Sample records for laser scanning method

  1. Laser scanning methods and a phase comparison, modulated laser range finder for terrain sensing on a Mars roving vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Herb, G. T.

    1973-01-01

    Two areas of a laser range finder for a Mars roving vehicle are investigated: (1) laser scanning systems, and (2) range finder methods and implementation. Several ways of rapidly scanning a laser are studied. Two digital deflectors and a matrix of laser diodes, are found to be acceptable. A complete range finder scanning system of high accuracy is proposed. The problem of incident laser spot distortion on the terrain is discussed. The instrumentation for a phase comparison, modulated laser range finder is developed and sections of it are tested.

  2. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  3. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  4. Measurement of limb volume: laser scanning versus volume displacement.

    PubMed

    McKinnon, John Gregory; Wong, Vanessa; Temple, Walley J; Galbraith, Callum; Ferry, Paul; Clynch, George S; Clynch, Colin

    2007-10-01

    Determining the prevalence and treatment success of surgical lymphedema requires accurate and reproducible measurement. A new method of measurement of limb volume is described. A series of inanimate objects of known and unknown volume was measured using digital laser scanning and water displacement. A similar comparison was made with 10 human volunteers. Digital scanning was evaluated by comparison to the established method of water displacement, then to itself to determine reproducibility of measurement. (1) Objects of known volume: Laser scanning accurately measured the calculated volume but water displacement became less accurate as the size of the object increased. (2) Objects of unknown volume: As average volume increased, there was an increasing bias of underestimation of volume by the water displacement method. The coefficient of reproducibility of water displacement was 83.44 ml. In contrast, the reproducibility of the digital scanning method was 19.0 ml. (3) Human data: The mean difference between water displacement volume and laser scanning volume was 151.7 ml (SD +/- 189.5). The coefficient of reproducibility of water displacement was 450.8 ml whereas for laser scanning it was 174 ml. Laser scanning is an innovative method of measuring tissue volume that combines precision and reproducibility and may have clinical utility for measuring lymphedema. 2007 Wiley-Liss, Inc

  5. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  6. Galvanometer scanning technology for laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  7. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  8. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  9. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.

  10. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE PAGES

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  11. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  12. Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.

    PubMed

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  13. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  14. Plot-scale soil loss estimation with laser scanning and photogrammetry methods

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán; Somogyi, Árpád; Barsi, Árpád

    2017-04-01

    Structure from Motion (SfM) is an automatic feature-matching algorithm, which nowadays is widely used tool in photogrammetry for geoscience applications. SfM method and parallel terrestrial laser scanning measurements are widespread and they can be well accomplished for quantitative soil erosion measurements as well. Therefore, our main scope was soil erosion characterization quantitatively and qualitatively, 3D visualization and morphological characterization of soil-erosion-dynamics. During the rainfall simulation, the surface had been measured and compared before and after the rainfall event by photogrammetry (SfM - Structure from Motion) and laser scanning (TLS - Terrestrial Laser Scanning) methods. The validation of the given results had been done by the caught runoff and the measured soil-loss value. During the laboratory experiment, the applied rainfall had 40 mm/h rainfall intensity. The size of the plot was 0.5 m2. The laser scanning had been implemented with Faro Focus 3D 120 S type equipment, while the SfM shooting had been carried out by 2 piece SJCAM SJ4000+ type, 12 MP resolution and 4K action cams. The photo-reconstruction had been made with Agisoft Photoscan software, while evaluation of the resulted point-cloud from laser scanning and photogrammetry had been implemented partly in CloudCompare and partly in ArcGIS. The resulted models and the calculated surface changes didn't prove to be suitable for estimating soil-loss, only for the detection of changes in the vertical surface. The laser scanning resulted a quite precise surface model, while the SfM method is affected by errors at the surface model due to other factors. The method needs more adequate technical laboratory preparation.

  15. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. © 2012 American Institute of Physics

  16. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  17. Laser furnace and method for zone refining of semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Griner, Donald B. (Inventor); zur Burg, Frederick W. (Inventor); Penn, Wayne M. (Inventor)

    1988-01-01

    A method of zone refining a crystal wafer (116 FIG. 1) comprising the steps of focusing a laser beam to a small spot (120) of selectable size on the surface of the crystal wafer (116) to melt a spot on the crystal wafer, scanning the small laser beam spot back and forth across the surface of the crystal wafer (116) at a constant velocity, and moving the scanning laser beam across a predetermined zone of the surface of the crystal wafer (116) in a direction normal to the laser beam scanning direction and at a selectible velocity to melt and refine the entire crystal wafer (116).

  18. Comparison of a novel surface laser scanning anthropometric technique to traditional methods for facial parameter measurements.

    PubMed

    Joe, Paula S; Ito, Yasushi; Shih, Alan M; Oestenstad, Riedar K; Lungu, Claudiu T

    2012-01-01

    This study was designed to determine if three-dimensional (3D) laser scanning techniques could be used to collect accurate anthropometric measurements, compared with traditional methods. The use of an alternative 3D method would allow for quick collection of data that could be used to change the parameters used for facepiece design, improving fit and protection for a wider variety of faces. In our study, 10 facial dimensions were collected using both the traditional calipers and tape method and a Konica-Minolta Vivid9i laser scanner. Scans were combined using RapidForm XOR software to create a single complete facial geometry of the subject as a triangulated surface with an associated texture image from which to obtain measurements. A paired t-test was performed on subject means in each measurement by method. Nine subjects were used in this study: five males (one African-American and four Caucasian females) and four females displaying a range of facial dimensions. Five measurements showed significant differences (p<0.05), with most accounted for by subject movements or amended by scanning technique modifications. Laser scanning measurements showed high precision and accuracy when compared with traditional methods. Significant differences found can be very small changes in measurements and are unlikely to present a practical difference. The laser scanning technique demonstrated reliable and quick anthropometric data collection for use in future projects in redesigning respirators.

  19. The fast and accurate 3D-face scanning technology based on laser triangle sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin

    2013-08-01

    A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.

  20. [Results of therapy of children with amblyopia by scanning stimulating laser].

    PubMed

    Chentsova, O B; Magaramova, M D; Grechanyĭ, M P

    1997-01-01

    A new effective method for the treatment of amblyopia was used in 113 children: stimulation with ophthalmological SLSO-208A scanning laser by two methods differing by the transmission coefficient and scanning pattern. Good results were attained, the best when laser exposure was combined with traditional therapy for amblyopia and in the patients with the central fixation. The results were assessed by the main parameters of visual functions and the stability of the effect.

  1. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    NASA Astrophysics Data System (ADS)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  2. Error analysis of motion correction method for laser scanning of moving objects

    NASA Astrophysics Data System (ADS)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  3. Generation of ultrasound in materials using continuous-wave lasers.

    PubMed

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  4. Evaluation of laser ablation crater relief by white light micro interferometer

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Zhukova, Ekaterina; Ivanov, Nikita; Margaryants, Nikita; Potemkin, Andrey; Samokhvalov, Andrey; Shelygina, Svetlana

    2017-06-01

    A multi-view scanning method is suggested to assess a complicated surface relief by white light interferometer. Peculiarities of the method are demonstrated on a special object in the form of quadrangular pyramid cavity, which is formed at measurement of micro-hardness of materials using a hardness gauge. An algorithm of the joint processing of multi-view scanning results is developed that allows recovering correct relief values. Laser ablation craters were studied experimentally, and their relief was recovered using the developed method. It is shown that the multi-view scanning reduces ambiguity when determining the local depth of the laser ablation craters micro relief. Results of experimental studies of the multi-view scanning method and data processing algorithm are presented.

  5. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope

    PubMed Central

    MACRAE, K.; TRAVIS, C.; AMOR, R.; NORRIS, G.; WILSON, S.H.; OPPO, G.‐L.; MCCONNELL, G.

    2015-01-01

    Summary We report a method for characterizing the focussing laser beam exiting the objective in a laser scanning microscope. This method provides the size of the optical focus, the divergence of the beam, the ellipticity and the astigmatism. We use a microscopic‐scale knife edge in the form of a simple transmission electron microscopy grid attached to a glass microscope slide, and a light‐collecting optical fibre and photodiode underneath the specimen. By scanning the laser spot from a reflective to a transmitting part of the grid, a beam profile in the form of an error function can be obtained and by repeating this with the knife edge at different axial positions relative to the beam waist, the divergence and astigmatism of the postobjective laser beam can be obtained. The measured divergence can be used to quantify how much of the full numerical aperture of the lens is used in practice. We present data of the beam radius, beam divergence, ellipticity and astigmatism obtained with low (0.15, 0.7) and high (1.3) numerical aperture lenses and lasers commonly used in confocal and multiphoton laser scanning microscopy. Our knife‐edge method has several advantages over alternative knife‐edge methods used in microscopy including that the knife edge is easy to prepare, that the beam can be characterized also directly under a cover slip, as necessary to reduce spherical aberrations for objectives designed to be used with a cover slip, and it is suitable for use with commercial laser scanning microscopes where access to the laser beam can be limited. PMID:25864964

  6. Laser-scanning techniques for rapid ballistics identification

    NASA Technical Reports Server (NTRS)

    Woodburgy, R. C.; Nakich, R. B.

    1974-01-01

    Two different laser-scanning methods may be utilized. In each case scanned cylindrical bullet surface is displayed ""unwrapped'' on oscilloscope screen. Bullets are compared by photographing each display and superimposing negatives of two images. With some modifications bullets can be scanned and compared by superimposing images on screen of dual-beam oscilloscope.

  7. Automatic Classification of Trees from Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2015-08-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into 'tree' and 'non-tree' classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the 'tree' or 'non-tree' class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud sources are discussed in detail.

  8. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    PubMed Central

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered. PMID:23112655

  9. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography.

    PubMed

    Kim, Jooseong; Heo, Giseon; Lagravère, Manuel O

    2014-05-01

    To compare the accuracy of measurements obtained from the three-dimensional (3D) laser scans to those taken from the cone-beam computed tomography (CBCT) scans and those obtained from plaster models. Eighteen different measurements, encompassing mesiodistal width of teeth and both maxillary and mandibular arch length and width, were selected using various landmarks. CBCT scans and plaster models were prepared from 60 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner, and the selected landmarks were measured using its software. CBCT scans were imported and analyzed using the Avizo software, and the 26 landmarks corresponding to the selected measurements were located and recorded. The plaster models were also measured using a digital caliper. Descriptive statistics and intraclass correlation coefficient (ICC) were used to analyze the data. The ICC result showed that the values obtained by the three different methods were highly correlated in all measurements, all having correlations>0.808. When checking the differences between values and methods, the largest mean difference found was 0.59 mm±0.38 mm. In conclusion, plaster models, CBCT models, and laser-scanned models are three different diagnostic records, each with its own advantages and disadvantages. The present results showed that the laser-scanned models are highly accurate to plaster models and CBCT scans. This gives general clinicians an alternative to take into consideration the advantages of laser-scanned models over plaster models and CBCT reconstructions.

  10. Method and apparatus for chemical and topographical microanalysis

    NASA Technical Reports Server (NTRS)

    Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)

    2002-01-01

    A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.

  11. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement

    NASA Astrophysics Data System (ADS)

    Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong

    2017-11-01

    Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.

