reflection holographic recording system with high angle multiplexing
NASA Astrophysics Data System (ADS)
Kanayasu, Mayumi; Yamada, Takehumi; Takekawa, Shunsuke; Akieda, Kensuke; Goto, Akiyo; Yamamoto, Manabu
2011-02-01
Holographic memory systems have been widely researched since 1963. However, the size of the drives required and the deterioration of reconstructed data resulting from shrinkage of the medium have made practical use of a hologram memory difficult. In light of this, we propose a novel holographic recording/reconstructing system: a dual-reference beam reflection system that is smaller than conventional systems such as the off-axis or co-axis types, and which is expected to increase the number of multiplexing in angle multiplexed recording. In this multiplex recording system, two laser beams are used as reference beams, and the recorded data are reconstructed stably, even if there is shrinkage of the recording medium. In this paper, a reflection holographic memory system is explained in detail. In addition, the change in angle selectivity resulting from shrinkage of the medium is analyzed using the laminated film three-dimensional simulation method. As a result, we demonstrate that a dual-reference beam multiplex recording system is effective in reducing the influence of medium shrinkage.
NASA Astrophysics Data System (ADS)
Xu, Ling; Tan, Yidong; Zhang, Shulian
2018-03-01
The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.
NASA Astrophysics Data System (ADS)
Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.
2018-02-01
A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, A.; Orgren, A.
This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less
Multipurpose Fiber Injected-micro-spherical LIDAR System
NASA Technical Reports Server (NTRS)
Abdelayem, Hossin; Jamison, Tracee
2005-01-01
A technological revolution is occurring in the field of fiber lasers. Over the past two years, the level of power has increased from approx. 100 watts to nearly 1 kilowatt. We are developing a novel fiber laser system, which is a satellite-based LIDAR transmitter of multi-lines. The system is made of a hollow fiber filled with micro-spheres doped with lasing materials. Each sphere has its inherent optical cavity, which makes the system a cavity free and in the same time, emits multi-laser lines for simultaneous multi-task operations. The system is also rugged, compact, lightweight, and durable. Our earlier studies on micro-spheres doped with different laser dyes demonstrated the emission of extremely fine laser lines of less than 3 A line-width, which are of interest for spectroscopic applications, sensing, imaging, and optical communications. Individual dye-doped micro-spheres demonstrated a lasing resonance peaks phenomenon in their fluorescence spectra of linear and nonlinear features that do not exist in the bulk dye solutions. Each individual micro-sphere acts as a laser system with inherent cavity, where the fluorescence line suffers multiple internal reflections within the micro-sphere and gains enough energy to become a laser line. Such resonance peaks are dependent on the sphere's morphology, size, shape, and its refractive index. These resonance peaks are named structural resonance, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomenon of morphology dependent resonance (MDR), which has already been described and predicted precisely by electromagnetic theory and Lorentz-Mie theory since 1908. The resonance peaks become more obvious when the particle size approaches and exceeds the wavelength of the laser used and the relative index of the particle is greater than that of the surrounding medium. Additional information is included in the original extended abstract.
Bringing the Visible Universe into Focus with Robo-AO
Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit
2013-01-01
The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078
Bringing the visible universe into focus with Robo-AO.
Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit
2013-02-12
The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.
Status of the TRIGA-LASER experiment
NASA Astrophysics Data System (ADS)
Gorges, C.; Kaufmann, S.; Geppert, Ch.; Krämer, J.; Sánchez, R.; Nörtershäuser, W.
2017-11-01
We report on the newly developed control system called TRITON and the new data acquisition called TILDA as well as on improved isotope shift measurements of the isotopes 40,42,44,48Ca in the 4 s 2S1/2 → 4 p 2P3/2 (D2) transition at the TRIGA-LASER experiment in Mainz using collinear laser spectroscopy. Well known isotope shift measurements in the 4 s 2S1/2 → 4 p 2P1/2 (D1) transition act as calibration points to reduce the uncertainties in the D2-line to provide reference values for the determination of nuclear charge radii and quadrupole moments of neutron rich calcium isotopes at COLLAPS.
An Enclosed Laser Calibration Standard
NASA Astrophysics Data System (ADS)
Adams, Thomas E.; Fecteau, M. L.
1985-02-01
We have designed, evaluated and calibrated an enclosed, safety-interlocked laser calibration standard for use in US Army Secondary Reference Calibration Laboratories. This Laser Test Set Calibrator (LTSC) represents the Army's first-generation field laser calibration standard. Twelve LTSC's are now being fielded world-wide. The main requirement on the LTSC is to provide calibration support for the Test Set (TS3620) which, in turn, is a GO/NO GO tester of the Hand-Held Laser Rangefinder (AN/GVS-5). However, we believe it's design is flexible enough to accommodate the calibration of other laser test, measurement and diagnostic equipment (TMDE) provided that single-shot capability is adequate to perform the task. In this paper we describe the salient aspects and calibration requirements of the AN/GVS-5 Rangefinder and the Test Set which drove the basic LTSC design. Also, we detail our evaluation and calibration of the LTSC, in particular, the LTSC system standards. We conclude with a review of our error analysis from which uncertainties were assigned to the LTSC calibration functions.
Laser Induced Damage in Optical Materials: 1980.
1981-10-01
is used to describe microplastic strain resulting from short duration loading, and the term microcreep refers to time dependent strains of small...effectively, and the maximum temperature rise will thus be at the Work supported by Naval Sea Systems Command, PflS-405, and Naval Weapons Center
New application system for laser and ultrasonic therapy in endoscopic surgery
NASA Astrophysics Data System (ADS)
Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.
1996-12-01
Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue coagulation or cutting, next to the selective ultrasonic tissue fragmentation, where nerves or vessels will not be affected. Such a LUST-application system could be ready for clinical use in two to four years.
ASME B89.4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers
Muralikrishnan, B.; Sawyer, D.; Blackburn, C.; Phillips, S.; Borchardt, B.; Estler, W. T.
2009-01-01
Small and unintended offsets, tilts, and eccentricity of the mechanical and optical components in laser trackers introduce systematic errors in the measured spherical coordinates (angles and range readings) and possibly in the calculated lengths of reference artifacts. It is desirable that the tests described in the ASME B89.4.19 Standard [1] be sensitive to these geometric misalignments so that any resulting systematic errors are identified during performance evaluation. In this paper, we present some analysis, using error models and numerical simulation, of the sensitivity of the length measurement system tests and two-face system tests in the B89.4.19 Standard to misalignments in laser trackers. We highlight key attributes of the testing strategy adopted in the Standard and propose new length measurement system tests that demonstrate improved sensitivity to some misalignments. Experimental results with a tracker that is not properly error corrected for the effects of the misalignments validate claims regarding the proposed new length tests. PMID:27504211
Laser Communications Relay Demonstration: Introduction for Experimenters
NASA Technical Reports Server (NTRS)
Israel, David J.
2017-01-01
This document provides guidance to individuals or groups considering proposing an experiment for the Laser Communications Relay Demonstration (LCRD) Experiment Program. For the purposes of this document, the term experiment refers to both experiments and demonstrations. The documents goals are: (1) to introduce potential experimenters to the LCRD mission, its purpose, and its system architecture; (2) to help them understand the types of experiments that are possible using LCRD; and (3) to provide an overview of the experiment proposal process and explain how and where to obtain further information about making a proposal.
Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan
2009-01-01
The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152
NASA Astrophysics Data System (ADS)
Edwards, Brian E.; Nitkowski, Arthur; Lawrence, Ryan; Horton, Kasey; Higgs, Charles
2004-10-01
Atmospheric turbulence and laser-induced thermal blooming effects can degrade the beam quality of a high-energy laser (HEL) weapon, and ultimately limit the amount of energy deliverable to a target. Lincoln Laboratory has built a thermal blooming laboratory capable of emulating atmospheric thermal blooming and turbulence effects for tactical HEL systems. The HEL weapon emulation hardware includes an adaptive optics beam delivery system, which utilizes a Shack-Hartman wavefront sensor and a 349 actuator deformable mirror. For this experiment, the laboratory was configured to emulate an engagement scenario consisting of sea skimming target approaching directly toward the HEL weapon at a range of 10km. The weapon utilizes a 1.5m aperture and radiates at a 1.62 micron wavelength. An adaptive optics reference beam was provided as either a point source located at the target (cooperative) or a projected point source reflected from the target (uncooperative). Performance of the adaptive optics system was then compared between reference sources. Results show that, for operating conditions with a thermal blooming distortion number of 75 and weak turbulence (Rytov of 0.02 and D/ro of 3), cooperative beacon AO correction experiences Phase Compensation Instability, resulting in lower performance than a simple, open-loop condition. The uncooperative beacon resulted in slightly better performance than the open-loop condition.
Characterization of CNRS Fizeau wedge laser tuner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less
Iodine Absorption Cells Purity Testing.
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-06
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).
Iodine Absorption Cells Purity Testing
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-01
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
Cost of space-based laser ballistic missile defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, G.; Spergel, D.
1986-03-21
Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to bemore » used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ration. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems. 28 references, 2 tables.« less
Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications
NASA Technical Reports Server (NTRS)
Ward, K. B.
1973-01-01
Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.
Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Integrated GNSS attitude determination and positioning for direct geo-referencing.
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G
2014-07-17
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.
Hosten, N; Stier, A; Weigel, C; Kirsch, M; Puls, R; Nerger, U; Jahn, D; Stroszczynski, C; Heidecke, C-D; Speck, U
2003-03-01
A thin-caliber applicator system was developed for introducing a laser fiber under CT guidance into lung metastases with only minimal complications. A space-saving 5.5 French Teflon cannula with a titanium trocar and connectors for a laser light guide (2 or 3 cm Dornier Diffusor-Tip H-6111-T2 or H-6111-T3 coupled to a Dornier Medilas Fibertom 5100 laser, wavelength of 1064 nm) and a perfusion line for physiologic saline solution were developed. After puncture the laser Diffusor-Tip remains in the cannula and is cooled during its tissue passage by slowly flowing saline solution. The miniaturized applicator system (Monocath) was calibrated in nonperfused bovine liver for maximum energy supply and necessary flow of the cooling saline solution in reference to a commercially available 9 French laser catheter with an 11.5 French inducer sheath (Power-Applicator). The new applicator system was used for treating lung metastases in 10 patients over a period of 21 months. The size of heat coagulation in bovine liver was 24 +/- 2 ml using the miniaturized system with application of 15 W for 20 min and a saline flow of 0.75 ml/min, in comparison to a size of 29 +/- 7 ml for the commercial applicator (30 W, 20 min, 60 ml/min). All metastases could be safely approached with the miniaturized applicator, except for two metastatic lesions at the lung base in two patients. A minor pneumothorax developed in three patients and intrapulmonary bleeding in two. Contrast-enhanced CT demonstrated necrosis of the treated metastatic areas in 6 patients. Follow-up of three patients after 5, 6, and 8 months showed complete tumor regression with minimal scarring in one patient. The miniaturized applicator system enables the introduction of a laser fiber into pulmonary metastases with only minor complications. Complete ablation seems to be achievable in suitable patients with the applied laser energy and a slow cooling fluid flow rate.
Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A
2012-09-01
Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi
2017-04-01
Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.
NASA Astrophysics Data System (ADS)
Beavis, Andrew W.; Ward, James W.
2014-03-01
Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.
Application of LIBS to the in-line process control of liquid high-alloy steel under pressure.
Hubmer, Gerhard; Kitzberger, Reinhard; Mörwald, Karl
2006-05-01
A process optimization and control system called VAI-CON Chem has been developed that uses laser-induced breakdown spectroscopy (LIBS) to quasi-continuously chemically analyze liquid high-alloy steel under pressure. The beam from a Nd:YAG laser, located on safe ground and operating at its fundamental wavelength, is guided by a mirror system to a process tuyere below bath level. Passing through the approximately 1.5 m long tuyere, the beam is then focused onto the steel bath. Light emitted from the induced plasma passes back through the tuyere, which is coupled to a fiber optic cable that carries the information over a distance of approximately 10 m back to an Echelle spectrometer located beside the laser. Calibrations were performed using the complete system, located in a laboratory, during system testing. An induction furnace was used to simulate the AOD converter, wherein the samples were molten and superheated to a temperature of approximately 1600 degrees C and kept at a pressure of approximately 1.7 bar under an argon atmosphere. Twelve different high alloyed reference samples taken from normal AOD production with Fe concentrations of >48 wt.% and non-Fe element concentrations of up to 25 wt.% were available for calibration. The mean residual deviations (defined as the square root of the variance of the concentration ratios determined by LIBS and the reference element concentration ratios) obtained were close to those reported for other comparable high-alloy samples that were investigated at room temperature under normal atmospheric pressure.
The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams
NASA Astrophysics Data System (ADS)
Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.
2015-05-01
The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.
Comparison of tablet-based strategies for incision planning in laser microsurgery
NASA Astrophysics Data System (ADS)
Schoob, Andreas; Lekon, Stefan; Kundrat, Dennis; Kahrs, Lüder A.; Mattos, Leonardo S.; Ortmaier, Tobias
2015-03-01
Recent research has revealed that incision planning in laser surgery deploying stylus and tablet outperforms state-of-the-art micro-manipulator-based laser control. Providing more detailed quantitation regarding that approach, a comparative study of six tablet-based strategies for laser path planning is presented. Reference strategy is defined by monoscopic visualization and continuous path drawing on a graphics tablet. Further concepts deploying stereoscopic or a synthesized laser view, point-based path definition, real-time teleoperation or a pen display are compared with the reference scenario. Volunteers were asked to redraw and ablate stamped lines on a sample. Performance is assessed by measuring planning accuracy, completion time and ease of use. Results demonstrate that significant differences exist between proposed concepts. The reference strategy provides more accurate incision planning than the stereo or laser view scenario. Real-time teleoperation performs best with respect to completion time without indicating any significant deviation in accuracy and usability. Point-based planning as well as the pen display provide most accurate planning and increased ease of use compared to the reference strategy. As a result, combining the pen display approach with point-based planning has potential to become a powerful strategy because of benefiting from improved hand-eye-coordination on the one hand and from a simple but accurate technique for path definition on the other hand. These findings as well as the overall usability scale indicating high acceptance and consistence of proposed strategies motivate further advanced tablet-based planning in laser microsurgery.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
NASA Technical Reports Server (NTRS)
Shutz, Bob E.; Urban, Timothy J.
2014-01-01
This ATBD summarizes (and links with other ATBDs) the elements used to obtain the geolocated GLAS laser spot location, with respect to the Earth Center of Mass. Because of the approach used, the reference frame used to express the geolocation is linked to the reference frame used for POD and PAD, which are related to the ITRF. The geolocated spot coordinates (which includes the elevation or height, with respect to an adopted reference ellipsoid) is the inferred position of the laser spot, since the spot location is not directly measured. This document also summarizes the GLAS operation time periods.
NASA Technical Reports Server (NTRS)
Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.
2008-01-01
Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.
Nonablative laser resurfacing: state of the art 2002.
Pozner, Jason N; Goldberg, David J
2002-09-01
The reader is presumed to have a basic understanding of the use of lasers in plastic surgery and laser physics. After reading this article, the participant should be able to: Physicians may earn 1 hour of Category 1 CME credit by successfully completing the examination on the basis of material covered in this article. The examination begins on page 435. Nonablative resurfacing, also referred to as subsurface or dermal remodeling, is a recently introduced technology for restoring damaged collagen without injuring or removing the overlying epidermis. To date there have been no published comparisons or reviews of these laser systems. The authors review the mechanisms of action of currently available nonablative laser technologies and published data on their performance. Literature concerning nonablative laser technology published between 2000 and 2002 was reviewed by use of Medline searches. Data on technical specifications were obtained from the manufacturers. Significant improvement in skin elasticity and photodamage with few or no complications was noted after treatment with most of the systems reviewed. However, the results were generally more subtle than those achieved with ablative lasers. Nonablative technology is currently at the forefront of skin rejuvenation. Data on long-term results must await several more years of accumulated clinical treatment. Improvement in skin quality, tone, and texture can be expected, but patients and physicians who expect nonablative laser treatment results to be similar to those achieved by ablative techniques may be disappointed. (Aesthetic Surg J 2002;22:427-434.).
NASA Astrophysics Data System (ADS)
Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel
2017-11-01
This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).
LANL receiver system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laubscher, B.; Cooke, B.; Cafferty, M.