  12. A general high-speed laser drilling method for nonmetal thin material

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Xu, Guangsheng; Xu, Zhou; Xu, Zhiqiang

    2013-05-01

    Many nonmetal film products, such as herbal plaster, medical adhesive tape and farm plastic film, require drilling dense small holes to enhance the permeability without affecting the appearance. For many medium and small enterprises, a low-cost, high-speed laser drilling machine with the ability of processing different kinds of nonmetal material is highly demanded. In this paper, we proposed a general purpose high-speed laser drilling method for micro-hole production on thin nonmetal film. The system utilizes a rotating polygonal mirror to perform high-speed laser scan, which is simpler and more efficient than the oscillating mirror scan. In this system, an array of closepacked paraboloid mirrors is mounted on the laser scan track to focus the high-power laser onto the material sheet, which could produce up to twenty holes in a single scan. The design of laser scan and focusing optics is optimized to obtain the best holes' quality, and the mirrors can be flexibly adjusted to get different drilling parameters. The use of rotating polygonal mirror scan and close-packed mirror array focusing greatly improves the drilling productivity to enable the machine producing thirty thousand holes per minute. With proper design, the hold uniformity can also get improved. In this paper, the detailed optical and mechanical design is illustrated, the high-speed laser drilling principle is introduced and the preliminary experimental results are presented.

  13. Accuracy improvement of laser line scanning for feature measurements on CMM

    NASA Astrophysics Data System (ADS)

    Bešić, Igor; Van Gestel, Nick; Kruth, Jean-Pierre; Bleys, Philip; Hodolič, Janko

    2011-11-01

    Because of its high speed and high detail output, laser line scanning is increasingly included in coordinate metrology applications where its performance can satisfy specified tolerances. Increasing its accuracy will open the possibility to use it in other areas where contact methods are still dominant. Multi-sensor systems allow to select discrete probing or scanning methods to measure part elements. Decision is often based on the principle that tight toleranced elements should be measured by contact methods, while other more loose toleranced elements can be laser scanned. This paper aims to introduce a method for improving the output of a CMM mounted laser line scanner for metrology applications. This improvement is achieved by filtering of the scanner's random error and by combination with widely spread and reliable but slow touch trigger probing. The filtered point cloud is used to estimate the form deviation of the inspected element while few tactile obtained points were used to effectively compensate for errors in the point cloud position.

  14. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    PubMed Central

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  15. Method and apparatus for measuring areas of photoelectric cells and photoelectric cell performance parameters

    DOEpatents

    Osterwald, C.R.; Emery, K.A.

    1984-05-29

    A laser scanning system for scanning the surface of photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphical plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.

  16. Method and apparatus for measuring areas of photoelectric cells and photoelectric cell performance parameters

    DOEpatents

    Osterwald, Carl R.; Emery, Keith A.

    1987-01-01

    A laser scanning system for scanning the surface of a photovoltaic cell in a precise, stepped raster pattern includes electric current detecting and measuring equipment for sensing the current response of the scanned cell to the laser beam at each stepped irradiated spot or pixel on the cell surface. A computer is used to control and monitor the raster position of the laser scan as well as monitoring the corresponding current responses, storing this data, operating on it, and for feeding the data to a graphic plotter for producing a visual, color-coded image of the current response of the cell to the laser scan. A translation platform driven by stepper motors in precise X and Y distances holds and rasters the cell being scanned under a stationary spot-focused laser beam.

  17. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  18. The reality of virtual anthropology: Comparing digitizer and laser scan data collection methods for the quantitative assessment of the cranium.

    PubMed

    Algee-Hewitt, Bridget F B; Wheat, Amber D

    2016-05-01

    The use of geometric morphometry to study cranial variation has steadily grown in appeal over the past decade in biological anthropology. Publication trends suggest that the most popular methods for three-dimensional data acquisition involve landmark-based coordinate data collection using a digitizer. Newer laser scan approaches are seeing increasing use, owing to the benefits that densely sampled data offer. While both of these methods have their utility, research that investigates their compatibility is lacking. The purpose of this project is to compare, quantitatively, craniometrics collected with a digitizer against data extracted from laser scans using the same individuals and laboratory conditions. Three-dimensional (x,y,z) coordinates and traditional inter-landmark distances (ILDs) were obtained with a Microscribe digitizer and 360° color models produced from NextEngine laser scans for 38 adult crania representing five cemeteries from the ADBOU skeletal collection in Denmark. Variance-based tests were performed to evaluate the disagreement between data collected with a digitizer and from laser scan models. Consideration was given to differences among landmarks by type, between ILDs calculated from landmark coordinates, and in morphology for the cemetery populations. Further, the reliability of laser scan data collection was assessed by intra-observer error tests. Researchers should be aware of the potential error associated with the use of Types II and III landmarks and the limitations on reliability imposed by object-to-scanner placement. This project reveals how laser scans can provide a valuable digital archive of cranial material that can be reasonably exploited for the "virtual" collection of coordinates and the calculation of ILDs. © 2015 Wiley Periodicals, Inc.

  19. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  20. Control Measurements of Crane Rails Performed by Terrestrial Laser Scanning

    PubMed Central

    Kregar, Klemen; Možina, Jan; Ambrožič, Tomaž; Kogoj, Dušan; Marjetič, Aleš; Štebe, Gašper; Savšek, Simona

    2017-01-01

    This article presents a method for measuring the geometry of crane rails with terrestrial laser scanning (TLS). Two sets of crane rails were divided into segments, their planes were adjusted, and the characteristic rail lines were defined. We used their profiles to define the positional and altitude deviations of the rails, the span and height difference between the two rails, and we also verified that they complied with the Eurocode 3 standard. We tested the method on crane rails at the hydroelectric power plant in Krško and the thermal power plant in Brestanica. We used two scanning techniques: “pure” TLS (Riegel VZ-400) and “hybrid” TLS (Leica MS50) scanning. This article’s original contribution lies in the detailed presentation of the computations used to define the characteristic lines of the rails without using the numeric procedures from existing software packages. We also analysed the influence of segment length and point density on the rail geometry results, and compared the two laser scanning techniques. We also compared the results obtained by terrestrial laser scanning with the results obtained from the classic polar method, which served as a reference point for its precision. PMID:28726755

  1. Method for quantifying percentage wood failure in block-shear specimens by a laser scanning profilometer

    Treesearch

    C. T. Scott; R. Hernandez; C. Frihart; R. Gleisner; T. Tice

    2005-01-01

    A new method for quantifying percentage wood failure of an adhesively bonded block-shear specimen has been developed. This method incorporates a laser displacement gage with an automated two-axis positioning system that functions as a highly sensitive profilometer. The failed specimen is continuously scanned across its width to obtain a surface failure profile. The...

  2. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  3. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  4. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    PubMed

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  6. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    NASA Astrophysics Data System (ADS)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.

  7. Reflection imaging of China ink-perfused brain vasculature using confocal laser-scanning microscopy after clarification of brain tissue by the Spalteholz method.

    PubMed

    Gutierre, R C; Vannucci Campos, D; Mortara, R A; Coppi, A A; Arida, R M

    2017-04-01

    Confocal laser-scanning microscopy is a useful tool for visualizing neurons and glia in transparent preparations of brain tissue from laboratory animals. Currently, imaging capillaries and venules in transparent brain tissues requires the use of fluorescent proteins. Here, we show that vessels can be imaged by confocal laser-scanning microscopy in transparent cortical, hippocampal and cerebellar preparations after clarification of China ink-injected specimens by the Spalteholz method. This method may be suitable for global, three-dimensional, quantitative analyses of vessels, including stereological estimations of total volume and length and of surface area of vessels, which constitute indirect approaches to investigate angiogenesis. © 2017 Anatomical Society.

  8. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elhattab, Ahmed; Fayad, Atef

    2013-12-01

    Terrestrial laser scanning has become one of the standard technologies for object acquisition in surveying engineering. The high spatial resolution of imaging and the excellent capability of measuring the 3D space by laser scanning bear a great potential if combined for both data acquisition and data compilation. Automatic crack detection from concrete surface images is very effective for nondestructive testing. The crack information can be used to decide the appropriate rehabilitation method to fix the cracked structures and prevent any catastrophic failure. In practice, cracks on concrete surfaces are traced manually for diagnosis. On the other hand, automatic crack detection is highly desirable for efficient and objective crack assessment. The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  9. Automated inspection of gaps on the free-form shape parts by laser scanning technologies

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan

    2018-01-01

    In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.

  10. Eye safety analysis for non-uniform retinal scanning laser trajectories

    NASA Astrophysics Data System (ADS)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  11. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  12. Formation of Si and Ge films and micropatterns by wet process using laser direct writing method

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira

    2011-03-01

    The studies toward the formation of Si and Ge films and micropatterns by wet process using laser direct writing method are reported. First is the the formation of Si film by laser scanning irradiation to Si nano- or micro-particle dispersed films. By using organogermanium nanocluster (OrGe) as a dispersion medium of Si particles, a homogeneous Si film was formed by laser scanning irradiation on a Si particle/OrGe composite film. The micro-Raman spectra showed the formation of the polycrystalline Ge and SiGe alloy during the fusion of the Si particles by laser irradiation. The second is the formation of the Si and Ge micropatterns by LLDW (liquid phase laser direct writing) method. Micro-Raman spectra showed the formation of polycrystalline Si and Ge micropatterns by laser irradiation on the interfaces of SiCl4/substrate and GeCl4/substrate, respectively.

  13. Critical review on refractive surgical lasers

    NASA Astrophysics Data System (ADS)

    Lin, J. T.

    1995-03-01

    The current status of refractive surgical lasers (including excimer and nonexcimer lasers) is reviewed with an emphasis on photorefractive keratectomy (PRK). The correlation of engineering parameters and the clinical requirements with optimal conditions are presented. The fundamentals of corneal reshaping with formulas for ablation profiles and the advantages of the multizone method are discussed. Updated information on the Mini-Excimer PRK laser system, with an emphasis on the scanning delivery device, is presented. PMMA ablation profiles performed by standard diaphragm and scanning modes are compared for surface ablation quality. Scanning mode ablation patterns for myopia, hyperopia, and regular and irregular astigmatism are presented.

  14. Software for visualization, analysis, and manipulation of laser scan images

    NASA Astrophysics Data System (ADS)

    Burnsides, Dennis B.

    1997-03-01

    The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.

  15. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  16. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  17. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Guendalyn Kendra

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simplemore » in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.« less

  18. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  19. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    PubMed

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  20. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  1. Virtualization of Fuelbeds: Building the Next Generation of Fuels Data for Multiple-Scale Fire Modeling and Ecological Analysis

    NASA Astrophysics Data System (ADS)

    Rowell, Eric Martin

    The primary goal of this research is to advance methods for deriving fine-grained, scalable, wildland fuels attributes in 3-dimensions using terrestrial and airborne laser scanning technology. It is fundamentally a remote sensing research endeavor applied to the problem of fuels characterization. Advancements in laser scanning are beginning to have significant impacts on a range of modeling frameworks in fire research, especially those utilizing 3-dimensional data and benefiting from efficient data scaling. The pairing of laser scanning and fire modeling is enabling advances in understanding how fuels variability modulates fire behavior and effects. This dissertation details the development of methods and techniques to characterize and quantify surface fuelbeds using both terrestrial and airborne laser scanning. The primary study site is Eglin Airforce Base, Florida, USA, which provides a range of fuel types and conditions in a fire-adapted landscape along with the multi-disciplinary expertise, logistical support, and prescribed fire necessary for detailed characterization of fire as a physical process. Chapter 1 provides a research overview and discusses the state of fuels science and the related needs for highly resolved fuels data in the southeastern United States. Chapter 2, describes the use of terrestrial laser scanning for sampling fuels at multiple scales and provides analysis of the spatial accuracy of fuelbed models in 3-D. Chapter 3 describes the development of a voxel-based occupied volume method for predicting fuel mass. Results are used to inform prediction of landscape-scale fuel load using airborne laser scanning metrics as well as to predict post-fire fuel consumption. Chapter 4 introduces a novel fuel simulation approach which produces spatially explicit, statistically-defensible estimates of fuel properties and demonstrates a pathway for resampling observed data. This method also can be directly compared to terrestrial laser scanning data to assess how energy interception of the laser pulse affects characterization of the fuelbed. Chapter 5 discusses the contribution of this work to fire science and describes ongoing and future research derived from this work. Chapters 2 and 4 have been published in International Journal of Wildland Fire and Canadian Journal of Remote Sensing, respectively, and Chapter 3 is in preparation for publication.

  2. Laser scanning saturated structured illumination microscopy based on phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2017-08-01

    Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.

  3. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  4. Extrinsic Calibration of a Laser Galvanometric Setup and a Range Camera.

    PubMed

    Sels, Seppe; Bogaerts, Boris; Vanlanduit, Steve; Penne, Rudi

    2018-05-08

    Currently, galvanometric scanning systems (like the one used in a scanning laser Doppler vibrometer) rely on a planar calibration procedure between a two-dimensional (2D) camera and the laser galvanometric scanning system to automatically aim a laser beam at a particular point on an object. In the case of nonplanar or moving objects, this calibration is not sufficiently accurate anymore. In this work, a three-dimensional (3D) calibration procedure that uses a 3D range sensor is proposed. The 3D calibration is valid for all types of objects and retains its accuracy when objects are moved between subsequent measurement campaigns. The proposed 3D calibration uses a Non-Perspective-n-Point (NPnP) problem solution. The 3D range sensor is used to calculate the position of the object under test relative to the laser galvanometric system. With this extrinsic calibration, the laser galvanometric scanning system can automatically aim a laser beam to this object. In experiments, the mean accuracy of aiming the laser beam on an object is below 10 mm for 95% of the measurements. This achieved accuracy is mainly determined by the accuracy and resolution of the 3D range sensor. The new calibration method is significantly better than the original 2D calibration method, which in our setup achieves errors below 68 mm for 95% of the measurements.

  5. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  6. Axonal loss from acute optic neuropathy documented by scanning laser polarimetry

    PubMed Central

    Meier, F M; Bernasconi, P; Stürmer, J; Caubergh, M-J; Landau, K

    2002-01-01

    Background/aims: Retinal nerve fibre layer analysis by scanning laser polarimetry has been shown to facilitate diagnosis of glaucoma while its role in glaucoma follow up is still unclear. A major difficulty is the slow reduction of retinal nerve fibre layer thickness in glaucomatous optic neuropathy. Eyes of patients were studied after acute retrobulbar optic nerve lesion in order to evaluate the usefulness of scanning laser polarimetry in documenting retinal nerve fibre layer loss over time. Methods: Five patients who suffered severe retrobulbar optic neuropathy have had repeated measurements of the retinal nerve fibre layer using scanning laser polarimetry at various intervals, the first examination being within 1 week of injury. Results: All eyes showed a marked decrease in peripapillary retinal nerve fibre layer thickness, which followed an exponential curve and occurred predominantly within 8 weeks of injury. Compared to a previous study using red-free photographs, scanning laser polarimetry showed retinal nerve fibre layer loss earlier in the course of descending atrophy. Conclusion: Scanning laser polarimetry is useful for early detection and documentation of retinal nerve fibre layer loss following acute injury to the retrobulbar optic nerve. It seems to be a promising tool for follow up of individual glaucoma patients. PMID:11864884

  7. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  8. Distance measurement using frequency scanning interferometry with mode-hoped laser

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  9. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  10. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  11. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.

  12. Visualisation of urban airborne laser scanning data with occlusion images

    NASA Astrophysics Data System (ADS)

    Hinks, Tommy; Carr, Hamish; Gharibi, Hamid; Laefer, Debra F.

    2015-06-01

    Airborne Laser Scanning (ALS) was introduced to provide rapid, high resolution scans of landforms for computational processing. More recently, ALS has been adapted for scanning urban areas. The greater complexity of urban scenes necessitates the development of novel methods to exploit urban ALS to best advantage. This paper presents occlusion images: a novel technique that exploits the geometric complexity of the urban environment to improve visualisation of small details for better feature recognition. The algorithm is based on an inversion of traditional occlusion techniques.

  13. Thermal behavior in single track during selective laser melting of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; He, Yuyang; Du, Jun

    2017-09-01

    A three-dimensional model was developed to simulate the radiation heat transfer in the AlSi10Mg packed bed. The volume of fluid method (VOF) was used to capture the free surface during selective laser melting (SLM). A randomly packed powder bed was obtained using discrete element method (DEM) in Particle Flow Code (PFC). The proposed model has demonstrated a high potential to simulate the selective laser melting process (SLM) with high accuracy. In this paper, the effect of the laser scanning speed and laser power on the thermodynamic behavior of the molten pool was investigated numerically. The results show that the temperature gradient and the resultant surface tension gradient between the center and the edge of the molten pool increase with decreasing the scanning speed or increasing the laser power, thereby intensifying the Marangoni flow and attendant turbulence within the molten pool. However, at a relatively high scanning speed, a significant instability may be generated in the molten pool. The perturbation and instability in the molten pool during SLM may result in an irregular shaped track.

  14. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  15. A study of cavity preparation by Er:YAG laser--observation of hard tooth structures by laser scanning microscope and examination of the time necessary to remove caries.

    PubMed

    Shigetani, Yoshimi; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki

    2002-03-01

    The purpose of this study was to observe and measure the morphological changes that occur in the hard tissue after the application of Er:YAG laser. Another objective was to evaluate and compare the duration of application of both the laser apparatus and a conventional cutting device. In this study, sound and newly extracted carious tissues were used. The morphological changes in hard tooth structures produced by Er:YAG laser irradiation were examined by using a laser scanning microscope. Results showed that appropriate laser irradiation was 100 mJ/pulse for dentin, and 200 mJ/pulse for enamel. Also, the laser scanning microscope images were less damaged than the SEM images due to pretreatment of the specimens. The time taken to remove carious enamel by laser irradiation was slightly longer than the compared rotary cutting device; however, no differences between the two methods were observed in case of carious dentin removal.

  16. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-12-01

    A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.

  17. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  18. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography

    PubMed Central

    Choi, Dong-hak; Yoshimura, Reiko; Ohbayashi, Kohji

    2013-01-01

    Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained. PMID:24409394

  19. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    NASA Astrophysics Data System (ADS)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  20. Accuracy in estimation of timber assortments and stem distribution - A comparison of airborne and terrestrial laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2014-11-01

    Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.

  1. A walk by the river: three-dimensional reconstruction of surface sedimentology and topography using wearable laser scanning

    NASA Astrophysics Data System (ADS)

    Williams, R.; Lamy, M. L.; Stott, E.; Maniatis, G.

    2017-12-01

    In the last two decades, quantification of fluvial topography has been transformed by a number of geomatics technologies that have enabled the acquisition of data with unprecedented spatial resolution. Hyperscale surveys with spatial extents of <1 km2 have been widely demonstrated, by means of Terrestrial Laser Scanning (TLS) and Structure-from-Motion (SfM) photogrammetry. Recent advances in the development and integration of GNSS, IMU, lightweight laser scanning and SLAM technologies are now resulting in the emergence of wearable, mobile laser scanning systems that have the potential to increase data acquisition and processing rates by 1-2 orders of magnitude compared to TLS/SfM, and thus challenge the recent dominance of these two geomatics technologies. In this study we describe the methods and results of a comparison between a wearable laser scanning survey, using a Leica Pegasus Backpack, and a multi-station static TLS survey, using a Riegl VZ-1000 scanner. The evaluation is undertaken on a 600 m long reach of the braided River Feshie, Scotland, using data acquired in June 2017. Comparison between the DEMs produced from static and mobile laser scanning, across non-vegetated areas, revealed a Mean Error (ME) of -0.002 m and a Standard Deviation Error (SDE) of 0.109 m. Comparison to 100 independent check point resulted in a similar ME and SDE for static (ME = 0.061m; SDE = 0.030 m) and mobile (ME = 0.044 m; SDE = 0.029 m) laser scanning. Empirical relationships between sub-metre topographic variability and median sediment grain size (10-100 mm), across 14 grid-by-number samples, were similar and demonstrate that surface roughness from wearable laser scanning can be used to derive reach-scale maps of median grain size. These results demonstrate that wearable laser scanning generates hyperscale topographic models that are comparable in quality to more time-consuming multi-station TLS setups. Wearable laser scanning is likely to be commonly adopted for fluvial topographic surveys and will become established as a versatile survey technology.

  2. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi

    2017-04-01

    Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.

  3. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  4. 193 nm ArF laser ablation and patterning of chitosan thin films

    NASA Astrophysics Data System (ADS)

    Aesa, A. A.; Walton, C. D.

    2018-06-01

    This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.

  5. Process Optimization and Microstructure Characterization of Ti6Al4V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    junfeng, Li; zhengying, Wei

    2017-11-01

    Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting (SLM) were investigated in this article. The relative density of sampled fabricated by SLM is influenced by the main process parameters, including laser power, scan speed and hatch distance. The volume energy density (VED) was defined to account for the combined effect of the main process parameters on the relative density. The results shown that the relative density changed with the change of VED and the optimized process interval is 55˜60J/mm3. Furthermore, compared with laser power, scan speed and hatch distance by taguchi method, it was found that the scan speed had the greatest effect on the relative density. Compared with the microstructure of the cross-section of the specimen at different scanning speeds, it was found that the microstructures at different speeds had similar characteristics, all of them were needle-like martensite distributed in the β matrix, but with the increase of scanning speed, the microstructure is finer and the lower scan speed leads to coarsening of the microstructure.

  6. Experimental and Numerical Investigation on Micro-Bending of AISI 304 Sheet Metal Using a Low Power Nanosecond Laser

    NASA Astrophysics Data System (ADS)

    Paramasivan, K.; Das, Sandip; Marimuthu, Sundar; Misra, Dipten

    2018-06-01

    The aim of this experimental study is to identify and characterize the response related to the effects of process parameters in terms of bending angle for micro-bending of AISI 304 sheet using a low power Nd:YVO4 laser source. Numerical simulation is also carried out through a coupled thermo-mechanical formulation with finite element method using COMSOL MULTIPHYSICS. The developed numerical simulation indicates that bending is caused by temperature gradient mechanism in the present investigation involving laser micro-bending. The results of experiment indicate that bending angle increases with laser power, number of irradiations, and decreases with increase in scanning speed. Moreover, average bending angle increases with number of laser passes and edge effect, defined in terms of relative variation of bending angle (RBAV), decreases monotonically with the number of laser scans. The substrate is damaged over a width of about 80 μm due to the high temperatures experienced during laser forming at a low scanning speed.