1997-08-01
The CALIOPE receiver system development at LANL is the story of two technologies. The first of these technologies consists of off-the-shelf mercury-cadmium-telluride (MCT) detectors and amplifiers. The vendor for this system is Kolmar Technologies. This system was fielded in the Tan Trailer I (TTI) in 1995 and will be referred to in this paper as GEN I. The second system consists of a MCT detector procured from Santa Barbara Research Center (SBRC) and an amplifier designed and built by LANL. This system was fielded in the Tan Trailer II (TTII) system at the NTS tests in 1996 and will bemore » referred to as GEN II. The LANL CALIOPE experimental plan for 1996 was to improve the lidar system by progressing to a higher rep rate laser to perform many shots in a much shorter period of time. In keeping with this plan, the receiver team set a goal of developing a detector system that was background limited for the projected 100 nanosecond (ns) laser pulse. A set of detailed simulations of the DIAL lidar experiment was performed. From these runs, parameters such as optimal detector size, field of view of the receiver system, nominal laser return power, etc. were extracted. With this information, detector physics and amplifier electronic models were developed to obtain the required specifications for each of these components. These derived specs indicated that a substantial improvement over commercially available, off-the-shelf, amplifier and detector technologies would be needed to obtain the goals. To determine if the original GEN I detector was usable, the authors performed tests on a 100 micron square detector at cryogenic temperatures. The results of this test and others convinced them that an advanced detector was required. Eventually, a suitable detector was identified and a number of these single element detectors were procured from SBRC. These single element detectors were witness for the detector arrays built for another DOE project.« less
PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Zeng, Jiaolong; Yuan, Jianmin
2017-01-01
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser-atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials. We use a split-operator method combined with fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser-atom systems are straightforward with minimal modifications of the source code.
Bond strength of composites on Er:YAG and Er,Cr:YSGG laser-irradiated enamel
NASA Astrophysics Data System (ADS)
Apel, Christian; Gutknecht, Norbert
1999-02-01
In an in vitro study the bond strength of composite materials on Er:YAG and Er,Cr:YSGG laser-radiated enamel was examined. The results achieved on enamel surfaces conditioned conventionally using the acid etching method served as a control. On 80 extracted cariesfree third molars an enamel area of 4 X 4 mm was conditioned with three different systems. The Er:YAG laser was used at pulse frequencies of 8 Hz, 10 Hz, 12 Hz and 15 Hz using an energy of 120 mJ at each setting. The Er,Cr:YSGG laser was used at the settings of 20 Hz/50 mJ, 20 Hz/100 mJ and 20 Hz/150 mJ. The repetition rate for this device is constantly 20 Hz. In the reference group 10 teeth were etched with 37% phosphoric acid. In order to be able to perform the tensile tests under standard conditions metal brackets were placed on the conditioned surfaces. The 'Orthodontic-Bonding-System' was used as an adhesive system. The brackets were pulled off from the etched surfaces vertically to the tooth using a tensile testing machine. The results confirmed the highest bond strengths in the group of enamel surfaces which have been conditioned with acid etching gel. The bond strength of the Er:YAG laser (8, 10 and 12 Hz)- and Er,Cr:YSGG laser (20 Hz/150 mJ)-conditioned enamel surfaces was not significantly lower.
Tissue temperature distribution measurement by MRI and laser immunology for cancer treatment
NASA Astrophysics Data System (ADS)
Chen, Yichao; Gnyawali, Surya C.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.
2007-02-01
In cancer treatment and immune response enhancement research, Magnetic Resonance Imaging (MRI) is an ideal method for non-invasive, three-dimensional temperature measurement. We used a 7.1-Tesla magnetic resonance imager for ex vivo tissues and small animal to determine temperature distribution of target tissue during laser irradiation. The feasibility of imaging is approved with high spatial resolution and high signal-noise- ratio. Tissue-simulating gel phantom gel, biological tissues, and tumor-bearing animals were used in the experiments for laser treatment and MR imaging. Thermal couple measurement of temperature in target samples was used for system calibration. An 805-nm laser was used to irradiate the samples with a laser power in the range of 1 to 2.5 watts. Using the MRI system and a specially developed processing algorithm, a clear temperature distribution matrix in the target tissue and surrounding tissue was obtained. The temperature profiles show that the selective laser photothermal effect could result in tissue temperature elevation in a range of 10 to 45 °C. The temperature resolution of the measurement was about 0.37°C including the total system error. The spatial resolution was 0.4 mm (128x128 pixels with field of view of 5.5x5.5 cm). The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to achieve optimal thermal effects in cancer treatment.
Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong
2016-01-01
An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.
A study of the high-precision displacement laser probe
NASA Astrophysics Data System (ADS)
Fan, Yuming; Zhang, Guoxiong
2006-06-01
On the basis of the measuring principle of the dynamic active optical confocal probe based on time difference measurement that has a reference path, a dynamic active optical confocal probe based on time difference measurement but has no reference path is developed. In this paper, the working principle of this optical confocal probe is dissertated. A large-scale integrated measuring system is designed to simplify the structure of the probe and to enhance the stability of the probe. Single-chip microcomputer system with a high-speed ADC is selected in the measurement and control system of the probe. At the end of the paper, experiments on the performance of the optical confocal probe based on time difference measurement with no reference path are carried out. Experiment results show that the probe has a measuring resolution of 0.05μm, a measuring range of 0.2mm and a linearity of 0.4μm.
Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells
NASA Astrophysics Data System (ADS)
Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.
2017-07-01
Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.
Laser modulator for LISA pathfinder
NASA Astrophysics Data System (ADS)
Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.
2017-11-01
LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.
NASA Astrophysics Data System (ADS)
Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.
2016-09-01
Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.
Kobe, Martin; Jahr, Thomas; Pöschel, Wolfgang; Kukowski, Nina
2016-03-01
In summer 2011, two new laser strainmeters about 26.6 m long were installed in N-S and E-W directions parallel to an existing quartz tube strainmeter system at the Geodynamic Observatory Moxa, Thuringia/Germany. This kind of installation is unique in the world and allows the direct comparison of measurements of horizontal length changes with different types of strainmeters for the first time. For the comparison of both data sets, we used the tidal analysis over three years, the strain signals resulting from drilling a shallow 100 m deep borehole on the ground of the observatory and long-period signals. The tidal strain amplitude factors of the laser strainmeters are found to be much closer to theoretical values (85%-105% N-S and 56%-92% E-W) than those of the quartz tube strainmeters. A first data analysis shows that the new laser strainmeters are more sensitive in the short-periodic range with an improved signal-to-noise ratio and distinctly more stable during long-term drifts of environmental parameters such as air pressure or groundwater level. We compared the signal amplitudes of both strainmeter systems at variable signal periods and found frequency-dependent amplitude differences. Confirmed by the tidal parameters, we have now a stable and high resolution laser strainmeter system that serves as calibration reference for quartz tube strainmeters.
NASA Technical Reports Server (NTRS)
Rodgers, M. O.; Bradshaw, J. D.; Sandholm, S. T.; Kesheng, S.; Davis, D. D.
1985-01-01
A number of techniques have been proposed for detecting atmospheric OH radicals. Of these, the laser-induced fluorescence (LIF) technique has been used by the largest number of investigators. One of the problems arising in connection with the implementation of this technique is related to the perturbing effect of the UV (lambda approximately 282 nm) laser beam used for OH monitoring, while another problem relates to signal extraction. Several new LIF approaches have been or are currently under development with the objective to bring both problems under control. The present paper deals with the experimental features of one of these new approaches. The considered approach is referred to as 2-lambda laser-induced fluorescence (2-lambda LIF). It is shown that the 2-lambda LIF system provides significant advantages over earlier 1-lambda LIF OH measurement instruments operating at ambient pressure.
Hayman, Matthew; Spuler, Scott
2017-11-27
We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.
Precision control of multiple quantum cascade lasers for calibration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.
We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
High Power Laser Processing Of Materials
NASA Astrophysics Data System (ADS)
Martyr, D. R.; Holt, T.
1987-09-01
The first practical demonstration of a laser device was in 1960 and in the following years, the high power carbon dioxide laser has matured as an industrial machine tool. Modern carbon dioxide gas lasers can be used for cutting, welding, heat treatment, drilling, scribing and marking. Since their invention over 25 years ago they are now becoming recognised as highly reliable devices capable of achieving huge savings in production costs in many situations. This paper introduces the basic laser processing techniques of cutting, welding and heat treatment as they apply to the most common engineering materials. Typical processing speeds achieved with a wide range of laser powers are reported. Accuracies achievable and fit-up tolerances required are presented. Methods of integrating lasers with machine tools are described and their suitability in a wide range of manufacturing industries is described by reference to recent installations. Examples from small batch manufacturing, high volume production using dedicated laser welding equipment, and high volume manufacturing using 'flexible' automated laser welding equipment are described Future applications of laser processing are suggested by reference to current process developments.
Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)
NASA Astrophysics Data System (ADS)
Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan
2015-09-01
A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.
GEOS observation systems intercomparison investigation results
NASA Technical Reports Server (NTRS)
Berbert, J. H.
1974-01-01
The results of an investigation designed to determine the relative accuracy and precision of the different types of geodetic observation systems used by NASA is presented. A collocation technique was used to minimize the effects of uncertainties in the relative station locations and in the earth's gravity field model by installing accurate reference tracking systems close to the systems to be compared, and by precisely determining their relative survey. The Goddard laser and camera systems were shipped to selected sites, where they tracked the GEOS satellite simultaneously with other systems for an intercomparison observation.
NASA Astrophysics Data System (ADS)
Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.
2013-05-01
In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).
The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation
NASA Technical Reports Server (NTRS)
Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John
2013-01-01
The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.
Phase locking of a 2.7 THz quantum cascade laser to a microwave reference.
Khosropanah, P; Baryshev, A; Zhang, W; Jellema, W; Hovenier, J N; Gao, J R; Klapwijk, T M; Paveliev, D G; Williams, B S; Kumar, S; Hu, Q; Reno, J L; Klein, B; Hesler, J L
2009-10-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at approximately 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference
NASA Technical Reports Server (NTRS)
Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.;
2009-01-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
International Laser Ranging Service (ILRS): Terms of Reference
NASA Technical Reports Server (NTRS)
Husson, Van; Noll, Carey
2000-01-01
The International Laser Ranging Service (ILRS) is an established Service within Section II , Advanced Space Technology, of the International Association of Geodesy (IAG). The primary objective of the ILRS is to provide a service to support, through Satellite and Lunar Laser Ranging data and related products, geodetic and geophysical research activities as well as International Earth Rotation Service (IERS) products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service also develops the necessary standards/specifications and encourages international adherence to its conventions.
Coherent Doppler Wind Lidar Technology for Space Based Wind Measurements Including SPARCLE
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.
1999-01-01
It has been over 30 years since coherent lidar systems first measured wind velocity, and over 20 years since the "ultimate application" of measuring Earth's winds from space was conceived. Coherent or heterodyne optical detection involves the combination (or mixing) of the returned optical field with a local oscillator (LO) laser's optical field on the optical detector. This detection technique yields the benefits of dramatically improved signal-to-noise ratios; insensitivity to detector noise, background light and multiply scattered light; reduction of the returned signal's dynamic range; and preservation of the optical signal spectrum for electronic and computer processing. (Note that lidar systems are also referred to as optical radar, laser radar, and LADAR systems.) Many individuals, agencies, and countries have pursued the goal of space-based wind measurements through technology development, experiments, field campaigns and studies.
Application of a self-compensation mechanism to a rotary-laser scanning measurement system
NASA Astrophysics Data System (ADS)
Guo, Siyang; Lin, Jiarui; Ren, Yongjie; Shi, Shendong; Zhu, Jigui
2017-11-01
In harsh environmental conditions, the relative orientations of transmitters of rotary-laser scanning measuring systems are easily influenced by low-frequency vibrations or creep deformation of the support structure. A self-compensation method that counters this problem is presented. This method is based on an improved workshop Measurement Positioning System (wMPS) with inclinometer-combined transmitters. A calibration method for the spatial rotation between the transmitter and inclinometer with an auxiliary horizontal reference frame is presented. It is shown that the calibration accuracy can be improved by a mechanical adjustment using a special bubble level. The orientation-compensation algorithm of the transmitters is described in detail. The feasibility of this compensation mechanism is validated by Monte Carlo simulations and experiments. The mechanism mainly provides a two-degrees-of-freedom attitude compensation.
Measuring THz QCL feedback using an integrated monolithic transceiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanke, Michael Clement
2010-08-01
THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detectormore » components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled significantly as a function of the external path length.« less
NASA Technical Reports Server (NTRS)
Hoad, D. R.; Meyers, J. F.; Young, W. H., Jr.; Hepner, T. P.
1978-01-01
The flow field at the center line of an unswept wing with an aspect ratio of eight was determined using a two dimensional viscous flow prediction technique for the flow field calculation, and a three dimensional potential flow panel method to evaluate the degree of two dimensionality achieved at the wing center line. The analysis was made to provide an acceptable reference for comparison with velocity measurements obtained from a fringe type laser velocimeter optics systems operating in the backscatter mode in the Langley V/STOL tunnel. Good agreement between laser velocimeter measurements and theoretical results indicate that both methods provide a true representation of the velocity field about the wing at angles of attack of 0.6 and 4.75 deg.
Lapchenko, A S; Kucherov, A G; Ivanets, I V; Aslamazova, V I; Order, R Ya; Yushkina, M A
This article was designed to describe the history of the establishment and development of the research divisions based at the Department of Otorhinolaryngology of the Faculty of General Medicine, N.I. Pirogov Russian National Research Medical University, including laser, vestibulogical, and audiological laboratories. The authors present an overview of the main research activities and achievements of the Department with special reference to the management of Meniere's disease, cochlear-vestibular disorders associated with sensorineural hearing loss, injuries to the organs of hearing, and diseases of the central nervous system. Also discussed are the peculiarities of the laser-assisted medical care and the possibilities for the application of therapeutic and surgical lasers for the purposes of the practical otorhinolaryngological work.
Hansen, Michael G; Magoulakis, Evangelos; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan
2015-05-15
We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of 1×10(-13). The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability <1×10(-13) and inaccuracy 5×10(-13), using a frequency comb phase stabilized to an independent ultra-stable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.
Low-level lasers and mRNA levels of reference genes used in Escherichia coli
NASA Astrophysics Data System (ADS)
Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.
2016-11-01
Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.
NASA Technical Reports Server (NTRS)
Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.
1989-01-01
Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
NASA Astrophysics Data System (ADS)
Harries, W. L.; Meador, W. E.; Miner, G. A.; Schuster, Gregory L.; Walker, G. H.; Williams, M. D.
1989-07-01
Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived.
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
1983-01-01
Laser systems deployed in satellite tracking were upgraded to accuracy levels where biases from systematic unmodelled effects constitute the basic factor that prohibits extraction of the full amount of information contained in the observations. Taking into consideration that the quality of the instrument advances at a faster pace compared to the understanding and modeling of the physical processes involved, one can foresee that in the near future when all lasers are replaced with third generation ones the limiting factor for the estimated accuracies will be the aforementioned biases. Therefore, for the reduction of the observations, methods should be deployed in such a way that the effect of the biases will be kept well below the noise level. Such a method was proposed and studied. This method consists of using the observed part of the satellite pass and converting the laser ranges into range differences in hopes that they will be less affected by biases in the orbital models, the reference system, and the observations themselves.
Improved Range Estimation Model for Three-Dimensional (3D) Range Gated Reconstruction
Chua, Sing Yee; Guo, Ningqun; Tan, Ching Seong; Wang, Xin
2017-01-01
Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works. PMID:28872589
An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration
Stone, Jack A.; Egan, Patrick
2010-01-01
Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bert, Christoph; Metheany, Katherine G.; Doppke, Karen P.