  7. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    DOEpatents

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  8. Micro-processing of NiMnGa shape memory alloy by using a nanosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2016-04-01

    The interest on Ferromagnetic Shape Memory Alloys (FSMAs), such as NiMnGa, is growing up, thanks to their functional properties to be employed in a new class of micro-devices. The most evident critical issue, limiting the use of these systems in the production of industrial devices, is the brittleness of the bulk material; its workability by using convectional processing methods is very limited. Thus, alternative processing methods, including laser processing, are encouraged for the manufacture of FSMAs based new devices. In this work, the effect of the nanosecond laser microprocessing on Ni45Mn33Ga22 [at%] has been studied. Linear grooves were realized by a nanosecond 30 W fiber laser; the machined surfaces were analyzed with scanning electron microscopy, coupled with energetic dispersion spectroscopy for the composition analysis. The morphology of the grooves was affected by the laser scanning velocity and the number of laser pulses while the measured material removal rate appeared to be influenced mainly by the number of laser pulses. Compositional modification, associated to the loss of Ga content, was detected only for the lower scanning velocity, because of the high fluence. On the contrary, by increasing the velocity up to 1000 mm/s no Ga loss can be seen, making possible the laser processing of this functional alloy without its chemical modification. The use of short pulses allowed also to reduce the amount of recast material and the compositional change with respect to long pulses. Finally, the calorimetric analysis indicated that laser nanosecond microprocessing could affect the functional properties of this alloy: a larger decrease of the characteristic temperatures of the martensitic transformation was observed in correspondence of the low scanning velocity.

  9. Fabrication of Custom-Shaped Grafts for Cartilage Regeneration

    PubMed Central

    Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.

    2011-01-01

    Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths. PMID:21058268

  10. LASER ALTIMETER CANOPY HEIGHT PROFILES: METHODS AND VALIDATION FOR CLOSED-CANOPY, BROADLEAF FORESTS. (R828309)

    EPA Science Inventory

    Abstract

    Waveform-recording laser altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne laser altimeter waveform data was acquired using the Scanning Lid...

  11. Scanning laser densitometry and color perimetry demonstrate reduced photopigment density and sensitivity in two patients with retinal degeneration.

    PubMed

    Tornow, R P; Stilling, R; Zrenner, E

    1999-10-01

    To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal diseases and to test the success of different therapeutic treatments. Both methods have limitations at the present state of development. However, some of these limitations can be overcome by further improving the instruments.

  12. Extended investigation into continuous laser scanning of underground mine workings by means of Landis inertial navigation system

    NASA Astrophysics Data System (ADS)

    Belyaev, E. N.

    2017-10-01

    The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.

  13. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    PubMed

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  14. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models

    PubMed Central

    Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-01-01

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods. PMID:28672795

  15. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models.

    PubMed

    Osada, Edward; Sośnica, Krzysztof; Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-06-24

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods.

  16. The effect of laser focus and process parameters on microstructure and mechanical properties of SLM Inconel 718

    NASA Astrophysics Data System (ADS)

    Bean, Glenn E.; Witkin, David B.; McLouth, Tait D.; Zaldivar, Rafael J.

    2018-02-01

    Research on the selective laser melting (SLM) method of laser powder bed fusion additive manufacturing (AM) has shown that surface and internal quality of AM parts is directly related to machine settings such as laser energy density, scanning strategies, and atmosphere. To optimize laser parameters for improved component quality, the energy density is typically controlled via laser power, scanning rate, and scanning strategy, but can also be controlled by changing the spot size via laser focal plane shift. Present work being conducted by The Aerospace Corporation was initiated after observing inconsistent build quality of parts printed using OEM-installed settings. Initial builds of Inconel 718 witness geometries using OEM laser parameters were evaluated for surface roughness, density, and porosity while varying energy density via laser focus shift. Based on these results, hardware and laser parameter adjustments were conducted in order to improve build quality and consistency. Tensile testing was also conducted to investigate the effect of build plate location and laser settings on SLM 718. This work has provided insight into the limitations of OEM parameters compared with optimized parameters towards the goal of manufacturing aerospace-grade parts, and has led to the development of a methodology for laser parameter tuning that can be applied to other alloy systems. Additionally, evidence was found that for 718, which derives its strength from post-manufacturing heat treatment, there is a possibility that tensile testing may not be perceptive to defects which would reduce component performance. Ongoing research is being conducted towards identifying appropriate testing and analysis methods for screening and quality assurance.

  17. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    NASA Astrophysics Data System (ADS)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  18. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  19. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  20. Fabrication of custom-shaped grafts for cartilage regeneration.

    PubMed

    Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L

    2010-10-01

    to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths.

  1. Terrestrial and Aerial Laser Scanning Data Integration Using Wavelet Analysis for the Purpose of 3D Building Modeling

    PubMed Central

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1–5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed. PMID:25004157

  2. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    PubMed

    Kedzierski, Michal; Fryskowska, Anna

    2014-07-07

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  3. Calculation of the overlap factor for scanning LiDAR based on the tridimensional ray-tracing method.

    PubMed

    Chen, Ruiqiang; Jiang, Yuesong; Wen, Luhong; Wen, Donghai

    2017-06-01

    The overlap factor is used to evaluate the LiDAR light collection ability. Ranging LiDAR is mainly determined by the optical configuration. However, scanning LiDAR, equipped with a scanning mechanism to acquire a 3D coordinate points cloud for a specified target, is essential in considering the scanning effect at the same time. Otherwise, scanning LiDAR will reduce the light collection ability and even cannot receive any echo. From this point of view, we propose a scanning LiDAR overlap factor calculation method based on the tridimensional ray-tracing method, which can be applied to scanning LiDAR with any special laser intensity distribution, any type of telescope (reflector, refractor, or mixed), and any shape obstruction (i.e., the reflector of a coaxial optical system). A case study for our LiDAR with a scanning mirror is carried out, and a MATLAB program is written to analyze the laser emission and reception process. Sensitivity analysis is carried out as a function of scanning mirror rotation speed and detector position, and the results guide how to optimize the overlap factor for our LiDAR. The results of this research will have a guiding significance in scanning LiDAR design and assembly.

  4. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  5. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  6. Accuracy analysis for triangulation and tracking based on time-multiplexed structured light.

    PubMed

    Wagner, Benjamin; Stüber, Patrick; Wissel, Tobias; Bruder, Ralf; Schweikard, Achim; Ernst, Floris

    2014-08-01

    The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.

  7. Markerless laser registration in image-guided oral and maxillofacial surgery.

    PubMed

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  8. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology

    PubMed Central

    Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.

    2016-01-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176

  9. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  10. Direct mapping of local redox current density on a monolith electrode by laser scanning.

    PubMed

    Lee, Seung-Woo; Lopez, Jeffrey; Saraf, Ravi F

    2013-09-15

    An optical method of mapping local redox reaction over a monolith electrode using simple laser scanning is described. As the optical signal is linearly proportional to the maximum redox current that is measured concomitantly by voltammetry, the optical signal quantitatively maps the local redox current density distribution. The method is demonstrated on two types of reactions: (1) a reversible reaction where the redox moieties are ionic, and (2) an irreversible reaction on two different types of enzymes immobilized on the electrode where the reaction moieties are nonionic. To demonstrate the scanning capability, the local redox behavior on a "V-shaped" electrode is studied where the local length scale and, hence, the local current density, is nonuniform. The ability to measure the current density distribution by this method will pave the way for multianalyte analysis on a monolith electrode using a standard three-electrode configuration. The method is called Scanning Electrometer for Electrical Double-layer (SEED). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  12. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    NASA Astrophysics Data System (ADS)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  13. 3D modeling of underground objects with the use of SLAM technology on the example of historical mine in Ciechanowice (Ołowiane Range, The Sudetes)

    NASA Astrophysics Data System (ADS)

    Wajs, Jaroslaw; Kasza, Damian; Zagożdżon, Paweł P.; Zagożdżon, Katarzyna D.

    2018-01-01

    Terrestrial Laser Scanning is a currently one of the most popular methods for producing representations of 3D objects. This paper presents the potential of applying the mobile laser scanning method to inventory underground objects. The examined location was a historic crystalline limestone mine situated in the vicinity of Ciechanowice village (Kaczawa Mts., SW Poland). The authors present a methodology for performing measurements and for processing the obtained results, whose accuracy is additionally verified.

  14. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    PubMed

    Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen

    2016-01-01

    The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.

  15. Application of laser scanning speckle-microscopy for high-resolution express diagnostics of chlamydial infection

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina

    2018-04-01

    Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.

  16. Integration of Geodata in Documenting Castle Ruins

    NASA Astrophysics Data System (ADS)

    Delis, P.; Wojtkowska, M.; Nerc, P.; Ewiak, I.; Lada, A.

    2016-06-01

    Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure's elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.

  17. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region since 1985[8]. The other generation technique of ultra-short pulse is the optical parametric chirped pulse amplification(OPCPA) invented by Dubietis et al. in 1992, which combined the respective superiorities of CPA and optical parametric amplification(OPA). However, there are disadvantages for the both technologies such as gain narrowing, gain saturation effects, and even spectrum shift. The first one among the three is the most significant which narrows the spectrum after amplification so that it limits the minimum durations of ultra-short laser pulse. This paper proposed a approach for scanning reshaping the spectrum of chirped laser pulse to compensate for the gain narrowing effect, according to the characteristics of the chirped laser pulse, i.e. the frequency varies with time linearly. The spectral characteristics of the scanning reshaping was analyzed quantitatively. Furthermore, the influence of the time-delay and deviation of the controlling voltage employed on the electro-optic crystal on the reshaped spectrum was also been discussed in detail.

  18. The Inventory Of High Objects Applying Laser Scanning, Focus On The Cataloguing A Reinforced Concrete Industrial Chimney

    NASA Astrophysics Data System (ADS)

    Gawałkiewicz, Rafał

    2015-12-01

    There are many surveying methods to measure the inclination of a chimney with the use of classical protractor instruments (Theo 010A/B, T2 Wild), electronic theodolites (TC2002 Wild-Leica), electronic total stations, including mirrorless ones, allowing to define indirectly the course of the construction's axis on the selected observation levels. The methods are the following: indentations, direct projection, double-edged method, polar method with the option of mirrorless measurement. At the moment a very practical and quick measurement technology, significantly eliminating the influence of human errors on the observation results, is laser scanning. The article presents the results of the scanning of 120-metres high reinforced concrete industrial chimney of the Cement Plant "Ożarów", with the application of modern scanning total station VX Spatial Station by Trimble, as an alternative to the methods applied so far. The advantage of scanning is the possibility to obtain a point cloud, which, apart from the information on the course of the chimney axis in the space, provides detail information on the real shape and deformations of the coating of the object's core.

  19. Weld quality inspection using laser-EMAT ultrasonic system and C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Ume, I. Charles

    2014-02-01

    Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.

  20. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Caldwell, Loren M. (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  1. High-Speed Printing Process Characterization using the Lissajous Trajectory Method

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; Kim, Daekeun

    2018-04-01

    We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.

  2. Extreme trajectory approach to the problem of determining the degree of stability of a laser surface scanning system

    NASA Astrophysics Data System (ADS)

    Nikitin, V. N.; Chemodanov, V. B.

    2018-02-01

    The degree of stability of a laser system for surface scanning with nonlinear multiplicative crosstalks is discussed. To determine its stability, the action functional is introduced, which is defined on the set of virtual (achievable) trajectories. The action functional is a measure of external action, which should be applied to a system to move it along a predetermined trial trajectory in the state space.The degree of stability of the system depends on the minimum value of the action functional which is reached on the extreme trajectory transferring the laser scanning system from equilibrium to the limit of the normal operation range. Numerical methods are proposed for calculating the degree of stability.

  3. Close-range laser scanning in forests: towards physically based semantics across scales.

    PubMed

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  4. Fast Measurement and Reconstruction of Large Workpieces with Freeform Surfaces by Combining Local Scanning and Global Position Data

    PubMed Central

    Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu

    2015-01-01

    In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396

  5. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  6. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  7. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    NASA Astrophysics Data System (ADS)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for amore » wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.« less

  9. 3D volumetric modeling of grapevine biomass using Tripod LiDAR

    USGS Publications Warehouse

    Keightley, K.E.; Bawden, G.W.