2006-03-15
Purpose: To assess the utility of surface imaging on patient setup for accelerated partial-breast irradiation (APBI). Methods and Material: A photogrammetry system was used in parallel to APBI setup by laser and portal imaging. Surface data were acquired after laser and port-film setup for 9 patients. Surfaces were analyzed in comparison to a reference surface from the first treatment session by use of rigid transformations. The surface model after laser setup was used in a simulated photogrammetry setup procedure. In addition, breathing data were acquired by surface acquisition at a frame rate of 7 Hz. Results: Mean 3D displacement wasmore » 7.3 mm (SD, 4.4 mm) and 7.6 mm (SD, 4.2 mm) for laser and port film, respectively. Simulated setup with the photogrammetry system yielded mean displacement of 1 mm (SD, 1.2 mm). Distance analysis resulted in mean distances of 3.7 mm (SD, 4.9 mm), 4.3 mm (SD, 5.6 mm), and 1.6 mm (SD, 2.4 mm) for laser, port film, and photogrammetry, respectively. Breathing motion at isocenter was smaller than 3.7 mm, with a mean of 1.9 mm (SD, 1.1 mm). Conclusions: Surface imaging for PBI setup appears promising. Alignment of the 3D breast surface achieved by stereo-photogrammetry shows greater breast topology congruence than when patients are set up by laser or portal imaging. A correlation of breast surface and CTV must be quantitatively established.« less
M3RSM: Many-to-Many Multi-Resolution Scan Matching
2015-05-01
a localization problem), or may be derived from a LIDAR scan earlier in the robot’s trajectory (a SLAM problem). The reference map is generally...Mapping ( SLAM ) systems prevent the unbounded accumulation of error. A typical approach with laser range-finder data is to compute the posterior...even greater bottleneck than the SLAM optimiza- tion itself. In our multi-robot mapping system, over a dozen robots explored an area simultaneously [14
Design Study for Ground-Based Atmospheric Lidar System.
1980-09-29
Diameter: 36 inches with center hole to pass telescope focus Material: Pyrex, Zerodur or equivalent f/number: f/4 Secondary Mirror : Diameter: 10...Measurement of Atmospheric Molecular Density Transmitter Section (includes Laser, Beam Expander and 45 Mirror ) Receiving Telescope (receives...Alignment .. .. ..... 134 6.4 Fixed Autocollimator:Receiver Alignment .. .. ... ....... 136 6.5 Adjustment and Use of Reference Mirrors
Optical Pattern Recognition With Self-Amplification
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1994-01-01
In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.
Phase-locking of a 2.7-THz Quantum Cascade Laser to a Microwave Reference
NASA Astrophysics Data System (ADS)
Baryshev, A. M.; Khosropanah, P.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; William, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.
2009-04-01
We demonstrate phase-locking of a 2.7-THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shand, M.L.; Lai, S.T.
1984-02-01
A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)
2000-01-01
The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Laser frequency stabilization for LISA
NASA Technical Reports Server (NTRS)
Mueller, Guido; McNamara, Paul; Thorpe, Ira; Camp, Jordan
2005-01-01
The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.
Eigenmode multiplexing with SLM for volume holographic data storage
NASA Astrophysics Data System (ADS)
Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru
2017-08-01
The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.
Sellin, P B; Strickland, N M; Carlsten, J L; Cone, R L
1999-08-01
We report what is believed to be the first demonstration of laser frequency stabilization directly to persistent spectral holes in a solid-state material. The frequency reference material was deuterated CaF(2): Tm(3+) prepared with 25-MHz-wide persistent spectral holes on the H(6)(3)?H(4)(3) transition at 798 nm. The beat frequency between two lasers that were independently locked to persistent spectral holes in separate crystal samples showed typical root Allan variances of 780+/-120Hz for 20-50-ms integration times.
Optical Diagnostics in the Gaseous Electronics Conference Reference Cell
Hebner, G. A.; Greenberg, K. E.
1995-01-01
A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748
Thermal-noise-limited higher-order mode locking of a reference cavity
NASA Astrophysics Data System (ADS)
Zeng, X. Y.; Ye, Y. X.; Shi, X. H.; Wang, Z. Y.; Deng, K.; Zhang, J.; Lu, Z. H.
2018-04-01
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG02 mode of a 10-cm long all ULE cavity, and measure its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal noise limited performance of a fractional frequency instability of 4.9E-16. The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert
2018-05-07
Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P < 0.01). We found no significant difference in VAS scores between the CO 2 and the Er:YAG laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P < 0.05) and the Er:YAG laser (P < 0.01). Pretreatment with the CO 2 laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine/epinephrine solution and an occlusion time of 15 minutes, a density of 15% was more effective than 5%. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan
2018-04-01
This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.
Laser communications through the atmosphere
NASA Technical Reports Server (NTRS)
Shaik, Kamran; Churnside, J. H.
1988-01-01
Atmospheric properties affecting laser propagation with reference to optical communications are reviewed. Some of the optical space network configurations and various diversity techniques that may need to be utilized to develop robust bi-directional space-earth laser communication links are explored.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
NASA Astrophysics Data System (ADS)
Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei
2017-05-01
The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.
The network and transmission of based on the principle of laser multipoint communication
NASA Astrophysics Data System (ADS)
Fu, Qiang; Liu, Xianzhu; Jiang, Huilin; Hu, Yuan; Jiang, Lun
2014-11-01
Space laser communication is the perfectly choose to the earth integrated information backbone network in the future. This paper introduces the structure of the earth integrated information network that is a large capacity integrated high-speed broadband information network, a variety of communications platforms were densely interconnected together, such as the land, sea, air and deep air users or aircraft, the technologies of the intelligent high-speed processing, switching and routing were adopt. According to the principle of maximum effective comprehensive utilization of information resources, get accurately information, fast processing and efficient transmission through inter-satellite, satellite earth, sky and ground station and other links. Namely it will be a space-based, air-based and ground-based integrated information network. It will be started from the trends of laser communication. The current situation of laser multi-point communications were expounded, the transmission scheme of the dynamic multi-point between wireless laser communication n network has been carefully studied, a variety of laser communication network transmission schemes the corresponding characteristics and scope described in detail , described the optical multiplexer machine that based on the multiport form of communication is applied to relay backbone link; the optical multiplexer-based on the form of the segmentation receiver field of view is applied to small angle link, the optical multiplexer-based form of three concentric spheres structure is applied to short distances, motorized occasions, and the multi-point stitching structure based on the rotation paraboloid is applied to inter-satellite communications in detail. The multi-point laser communication terminal apparatus consist of the transmitting and receiving antenna, a relay optical system, the spectroscopic system, communication system and communication receiver transmitter system. The communication forms of optical multiplexer more than four goals or more, the ratio of received power and volume weight will be Obvious advantages, and can track multiple moving targets in flexible.It would to provide reference for the construction of earth integrated information networks.
Evaluation method based on the image correlation for laser jamming image
NASA Astrophysics Data System (ADS)
Che, Jinxi; Li, Zhongmin; Gao, Bo
2013-09-01
The jamming effectiveness evaluation of infrared imaging system is an important part of electro-optical countermeasure. The infrared imaging devices in the military are widely used in the searching, tracking and guidance and so many other fields. At the same time, with the continuous development of laser technology, research of laser interference and damage effect developed continuously, laser has been used to disturbing the infrared imaging device. Therefore, the effect evaluation of the infrared imaging system by laser has become a meaningful problem to be solved. The information that the infrared imaging system ultimately present to the user is an image, so the evaluation on jamming effect can be made from the point of assessment of image quality. The image contains two aspects of the information, the light amplitude and light phase, so the image correlation can accurately perform the difference between the original image and disturbed image. In the paper, the evaluation method of digital image correlation, the assessment method of image quality based on Fourier transform, the estimate method of image quality based on error statistic and the evaluation method of based on peak signal noise ratio are analysed. In addition, the advantages and disadvantages of these methods are analysed. Moreover, the infrared disturbing images of the experiment result, in which the thermal infrared imager was interfered by laser, were analysed by using these methods. The results show that the methods can better reflect the jamming effects of the infrared imaging system by laser. Furthermore, there is good consistence between evaluation results by using the methods and the results of subjective visual evaluation. And it also provides well repeatability and convenient quantitative analysis. The feasibility of the methods to evaluate the jamming effect was proved. It has some extent reference value for the studying and developing on electro-optical countermeasures equipments and effectiveness evaluation.
Accurate positioning of long, flexible ARM's (Articulated Robotic Manipulator)
NASA Technical Reports Server (NTRS)
Malachowski, Michael J.
1988-01-01
An articulated robotic manipulator (ARM) system is being designed for space applications. Work being done on a concept utilizing an infinitely stiff laser beam for position reference is summarized. The laser beam is projected along the segments of the ARM, and the position is sensed by the beam rider modules (BRM) mounted on the distal ends of the segments. The BRM concept is the heart of the system. It utilizes a combination of lateral displacements and rotational and distance measurement sensors. These determine the relative position of the two ends of the segments with respect to each other in six degrees of freedom. The BRM measurement devices contain microprocessor controlled data acquisition and active positioning components. An indirect adaptive controller is used to accurately control the position of the ARM.
Lidar Technology at the Goddard Laser and Electro-Optics Branch
NASA Technical Reports Server (NTRS)
Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)
2000-01-01
The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small Discovery-class orbiters now in the NASA planetary program. The purpose of the lidar is to continuously profile the water vapor and dust in the Mars atmosphere from orbit in order to quantify its dynamics, their relationship in the diurnal cycles, and to infer water vapor exchange with the Mars surface. To remotely measure the water-vapor height profiles, we will use the differential absorption lidar (DIAL) technique. We are also developing a laser sensor for measuring the total column content of CO2 in the atmosphere of the earth. CO2 is the principal greenhouse gas and has increased by roughly 80 ppm in the last century and a half. We will report our efforts in the development of the laser transmitter and photon counting detector components for a Mars Orbiting DIAL system and for the CO2 sounder.
Tunc, Burcu; Gulsoy, Murat
2013-01-01
The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.
Eagle, Benjamin; Williams, David J; Dingley, John
2017-08-01
An ideal electronic anesthesia recording system would be capable of not only recording physiological data but also injectable drug doses given, including those given incrementally from one syringe, without recourse to manual data entry. We compared 2 prototype devices which wirelessly recognized individual syringes and measured changes in their plunger positions via 2 different optical noncontact means, allowing calculation of incremental drug doses given. Both devices incorporated a radio-frequency identification reader, which wirelessly read a unique code from a radio-frequency identification tag within syringe drug labels. A custom-designed cradle oriented any inserted 1-mL to 20-mL syringe in a repeatable position. The "laser" device had a moving laser beam broken by the end of the syringe plunger. The infrared (IR) device measured time of travel of IR light from a sender to a syringe plunger and back to a receiver. Both devices could therefore determine the drug and volume administered since the previous occasion when any syringe had been used. For each syringe size of 1, 2, 5, 10, and 20 mL, 121 plunger-length measurements were made over their full range, with each machine against a reference method of water filling and weighing using a randomized de Bruijn sequence. For every syringe size, the laser device showed greater accuracy and precision, lower bias, and narrower limits of agreement (95% confidence intervals = bias ± 1.96 SD) than the IR device when compared to the reference method. For all syringe sizes, the range of bias was -0.05 to 0.32 mL for the laser and -2.42 to 1.38 mL for the IR. Lin concordance correlation coefficient values for the IR versus reference methods ranged from 0.6259 to 0.9255, with the lowest coefficients seen in syringes with the shortest distance of plunger travel (2 and 5 mL), while in laser versus reference comparisons, these coefficients were similar (0.9641-0.9981) over all syringe lengths. Both devices measured syringe volume changes, demonstrating potential for measuring incremental drug doses, recording these, and also the time of each measurement. The IR device had no moving parts, which would be advantageous in a clinical situation. However, the current embodiment was not deemed accurate enough for clinical use, potentially remediable through improvements in hardware and software design. The laser device showed high accuracy and precision over all syringe sizes and contained volumes, and was considered potentially accurate enough for clinical use with suitable development.
Lamy, Brigitte; Kodjo, Angeli; Laurent, Frédéric
2011-09-01
We evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for identifying aeromonads with an extraction procedure. Genus-level accuracy was 100%. Compared to rpoB gene sequencing, species-level accuracy was 90.6% (29/32) for type and reference strains and 91.4% for a collection of 139 clinical and environmental isolates, making this system one of the most accurate and rapid methods for phenotypic identification. The reliability of this technique was very promising, although some improvements in database composition, taxonomy, and discriminatory power are needed. Copyright © 2011 Elsevier Inc. All rights reserved.
Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.
Kumar, S Santosh; Hong, Jiarong
2018-05-14
We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.
New data processing for multichannel FIR laser interferometer
NASA Astrophysics Data System (ADS)
Jun-Ben, Chen; Xiang, Gao
1989-10-01
Usually, both the probing and reference signals received by LATGS detectors of FIR interferometer pass through hardware phase discriminator and the output phase difference--hence the electron line densities is collected for analysis and display with a computerized data acquisition system(DAS). In this paper, a new numerical method for computing the phase difference in software has been developed instead of hardware phase discriminator, the temporal resolution and stability is improved. An asymmetrical Abel inversion is applied to processing the data from a seven-channel FIR HCN laser interferometer and the space-time distributions of plasma electron density in the HT-6M tokamak are derived.
Hybrid catadioptric system for advanced optical cavity velocimetry
Frayer, Daniel K.
2018-02-06
A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.
Intelligent Planning for Laser Refractive Surgeries
NASA Astrophysics Data System (ADS)
Wang, Wei; Yue, Yong; Elsheikh, Ahmed; Bao, Fangjun
2018-02-01
Refractive error is one of leading ophthalmic diseases for both genders all over the world. Laser refractive correction surgery, e.g., laser in-situ keratomileusis (LASIK), has been commonly used worldwide. The prediction of surgical parameters, e.g., corneal ablation depth, depends on the doctor’s experience, theoretical formula and surgery reference manual in the preoperative diagnosis. The error of prediction may present a potential surgical risk and complication. Being aware of the surgery parameters is important because these can be used to estimate a patient’s post-operative visual quality and help the surgeon plan a suitable treatment. Therefore, in this paper we discuss data mining techniques that can be utilized for the prediction of laser refractive correction surgery parameters. It can provide the surgeon with a reference for possible surgical parameters and outcomes of the patient before the laser refractive correction surgery.
Principles and applications of laser-induced liquid-phase jet-chemical etching
NASA Astrophysics Data System (ADS)
Stephen, Andreas; Metev, Simeon; Vollertsen, Frank
2003-11-01
In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.
Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo
2016-12-01
A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.
NASA Astrophysics Data System (ADS)
Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn
2017-04-01
We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.
NASA Astrophysics Data System (ADS)
Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.
2015-12-01
Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x 30 cm with laser power on the order of milliwatts, and a commercial off the shelf based attitude determination and control system, among others. Different from standard 1U and 3U buses, the 6U form factor allows for a propulsion system for navigating around multiple targets in the GEO belt.
Evaluation of Terrestrial Laser Scanner Accuracy in the Control of Hydrotechnical Structures
NASA Astrophysics Data System (ADS)
Muszyński, Zbigniew; Rybak, Jarosław
2017-12-01
In many cases of monitoring or load testing of hydrotechnical structures, the measurement results obtained from dial gauges may be affected by random or systematic errors resulting from the instability of the reference beam. For example, the measurement of wall displacement or pile settlement may be increased (or decreased) by displacements of the reference beam due to ground movement. The application of surveying methods such as high-precision levelling, motorized tacheometry or even terrestrial laser scanning makes it possible to provide an independent reference measurement free from systematic errors. It is very important in the case of walls and piles embedded in the rivers, where the construction of reference structure is even more difficult than usually. Construction of an independent reference system is also complicated when horizontal testing of sheet piles or diaphragm walls are considered. In this case, any underestimation of the horizontal displacement of an anchored or strutted construction leads to an understated value of the strut's load. These measurements are even more important during modernization works and repairs of the hydrotechnical structures. The purpose of this paper is to discuss the possibilities of using modern measurement methods for monitoring of horizontal displacements of an excavation wall. The methods under scrutiny (motorized tacheometry and terrestrial laser scanning) have been compared to classical techniques and described in the context of their practical use on the example hydrotechnical structure. This structure was a temporary cofferdam made from sheet pile wall. The research continuously conducted at Wroclaw University of Science and Technology made it possible to collect and summarize measurement results and practical experience. This paper identifies advantages and disadvantages of both analysed methods and presents a comparison of obtained measurement results of horizontal displacements. In conclusion, some recommendations have been formulated, which are relevant from the point of view of engineering practice.
The research on calibration methods of dual-CCD laser three-dimensional human face scanning system
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong
2013-09-01
In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.
NASA Astrophysics Data System (ADS)
Mazurova, Elena; Mikhaylov, Aleksandr
2013-04-01
The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.
1994-01-01
A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.
The optical antenna system design research on earth integrative network laser link in the future
NASA Astrophysics Data System (ADS)
Liu, Xianzhu; Fu, Qiang; He, Jingyi
2014-11-01
Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.
Monitoring forests at the speed of light.