    2010-01-01

    Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.

  10. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography images

    PubMed Central

    Kim, Jooseong

    2016-01-01

    Objective The aim of this study was to compare the accuracy of Bolton analysis obtained from digital models scanned with the Ortho Insight three-dimensional (3D) laser scanner system to those obtained from cone-beam computed tomography (CBCT) images and traditional plaster models. Methods CBCT scans and plaster models were obtained from 50 patients. Plaster models were scanned using the Ortho Insight 3D laser scanner; Bolton ratios were calculated with its software. CBCT scans were imported and analyzed using AVIZO software. Plaster models were measured with a digital caliper. Data were analyzed with descriptive statistics and the intraclass correlation coefficient (ICC). Results Anterior and overall Bolton ratios obtained by the three different modalities exhibited excellent agreement (> 0.970). The mean differences between the scanned digital models and physical models and between the CBCT images and scanned digital models for overall Bolton ratios were 0.41 ± 0.305% and 0.45 ± 0.456%, respectively; for anterior Bolton ratios, 0.59 ± 0.520% and 1.01 ± 0.780%, respectively. ICC results showed that intraexaminer error reliability was generally excellent (> 0.858 for all three diagnostic modalities), with < 1.45% discrepancy in the Bolton analysis. Conclusions Laser scanned digital models are highly accurate compared to physical models and CBCT scans for assessing the spatial relationships of dental arches for orthodontic diagnosis. PMID:26877978

  11. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    NASA Astrophysics Data System (ADS)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  12. Distinguishing Buried Objects in Extremely Shallow Underground by Frequency Response Using Scanning Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Abe, Touma; Sugimoto, Tsuneyoshi

    2010-07-01

    A sound wave vibration using a scanning laser Doppler vibrometer are used as a method of exploring and imaging an extremely shallow underground. Flat speakers are used as a vibration source. We propose a method of distinguishing a buried object using a response range of a frequencies corresponding to a vibration velocities. Buried objects (plastic containers, a hollow steel can, an unglazed pot, and a stone) are distinguished using a response range of frequencies. Standardization and brightness imaging are used as methods of discrimination. As a result, it was found that the buried objects show different response ranges of frequencies. From the experimental results, we confirmed the effectiveness of our proposed method.

  13. Design of a Multi-Sensor Cooperation Travel Environment Perception System for Autonomous Vehicle

    PubMed Central

    Chen, Long; Li, Qingquan; Li, Ming; Zhang, Liang; Mao, Qingzhou

    2012-01-01

    This paper describes the environment perception system designed for intelligent vehicle SmartV-II, which won the 2010 Future Challenge. This system utilizes the cooperation of multiple lasers and cameras to realize several necessary functions of autonomous navigation: road curb detection, lane detection and traffic sign recognition. Multiple single scan lasers are integrated to detect the road curb based on Z-variance method. Vision based lane detection is realized by two scans method combining with image model. Haar-like feature based method is applied for traffic sign detection and SURF matching method is used for sign classification. The results of experiments validate the effectiveness of the proposed algorithms and the whole system.

  14. Laser-based pedestrian tracking in outdoor environments by multiple mobile robots.

    PubMed

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-10-29

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.

  15. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be applied to any unknown chip before inspection. A wealth of information can be provided by this learning procedure, which greatly benefits the interpretation of inspection signals afterwards.

  16. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  17. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du

    2017-08-01

    A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.

  18. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.

    PubMed

    Bian, Hao; Yang, Qing; Liu, Hewei; Chen, Feng; Du, Guangqing; Si, Jinhai; Hou, Xun

    2013-03-01

    Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated femtosecond laser ablation. An unordered netlike structure and a quasi-ordered array of holes can be fabricated on the surface of stainless steel via an ethanol-mediated femtosecond laser line-scan method. SEM analysis of the surface morphology indicates that the porous netlike structure is in the micrometer scale and the diameter of the quasi-ordered holes ranges from 280 nm to 320 nm. Besides, we find that the obtained structures are tunable by altering the laser processing parameters especially scanning speed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: A simulation study

    NASA Astrophysics Data System (ADS)

    Forsman, Mona; Börlin, Niclas; Olofsson, Kenneth; Reese, Heather; Holmgren, Johan

    2018-01-01

    In this study we have investigated why diameters of tree stems, which are approximately cylindrical, are often overestimated by mobile laser scanning. This paper analyzes the physical processes when using ground-based laser scanning that may contribute to a bias when estimating cylinder diameters using circle-fit methods. A laser scanner simulator was implemented and used to evaluate various properties, such as distance, cylinder diameter, and beam width of a laser scanner-cylinder system to find critical conditions. The simulation results suggest that a positive bias of the diameter estimation is expected. Furthermore, the bias follows a quadratic function of one parameter - the relative footprint, i.e., the fraction of the cylinder width illuminated by the laser beam. The quadratic signature opens up a possibility to construct a compensation model for the bias.

  20. Determination of the direction of motion on the basis of CW-homodyne laser Doppler radar

    NASA Astrophysics Data System (ADS)

    Biselli, Eugen; Werner, Christian

    1989-03-01

    Four methods for measuring the direction of a moving object using homodyne laser Doppler techniques are reviewed. The dynamic ranges of the signals for two methods that make use of the transmitter laser resonator characteristics or gain cell characteristics are shown to be limited. The resonance effects observed using a rotating wheel as an auxiliary target are discussed. The method employing eccentric scanner movement bidirectional scanning provides information concerning the direction of the velocity component to be measured.

  1. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  2. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.

  3. Recycling stainless steel orthodontic brackets with Er:YAG laser - An environmental scanning electron microscope and shear bond strength study.

    PubMed

    Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore

    2013-07-01

    TO DETERMINE THE EFFICIENCY OF ERBIUM: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods. ER: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. ER: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage.

  4. The research on calibration methods of dual-CCD laser three-dimensional human face scanning system

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Yang, Fengting; Shi, Shendong

    2013-09-01

    In this paper, on the basis of considering the performance advantages of two-step method, we combines the stereo matching of binocular stereo vision with active laser scanning to calibrate the system. Above all, we select a reference camera coordinate system as the world coordinate system and unity the coordinates of two CCD cameras. And then obtain the new perspective projection matrix (PPM) of each camera after the epipolar rectification. By those, the corresponding epipolar equation of two cameras can be defined. So by utilizing the trigonometric parallax method, we can measure the space point position after distortion correction and achieve stereo matching calibration between two image points. Experiments verify that this method can improve accuracy and system stability is guaranteed. The stereo matching calibration has a simple process with low-cost, and simplifies regular maintenance work. It can acquire 3D coordinates only by planar checkerboard calibration without the need of designing specific standard target or using electronic theodolite. It is found that during the experiment two-step calibration error and lens distortion lead to the stratification of point cloud data. The proposed calibration method which combining active line laser scanning and binocular stereo vision has the both advantages of them. It has more flexible applicability. Theory analysis and experiment shows the method is reasonable.

  5. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  6. Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels

    NASA Astrophysics Data System (ADS)

    Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.

    2014-01-01

    In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.

  7. Scanning electron microscopy comparison of the cleaning efficacy of a root canal system by Nd:YAG laser and rotary instruments.

    PubMed

    Samiei, Mohammad; Pakdel, Seyyed Mahdi Vahid; Rikhtegaran, Sahand; Shakoei, Sahar; Ebrahimpour, Delaram; Taghavi, Pedram

    2014-08-01

    This study evaluated the cleaning efficacy of a root canal system by Nd:YAG laser and rotary instruments. Sixty single-rooted human teeth were divided into four experimental groups (n=15). In the first group the teeth were prepared with a step-back technique using conventional K-files. In the second and third groups, tooth preparation was carried out using Nd:YAG laser and rotary NiTi instruments, respectively. Teeth in the fourth group were prepared by combined laser and rotary methods. The smear layer remaining on canal walls was then assessed by scanning electron microscopy in the coronal, middle, and apical portions. The comparison of smear layer removal efficacy between groups was carried out by Kruskal-Wallis and Mann-Whitney U tests. The mean grades of smear layer removal in rotary-laser, rotary, laser and step-back techniques were 1.34 ± 0.18, 2.2 ± 0.28, 1.91 ± 0.25, and 2.42 ± 0.19, respectively. On the whole, differences between rotary-laser and rotary groups, step-back, and the three other techniques (rotary, laser, and rotary-laser) were significant at p=0.034. Based on the findings of this study, the cleaning efficacy of rotary, laser, and rotary-laser techniques were better than the step-back technique and the combined laser and rotary technique was the most efficient method.

  8. Single-shot ultrafast tomographic imaging by spectral multiplexing

    NASA Astrophysics Data System (ADS)

    Matlis, N. H.; Axley, A.; Leemans, W. P.

    2012-10-01

    Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.

  9. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    PubMed

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  10. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    PubMed Central

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills. PMID:26579054

  11. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.

    PubMed

    Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J

    2016-11-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. A flexible 3D laser scanning system using a robotic arm

    NASA Astrophysics Data System (ADS)

    Fei, Zixuan; Zhou, Xiang; Gao, Xiaofei; Zhang, Guanliang

    2017-06-01

    In this paper, we present a flexible 3D scanning system based on a MEMS scanner mounted on an industrial arm with a turntable. This system has 7-degrees of freedom and is able to conduct a full field scan from any angle, suitable for scanning object with the complex shape. The existing non-contact 3D scanning system usually uses laser scanner that projects fixed stripe mounted on the Coordinate Measuring Machine (CMM) or industrial robot. These existing systems can't perform path planning without CAD models. The 3D scanning system presented in this paper can scan the object without CAD models, and we introduced this path planning method in the paper. We also propose a practical approach to calibrating the hand-in-eye system based on binocular stereo vision and analyzes the errors of the hand-eye calibration.

  13. Comparison of 2 wavefront-guided excimer lasers for myopic laser in situ keratomileusis: one-year results.

    PubMed

    Yu, Charles Q; Manche, Edward E

    2014-03-01

    To compare laser in situ keratomileusis (LASIK) outcomes between 2 wavefront-guided excimer laser systems in the treatment of myopia. University eye clinic, Palo Alto, California, USA. Prospective comparative case series. One eye of patients was treated with the Allegretto Wave Eye-Q system (small-spot scanning laser) and the fellow eye with the Visx Star Customvue S4 IR system (variable-spot scanning laser). Evaluations included measurement of uncorrected visual acuity, corrected visual acuity, and wavefront aberrometry. One hundred eyes (50 patients) were treated. The mean preoperative spherical equivalent (SE) refraction was -3.89 diopters (D) ± 1.67 (SD) and -4.18 ± 1.73 D in the small-spot scanning laser group and variable-spot scanning laser group, respectively. There were no significant differences in preoperative higher-order aberrations (HOAs) between the groups. Twelve months postoperatively, all eyes in the small-spot scanning laser group and 92% in the variable-spot scanning laser group were within ±0.50 D of the intended correction (P = .04). At that time, the small-spot scanning laser group had significantly less spherical aberration (0.12 versus 0.15) (P = .04) and significantly less mean total higher-order root mean square (0.33 μm versus 0.40 μm) (P = .01). Subjectively, patients reported that the clarity of night and day vision was significantly better in the eye treated with the small-spot scanning laser. The predictability and self-reported clarity of vision of wavefront-guided LASIK were better with the small-spot scanning laser. Eyes treated with the small-spot scanning laser had significantly fewer HOAs. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

    NASA Astrophysics Data System (ADS)

    Montaghi, Alessandro; Corona, Piermaria; Dalponte, Michele; Gianelle, Damiano; Chirici, Gherardo; Olsson, Håkan

    2013-08-01

    This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches - such as single tree detection and area-based modeling - have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.