Valerie Rapp
2005-01-01
Airborne laser scanning is a technology developed in the last 15 years. Commonly referred to as light detection and ranging, or LIDAR, these systems can map ground with up to a 6-inch elevation accuracy in open, flat terrain. LIDAR is being rapidly adopted for topographical and flood-plain mapping and the detection of earthquake faults hidden by vegetation, among other...
Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter
NASA Astrophysics Data System (ADS)
Lim, Hyung-Chul; Neumann, Gregory A.; Choi, Myeong-Hwan; Yu, Sung-Yeol; Bang, Seong-Cheol; Ka, Neung-Hyun; Park, Jong-Uk; Choi, Man-Soo; Park, Eunseo
2016-09-01
Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.
Self-corrected chip-based dual-comb spectrometer.
Hébert, Nicolas Bourbeau; Genest, Jérôme; Deschênes, Jean-Daniel; Bergeron, Hugo; Chen, George Y; Khurmi, Champak; Lancaster, David G
2017-04-03
We present a dual-comb spectrometer based on two passively mode-locked waveguide lasers integrated in a single Er-doped ZBLAN chip. This original design yields two free-running frequency combs having a high level of mutual stability. We developed in parallel a self-correction algorithm that compensates residual relative fluctuations and yields mode-resolved spectra without the help of any reference laser or control system. Fluctuations are extracted directly from the interferograms using the concept of ambiguity function, which leads to a significant simplification of the instrument that will greatly ease its widespread adoption and commercial deployment. Comparison with a correction algorithm relying on a single-frequency laser indicates discrepancies of only 50 attoseconds on optical timings. The capacities of this instrument are finally demonstrated with the acquisition of a high-resolution molecular spectrum covering 20 nm. This new chip-based multi-laser platform is ideal for the development of high-repetition-rate, compact and fieldable comb spectrometers in the near- and mid-infrared.
Canine and feline hematology reference values for the ADVIA 120 hematology system.
Moritz, Andreas; Fickenscher, Yvonne; Meyer, Karin; Failing, Klaus; Weiss, Douglas J
2004-01-01
The ADVIA 120 is a laser-based hematology analyzer with software applications for animal species. Accurate reference values would be useful for the assessment of new hematologic parameters and for interlaboratory comparisons. The goal of this study was to establish reference intervals for CBC results and new parameters for RBC morphology, reticulocytes, and platelets in healthy dogs and cats using the ADVIA 120 hematology system. The ADVIA 120, with multispecies software (version 1.107-MS), was used to analyze whole blood samples from clinically healthy dogs (n=46) and cats (n=61). Data distribution was determined and reference intervals were calculated as 2.5 to 97.5 percentiles and 25 to 75 percentiles. Most data showed Gaussian or log-normal distribution. The numbers of RBCs falling outside the normocytic-normochromic range were slightly higher in cats than in dogs. Both dogs and cats had reticulocytes with low, medium, and high absorbance. Mean numbers of large platelets and platelet clumps were higher in cats compared with dogs. Reference intervals obtained on the ADVIA 120 provide valuable baseline information for assessing new hematologic parameters and for interlaboratory comparisons. Differences compared with previously published reference values can be attributed largely to differences in methodology.
Parallel multiplex laser feedback interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn
2013-12-15
We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less
Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.
Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T
2013-12-01
We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).
NASA Astrophysics Data System (ADS)
Thapa, Rajesh
We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the hollow fiber to solid fiber in a standard commercial arc splicer, rather than the more expensive filament splicer, and achieved comparable splice loss. We locked a CW laser to the saturated absorption feature using a Frequency Modulation technique and then compared to an optical frequency comb. The stabilized frequency comb, providing a dense grid of reference frequencies in near-infrared region is used to characterize and measure the absolute frequency reference based on these hollow optical fibers.
Pointing Reference Scheme for Free-Space Optical Communications Systems
NASA Technical Reports Server (NTRS)
Wright, Malcolm; Ortiz, Gerardo; Jeganathan, Muthu
2006-01-01
A scheme is proposed for referencing the propagation direction of the transmit laser signal in pointing a free-space optical communications terminal. This recently developed scheme enables the use of low-cost, commercial silicon-based sensors for tracking the direction of the transmit laser, regardless of the transmit wavelength. Compared with previous methods, the scheme offers some advantages of less mechanical and optical complexity and avoids expensive and exotic sensor technologies. In free-space optical communications, the transmit beam must be accurately pointed toward the receiver in order to maintain the communication link. The current approaches to achieve this function call for part of the transmit beam to be split off and projected onto an optical sensor used to infer the pointed direction. This requires that the optical sensor be sensitive to the wavelength of the transmit laser. If a different transmit wavelength is desired, for example to obtain a source capable of higher data rates, this can become quite impractical because of the unavailability or inefficiency of sensors at these wavelengths. The innovation proposed here decouples this requirement by allowing any transmit wavelength to be used with any sensor. We have applied this idea to a particular system that transmits at the standard telecommunication wavelength of 1,550 nm and uses a silicon-based sensor, sensitive from 0.5 to 1.0 micrometers, to determine the pointing direction. The scheme shown in the figure involves integrating a low-power 980-nm reference or boresight laser beam coupled to the 1,550-nm transmit beam via a wavelength-division-multiplexed fiber coupler. Both of these signals propagate through the optical fiber where they achieve an extremely high level of co-alignment before they are launched into the telescope. The telescope uses a dichroic beam splitter to reflect the 980- nm beam onto the silicon image sensor (a quad detector, charge-coupled device, or active-pixel-sensor array) while the 1,550- nm signal beam is transmitted through the optical assembly toward the remotely located receiver. Since the 980-nm reference signal originates from the same single-mode fiber-coupled source as the transmit signal, its position on the sensor is used to accurately determine the propagation direction of the transmit signal. The optics are considerably simpler in the proposed scheme due to the use of a single aperture for transmitting and receiving. Moreover, the issue of mechanical misalignment does not arise because the reference signal and transmitted laser beams are inherently co-aligned. The beam quality of the 980-nm reference signal used for tracking is required to be circularly symmetric and stable at the tracking-plane sensor array in order to minimize error in the centroiding algorithm of the pointing system. However, since the transmit signal is delivered through a fiber that supports a single mode at 1,550 nm, propagation of higher order 980-nm modes is possible. Preliminary analysis shows that the overall mode profile is dominated by the fundamental mode, giving a near symmetric profile. The instability of the mode was also measured and found to be negligible in comparison to the other error contributions in the centroid position on the sensor array.
Modernization of Koesters interferometer and high accuracy calibration gauge blocks
NASA Astrophysics Data System (ADS)
França, R. S.; Silva, I. L. M.; Couceiro, I. B.; Torres, M. A. C.; Bessa, M. S.; Costa, P. A.; Oliveira, W., Jr.; Grieneisen, H. P. H.
2016-07-01
The Optical Metrology Division (Diopt) of Inmetro is responsible for maintaining the national reference of the length unit according to International System of Units (SI) definitions. The length unit is realized by interferometric techniques and is disseminated to the dimensional community through calibrations of gauge blocks. Calibration of large gauge blocks from 100 mm to 1000 mm has been performed by Diopt with a Koesters interferometer with reference to spectral lines of a krypton discharge lamp. Replacement of this lamp by frequency stabilized lasers, traceable now to the time and frequency scale, is described and the first results are reported.
Inter-comb synchronization by mode-to-mode locking
NASA Astrophysics Data System (ADS)
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
Thermal-noise-limited higher-order mode locking of a reference cavity.
Zeng, X Y; Ye, Y X; Shi, X H; Wang, Z Y; Deng, K; Zhang, J; Lu, Z H
2018-04-15
Higher-order mode locking has been proposed to reduce the thermal noise limit of reference cavities. By locking a laser to the HG 02 mode of a 10-cm long all ultra-low expansion (ULE) cavity and measuring its performance with the three-cornered-hat method among three independently stabilized lasers, we demonstrate a thermal-noise-limited performance of a fractional frequency instability of 4.9×10 -16 . The results match the theoretical models with higher-order optical modes. The achieved laser instability improves the all ULE short cavity results to a new low level.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
NASA Astrophysics Data System (ADS)
Zivkovic, Sanja; Momcilovic, Milos; Staicu, Angela; Mutic, Jelena; Trtica, Milan; Savovic, Jelena
2017-02-01
The aim of this study was to develop a simple laser induced breakdown spectroscopy (LIBS) method for quantitative elemental analysis of powdered biological materials based on laboratory prepared calibration samples. The analysis was done using ungated single pulse LIBS in ambient air at atmospheric pressure. Transversely-Excited Atmospheric pressure (TEA) CO2 laser was used as an energy source for plasma generation on samples. The material used for the analysis was a blue-green alga Spirulina, widely used in food and pharmaceutical industries and also in a few biotechnological applications. To demonstrate the analytical potential of this particular LIBS system the obtained spectra were compared to the spectra obtained using a commercial LIBS system based on pulsed Nd:YAG laser. A single sample of known concentration was used to estimate detection limits for Ba, Ca, Fe, Mg, Mn, Si and Sr and compare detection power of these two LIBS systems. TEA CO2 laser based LIBS was also applied for quantitative analysis of the elements in powder Spirulina samples. Analytical curves for Ba, Fe, Mg, Mn and Sr were constructed using laboratory produced matrix-matched calibration samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used as the reference technique for elemental quantification, and reasonably well agreement between ICP and LIBS data was obtained. Results confirm that, in respect to its sensitivity and precision, TEA CO2 laser based LIBS can be successfully applied for quantitative analysis of macro and micro-elements in algal samples. The fact that nearly all classes of materials can be prepared as powders implies that the proposed method could be easily extended to a quantitative analysis of different kinds of materials, organic, biological or inorganic.
2015-12-01
Verification Tool for Laser Environmental Effects Definition and Reference (LEEDR) Development ................................... 45 3.5 Gap Filling with NWP... effective cloud cover for all cloud layers within the AIRS field-of-view. ......................................... 59 Figure 37. Average wind...IR Infrared JPL Jet Propulsion Lab LEEDR Laser Environmental Effects Definition and Reference LIDAR Light Detection and Ranging MODIS Moderate
Hi-Vision telecine system using pickup tube
NASA Astrophysics Data System (ADS)
Iijima, Goro
1992-08-01
Hi-Vision broadcasting, offering far more lifelike pictures than those produced by existing television broadcasting systems, has enormous potential in both industrial and commercial fields. The dissemination of the Hi-Vision system will enable vivid, movie theater quality pictures to be readily enjoyed in homes in the near future. To convert motion film pictures into Hi-Vision signals, a telecine system is needed. The Hi-Vision telecine systems currently under development are the "laser telecine," "flying-spot telecine," and "Saticon telecine" systems. This paper provides an overview of the pickup tube type Hi-Vision telecine system (referred to herein as the Saticon telecine system) developed and marketed by Ikegami Tsushinki Co., Ltd.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-04-20
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection
2018-01-01
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data. PMID:29677114
Time Domain Simulations of Arm Locking in LISA
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; Maghami, P.; Livas, Jeff
2011-01-01
Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.
High stability lasers for lidar and remote sensing
NASA Astrophysics Data System (ADS)
Heine, Frank; Lange, Robert; Seel, Stefan; Smutny, Berry
2017-11-01
Tesat-Spacecom is currently building a set flight models of frequency stabilized lasers for the ESA Missions AEOLUS and LTP. Lasers with low intensity noise in the kHz region and analogue tuning capabilities for frequency and output power are developed for the on board metrology of the LTP project, the precursor mission for LISA. This type of laser is internally stabilized by precise temperature control, approaching an ALLAN variance of 10-9 for 100 sec. It can be easily locked to external frequency references with <50kHz bandwidth. The Seed laser for the AEOLUS mission (wind LIDAR) is used as the master frequency reference and is stabilized internally by a optical cavity. It shows a 3* 10-11 Allan variance from time intervals 1 sec - 1000 sec. Furthermore it is step-tunable for calibration of the receiver instrument with a speed of GHz / sec by a digital command interface. Performance and environmental test results will be presented.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Analysis of optical scheme for medium-range directed energy laser weapon system
NASA Astrophysics Data System (ADS)
Jabczyński, Jan K.; Kaśków, Mateusz; Gorajek, Łukasz; Kopczyński, Krzysztof
2017-10-01
The relations between range of operation and aperture of laser weapon system were investigated, taking into account diffraction and technical limitations as beam quality, accuracy of point tracking, technical quality of optical train, etc. As a result for the medium ranges of 1 - 2 km we restricted the analysis to apertures not wider than 150 mm and the optical system without adaptive optics. To choose the best laser beam shape, the minimization of aperture losses and thermooptical effects inside optics as well as the effective width of laser beam in far field should be taken into account. We have analyzed theoretically such a problem for the group of a few most interesting from that point of view profiles including for reference two limiting cases of Gaussian beam and `top hat' profile. We have found that the most promising is the SuperGaussian profile of index p = 2 for which the surfaces of beam shaper elements can be manufactured in the acceptable cost-effective way and beam quality does not decrease noticeably. Further, we have investigated the thermo-optic effects on the far field parameters of Gaussian and `top hat' beams to determine the influence of absorption in optical elements on beam quality degradation. The simplified formulae were derived for beam quality measures (parameter M2 and Strehl ratio) which enables to estimate the influence of absorption losses on degradation of beam quality.
NASA Astrophysics Data System (ADS)
Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui
2016-01-01
The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.
Comparative Geometrical Investigations of Hand-Held Scanning Systems
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.
2016-06-01
An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.
A symmetrical laser Doppler velocity meter and its application to turbulence characterization
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1972-01-01
A symmetrical method of optical heterodyning of the Doppler shifted scattered laser radiation developed for velocity measurements with a minimal instrumental spectral broadening and a high signal-to-noise ratio. The method employs two laser beams incident on the moving scatterer and does not use any reference beam for heterodyning. The Doppler signal frequency is independent of the scattering angle and the signal possesses no receiving aperture broadening. Optical alignment is simple. Typical values of the instrumental spectral broadening were approximately 0.8 percent of the center frequency of the Doppler signal, and the signal-to-noise ratio was approximately 25 dB, obtained from an air flow system using submicron dioctylphthalate scattering aerosol. Experimental and theoretical studies were made on the characteristics of the Doppler signal and the effect of system parameters in turbulent flow measurement. The optimization process involved in the beam optics and in the use of a spatial filter is described. For localized flow measurement in any direction of the three-dimensional orthogonal coordinates, the system, using uncorrected optical components, had a sensing volume which can be described by a sensitive length of 600 microns and a diameter of 100 microns.
NASA Astrophysics Data System (ADS)
Hurst, G. S.
1990-05-01
This report is organized as follows. Section 2 summarizes the current program of DOE's Office of Health and Environmental Research (OHER) and provides some remarks on how laser science and technology could beneficially impact most of the research programs. Section 3 provides a brief global perspective on laser technology and attempts to define important trends in the field. Similarly, Section 4 provides a global perspective on laser spectroscopy and addresses important trends. Thus, Section 5 focuses on the trends in laser technology and spectroscopy which could impact the OHER mission in significant ways and contains the basis for recommendations made in the executive summary. For those with limited familiarity with laser technology and laser spectroscopy, reference is made to Appendix 1 for a list of abbreviations and acronyms. Appendix 2 can serve a useful review or tutorial for those who are not deeply involved with laser spectroscopy. Even those familiar with laser spectroscopy and laser technology may find it useful to know precisely what the authors of this document mean by certain specialized terms and expressions. Finally, a note on the style of referencing may be appropriate. Whenever possible a book or review articles is referenced as the preferred citation. However, we frequently found it useful to reference a number of individual papers of recent origin or those which were not conveniently found in the review articles.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
NASA Tech Briefs, January 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument Pointing Jitter; and Semiselective Optoelectronic Sensors for Monitoring Microbes.
NASA Astrophysics Data System (ADS)
Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.
2012-11-01
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
NASA Astrophysics Data System (ADS)
Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)
2010-08-01
We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.
Analysis of fabric materials cut using ultraviolet laser ablation
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.
2016-04-01
Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.
NASA Astrophysics Data System (ADS)
Viero, Alessia; Teza, Giordano; Massironi, Matteo; Jaboyedoff, Michel; Galgaro, Antonio
2010-10-01
The Cinque Torri group (Cortina d'Ampezzo, Italy) is an articulated system of unstable carbonatic rock monoliths located in a very important tourism area and therefore characterized by a significant risk. The instability phenomena involved represent an example of lateral spreading developed over a larger deep seated gravitational slope deformation (DSGSD) area. After the recent fall of a monolith of more than 10 000 m 3, a scientific study was initiated to monitor the more unstable sectors and to characterize the past movements as a fundamental tool for predicting future movements and hazard assessment. To achieve greater insight on the ongoing lateral spreading process, a method for a quantitative analysis of rotational movements associated with the lateral spreading has been developed, applied and validated. The method is based on: i) detailed geometrical characterization of the area by means of laser scanner techniques; ii) recognition of the discontinuity sets and definition of a reference frame for each set, iii) correlation between the obtained reference frames related to a specific sector and a stable external reference frame, and iv) determination of the 3D rotations in terms of Euler angles to describe the present settlement of the Cinque Torri system with respect to the surrounding stable areas. In this way, significant information on the processes involved in the fragmentation and spreading of a former dolomitic plateau into different rock cliffs has been gained. The method is suitable to be applied to similar case studies.
Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual
Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David
2009-01-01
The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second. Each pulse is focused into an illumination area that has a radius of about 20 centimeters on the ground. The pulse-repetition frequency of the EAARL transmitter varies along each across-track scan to produce equal cross-track sample spacing and near uniform density (Nayegandhi and others, 2006). Targets can have varying physical and optical characteristics that cause extreme fluctuations in laser backscatter complexity and signal strength. To accommodate this dynamic range, EAARL has the real-time ability to detect, capture, and automatically adapt to each laser return backscatter. The backscattered energy is collected by an array of four high-speed waveform digitizers connected to an array of four sub-nanosecond photodetectors. Each of the four photodetectors receives a finite range of the returning laser backscatter photons. The most sensitive channel receives 90% of the photons, the least sensitive receives 0.9%, and the middle channel receives 9% (Wright and Brock, 2002). The fourth channel is available for detection but is not currently being utilized. All four channels are digitized simultaneously into 65,536 samples for every laser pulse. Receiver optics consists of a 15-centimeter-diameter dielectric-coated Newtonian telescope, a computer-driven raster scanning mirror oscillating at 12.5 hertz (25 rasters per second), and an array of sub-nanosecond photodetectors. The signal emitted by the pulsed laser transmitter is amplified as backscatter by the optical telescope receiver. The photomultiplier tube (PMT) then converts the optical energy into electrical impulses (Nayegandhi and others, 2006). In addition to the full-waveform resolving laser, the EAARL sensor suite includes a down-looking 70-centimeter-resolution Red-Green-Blue (RGB) digital network camera, a high-resolution color infrared (CIR) multispectral camera (14-centimeter-resolution), two precision dual-frequency kinematic carrier-phase global positioning system (GPS) receivers, and an
Photogrammetry Tool for Forensic Analysis
NASA Technical Reports Server (NTRS)
Lane, John
2012-01-01
A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.
Establishing Information Security Systems via Optical Imaging
2015-08-11
SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited
Non-Contact Optical Ultrasound Concept for Biomedical Imaging
2016-11-03
Non -Contact Optical Ultrasound Concept for Biomedical Imaging Robert Haupt1, Charles Wynn1, Jonathan Fincke2, Shawn Zhang2, Brian Anthony2...results. Lastly, we present imaging capabilities using a non -contact laser ultrasound proof-of-concept system. Two and three dimensional time... non -contact, standoff optical ultrasound has the potential to provide a fixed reference measurement capability that minimizes operator variability as
Laser Printing for a Variety of Library Applications.
ERIC Educational Resources Information Center
Kelly, Glen J.
1988-01-01
Summarizes the current status of laser printers in terms of cost, hardware and software requirements, measurement and operational considerations, ease of use, and maintenance. The cost effectiveness of laser printing in libraries for applications such as spine labels, purchase orders, and reports, is explored. (9 notes with references) (CLB)
NASA Technical Reports Server (NTRS)
Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.
2001-01-01
The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.
Evaluation of confocal microscopy system performance.
Zucker, R M; Price, O
2001-08-01
The confocal laser scanning microscope (CLSM) has been used by scientists to visualize three-dimensional (3D) biological samples. Although this system involves lasers, electronics, optics, and microscopes, there are few published tests that can be used to assess the performance of this equipment. Usually the CLSM is assessed by subjectively evaluating a biological/histological test slide for image quality. Although there is a use for the test slide, there are many other components in the CLSM that need to be assessed. It would be useful if tests existed that produced reference values for machine performance. The aim of this research was to develop quality assurance tests to ensure that the CLSM was stable while delivering reproducible intensity measurements with excellent image quality. Our ultimate research objective was to quantify fluorescence using a CLSM. To achieve this goal, it is essential that the CLSM be stable while delivering known parameters of performance. Using Leica TCS-SP1 and TCS-4D systems, a number of tests have been devised to evaluate equipment performance. Tests measuring dichroic reflectivity, field illumination, lens performance, laser power output, spectral registration, axial resolution, laser stability, photomultiplier tube (PMT) reliability, and system noise were either incorporated from the literature or derived in our laboratory to measure performance. These tests are also applicable to other manufacturer's systems with minor modifications. A preliminary report from our laboratory has addressed a number of the QA issues necessary to achieve CLSM performance. This report extends our initial work on the evaluation of CLSM system performance. Tests that were described previously have been modified and new tests involved in laser stability and sensitivity are described. The QA tests on the CLSM measured laser power, PMT function, dichroic reflection, spectral registration, axial registration, system noise and sensitivity, lens performance, and laser stability. Laser power stability varied between 3% and 30% due to various factors, which may include incompatibility of the fiber-optic polarization with laser polarization, thermal instability of the acoustical optical transmission filter (AOTF), and laser noise. The sensitivity of the system was measured using a 10-microm Spherotech bead and the PMTs were assessed with the CV concept (image noise). The maximum sensitivity obtainable on our TCS-SP1 system measured on the 10-microm Spherotech beads was approximately 4% for 488 nm, 2.5% for 568 nm, 20% for 647 nm, and 19% for 365 nm laser light. The values serve as a comparison to test machine sensitivity from the same or different manufacturers. QA tests are described on the CLSM to assess performance and ensure that reproducing data are obtained. It is suggested strongly that these tests be used in place of a biological/histological sample to evaluate system performance. The tests are more specific and can recognize instrument functionality and problems better than a biological/histological sample. Utilization of this testing approach will eliminate the subjective assessment of the CLSM and may allow the data from different machines to be compared. These tests are essential if one is interested in making intensity measurements on experimental samples as well as obtaining the best signal detection and image resolution from a CLSM. Published 2001 Wiley-Liss, Inc.
Foundry fabricated photonic integrated circuit optical phase lock loop.
Bałakier, Katarzyna; Fice, Martyn J; Ponnampalam, Lalitha; Graham, Chris S; Wonfor, Adrian; Seeds, Alwyn J; Renaud, Cyril C
2017-07-24
This paper describes the first foundry-based InP photonic integrated circuit (PIC) designed to work within a heterodyne optical phase locked loop (OPLL). The PIC and an external electronic circuit were used to phase-lock a single-line semiconductor laser diode to an incoming reference laser, with tuneable frequency offset from 4 GHz to 12 GHz. The PIC contains 33 active and passive components monolithically integrated on a single chip, fully demonstrating the capability of a generic foundry PIC fabrication model. The electronic part of the OPLL consists of commercially available RF components. This semi-packaged system stabilizes the phase and frequency of the integrated laser so that an absolute frequency, high-purity heterodyne signal can be generated when the OPLL is in operation, with phase noise lower than -100 dBc/Hz at 10 kHz offset from the carrier. This is the lowest phase noise level ever demonstrated by monolithically integrated OPLLs.
Sola, Daniel; Peña, Jose I.
2013-01-01
In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated. PMID:28788391
Medendorp, Joseph; Bric, John; Connelly, Greg; Tolton, Kelly; Warman, Martin
2015-08-10
The purpose of this manuscript is to present the intended use and long-term maintenance strategy of an online laser diffraction particle size method used for process control in a spray drying process. A Malvern Insitec was used for online particle size measurements and a Malvern Mastersizer was used for offline particle size measurements. The two methods were developed in parallel with the Mastersizer serving as the reference method. Despite extensive method development across a range of particle sizes, the two instruments demonstrated different sensitivities to material and process changes over the product lifecycle. This paper will describe the procedure used to ensure consistent alignment of the two methods, thus allowing for continued use of online real-time laser diffraction as a surrogate for the offline system over the product lifecycle. Copyright © 2015 Elsevier B.V. All rights reserved.
Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.
We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasersmore » during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST
NASA Astrophysics Data System (ADS)
Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.
2017-12-01
The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.
Non-Contact Measurement Using A Laser Scanning Probe
NASA Astrophysics Data System (ADS)
Modjarrad, Amir
1989-03-01
Traditional high accuracy touch-trigger probing can now be complemented by high speed, non-contact, profile scanning to give another "dimension" to the three-dimensional Co-ordinate Measuring Machines (CMMs). Some of the features of a specially developed laser scanning probe together with the trade-offs involved in the design of inspection systems that use triangulation are examined. Applications of such a laser probe on CMMs are numerous since high speed scanning allows inspection of many different components and surfaces. For example, car body panels, tyre moulds, aircraft wing skins, turbine blades, wax and clay models, plastics, etc. Other applications include in-process surveillance in manufacturing and food processing, robotics vision and many others. Some of these applications are discussed and practical examples, case studies and experimental results are given with particular reference to use on CMMs. In conclusion, future developments and market trends in high speed non-contact measurement are discussed.
Quantitative phase imaging of living cells with a swept laser source
NASA Astrophysics Data System (ADS)
Chen, Shichao; Zhu, Yizheng
2016-03-01
Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.
Beaconless Pointing for Deep-Space Optical Communication
NASA Technical Reports Server (NTRS)
Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam
2016-01-01
Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft
NASA Technical Reports Server (NTRS)
Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony
1997-01-01
NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.
Recent advances in automatic alignment system for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki
2011-03-01
The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.
McKeown, Mark H.; Beason, Steven C.; Fairer, George
1992-01-01
The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.
NASA Astrophysics Data System (ADS)
Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.
1984-04-01
The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.
Influence of target reflection on three-dimensional range gated reconstruction.
Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong
2016-08-20
The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.
Modeling of high efficiency solar cells under laser pulse for power beaming applications
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Landis, Geoffrey A.
1994-01-01
Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.
Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement
NASA Astrophysics Data System (ADS)
Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong
2017-11-01
We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.
NASA Astrophysics Data System (ADS)
Harigel, Gert G.
2000-10-01
Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of approx1.5m3. Bubble tracks from neutrino interactions with a width of approx 120 micrometers have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum- observable ration of BBR = (0.54 divided by 0.21) x 107. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q- switching, to overcome excessive heating of the cryogenic liquid by the powerful laser beam. A sophisticated system of light-absorbing baffles had to be installed to avoid stray light reaching the holographic film. Optical decoupling of classical and holographic illumination systems was required. Real and virtual image replay machines for holograms were built, tailored to our illumination technique.
Marques, Manuel J; Bradu, Adrian; Podoleanu, Adrian Gh
2014-05-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.
Marques, Manuel J.; Bradu, Adrian; Podoleanu, Adrian Gh.
2014-01-01
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer’s dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners’ scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential “on-demand” mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented. PMID:24877006
NASA Astrophysics Data System (ADS)
Holz, Philipp; Lutz, Christian; Brandenburg, Albrecht
2017-06-01
We present a new optical setup, which uses scanning mirrors in combination with laser induced fluorescence to monitor the spatial distribution of lubricant on metal sheets. Current trends in metal processing industry require forming procedures with increasing deformations. Thus a welldefined amount of lubricant is necessary to prevent the material from rupture, to reduce the wearing of the manufacturing tool as well as to prevent problems in post-deforming procedures. Therefore spatial resolved analysis of the thickness of lubricant layers is required. Current systems capture the lubricant distribution by moving sensor heads over the object along a linear axis. However the spatial resolution of these systems is insufficient at high strip speeds, e.g. at press plants. The presented technology uses fast rotating scanner mirrors to deflect a laser beam on the surface. This 405 nm laser light excites the autofluorescence of the investigated lubricants. A coaxial optic collects the fluorescence signal which is then spectrally filtered and recorded using a photomultiplier. From the acquired signal a two dimensional image is reconstructed in real time. This paper presents the sensor setup as well as its characterization. For the calibration of the system reference targets were prepared using an ink jet printer. The presented technology for the first time allows a spatial resolution in the millimetre range at production speed. The presented test system analyses an area of 300 x 300 mm² at a spatial resolution of 1.1 mm in less than 20 seconds. Despite this high speed of the measurement the limit of detection of the system described in this paper is better than 0.05 g/m² for the certified lubricant BAM K-009.
Bioaerosol detection and classification using dual excitation wavelength laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Jonsson, Per; Wästerby, Pär.; Gradmark, Per-Åke; Hedborg, Julia; Larsson, Anders; Landström, Lars
2015-05-01
We present results obtained by a detection system designed to measure laser-induced fluorescence from individual aerosol particles using dual excitation wavelengths. The aerosol is sampled from ambient air and via a 1 mm diameter nozzle, surrounded by a sheath air flow, confined into a particle beam. A continuous wave blue laser at 404 nm is focused on the aerosol beam and two photomultiplier tubes monitor the presence of individual particles by simultaneous measuring the scattered light and any induced fluorescence. When a particle is present in the detection volume, a laser pulse is triggered from an ultraviolet laser at 263 nm and the corresponding fluorescence spectrum is acquired with a spectrometer based on a diffraction grating and a 32 channel photomultiplier tube array with single-photon sensitivity. The spectrometer measures the fluorescence spectra in the wavelength region from 250 to 800 nm. In the present report, data were measured on different monodisperse reference aerosols, simulants of biological warfare agents, and different interference aerosol particles, e.g. pollen. In the analysis of the experimental data, i.e., the time-resolved scattered and fluorescence signals from 404 nm c.w. light excitation and the fluorescence spectra obtained by a pulsed 263 nm laser source, we use multivariate data analysis methods to classify each individual aerosol particle.
Thermal design and test results for SUNLITE ultra-stable reference cavity
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1991-01-01
SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
Towards System Calibration of Panoramic Laser Scanners from a Single Station
Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner
2017-01-01
Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548
NASA Astrophysics Data System (ADS)
Lue, Christopher J.; Sullivan, Michael N.; Draganjac, Mark E.; Reeve, Scott W.
2011-06-01
About five years ago, Arkansas State University created the Arkansas Center for Laser Applications and Science (ArCLAS) with the intention of making it a state-of-the-art facility for laser-based research and optical spectroscopy in the midSouth. Since that time, University and DoD support has lead to the acquisition of numerous laser based spectrometers including a novel three color picosecond system utilized primarily for STIRAP measurements of bulk gas samples. Over the past few months, we have begun collecting near infrared overtone and combination band spectra for the acetylene molecule with a pulsed cavity ringdown laser absorption spectrometer (CRDLAS) as part of the STIRAP support effort. Certainly acetylene has been extensively studied by a number of different spectroscopic methods. During these CRDLAS investigations a 13C_2H_2 band was discovered which we believe has not been previously reported. Here a complete rovibrational analysis of this band will be presented. See for example, Michel Herman, Jacques lievin, Jean Vander Auwera, and Alain Campargue, in Global and Accurate Vibration Hamiltonians from High Resolution Molecular Spectroscopy, Advances in Chemical Physics Volume 108, John Wiley and Sons, NY, NY (1999) and references therein.
The study of surgical image quality evaluation system by subjective quality factor method
NASA Astrophysics Data System (ADS)
Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard
2016-03-01
GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.
Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G
2014-01-01
This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A Carbon Dioxide Laser Bibliography, 1964-1969,
A bibliography concerning carbon dioxide lasers has been compiled covering the period 1964 through 1969. The chronologically listed references have also been catalogued into an author index and a subject index. (Author)
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.
Miller, Bo E; Takashima, Yuzuru
2016-12-26
Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.
Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles
NASA Astrophysics Data System (ADS)
Zhong, Changchun
Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first step. In the second part of this thesis, we develop the theory of decoherence for a mesoscopic system's rotational degrees of freedom. Combining decoherence in the translational degrees of freedom, the system's shot noise heating is discussed. We then focus on cooling the nanoparticle in the laser-shot-noise-dominant regime using two different feedback cooling schemes: the force feedback cooling and the parametric feedback cooling. Both quantum and classical calculations are performed, and an exact match is observed. We also explore the parameters that could possibly affect the cooling trend, where we find that the cooling limit for both cooling schemes strongly depends on the position measurement efficiency, and it poses good questions for researchers interested in achieving ground state cooling: what is the best measurement efficiency for a given measurement setup and what can be done to get a better measurement efficiency?