  15. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  16. High-speed scanning of critical structures in aviation using coordinate measurement machine and the laser ultrasonic.

    PubMed

    Swornowski, Pawel J

    2012-01-01

    Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.

  17. In vivo measurements of skin barrier: comparison of different methods and advantages of laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Patzelt, A.; Sterry, W.; Lademann, J.

    2010-12-01

    A major function of the skin is to provide a protective barrier at the interface between external environment and the organism. For skin barrier measurement, a multiplicity of methods is available. As standard methods, the determination of the transepidermal water loss (TEWL) as well as the measurement of the stratum corneum hydration, are widely accepted, although they offer some obvious disadvantages such as increased interference liability. Recently, new optical and spectroscopic methods have been introduced to investigate skin barrier properties in vivo. Especially, laser scanning microscopy has been shown to represent an excellent tool to study skin barrier integrity in many areas of relevance such as cosmetology, occupation, diseased skin, and wound healing.

  18. Application of Laser Scanning for Creating Geological Documentation

    NASA Astrophysics Data System (ADS)

    Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna

    2018-03-01

    A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.

  19. Line scanning time-of-flight laser sensor for intelligent transport systems, combining wide field-of-view optics of 30 deg, high scanning speed of 0.9 ms/line, and simple sensor configuration

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kameyama, Shumpei; Ishimura, Eitaro; Nakaji, Masaharu; Yoshinaga, Hideo; Hirano, Yoshihito

    2017-03-01

    We developed a line scanning time-of-flight (TOF) laser sensor for an intelligent transport system (ITS), which combines wide field-of-view (FOV) receiving optics of 30 deg and a high-speed microelectro mechanical system scanner of 0.9 ms/line with a simple sensor configuration. The newly developed high-aspect ratio photodiode realizes the scanless and wide FOV receiver. The sinusoidal wave intensity modulation method is used for the TOF measurement. This enables the noise reduction of the trans-impedance amplifier by applying the LC-resonant method. The vehicle detection and axle counting, which are the important functions in ITS, are also demonstrated.

  20. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    NASA Astrophysics Data System (ADS)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  1. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision.

    PubMed

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.

  2. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision

    PubMed Central

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image. PMID:28912940

  3. Continuous section extraction and over-underbreak detection of tunnel based on 3D laser technology and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Wang, Zhiwei; Han, Ya; Li, Shuang; Zhang, Xin

    2015-03-01

    In order to ensure safety, long term stability and quality control in modern tunneling operations, the acquisition of geotechnical information about encountered rock conditions and detailed installed support information is required. The limited space and time in an operational tunnel environment make the acquiring data challenging. The laser scanning in a tunneling environment, however, shows a great potential. The surveying and mapping of tunnels are crucial for the optimal use after construction and in routine inspections. Most of these applications focus on the geometric information of the tunnels extracted from the laser scanning data. There are two kinds of applications widely discussed: deformation measurement and feature extraction. The traditional deformation measurement in an underground environment is performed with a series of permanent control points installed around the profile of an excavation, which is unsuitable for a global consideration of the investigated area. Using laser scanning for deformation analysis provides many benefits as compared to traditional monitoring techniques. The change in profile is able to be fully characterized and the areas of the anomalous movement can easily be separated from overall trends due to the high density of the point cloud data. Furthermore, monitoring with a laser scanner does not require the permanent installation of control points, therefore the monitoring can be completed more quickly after excavation, and the scanning is non-contact, hence, no damage is done during the installation of temporary control points. The main drawback of using the laser scanning for deformation monitoring is that the point accuracy of the original data is generally the same magnitude as the smallest level of deformations that are to be measured. To overcome this, statistical techniques and three dimensional image processing techniques for the point clouds must be developed. For safely, effectively and easily control the problem of Over Underbreak detection of road and solve the problemof the roadway data collection difficulties, this paper presents a new method of continuous section extraction and Over Underbreak detection of road based on 3D laser scanning technology and image processing, the method is divided into the following three steps: based on Canny edge detection, local axis fitting, continuous extraction section and Over Underbreak detection of section. First, after Canny edge detection, take the least-squares curve fitting method to achieve partial fitting in axis. Then adjust the attitude of local roadway that makes the axis of the roadway be consistent with the direction of the extraction reference, and extract section along the reference direction. Finally, we compare the actual cross-sectional view and the cross-sectional design to complete Overbreak detected. Experimental results show that the proposed method have a great advantage in computing costs and ensure cross-section orthogonal intercept terms compared with traditional detection methods.

  4. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  5. Three-Dimensional Recording of Bastion Middleburg Monument Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Majid, Z.; Lau, C. L.; Yusoff, A. R.

    2016-06-01

    This paper describes the use of terrestrial laser scanning for the full three-dimensional (3D) recording of historical monument, known as the Bastion Middleburg. The monument is located in Melaka, Malaysia, and was built by the Dutch in 1660. This monument serves as a major hub for the community when conducting commercial activities in estuaries Malacca and the Dutch build this monument as a control tower or fortress. The monument is located on the banks of the Malacca River was built between Stadhuys or better known as the Red House and Mill Quayside. The breakthrough fort on 25 November 2006 was a result of the National Heritage Department through in-depth research on the old map. The recording process begins with the placement of measuring targets at strategic locations around the monument. Spherical target was used in the point cloud data registration. The scanning process is carried out using a laser scanning system known as a terrestrial scanner Leica C10. This monument was scanned at seven scanning stations located surrounding the monument with medium scanning resolution mode. Images of the monument have also been captured using a digital camera that is setup in the scanner. For the purposes of proper registration process, the entire spherical target was scanned separately using a high scanning resolution mode. The point cloud data was pre-processed using Leica Cyclone software. The pre-processing process starting with the registration of seven scan data set through overlapping spherical targets. The post-process involved in the generation of coloured point cloud model of the monument using third-party software. The orthophoto of the monument was also produced. This research shows that the method of laser scanning provides an excellent solution for recording historical monuments with true scale of and texture.

  6. Validation of lower limb segmental volumetry with hand-held, self-positioning three-dimensional laser scanner against water displacement.

    PubMed

    Mestre, Sandrine; Veye, Florent; Perez-Martin, Antonia; Behar, Thomas; Triboulet, Jean; Berron, Nicolas; Demattei, Christophe; Quéré, Isabelle

    2014-01-01

    Measurement of limb volume is helpful for the evaluation and follow-up of edema, especially in patients with chronic venous insufficiency (CVI) or lymphedema. Water displacement (WD) is the reference method for limb volumetry but is not really suitable for clinical routine. Indirect volumetry based on circumference measurements as well as the more expansive but automatic optoelectronic techniques do not allow detailed measurement at the extremity of the limb. We used a self-positioning laser scanner with dynamic referencing for acquisition and real-time three-dimensional (3D) reconstruction of the lower limb volume in 30 patients with CVI, 30 patients with lymphedema, and 30 healthy controls. Two independent observers performed either one or two laser scans, whose results were tested for intra- and interobserver reproducibility and compared with WD volumetry by Lin's concordance correlation coefficient and Bland and Altman graphic analysis. Automatic volume calculation from 3D laser scanning data failed in one patient with major lymphedema. Lin's concordance correlation coefficient was 0.99 and 0.98, respectively, for intraobserver no. 1 and no. 2, 0.98 for interobserver reproducibility, and 0.98 and 0.96, respectively, for observer no. 1 and observer no. 2 vs WD comparison. The 3D laser scanning yielded 1.99% precision. Accuracy was 3.12% for observer no. 1 and 2.71% for observer no. 2, laser scanning values being 90 mL higher than WD, which could be attributed to the different posture during measurement. Three-dimensional laser scanning is accurate and reproducible, and appears suitable for the evaluation of limb volume in patients with CVI or lymphedema. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  7. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE PAGES

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; ...

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  8. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    PubMed

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  9. Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, M.; Xing, L.; Liu, Y.

    2018-04-01

    Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.

  10. The quick acquisition technique for laser communication between LEO and GEO

    NASA Astrophysics Data System (ADS)

    Zhang, Li-zhong; Zhang, Rui-qin; Li, Yong-hao; Meng, Li-xin; Li, Xiao-ming

    2013-08-01

    The sight-axis alignment can be accomplished by the quick acquisition operation between two laser communication terminals, which is the premise of establishing a free-space optical communication link. Especially for the laser communication links of LEO (Low Earth Orbit)-Ground and LEO-GEO (Geostationary Earth Orbit), since the earth would break the transmission of laser and break the communication as well, so the effective time for each communication is very shot (several minutes~ dozens of minutes), as a result the communication terminals have to capture each other to rebuild the laser communication link. In the paper, on the basis of the analysis of the traditional methods, it presents a new idea that using the long beacon light instead of the circular beacon light; thereby the original of two-dimensional raster spiral scanning is replaced by one-dimensional scanning. This method will reduce the setup time and decrease the failure probability of acquisition for the LEO-GEO laser communication link. Firstly, the analysis of the external constraint conditions in the acquisition phase has been presented in this paper. Furthermore, the acquisition algorithm models have been established. The optimization analysis for the parameters of the acquisition unit has been carried out, and the ground validation experiments of the acquisition strategy have also been performed. The experiments and analysis show that compared with traditional capturing methods, the method presented in this article can make the capturing time be shortened by about 40%, and the failure probability of capturing be reduced by about 30%. So, the method is significant for the LEO-GEO laser communication link.

  11. Inspection of float glass using a novel retroreflective laser scanning system

    NASA Astrophysics Data System (ADS)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  12. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    PubMed

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  13. Semantic Labelling of Road Furniture in Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2017-09-01

    Road furniture semantic labelling is vital for large scale mapping and autonomous driving systems. Much research has been investigated on road furniture interpretation in both 2D images and 3D point clouds. Precise interpretation of road furniture in mobile laser scanning data still remains unexplored. In this paper, a novel method is proposed to interpret road furniture based on their logical relations and functionalities. Our work represents the most detailed interpretation of road furniture in mobile laser scanning data. 93.3 % of poles are correctly extracted and all of them are correctly recognised. 94.3 % of street light heads are detected and 76.9 % of them are correctly identified. Despite errors arising from the recognition of other components, our framework provides a promising solution to automatically map road furniture at a detailed level in urban environments.

  14. Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots

    PubMed Central

    Ozaki, Masataka; Kakimuma, Kei; Hashimoto, Masafumi; Takahashi, Kazuhiko

    2012-01-01

    This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures. PMID:23202171

  15. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  16. Maintaining a stationary laser footprint during angular scan in internal-reflection experiments.

    PubMed

    Fontana, Eduardo; Cavalcanti, Gustavo Oliveira

    2013-11-10

    In internal-reflection metrology using prisms, the prism is usually mounted on a rotation/translation stage to enable adjusting angle and location of the laser footprint on the surface. If a visual inspection method is used to find the laser footprint, the task becomes impossible if invisible radiation in the near infrared is employed. In addition, it may be desirable to perform angular scan experiments with a stationary footprint on the surface during scans, or even to automatically probe specific points on an extended prism face for predetermined incidence angles. In this paper, a formulation is developed to determine the required translation along the prism face to allow maintaining the laser footprint stationary under a given rotation. A web-based app developed under the scope of this work demonstrates the applicability of the approach for silica, BK7 and SF2 glasses, in the wavelength range from 500 to 1500 nm and for an arbitrary geometry of the glass prism.

  17. Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaodong; Yuan, Ningyi, E-mail: nyyuan@cczu.edu.cn; Center for Low-Dimensional Materials, Micro-Nano Devices and Systems, Changzhou University, Changzhou 213164, Jiangsu

    2015-05-15

    In this paper, we report a simple method to form conductive copper lines by scanning a single-beam femtosecond pulse laser on a plastic substrate covered with copper nitride (Cu{sub 3}N) film. The Cu{sub 3}N films were prepared by DC magnetron sputtering in the presence of an Ar + N{sub 2} atmosphere at 100 °C. The influence of the laser power and scanning speed on the formed copper line width, surface features, and morphology was analyzed by means of optical microscopy, X-ray diffraction, non-contact 3D profilometer, and scanning electron microscopy. The experimental results demonstrate that low laser power and low scanningmore » speed favor the formation of uniform and flat Cu lines. After process optimization, copper lines with a width less than 5 μm were obtained, which provides an attractive application prospect in the field of flexible electronic devices.« less

  18. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  19. Influence of laser power on the penetration depth and geometry of scanning tracks in selective laser melting

    NASA Astrophysics Data System (ADS)

    Stopyra, Wojciech; Kurzac, Jarosław; Gruber, Konrad; Kurzynowski, Tomasz; Chlebus, Edward

    2016-12-01

    SLM technology allows production of a fully functional objects from metal and ceramic powders, with true density of more than 99,9%. The quality of manufactured items in SLM method affects more than 100 parameters, which can be divided into fixed and variable. Fixed parameters are those whose value before the process should be defined and maintained in an appropriate range during the process, e.g. chemical composition and morphology of the powder, oxygen level in working chamber, heating temperature of the substrate plate. In SLM technology, five parameters are variables that optimal set allows to produce parts without defects (pores, cracks) and with an acceptable speed. These parameters are: laser power, distance between points, time of exposure, distance between lines and layer thickness. To develop optimal parameters thin walls or single track experiments are performed, to select the best sets narrowed to three parameters: laser power, exposure time and distance between points. In this paper, the effect of laser power on the penetration depth and geometry of scanned single track was shown. In this experiment, titanium (grade 2) substrate plate was used and scanned by fibre laser of 1064 nm wavelength. For each track width, height and penetration depth of laser beam was measured.

  20. First Experiences with the Trimble SX10 Scanning Total Station for Building Facade Survey

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2017-02-01

    The use of Terrestrial Laser Scanner (TLS) tends to become a solution in many research areas related to large scale surveying. Meanwhile, the technological advances combined with the investigation of user needs have brought to the design of innovative devices known as scanning total stations. Such instruments merge in a unique hardware both scanning and surveying facilities. Even if their scanning rate is often reduced compared to conventional TLS, they make it possible to directly georeference laser scanning projects and to complete them with measurements of individual points of interest. The recent Trimble SX10 which was launched on the market in early October 2016 has been tested and some experiences carried out with it are reported in this paper. The analyses mainly focus on the survey of a building facade. Next to laser scanning survey, a photogrammetry campaign using an Unmanned Aerial Vehicle (UAV) has been carried out. These different datasets are used to assess the Trimble SX10 issued point clouds through a set of comparisons. Since georeferencing is possible either directly or indirectly using this device, data processed both ways are also compared to conclude about the more reliable method.

  1. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  2. Residual stress evaluation of components produced via direct metal laser sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  3. Residual stress evaluation of components produced via direct metal laser sintering

    DOE PAGES

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...

    2018-03-22

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  4. Excimer laser correction of hyperopia, hyperopic and mixed astigmatism: past, present, and future.

    PubMed

    Lukenda, Adrian; Martinović, Zeljka Karaman; Kalauz, Miro

    2012-06-01

    The broad acceptance of "spot scanning" or "flying spot" excimer lasers in the last decade has enabled the domination of corneal ablative laser surgery over other refractive surgical procedures for the correction of hyperopia, hyperopic and mixed astigmatism. This review outlines the most important reasons why the ablative laser correction of hyperopia, hyperopic and mixed astigmatism for many years lagged behind that of myopia. Most of today's scanning laser systems, used in the LASIK and PRK procedures, can safely and effectively perform low, moderate and high hyperopic and hyperopic astigmatic corrections. The introduction of these laser platforms has also significantly improved the long term refractive stability of hyperopic treatments. In the future, further improvements in femtosecond and nanosecond technology, eye-tracker systems, and the development of new customized algorithms, such as the ray-tracing method, could additionally increase the upper limit for the safe and predictable corneal ablative laser correction ofhyperopia, hyperopic and mixed astigmatism.

  5. Dental scanning in CAD/CAM technologies: laser beams

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Faur, Nicolae; Negru, Radu; Romînu, Mihai; Cozarov, Dalibor

    2008-02-01

    Scanning, also called digitizing, is the process of gathering the requisite data from an object. Many different technologies are used to collect three dimensional data. They range from mechanical and very slow, to radiation-based and highly-automated. Each technology has its advantages and disadvantages, and their applications and specifications overlap. The aims of this study are represented by establishing a viable method of digitally representing artifacts of dental casts, proposing a suitable scanner and post-processing software and obtaining 3D Models for the dental applications. The method is represented by the scanning procedure made by different scanners as the implicated materials. Scanners are the medium of data capture. 3D scanners aim to measure and record the relative distance between the object's surface and a known point in space. This geometric data is represented in the form of point cloud data. The contact and no contact scanners were presented. The results show that contact scanning procedures uses a touch probe to record the relative position of points on the objects' surface. This procedure is commonly used in Reverse engineering applications. Its merits are represented by efficiency for objects with low geometric surface detail. Disadvantages are represented by time consuming, this procedure being impractical for artifacts digitization. The non contact scanning procedure implies laser scanning (laser triangulation technology) and photogrammetry. As a conclusion it can be drawn that different types of dental structure needs different types of scanning procedures in order to obtain a competitive complex 3D virtual model that can be used in CAD/CAM technologies.

  6. Preparation of antibacterial textile using laser ablation method

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Rashidian, M.; Dorranian, D.

    2018-02-01

    A facile in situ laser ablation synthesis of Copper nanoparticles on cotton fabric is reported in this paper. This synthetic method is a laser ablation based fabrication of Cu nanoparticles on cotton fabric for improved performance and antibacterial activity. The treated cotton fabric was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Visible spectroscopic techniques and antibacterial counting test. Very good antibacterial behavior of treated fabrics achieved. This fabric can be used as medical and industrial textiles.

  7. [Evaluation of YAG-laser vitreolysis effectiveness based on quantitative characterization of vitreous floaters].

    PubMed

    Shaimova, V A; Shaimov, T B; Shaimov, R B; Galin, A Yu; Goloshchapova, Zh A; Ryzhkov, P K; Fomin, A V

    2018-01-01

    To develop methods for evaluating effectiveness of YAG-laser vitreolysis of vitreous floaters. The study included 144 patients (173 eyes) who had underwent YAG-laser vitreolysis and were under observation from 01.09.16 to 31.01.18. The patients were 34 to 86 years old (mean age 62.7±10.2 years), 28 (19.4%) patients were male, 116 (80.6%) - female. All patients underwent standard and additional examination: ultrasonography (Accutome B-scan plus, U.S.A.), optic biometry (Lenstar 900, Haag-Streit, Switzerland), spectral optical coherence tomography using RTVue XR Avanti scanner (Optovue, U.S.A.) in modes Enhanced HD Line, 3D Retina, 3D Widefield MCT, Cross Line, Angio Retina, and scanning laser ophthalmoscopy (SLO) using Navilas 577s system. Laser vitreolysis was performed using the Ultra Q Reflex laser (Ellex, Australia). This paper presents methods of objective quantitative and qualitative assessment of artifactual shadows of vitreous floaters with spectral optical coherence tomographic scanner RTVue xR Avanti employing an algorithm of automatic detection of non-perfusion zones in modes Angio Retina, HD Angio Retina, as well as foveal avascular zone (FAZ) measurement with Angio Analytics® software. SLO performed with Navilas 577s was used as method of visualizing floaters and artifactual shadows in retinal surface layers prior to surgical treatment and after YAG-laser vitreolysis. Suggested methods of quantitative and qualitative assessment of artifactual shadows of the floaters in retinal layers are promising and may prove to be highly relevant for clinical monitoring of patients, optimization of treatment indications and evaluating effectiveness of YAG-laser vitreolysis. Further research of laser vitreolysis effectiveness in patients with vitreous floaters is necessary.

  8. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  9. Scalp imaging techniques

    NASA Astrophysics Data System (ADS)

    Otberg, Nina; Shapiro, Jerry; Lui, Harvey; Wu, Wen-Yu; Alzolibani, Abdullateef; Kang, Hoon; Richter, Heike; Lademann, Jürgen

    2017-05-01

    Scalp imaging techniques are necessary tools for the trichological practice and for visualization of permeation, penetration and absorption processes into and through the scalp and for the research on drug delivery and toxicology. The present letter reviews different scalp imaging techniques and discusses their utility. Moreover, two different studies on scalp imaging techniques are presented in this letter: (1) scalp imaging with phototrichograms in combination with laser scanning microscopy, and (2) follicular measurements with cyanoacrylate surface replicas and light microscopy in combination with laser scanning microscopy. The experiments compare different methods for the determination of hair density on the scalp and different follicular measures. An average terminal hair density of 132 hairs cm-2 was found in 6 Caucasian volunteers and 135 hairs cm-2 in 6 Asian volunteers. The area of the follicular orifices accounts to 16.3% of the skin surface on average measured with laser scanning microscopy images. The potential volume of the follicular infundibulum was calculated based on the laser scanning measurements and is found to be 4.63 mm3 per cm2 skin on average. The experiments show that hair follicles are quantitatively relevant pathways and potential reservoirs for topically applied drugs and cosmetics.

  10. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-06

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min.

  11. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  12. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  13. Brewster-plate spoiler - A novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities

    NASA Technical Reports Server (NTRS)

    Webster, C. R.

    1985-01-01

    A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.

  14. Method and apparatus for off-gas composition sensing

    DOEpatents

    Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel

    1999-01-01

    An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

  15. Development of the micro-scanning optical system of yellow laser applied to the ophthalmologic area

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Costal, Glauco Z.; Fontes, Yuri C.; Rossi, Giuliano; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.

    2012-10-01

    In this work, the development of a laser scanning system for ophthalmology with micrometric positioning precision is presented. It is a semi-automatic scanning system for retina photocoagulation and laser trabeculoplasty. The equipment is a solid state laser fully integrated to the slit lamp. An optical system is responsible for producing different laser spot sizes on the image plane and a pair of galvanometer mirrors generates the scanning patterns.

  16. Using parallel computing methods to improve log surface defect detection methods

    Treesearch

    R. Edward Thomas; Liya Thomas

    2013-01-01

    Determining the size and location of surface defects is crucial to evaluating the potential yield and value of hardwood logs. Recently a surface defect detection algorithm was developed using the Java language. This algorithm was developed around an earlier laser scanning system that had poor resolution along the length of the log (15 scan lines per foot). A newer...

  17. Accurate assessment of breast volume: a study comparing the volumetric gold standard (direct water displacement measurement of mastectomy specimen) with a 3D laser scanning technique.