NASA Astrophysics Data System (ADS)
Xie, Yi; Kopeikin, Sergei
2010-01-01
We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.
Laser Truss Sensor for Segmented Telescope Phasing
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng
2011-01-01
A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.
In vitro testing of Nd:YAG laser processed calcium phosphate coatings.
De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W
2006-11-01
Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.
2010-08-31
The physics and operating principles for TEA C02 lasers can be found in several useful references (Patel, 1968; Siegman , 1986; Svelto, 1998 and...AND SUBTITLE 5a. CONTRACT NUMBER F A9550-05-1-0392 "Basic Research Investigations into Multimode Laser and 5b. GRANT NUMBER EM Launchers for...pulsed airbreathing/rocket laser propulsion. investigates the physics of laser energy deposition into stationary and hypersonic working fluids
Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level
2009-04-27
analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH2DOH THz CO2 optically pumped...codes: (140.5965) Semiconductor lasers , quantum cascade; (140.3425) Laser stabilization; (300.3700) Linewidth; (040.2840) Heterodyne . References...Reno, “Frequency and phase - lock control of a 3 THz quantum cascade laser ,” Opt. Lett. 30, 1837-1839 (2005). 10. D. Rabanus, U. U. Graf, M. Philipp
NASA Astrophysics Data System (ADS)
Che, Jinxi; Zhang, Jinchun; Yang, Haiqiang; Li, Yu; Wang, Hongjun
2018-02-01
In the course of atmospheric transmission, laser atmospheric transmission study a series of linear optical effect produced by the interaction of atmosphere and laser and non-linear effect and the influence of laser transmission due to these effects. In this paper, the linear effects of atmosphere refringence, absorption, scattering and turbulence affecting laser transmission were analyzed. And the non-linear effects affecting laser atmosphere transmission were also analyzed. On this basis, the corresponding improvement measures were analyzed. To understand and master the laws of laser atmospheric transmission and study avoiding or as far as possible decreasing the influence of laser transmission induced by atmosphere, the outcome can be referred.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-03-30
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-01-01
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567
Geoscience Laser Altimeter System (GLAS) for the ICESat Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris
2002-01-01
The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
LIBS analysis of artificial calcified tissues matrices.
Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A
2013-04-15
In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasztovits, S.; Dorninger, P.
2013-07-01
Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.
Applications of high average power nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S.P.; Krupke, W.F.
1996-02-05
Nonlinear optical frequency convertors (harmonic generators and optical parametric oscillators are reviewed with an emphasis on high average power performance and limitations. NLO materials issues and NLO device designs are discussed in reference to several emerging scientific, military and industrial commercial applications requiring {approx} 100 watt average power level in the visible and infrared spectral regions. Research efforts required to enable practical {approx} 100 watt class NLO based laser systems are identified.
Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry
NASA Astrophysics Data System (ADS)
Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.
2016-11-01
To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.
Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses.
Lewander, Märta; Guan, Zuguang; Svanberg, Katarina; Svanberg, Sune; Svensson, Tomas
2009-06-22
We present a portable system for non-invasive, simultaneous sensing of molecular oxygen (O(2)) and water vapor (H(2)O) in the human paranasal cavities. The system is based on high-resolution tunable diode laser spectroscopy (TDLAS) and digital wavelength modulation spectroscopy (dWMS). Since optical interference and non-ideal tuning of the diode lasers render signal processing complex, we focus on Fourier analysis of dWMS signals and procedures for removal of background signals. Clinical data are presented, and exhibit a significant improvement in signal-to-noise with respect to earlier work. The in situ detection limit, in terms of absorption fraction, is about 5x10(-5) for oxygen and 5x10(-4) for water vapor, but varies between patients due to differences in light attenuation. In addition, we discuss the use of water vapor as a reference in quantification of in situ oxygen concentration in detail. In particular, light propagation aspects are investigated by employing photon time-of-flight spectroscopy.
Infrared laser spectroscopic trace gas sensing
NASA Astrophysics Data System (ADS)
Sigrist, Markus
2016-04-01
Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short-lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)
The design of common aperture and multi-band optical system based on day light telescope
NASA Astrophysics Data System (ADS)
Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng
2017-02-01
As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.
Boulyga, Sergei F; Heumann, Klaus G
2005-10-01
Laser ablation inductively coupled plasma isotope dilution mass spectrometry (LA-ICP-IDMS) was applied to the direct and simultaneous determination of the platinum group elements (PGEs) Pt, Pd, Ru, and Ir in geological and environmental samples. A special laser ablation system with high ablation rates was used, along with sector field ICP-MS. Special attention was paid to deriving the distributions of PGEs in the pulverized samples. IDMS could not be applied to the (mono-isotopic) Rh, but the similar ablation behavior of Ru and Rh allowed Rh to be simultaneously determined via relative sensitivity coefficients. The laser ablation process produces hardly any oxide ions (which usually cause interference in PGE analysis with liquid sample injection), so the ICP-MS can be run in its low mass resolution but high-sensitivity mode. The detection limits obtained for the geological samples were 0.16 ng g(-1), 0.14 ng g(-1), 0.08 ng g(-1), 0.01 ng g(-1) and 0.06 ng g(-1) for Ru, Rh, Pd, Ir and Pt, respectively. LA-ICP-IDMS was applied to different geological reference materials (TDB-1, WGB-1, UMT-1, WMG-1, SARM-7) and the road dust reference material BCR-723, which are only certified for some of the PGEs. Comparisons with certified values as well as with indicative values from the literature demonstrated the validity of the LA-ICP-IDMS method. The PGE concentrations in subsamples of the road dust reference material correspond to a normal distribution, whereas the distributions in the geological reference materials TDB-1, WGB-1, UMT-1, WMG-1, and SARM-7 are more complex. For example, in the case of Ru, a logarithmic normal distribution best fits the analyzed concentrations in TDB-1 subsamples, whereas a pronounced nugget effect was found for Pt in most geological samples.
Laser-Beam-Alignment Controller
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1995-01-01
In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.
Radioiodine detector based on laser induced fluorescence
McDonald, Jimmie R.; Baronavski, Andrew P.
1980-01-01
The invention involves the measurement of the concentration of the radioisotope .sup.129 I.sub.2 in the presence of a gas. The invention uses a laser to excite a sample of the .sup.129 I.sub.2 in a sample gas chamber and a reference sample of a known concentration of .sup.129 I.sub.2 in a reference gas chamber. The .sup.129 I.sub.2 in the sample and reference gas chamber each gives off fluorescence emissions which are received by photomultipliers which provide signals to a detector. The detector uses a ratioing technique to determine the concentration of .sup.129 I.sub.2 in the sample gas chamber.
Phase Control in Nonlinear Systems
NASA Astrophysics Data System (ADS)
Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo
The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References
NASA Technical Reports Server (NTRS)
Smith, David E.; Kolenkiewicz, Ron; Robbins, John W.; Dunn, Peter J.; Torrence, Mark H.
1994-01-01
Four campaigns to acquire Satellite Laser Ranging (SLR) measurements at sites in the Mediterranean region have been completed. These measurements to the LAGEOS satellite, made largely by mobile systems, cover a time span beginning in November 1985 and ending in June 1993. The range data from 18 sites in the central and eastern Mediterranean have been simultaneously analyzed with data acquired by the remainder of the global laser tracking network. Estimates of horizontal motion were placed into a regional, northern Europe-fixed, kinematic reference frame. Uncertainties are on the order of 5 mm/yr for sites having at least four occupations by mobile systems and approach 1 mm/yr for permanently located sites with long histories of tracking. The resulting relative motion between sites in the Aegean exhibit characteristics of broadly distributed pattern of radial extension, but at rates that are about 50% larger than those implied from studies of seismic strain rates based on seismicity of magnitude 6 or greater or across the region. The motion estimated for sites in Turkey exhibit velocity components associated with the westward motion of the Anatolian Block relative to Eurasia. These results provide a present-day 'snapshot' of ongoing deformational processes as experienced by the locations occupied by SLR systems.
Optical system design for a Lunar Optical Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. M.; Shao, M.; Hines, B. E.; Levine, B. M.; Gershman, R.
1991-01-01
The moon offers particular advantages for interferometry, including a vacuum environment, a large stable base on which to assemble multi-kilometer baselines, and a cold nighttime temperature to allow for passive cooling of optics for high IR sensitivity. A baseline design for a Lunar Optical Interferometer (LOI) which exploits these features is presented. The instrument operates in the visible to mid-IL region, and is designed for both astrometry and synthesis imaging. The design uses a Y-shaped array of 12 siderostats, with maximum arm lengths of about 1 km. The inner siderostats are monitored in three dimensions from a central laser metrology structure to allow for high precision astrometry. The outer siderostats, used primarily for synthesis imaging, exploit the availability of bright reference stars in order to determine the instrument geometry. The path delay function is partitioned into coarse and fine components, the former accomplished with switched banks of range mirrors monitored with an absolute laser metrology system, and the latter with a short cat's eye delay line. The back end of the instrument is modular, allowing for beam combiners for astrometry, visible and IR synthesis imaging, and direct planet detection. With 1 m apertures, the instrument will have a point-source imaging sensitivity of about 29 mag; with the laser metrology system, astrometry at the microarcsecond level will be possible.
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
NASA Astrophysics Data System (ADS)
Wujanz, Daniel; Avian, Michael; Krueger, Daniel; Neitzel, Frank
2018-04-01
Current research questions in the field of geomorphology focus on the impact of climate change on several processes subsequently causing natural hazards. Geodetic deformation measurements are a suitable tool to document such geomorphic mechanisms, e.g. by capturing a region of interest with terrestrial laser scanners which results in a so-called 3-D point cloud. The main problem in deformation monitoring is the transformation of 3-D point clouds captured at different points in time (epochs) into a stable reference coordinate system. In this contribution, a surface-based registration methodology is applied, termed the iterative closest proximity algorithm (ICProx), that solely uses point cloud data as input, similar to the iterative closest point algorithm (ICP). The aim of this study is to automatically classify deformations that occurred at a rock glacier and an ice glacier, as well as in a rockfall area. For every case study, two epochs were processed, while the datasets notably differ in terms of geometric characteristics, distribution and magnitude of deformation. In summary, the ICProx algorithm's classification accuracy is 70 % on average in comparison to reference data.
Vertical Accuracy Assessment of ZY-3 Digital Surface Model Using Icesat/glas Laser Altimeter Data
NASA Astrophysics Data System (ADS)
Li, G.; Tang, X.; Yuan, X.; Zhou, P.; Hu, F.
2017-05-01
The Ziyuan-3 (ZY-3) satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs) can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs) by selecting SRTM (Shuttle Radar Topography Mission) and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System) as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE) elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.
Pribil, Michael; Ridley, William I.; Emsbo, Poul
2015-01-01
Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.
NASA Astrophysics Data System (ADS)
Roth, B.; Koelemeij, J.; Daerr, H.; Ernsting, I.; Jorgensen, S.; Okhapkin, M.; Wicht, A.; Nevsky, A.; Schiller, S.
2017-11-01
Narrow ro-vibrational transitions in ultracold molecules are excellent candidates for frequency references in the near-IR to visible spectral domain and interesting systems for fundamental tests of physics, in particular for a satellite test of the gravitational redshift of clocks. We have performed laser spectroscopy of several ro-vibrational overtone transitions υ = 0 → υ = 4 in HD+ ions at around 1.4 μm. 1+1 REMPD was used as a detection method, followed by measurement of the number of remaining molecules. The molecular ions were stored in a linear radiofrequency trap and cooled to millikelvin temperatures, by sympathetic cooling using laser-cooled Be+ ions simultaneously stored in the same trap.
Auto-simultaneous laser treatment and Ohshiro's classification of laser treatment
NASA Astrophysics Data System (ADS)
Ohshiro, Toshio
2005-07-01
When the laser was first applied in medicine and surgery in the late 1960"s and early 1970"s, early adopters reported better wound healing and less postoperative pain with laser procedures compared with the same procedure performed with the cold scalpel or with electrothermy, and multiple surgical effects such as incision, vaporization and hemocoagulation could be achieved with the same laser beam. There was thus an added beneficial component which was associated only with laser surgery. This was first recognized as the `?-effect", was then classified by the author as simultaneous laser therapy, but is now more accurately classified by the author as part of the auto-simultaneous aspect of laser treatment. Indeed, with the dramatic increase of the applications of the laser in surgery and medicine over the last 2 decades there has been a parallel increase in the need for a standardized classification of laser treatment. Some classifications have been machine-based, and thus inaccurate because at appropriate parameters, a `low-power laser" can produce a surgical effect and a `high power laser", a therapeutic one . A more accurate classification based on the tissue reaction is presented, developed by the author. In addition to this, the author has devised a graphical representation of laser surgical and therapeutic beams whereby the laser type, parameters, penetration depth, and tissue reaction can all be shown in a single illustration, which the author has termed the `Laser Apple", due to the typical pattern generated when a laser beam is incident on tissue. Laser/tissue reactions fall into three broad groups. If the photoreaction in the tissue is irreversible, then it is classified as high-reactive level laser treatment (HLLT). If some irreversible damage occurs together with reversible photodamage, as in tissue welding, the author refers to this as mid-reactive level laser treatment (MLLT). If the level of reaction in the target tissue is lower than the cells" survival threshold, then this is low reactive-level laser therapy (LLLT). All three of these classifications can occur simultaneously in the one target, and fall under the umbrella of laser treatment (LT). LT is further subdivided into three main types: mono-type LT (Mo-LT, treatment with a single laser system; multi-type LT (Mu-LT, treatment with multiple laser systems); and concomitant LT (Cc-LT), laser treatment in combination, each of which is further subdivided by tissue reaction to give an accurate, treatment-based categorization of laser treatment. When this effect-based classification is combined with and illustrated by the appropriate laser apple pattern, an accurate and simple method of classifying laser/tissue reactions by the reaction, rather than by the laser used to produce the reaction, is achieved. Examples will be given to illustrate the author"s new approach to this important concept.
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
Lathdavong, Lemthong; Shao, Jie; Kluczynski, Pawel; Lundqvist, Stefan; Axner, Ove
2011-06-10
Detection of carbon monoxide (CO) in combustion gases by tunable diode laser spectrometry is often hampered by spectral interferences from H2O and CO2. A methodology for assessment of CO in hot, humid media using telecommunication distributed feedback lasers is presented. By addressing the R14 line at 6395.4 cm(-1), and by using a dual-species-fitting technique that incorporates the fitting of both a previously measured water background reference spectrum and a 2f-wavelength modulation lineshape function, percent-level concentrations of CO can be detected in media with tens of percent of water (c(H2O)≤40%) at T≤1000 °C with an accuracy of a few percent by the use of a single reference water spectrum for background correction.
Kuo, Chung-Feng Jeffrey; Wang, Hsing-Won; Hsiao, Shang-Wun; Peng, Kai-Ching; Chou, Ying-Liang; Lai, Chun-Yu; Hsu, Chien-Tung Max
2014-01-01
Physicians clinically use laryngeal video stroboscope as an auxiliary instrument to test glottal diseases, and read vocal fold images and voice quality for diagnosis. As the position of vocal fold varies in each person, the proportion of the vocal fold size as presented in the vocal fold image is different, making it impossible to directly estimate relevant glottis physiological parameters, such as the length, area, perimeter, and opening angle of the glottis. Hence, this study designs an innovative laser projection marking module for the laryngeal video stroboscope to provide reference parameters for image scaling conversion. This innovative laser projection marking module to be installed on the laryngeal video stroboscope using laser beams to project onto the glottis plane, in order to provide reference parameters for scaling conversion of images of laryngeal video stroboscope. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species
NASA Technical Reports Server (NTRS)
Webster, C. R.
1982-01-01
Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.
Versatile all-digital time interval measuring system
NASA Astrophysics Data System (ADS)
Vyhlidal, David; Cech, Miroslav
2011-06-01
This paper describes a design and performance of a versatile all-digital time interval measuring system. The measurement method is based on an interpolation principle. In this principle the time interval is first roughly digitized by a coarse counter driven by a high stability reference clock and the fractions between the clock periods are measured by two Time-to-Digital Converter chips TDC-GPX manufactured by Acam messelectronic. Control circuits allow programmable customization of the system to satisfy many applications such as laser range finding, event counting, or time-of-flight measurements in various physics experiments. The system has two reference clocks inputs and two independent channels for measuring start and stop events. Only one 40 MHz reference is required for the measurement. The second reference can be, for example, 1 PPS (Pulse per Second) signal from a GPS (Global Positioning System) to time tag events. Time intervals are measured using the highest resolution mode of the TDC-GPX chips. The resolution of each chip is software programmable and is PLL (Phase Locked Loop) stabilized against temperature and voltage variations. The system can achieve a timing resolution better than 15 ps rms with up to 90 kHz repetition rate. The time interval measurement range is from 0 ps up to 1 second. The power consumption of the whole system is 18 W including an embedded computer board and an LCD (Liquid Crystal Display) screen. The embedded computer controls the whole system, collects and evaluates measurement data and with the display provides a user interface. The system is implemented using commercially available components.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.
1999-01-01
Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam centroid to about 8 urad is required to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith whose measurements are combined with a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser pulse is measured with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the star camera and gyroscope permits the angular offsets of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog detector and profile the height and vertical structure of thicker clouds. Measurements at 532 nm use new highly sensitive photon counting detectors, and measure the height distributions of very thin clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Thermal Noise Limit in Frequency Stabilization of Lasers with Rigid Cavities
NASA Technical Reports Server (NTRS)
Numata, Kenji; Kemery, Amy; Camp, Jordan
2005-01-01
We evaluated thermal noise (Brownian motion) in a rigid reference cavity Used for frequency stabilization of lasers, based on the mechanical loss of cavity materials and the numerical analysis of the mirror-spacer mechanics with the direct application of the fluctuation dissipation theorem. This noise sets a fundamental limit for the frequency stability achieved with a rigid frequency-reference cavity of order 1 Hz/rtHz at 10mHz at room temperature. This level coincides with the world-highest level stabilization results.
Veligdan, James T.
2000-01-11
An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.
Depth of penetration of a 785nm wavelength laser in food powders
NASA Astrophysics Data System (ADS)
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon S.; Peng, Yankun; Schmidt, Walter F.
2015-05-01
Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume is detected by Raman system. The aim of this study was to investigate the penetration depth of a 785nm laser (maximum power output 400mw) into three different food powders, namely dry milk powder, corn starch, and wheat flour. The food powders were layered in 5 depths between 1 and 5 mm overtop a Petri dish packed with melamine. Melamine was used as the subsurface reference material for measurement because melamine exhibits known and identifiable Raman spectral peaks. Analysis of the sample spectra for characteristics of melamine and characteristics of milk, starch and flour allowed determination of the effective penetration depth of the laser light in the samples. Three laser intensities (100, 200 and 300mw) were used to study the effect of laser intensity to depth of penetration. It was observed that 785nm laser source was able to easily penetrate through every point in all three food samples types at 1mm depth. However, the number of points that the laser could penetrate decreased with increasing depth of the food powder. ANOVA test was carried out to study the significant effect of laser intensity to depth of penetration. It was observed that laser intensity significantly influences the depth of penetration. The outcome of this study will be used in our next phase of study to detect different chemical contaminants in food powders and develop quantitative analysis models for detection of chemical contaminants.
Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.
2010-12-01
We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. Reference (1) D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.
An ATP System for Deep-Space Optical Communication
NASA Technical Reports Server (NTRS)
Lee, Shinhak; Irtuzm Gerardi; Alexander, James
2008-01-01
An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.
Stable Research Platform Workshop
1988-04-01
autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE
Frequency-tunable Pre-stabilized Lasers for LISA via Sideband-locking
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.; Thorpe, James I.; Numata, Kenji; Mitryk, Shawn; Mueller, Guido; Wand, Vinzenz
2008-01-01
Laser frequency noise mitigation is one of the most challenging aspects of the LISA interferometric measurement system. The unstabilized frequency fluctuations must be suppressed by roughly twelve orders of magnitude in order to achieve stability sufficient for gravitational wave detection. This enormous suppression will be achieved through a combination of stabilization and common-mode rejection. The stabilization component will itself be achieved in two stages: pre-stabilization to a local optical cavity followed by arm-locking to some combination of the inter-spacecraft distances. In order for these two stabilization stages to work simultaneously, the lock-point of the pre-stabilization loop must be frequency tunable. The current baseline stabilization technique, locking to an optical cavity, does not provide tunability between cavity resonances, which are typically spaced by 100s of MHz. Here we present a modification to the traditional Pound-Drever-Hall cavity locking technique that allows the laser to be locked to a cavity resonance with an adjustable frequency offset. This technique requires no modifications to the optical cavity itself, thus preserving the stability of the frequency reference. We present measurements of the system performance and demonstrate that we can meet implement the first two stages of stabilization.
NASA Astrophysics Data System (ADS)
Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu
2016-10-01
As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.
Laser interferometry method for absolute measurement of the acceleration of gravity
NASA Technical Reports Server (NTRS)
Hudson, O. K.
1971-01-01
Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.
Burka, Jenna M; Bower, Kraig S; Cute, David L; Stutzman, Richard D; Subramanian, Prem S; Rabin, Jeff C
2005-04-01
To compare two methods of limbal marking used during laser refractive surgery for myopic astigmatism. Retrospective chart review. Forty-two eyes of 42 patients who underwent photorefractive keratectomy (PRK) or laser-assisted in-situ keratomileusis (LASIK) for myopic astigmatism were marked preoperatively to identify the horizontal axis. In 18 eyes, marks were placed at the slit lamp (SL) with the slit beam set at 180 degrees as a reference. In 24 eyes, marks were placed in the laser room (LR) immediately before reclining under the laser. All treatments were performed with the Alcon LADARVision excimer laser system. Vector analysis of postoperative cylinder and reduction in cylinder and uncorrected and best-corrected visual acuity were evaluated for both groups. The mean postoperative magnitude of error was -0.19 +/- 0.44 diopters for the LR group and -0.09 +/- 0.42 diopters for the SL group (P = .439, NS). Both groups had a mean angle of error indicating an overall counterclockwise rotation of axis with an angle of error of 6.3 +/- 8.7 degrees for the LR group and 8.0 +/- 10.2 degrees for the SL group (P = .562, NS). We found no significant difference in outcomes with an overall trend toward undercorrection of cylinder in both groups, leaving room for improvement after refractive surgery for myopic astigmatism.
Electric oxygen-iodine laser discharge scaling and laser performance
NASA Astrophysics Data System (ADS)
Woodard, Brian S.
In 2004, a research partnership between the University of Illinois and CU Aerospace demonstrated the first electric discharge pumped oxygen-iodine laser referred to as ElectricOIL. This exciting improvement over the standard oxygen-iodine laser utilizes a gas discharge to produce the necessary electronically-excited molecular oxygen, O2(a 1Delta), that serves as the energy reservoir in the laser system. Pumped by a near-resonant energy transfer, the atomic iodine lases on the I(2P1/2) → I(2P3/2) transition at 1315 nm. Molecular oxygen diluted with helium and a small fraction of nitric oxide flows through a radiofrequency discharge where O2(a 1Delta) and many other excited species are created. Careful investigations to understand the benefits and problems associated with these other states in the laser system allowed this team to succeed where other research groups had failed, and after the initial demonstration, the ElectricOIL research focus shifted to increasing the efficiencies along with the output laser energy. Among other factors, the laser power scales with the flow rate of oxygen in the desired excited state. Therefore, high yields of O2(a 1Delta) are desired along with high input oxygen flow rates. In the early ElectricOIL experiments, the pressure in the discharge was approximately 10 Torr, but increased flow rates forced the pressure to between 50 and 60 Torr requiring a number of new discharge designs in order to produce similar yields of O2(a1Delta) efficiently. Experiments were conducted with only the electric discharge portion of the laser system using emission diagnostics to study the effects of changing the discharge geometry, flow residence time, and diluent. The power carried by O2(a 1Delta) is the maximum power that could be extracted from the laser, and the results from these studies showed approximately 2500 W stored in the O2(a1Delta) state. Transferring this energy into the atomic iodine has been another challenge in ElectricOIL as experiments have shown that the iodine is pumped into the excited state slower than is predicted by the known kinetics, resulting in reduced output power. An elementary model is presented that may partially explain this problem. Larger laser resonator volumes are employed to improve power extraction by providing more flow time for iodine pumping. The results presented in this work in conjunction with the efforts of others led to ElectricOIL scaling from 200 mW in the initial demonstration to nearly 500 W.
NASA Astrophysics Data System (ADS)
AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.
2015-09-01
The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ∼56% of the initial ASE after continuously pumping with 400 mW for 132 min.
GALACSI system design and analysis
NASA Astrophysics Data System (ADS)
Ströbele, S.; La Penna, P.; Arsenault, R.; Conzelmann, R. D.; Delabre, B.; Duchateau, M.; Dorn, R.; Fedrigo, E.; Hubin, N.; Quentin, J.; Jolley, P.; Kiekebusch, M.; Kirchbauer, J. P.; Klein, B.; Kolb, J.; Kuntschner, H.; Le Louarn, M.; Lizon, J. L.; Madec, P.-Y.; Pettazzi, L.; Soenke, C.; Tordo, S.; Vernet, J.; Muradore, R.
2012-07-01
GALACSI is one of the Adaptive Optics (AO) systems part of the ESO Adaptive Optics Facility (AOF). It will use the VLT 4-Laser Guide Stars system, high speed and low noise WaveFront Sensor cameras (<1e-, 1000Hz) the Deformable Secondary Mirror (DSM) and the SPARTA Real Time Computer to sharpen images and enhance faint object detectability of the MUSE Instrument. MUSE is an Integral Field Spectrograph working at wavelengths from 465nm to 930nm. GALACSI implements 2 different AO modes; in Wide Field Mode (WFM) it will perform Ground Layer AO correction and enhance the collected energy in a 0.2" by 0.2" pixel by a factor 2 at 750nm over a Field of View (FoV) of 1' by 1'. The 4 LGSs and one tip tilt reference star (R-mag <17.5) are located outside the MUSE FoV. Key requirements are to provide this performance and a very good image stability for a 1hour long integration time. In Narrow Field Mode (NFM) Laser Tomography AO will be used to reconstruct and correct the turbulence for the center field using the 4 LGSs at 15" off axis and the Near Infra Red (NIR) light of one reference star on axis for tip tilt and focus sensing. In NFM GALACSI will provide a moderate Strehl Ratio of 5% (goal 10%) at 650nm. The NFM hosts several challenges and many subsystems will be pushed to their limits. The opto mechanical design and error budgets of GALACSI is described here.
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Aitken, Michael; Ciani, Giacomo; Mueller, Guido
2016-01-01
The Laser Interferometer Space Antenna (LISA) is the most mature concept for detecting gravitational waves from space. The LISA design has been studied for more than 20 years as a joint effort between NASA and the European Space Agency. LISA consists of three Sun-orbiting spacecraft that form an equilateral triangle, with each side measuring 1-5 million kilometers in length. Each spacecraft houses two free-floating test masses, which are protected from all disturbing forces so that they follow pure geodesics. A single test mass together with its protective housing and associated components is referred to as a gravitational reference sensor. A drag-free control system is supplied with measurements of the test mass position from these sensors and commands external micronewton thrusters to force the spacecraft to fly in formation with the test masses. Laser interferometry is used to measure the minute variations in the distance, or light travel time, between these purely free-falling TMs, caused by gravitational waves. We have constructed a new torsion pendulum facility with a force sensitivity in the range of pN/Hz1/2 around 1 mHz for testing new gravitational reference sensor technologies. This experimental facility consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by their electrode housings. With the aid of this facility, we are (a) developing a novel test mass charge control scheme based on ultraviolet LEDs, (b) examining alternate test mass and electrode housing coatings, and (c) evaluating alternate operational modes of the LISA gravitational reference sensor. This presentation will describe this facility and the development status of these new technologies.
Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection
NASA Astrophysics Data System (ADS)
Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.
2003-07-01
The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.
Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Barth, Johannes A. C.
2013-04-01
Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024
Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment
NASA Astrophysics Data System (ADS)
Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia
2018-04-01
In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.
NASA Astrophysics Data System (ADS)
Adamek, A.
2015-12-01
Mobile laser scanning technology is developing rapidly also in mining. For several years research and tests are conducted on the use of that type of measurement in the inventory of the mine shafts. The company SKALA 3D in the project 1.4 POIG by PARP undertook to create Mobile automatic steering system of spatial geometry measurements mine shafts using laser scanning technology. Its main advantage is a faithful reflection of the object being measured in just a few hours. It is based on the data flowing from laser scanners and precision inertial unit. The main problem of the research was to determine the trajectory of the passing Mobile Platforms Mining (MPG) in the shaft as accurately as possible. Unable to receive signals from satellites in the pipe shaft prevented the use of solutions known for measuring terrestrial mobile systems. The company SKALA 3D has developed a methodology for determine the trajectory of the system, based on geometrical data coming from laser scanners and readings of accelerometers and gyroscopes of inertial unit. To improve the quality and accuracy of measurements MPG is also equipped with a set of anti-vibration parts prevent the transmission of vibrations ascending while cage is moving in the shaft on the measuring system. The whole forms a calibrated system, which in a short time is able to provide spatial measurement data from the measuring shaft. The accuracy of 2-3 mm in a single measurement horizon and a few centimeters determine the position of a point on the thousandth meter below ground make the system very accurate. During the project there have been numerous research problems, including the need to define the physical references, drift of IMU whether harsh weather conditions in the shaft. However, the company SKALA 3D solved these problems and making MPG unique in the world.
Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range
NASA Astrophysics Data System (ADS)
Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas
2014-09-01
We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.
Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection
NASA Astrophysics Data System (ADS)
Corvaja, Roberto
2017-02-01
In continuous-variables quantum key distribution with coherent states, the advantage of performing the detection by using standard telecoms components is counterbalanced by the lack of a stable phase reference in homodyne detection due to the complexity of optical phase-locking circuits and to the unavoidable phase noise of lasers, which introduces a degradation on the achievable secure key rate. Pilot-assisted phase-noise estimation and postdetection compensation techniques are used to implement a protocol with coherent states where a local laser is employed and it is not locked to the received signal, but a postdetection phase correction is applied. Here the reduction of the secure key rate determined by the laser phase noise, for both individual and collective attacks, is analytically evaluated and a scheme of pilot-assisted phase estimation proposed, outlining the tradeoff in the system design between phase noise and spectral efficiency. The optimal modulation variance as a function of the phase-noise amount is derived.
Multi-species trace gas sensing with dual-wavelength QCLs
NASA Astrophysics Data System (ADS)
Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas
2018-06-01
Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.
Rigorous Combination of GNSS and VLBI: How it Improves Earth Orientation and Reference Frames
NASA Astrophysics Data System (ADS)
Lambert, S. B.; Richard, J. Y.; Bizouard, C.; Becker, O.
2017-12-01
Current reference series (C04) of the International Earth Rotation and Reference Systems Service (IERS) are produced by a weighted combination of Earth orientation parameters (EOP) time series built up by combination centers of each technique (VLBI, GNSS, Laser ranging, DORIS). In the future, we plan to derive EOP from a rigorous combination of the normal equation systems of the four techniques.We present here the results of a rigorous combination of VLBI and GNSS pre-reduced, constraint-free, normal equations with the DYNAMO geodetic analysis software package developed and maintained by the French GRGS (Groupe de Recherche en GeÌodeÌsie Spatiale). The used normal equations are those produced separately by the IVS and IGS combination centers to which we apply our own minimal constraints.We address the usefulness of such a method with respect to the classical, a posteriori, combination method, and we show whether EOP determinations are improved.Especially, we implement external validations of the EOP series based on comparison with geophysical excitation and examination of the covariance matrices. Finally, we address the potential of the technique for the next generation celestial reference frames, which are currently determined by VLBI only.
NASA Astrophysics Data System (ADS)
Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2017-08-01
We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.
Aero-optics overview. [laser applications
NASA Technical Reports Server (NTRS)
Gilbert, K. G.
1980-01-01
Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.
High-energy laser tactical decision aid (HELTDA) for mission planning and predictive avoidance
NASA Astrophysics Data System (ADS)
Burley, Jarred L.; Fiorino, Steven T.; Randall, Robb M.; Bartell, Richard J.; Cusumano, Salvatore J.
2012-06-01
This study demonstrates the development of a high energy laser tactical decision aid (HELTDA) by the AFIT/CDE for mission planning High Energy Laser (HEL) weapon system engagements as well as centralized, decentralized, or hybrid predictive avoidance (CPA/DPA/HPA) assessments. Analyses of example HEL mission engagements are described as well as how mission planners are expected to employ the software. Example HEL engagement simulations are based on geographic location and recent/current atmospheric weather conditions. The atmospheric effects are defined through the AFIT/CDE Laser Environmental Effects Definition and Reference (LEEDR) model or the High Energy Laser End-to-End Operational Simulation (HELEEOS) model upon which the HELTDA is based. These models enable the creation of vertical profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Seasonal and boundary layer variations (summer/winter) and time of day variations for a range of relative humidity percentile conditions are considered to determine optimum efficiency in a specific environment. Each atmospheric particulate/hydrometeor is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on the propagating environment to and beyond the target. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are included. Numerical weather model forecasts are incorporated in the model to develop comprehensive understanding of HEL weapon system performance.
Deriving a geocentric reference frame for satellite positioning and navigation
NASA Technical Reports Server (NTRS)
Malla, R. P.; Wu, S.-C.
1988-01-01
With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.
Laser Lights or Dim Bulbs? Evaluating Reference Librarians' Use of Electronic Sources.
ERIC Educational Resources Information Center
Welch, Jeanie M.
1999-01-01
Discusses the evaluation of academic library reference librarians' effectiveness in providing services to patrons using electronic sources based on experiences at the University of North Carolina at Charlotte. Topics include core technical competencies for subject specialists and reference desk service; the Internet; and methods of evaluation.…
Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment
Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon
2013-01-01
As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, A; Currey, A; Li, X Allen
2016-06-15
Purpose: Radiation therapy (RT) of left sided breast cancers with deep-inspiratory breathhold (DIBH) can reduce the dose to heart. The purpose of this study is to develop and test a new laser-based tool to improve ease of RT delivery using DIBH. Methods: A laser sensor together with breathing monitor device (Anzai Inc., Japan) was used to record the surface breathing motion of phantom/volunteers. The device projects a laser beam to the chestwall and the reflected light creates a focal spot on a light detecting element. The position change of the focal spot correlates with the patient’s breathing motion and ismore » measured through the change of current in the light detecting element. The signal is amplified and displayed on a computer screen, which is used to trigger radiation gating. The laser sensor can be easily mounted to the simulation/treatment couch with a fixing plate and a magnet base, and has a sensitivity range of 10 to 40 cm from the patient. The correlation of breathing signals detected by laser sensor and visionRT is also investigated. Results: It is found that the measured breathing signal from the laser sensor is stable and reproducible and has no noticeable delay. It correlates well with the VisionRT surface imaging system. The DIBH reference level does not change with movement of the couch because the laser sensor and couch move together. Conclusion: The Anzai laser sensor provides a cost-effective way to improve beam gating with DIBH for treating left breast cancer. It can be used alone or together with VisionRT to determine the correct DIBH level during the radiation treatment of left breast cancer with DIBH.« less
NASA Technical Reports Server (NTRS)
Glaeser, P.; Haase, I.; Oberst, J.; Neumann, G. A.
2013-01-01
We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool.
NASA Astrophysics Data System (ADS)
Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef
2011-05-01
Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.
Plasma density limits for hole boring by intense laser pulses.
Iwata, Natsumi; Kojima, Sadaoki; Sentoku, Yasuhiko; Hata, Masayasu; Mima, Kunioki
2018-02-12
High-power lasers in the relativistic intensity regime with multi-picosecond pulse durations are available in many laboratories around the world. Laser pulses at these intensities reach giga-bar level radiation pressures, which can push the plasma critical surface where laser light is reflected. This process is referred to as the laser hole boring (HB), which is critical for plasma heating, hence essential for laser-based applications. Here we derive the limit density for HB, which is the maximum plasma density the laser can reach, as a function of laser intensity. The time scale for when the laser pulse reaches the limit density is also derived. These theories are confirmed by a series of particle-in-cell simulations. After reaching the limit density, the plasma starts to blowout back toward the laser, and is accompanied by copious superthermal electrons; therefore, the electron energy can be determined by varying the laser pulse length.
Challenges in the Measurement and Data-Processing Chain of the LISA Mission
NASA Astrophysics Data System (ADS)
Gath, Peter F.; Schulte, Hans Reiner; Weise, Dennis
2010-03-01
The LISA Mission (Laser Interferometer Space Antenna) is currently under mission formulation with a launch date planned in 2020. The purpose of the mission is the observation of gravitational waves at frequencies between 0.1 mHz and 1 Hz by measuring distance fluctuations between inertial reference points, represented by cubic proof masses. In order to provide a sufficient sensitivity of the instrument, distance fluctuations between two inertial reference points must be measured with a strain accuracy of around 10-20 Hz-1/2. This is achieved by setting up a laser interferometer with a base-length of 5ṡ106 km and a path-length measurement noise in the order of 10 pm Hz-1/2. For a correct evaluation of the data on the ground, it is essential that the science data telemetry preserves all required frequency domain information. That is, any on-board data-processing and down-sampling must be done with great care in order not to introduce aliasing or other artifacts into the data stream. As an additional complication, most of the optical metrology data is dominated by laser phase noise which is about eight orders of magnitude larger than the required instrument sensitivity. However, by applying a method called “time-delayed interferometry” during the ground data processing, this laser phase noise can be eliminated from the data. This method has already been demonstrated in a detailed simulation environment, but it requires a very careful filtering, synchronization, and interpolation of the individual data streams. Last but not least, a calibration of system parameters is necessary in many areas of the LISA measurement system. The system design must therefore ensure that all data required for these calibrations is available on-ground in a quality that allows a successful computation of the calibration coefficients within a reasonable time-frame. The data streams do not only include data from the optical metrology system, but also from the drag-free and attitude control system which are used to derive other information, such as the charge state of the proof mass. This yields a strong coupling between the different disciplines since data that is only used for housekeeping purposes in other missions becomes an essential part of the science data stream for the LISA mission. This paper gives an overview of the LISA measurement and data-processing chain. It highlights the most challenging areas that have been identified so far and describes the intended solution methods.
Christner, Martin; Rohde, Holger; Wolters, Manuel; Sobottka, Ingo; Wegscheider, Karl; Aepfelbacher, Martin
2010-05-01
Early and adequate antimicrobial therapy has been shown to improve the clinical outcome in bloodstream infections (BSI). To provide rapid pathogen identification for targeted treatment, we applied matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry fingerprinting to bacteria directly recovered from blood culture bottles. A total of 304 aerobic and anaerobic blood cultures, reported positive by a Bactec 9240 system, were subjected in parallel to differential centrifugation with subsequent mass spectrometry fingerprinting and reference identification using established microbiological methods. A representative spectrum of bloodstream pathogens was recovered from 277 samples that grew a single bacterial isolate. Species identification by direct mass spectrometry fingerprinting matched reference identification in 95% of these samples and worked equally well for aerobic and anaerobic culture bottles. Application of commonly used score cutoffs to classify the fingerprinting results led to an identification rate of 87%. Mismatching mostly resulted from insufficient bacterial numbers and preferentially occurred with Gram-positive samples. The respective spectra showed low concordance to database references and were effectively rejected by score thresholds. Spiking experiments and examination of the respective study samples even suggested applicability of the method to mixed cultures. With turnaround times around 100 min, the approach allowed for reliable pathogen identification at the day of blood culture positivity, providing treatment-relevant information within the critical phase of septic illness.
Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model
NASA Astrophysics Data System (ADS)
Hofmann, Franz; Biskupek, Liliane; Müller, Jürgen
2018-01-01
Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05-0.7 milliarcseconds (mas). Estimations of the Earth rotation phase Δ UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for Δ UT is based on the standard deviation of the estimates with respect to the reference C04 solution.
Arm Locking for the Laser Interferometer Space Antenna
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Thorpe, J. I.; Livas, J.
2009-01-01
The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements.
High quality proton beams from hybrid integrated laser-driven ion acceleration systems
NASA Astrophysics Data System (ADS)
Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.
2014-03-01
We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.
FPGA based charge acquisition algorithm for soft x-ray diagnostics system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.
2015-09-01
Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.
Configuration Analysis of the ERS Points in Large-Volume Metrology System
Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin
2015-01-01
In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers’ coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system. PMID:26402685
Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon
2017-01-01
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352
Rescue Assault Forces--Integrated Strategic Role in National Security
1982-06-04
Descriptions and simulations (198O), , I ’ Henry B. Well, hevelopent of a Dynamic Model to Evaluate the Effect of Natural Resource Policies on Recovery...Following a Nuciear Attack, Final Report, VoT I, DFscriptions and simulations (081TrT0-ll. , p. 28. Refers to quotes by Stalin and Brezhnev threatening...race is now on to develop laser and particle beam technology as missile defense systems for employment in outer space or _j from ground defense bases
Manikavachakan, Narender; Siddaraju, Maheshwari Nallur; Rajendran, Sarangapani Chakrapani; Venkataraman, Aniketh
2018-01-01
Nevus comedonicus is a rare epidermal abnormality of the pilosebaceous unit, which is congenital in most patients but may also appear early in childhood. It may be localized or have an extensive involvement, the latter showing a unilateral predominance with only a few cases presenting bilaterally. Extensive nevus comedonicus can be associated with musculoskeletal defects, eye and neurological involvement, which constitutes nevus comedonicus syndrome. Uncomplicated nevus comedonicus can be treated with topical keratolytics, diode, erbium laser, and ultrapulse CO 2 laser. Surgical excision can be performed to ensure complete removal and nonrecurrence. This case report refers to a young male patient with extensive nevus comedonicus present over left chest, left axilla, and left upper back without systemic involvement, treated with staged surgical excision and resurfacing.
Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration
NASA Astrophysics Data System (ADS)
Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.
2017-11-01
Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4
The Long-Wave Infrared Earth Image as a Pointing Reference for Deep-Space Optical Communications
NASA Astrophysics Data System (ADS)
Biswas, A.; Piazzolla, S.; Peterson, G.; Ortiz, G. G.; Hemmati, H.
2006-11-01
Optical communications from space require an absolute pointing reference. Whereas at near-Earth and even planetary distances out to Mars and Jupiter a laser beacon transmitted from Earth can serve as such a pointing reference, for farther distances extending to the outer reaches of the solar system, the means for meeting this requirement remains an open issue. We discuss in this article the prospects and consequences of utilizing the Earth image sensed in the long-wave infrared (LWIR) spectral band as a beacon to satisfy the absolute pointing requirements. We have used data from satellite-based thermal measurements of Earth to synthesize images at various ranges and have shown the centroiding accuracies that can be achieved with prospective LWIR image sensing arrays. The nonuniform emissivity of Earth causes a mispointing bias error term that exceeds a provisional pointing budget allocation when using simple centroiding algorithms. Other issues related to implementing thermal imaging of Earth from deep space for the purposes of providing a pointing reference are also reported.
Dynamical Reference Frame: Current Relevance and Future Prospects
NASA Technical Reports Server (NTRS)
Standish, E. M., Jr
2000-01-01
Planetary and lunar ephemerides are no longer used for the determination of inertial space. Instead, the new fundamental reference frame, the International Celestial Reference Frame (ICRF), is inherently less susceptible to extraneous, non-inertial rotations than a dynamical reference frame determined by the ephemerides would be. Consequently, the ephemerides are now adjusted onto the ICRF, and they are fit to two modern, accurate observational data types: ranging (radar, lunar laser, spacecraft) and Very Long Baseline Interferometry (VLBI) (of spacecraft near planets). The uncertainties remaining in the inner planet ephemerides are on the order of 1 kilometer, both in relative positions between the bodies and in the orientation of the inner system as a whole. The predictive capabilities of the inner planet ephemerides are limited by the uncertainties in the masses of many asteroids. For this reason, future improvements to the ephemerides must await determinations of many asteroid masses. Until then, it will be necessary to constantly update the ephemerides with a continuous supply of observational data.
Cavity enhanced eigenmode multiplexing for volume holographic data storage
NASA Astrophysics Data System (ADS)
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W
2016-05-01
Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.
Karbe, E; Königsmann, G; Beck, R
1980-01-01
Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.
Athermal fiber laser for the SWARM absolute scalar magnetometer
NASA Astrophysics Data System (ADS)
Fourcault, W.; Léger, J.-M.; Costes, V.; Fratter, I.; Mondin, L.
2017-11-01
The Absolute Scalar Magnetometer (ASM) developed by CEA-LETI/CNES is an optically pumped 4He magnetic field sensor based on the Zeeman effect and an electronic magnetic resonance whose effects are amplified by a laser pumping process [1-2]. Consequently, the role of the laser is to pump the 4He atoms at the D0 transition as well as to allow the magnetic resonance signal detection. The ASM will be the scalar magnetic reference instrument of the three ESA Swarm satellites to be launched in 2012 in order to carry out the best ever survey of the Earth magnetic field and its temporal evolution. The sensitivity and accuracy of this magnetometer based on 4He optical pumping depend directly on the characteristics of its light source, which is the key sub-system of the sensor. We describe in this paper the selected fiber laser architecture and its wavelength stabilization scheme. Its main performance in terms of spectral emission, optical power at 1083 nm and intensity noise characteristics in the frequency bands used for the operation of the magnetometer, are then presented. Environmental testing results (thermal vacuum cycling, vibrations, shocks and ageing) are also reported at the end of this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrdlicka, Ales; Prokes, Lubomir; Stankova, Alice
2010-05-01
The development of a remote laser-induced breakdown spectroscopy (LIBS) setup with an off-axis Newtonian collection optics, Galilean-based focusing telescope, and a 532 nm flattop laser beam source is presented. The device was tested at a 6 m distance on a slice of bone to simulate its possible use in the field, e.g., during archaeological excavations. It is shown that this setup is sufficiently sensitive to both major (P, Mg) and minor elements (Na, Zn, Sr). The measured quantities of Mg, Zn, and Sr correspond to the values obtained by reference laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements within an approximatelymore » 20% range of uncertainty. A single point calibration was performed by use of a bone meal standard . The radial element distribution is almost invariable by use of LA-ICP-MS, whereas the LIBS measurement showed a strong dependence on the sample porosity. Based on these results, this remote LIBS setup with a relatively large (350 mm) collecting mirror is capable of semiquantitative analysis at the level of units of mg kg{sup -1}.« less
Tunable and mode-locked laser action of Cr4+ in codoped forsterite Cr, Sc:Mg2SiO4
NASA Astrophysics Data System (ADS)
Sanina, V. V.; Mitrokhin, V. P.; Subbotin, K. A.; Lis, D. A.; Lis, O. N.; Ivanov, A. A.; Zharikov, E. V.
2018-01-01
The laser oscillation of tetravalent chromium and scandium codoped forsterite Cr4+,Sc:Mg2SiO4 single crystal has been demonstrated for the first time for continuous wave, tunable and mode-locked regimes. For comparison, the laser experiments have also been performed in the same configuration with the reference forsterite single crystal solely doped by chromium. The aim of scandium codoping is to inhibit the formation of parasitic trivalent chromium in the crystal. The crystal with scandium demonstrates a wider tuning range, lower lasing threshold and wider mode-locked lasing spectrum than those of the reference crystal, although the total lasing efficiency achieved by both crystals is nearly the same. The obtained results are discussed.
Laser/Optical Data Base Products: Evaluation and Selection.
ERIC Educational Resources Information Center
Nicholls, Paul Travis
1988-01-01
The practical advice for the evaluation of laser/optical data disk materials (e.g., CD-ROM) is based on a review of the relevant literature. An evaluation framework is outlined and collection development tools and sources of published reviews are identified. (34 references) (Author/CLB)
NASA Astrophysics Data System (ADS)
Gelmini, E.; Minoni, U.; Docchio, F.
1995-08-01
A double heterodyne interferometric instrument using a tunable synthetic wavelength for the absolute measurements of distance and position is presented. The optical synthetic wavelength is generated by a pair of PZT-tunable diode-pumped Nd:YAG lasers operating at 1.064 μm. Based on a closed-loop scheme, a suitable electronic circuit has been developed to implement the frequency locking of the two lasers. A digital frequency comparator provides an error signal, used to control the slave laser, by comparing the laser beat frequency to a reference oscillator. Demodulation of the superheterodyne signals is obtained by a rf detector followed by low-pass filtering. Distance measurements are obtained by a digital phase meter gauging the phase difference between the demodulated signals from a measuring interferometer and from a reference interferometer. The paper presents the optical and the electronic layouts of the instrument as well as experimental results from a laboratory prototype.