    PubMed

    Yip, Jia Miin; Mouratova, Naila; Jeffery, Rebecca M; Veitch, Daisy E; Woodman, Richard J; Dean, Nicola R

    2012-02-01

    Preoperative assessment of breast volume could contribute significantly to the planning of breast-related procedures. The availability of 3D scanning technology provides us with an innovative method for doing this. We performed this study to compare measurements by this technology with breast volume measurement by water displacement. A total of 30 patients undergoing 39 mastectomies were recruited from our center. The volume of each patient's breast(s) was determined with a preoperative 3D laser scan. The volume of the mastectomy specimen was then measured in the operating theater by water displacement. There was a strong linear association between breast volumes measured using the 2 different methods when using a Pearson correlation (r = 0.95, P < 0.001). The mastectomy mean volume was defined by the equation: mastectomy mean volume = (scan mean volume × 1.03) -70.6. This close correlation validates the Cyberware WBX Scanner as a tool for assessment of breast volume.

  18. PSD microscopy: a new technique for adaptive local scanning of microscale objects.

    PubMed

    Rahimi, Mehdi; Shen, Yantao

    2017-01-01

    A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.

  19. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  20. Identification of damage in plates using full-field measurement with a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.

    2018-05-01

    An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.

  1. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  2. 355-nm, nanosecond laser mirror thin film damage competition

    NASA Astrophysics Data System (ADS)

    Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; Caputo, Mark

    2017-11-01

    This competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. In addition to the laser damage resistance results, details of the deposition processes, cleaning method, coating materials and layer count are also shared.

  3. Accuracy of tree diameter estimation from terrestrial laser scanning by circle-fitting methods

    NASA Astrophysics Data System (ADS)

    Koreň, Milan; Mokroš, Martin; Bucha, Tomáš

    2017-12-01

    This study compares the accuracies of diameter at breast height (DBH) estimations by three initial (minimum bounding box, centroid, and maximum distance) and two refining (Monte Carlo and optimal circle) circle-fitting methods The circle-fitting algorithms were evaluated in multi-scan mode and a simulated single-scan mode on 157 European beech trees (Fagus sylvatica L.). DBH measured by a calliper was used as reference data. Most of the studied circle-fitting algorithms significantly underestimated the mean DBH in both scanning modes. Only the Monte Carlo method in the single-scan mode significantly overestimated the mean DBH. The centroid method proved to be the least suitable and showed significantly different results from the other circle-fitting methods in both scanning modes. In multi-scan mode, the accuracy of the minimum bounding box method was not significantly different from the accuracies of the refining methods The accuracy of the maximum distance method was significantly different from the accuracies of the refining methods in both scanning modes. The accuracy of the Monte Carlo method was significantly different from the accuracy of the optimal circle method in only single-scan mode. The optimal circle method proved to be the most accurate circle-fitting method for DBH estimation from point clouds in both scanning modes.

  4. Helios: a Multi-Purpose LIDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms

    NASA Astrophysics Data System (ADS)

    Bechtold, S.; Höfle, B.

    2016-06-01

    In many technical domains of modern society, there is a growing demand for fast, precise and automatic acquisition of digital 3D models of a wide variety of physical objects and environments. Laser scanning is a popular and widely used technology to cover this demand, but it is also expensive and complex to use to its full potential. However, there might exist scenarios where the operation of a real laser scanner could be replaced by a computer simulation, in order to save time and costs. This includes scenarios like teaching and training of laser scanning, development of new scanner hardware and scanning methods, or generation of artificial scan data sets to support the development of point cloud processing and analysis algorithms. To test the feasibility of this idea, we have developed a highly flexible laser scanning simulation framework named Heidelberg LiDAR Operations Simulator (HELIOS). HELIOS is implemented as a Java library and split up into a core component and multiple extension modules. Extensible Markup Language (XML) is used to define scanner, platform and scene models and to configure the behaviour of modules. Modules were developed and implemented for (1) loading of simulation assets and configuration (i.e. 3D scene models, scanner definitions, survey descriptions etc.), (2) playback of XML survey descriptions, (3) TLS survey planning (i.e. automatic computation of recommended scanning positions) and (4) interactive real-time 3D visualization of simulated surveys. As a proof of concept, we show the results of two experiments: First, a survey planning test in a scene that was specifically created to evaluate the quality of the survey planning algorithm. Second, a simulated TLS scan of a crop field in a precision farming scenario. The results show that HELIOS fulfills its design goals.

  5. Creation of a Digital Surface Model and Extraction of Coarse Woody Debris from Terrestrial Laser Scans in an Open Eucalypt Woodland

    NASA Astrophysics Data System (ADS)

    Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.

    2014-12-01

    Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest condition, biomass and fuel loads.

  6. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  7. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: Application to three-dimensional beam structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maio, D., E-mail: dario.dimaio@bristol.ac.uk; Copertaro, E.

    2013-12-15

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of themore » conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure.« less

  8. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.

    2015-01-01

    In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.

  9. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    NASA Astrophysics Data System (ADS)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  10. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  11. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  12. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  13. Synthesis and Characterization of Zr-BASED Amorphous and Crystalline Composite Coating on Ti Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Tang, D. M.; Zhang, D. C.; Peng, W.; Luo, Z. C.; Wu, X. Q.; Wang, Y. M.; Lin, J. G.

    2014-02-01

    A thin strip of a Zr-based alloy with a composition of Zr60Cu25Fe5Al10 (in atom percent) was used as a raw material, and the composite coatings containing Zr-based amorphous phase and crystallites on Ti substrate were fabricated by a one-step laser cladding method without protection. The microstructure, phase constitution, microhardness and wear properties of the coatings were investigated. The results indicate that the microstructure of the coatings is strongly dependent on the laser scanning speed under the conditions of the laser power of 1300 W and laser beam diameter of 6 mm, and the composite coating mainly containing amorphous phase with a small amount of the crystallites can be obtained at the laser scanning speed of 10 mm/s. The composite coating exhibits much higher microhardness than the pure Ti substrate, and thus it behaves superior wear resistance in comparison with the substrate.

  14. Using mid-range laser scanners to digitize cultural-heritage sites.

    PubMed

    Spring, Adam P; Peters, Caradoc; Minns, Tom

    2010-01-01

    Here, we explore new, more accessible ways of modeling 3D data sets that both professionals and amateurs can employ in areas such as architecture, forensics, geotechnics, cultural heritage, and even hobbyist modeling. To support our arguments, we present images from a recent case study in digital preservation of cultural heritage using a mid-range laser scanner. Our appreciation of the increasing variety of methods for capturing 3D spatial data inspired our research. Available methods include photogrammetry, airborne lidar, sonar, total stations (a combined electronic and optical survey instrument), and midand close-range scanning.1 They all can produce point clouds of varying density. In our case study, the point cloud produced by a mid-range scanner demonstrates how open source software can make modeling and disseminating data easier. Normally, researchers would model this data using expensive specialized software, and the data wouldn't extend beyond the laser-scanning community.

  15. In-situ characterization of nanoparticle beams focused with an aerodynamic lens by Laser-Induced Breakdown Detection

    PubMed Central

    Barreda, F.-A.; Nicolas, C.; Sirven, J.-B.; Ouf, F.-X.; Lacour, J.-L.; Robert, E.; Benkoula, S.; Yon, J.; Miron, C.; Sublemontier, O.

    2015-01-01

    The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 μm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed. PMID:26498694

  16. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  17. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  18. Using differential scanning calorimetry, laser refractometry, electrical conductivity and spectrophotometry for discrimination of different types of Bulgarian honey

    NASA Astrophysics Data System (ADS)

    Vlaeva, I.; Nikolova, K.; Bodurov, I.; Marudova, M.; Tsankova, D.; Lekova, S.; Viraneva, A.; Yovcheva, T.

    2017-01-01

    The potential of several physical methods for investigation of the botanical origin of honey has been discussed. Samples from the three most prevalent types of honey in Bulgaria (acacia, linden and honeydew) have been used. They have been examined by laser refractometry, UV, VIS and FTIR spectroscopy, electric conductivity measurement and differential scanning calorimetry. The purpose of this study was to reveal the physical characterizations of honeys from different flora produced in Bulgaria and to identify honeys with a high apitherapy potential for future studies.

  19. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  20. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems

    PubMed Central

    Stenz, Ulrich; Neumann, Ingo

    2017-01-01

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less. PMID:28812998

  1. Method and apparatus for enhancing laser absorption sensitivity

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R. (Inventor)

    1987-01-01

    A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.

  2. Design of voice coil motor dynamic focusing unit for a laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  3. Design of voice coil motor dynamic focusing unit for a laser scanner.

    PubMed

    Lee, Moon G; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  4. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  5. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  6. NAVIS-An UGV Indoor Positioning System Using Laser Scan Matching for Large-Area Real-Time Applications

    PubMed Central

    Tang, Jian.; Chen, Yuwei.; Jaakkola, Anttoni.; Liu, Jinbing.; Hyyppä, Juha.; Hyyppä, Hannu.

    2014-01-01

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application. PMID:24999715

  7. NAVIS-An UGV indoor positioning system using laser scan matching for large-area real-time applications.

    PubMed

    Tang, Jian; Chen, Yuwei; Jaakkola, Anttoni; Liu, Jinbing; Hyyppä, Juha; Hyyppä, Hannu

    2014-07-04

    Laser scan matching with grid-based maps is a promising tool for real-time indoor positioning of mobile Unmanned Ground Vehicles (UGVs). While there are critical implementation problems, such as the ability to estimate the position by sensing the unknown indoor environment with sufficient accuracy and low enough latency for stable vehicle control, further development work is necessary. Unfortunately, most of the existing methods employ heuristics for quick positioning in which numerous accumulated errors easily lead to loss of positioning accuracy. This severely restricts its applications in large areas and over lengthy periods of time. This paper introduces an efficient real-time mobile UGV indoor positioning system for large-area applications using laser scan matching with an improved probabilistically-motivated Maximum Likelihood Estimation (IMLE) algorithm, which is based on a multi-resolution patch-divided grid likelihood map. Compared with traditional methods, the improvements embodied in IMLE include: (a) Iterative Closed Point (ICP) preprocessing, which adaptively decreases the search scope; (b) a totally brute search matching method on multi-resolution map layers, based on the likelihood value between current laser scan and the grid map within refined search scope, adopted to obtain the global optimum position at each scan matching; and (c) a patch-divided likelihood map supporting a large indoor area. A UGV platform called NAVIS was designed, manufactured, and tested based on a low-cost robot integrating a LiDAR and an odometer sensor to verify the IMLE algorithm. A series of experiments based on simulated data and field tests with NAVIS proved that the proposed IMEL algorithm is a better way to perform local scan matching that can offer a quick and stable positioning solution with high accuracy so it can be part of a large area localization/mapping, application. The NAVIS platform can reach an updating rate of 12 Hz in a feature-rich environment and 2 Hz even in a feature-poor environment, respectively. Therefore, it can be utilized in a real-time application.

  8. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui

    2017-05-01

    This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.

  9. Efficient terrestrial laser scan segmentation exploiting data structure

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa

    2016-09-01

    New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.

  10. Defining the Cubature Changes of Historic St. Kinga Chamber in Bochnia Salt Mine, Using Laser Scanning Technology

    NASA Astrophysics Data System (ADS)

    Szafarczyk, Anna; Gawałkiewicz, Rafał

    2018-03-01

    In Poland, there are many mining enterprises, of historic character registered in the UNESCO World Heritage List. One of the oldest mining enterprises in Poland is the Salt Mine in Bochnia. The processes inside the rock mass require that surveying services carry out regular geometric control of the cavities. A particular attention should be paid (due to its sacral function) on St. Kinga Chamber, located 195 metres below the surface, on the mine level "August". So far measurement technologies have been connected with the studies on changes in the geometry of cavities and based on linear bases used to measure convergence. This only provides discrete information (in a point) and not always presents a real state of deformation. In the scanning method, in practice a three dimension image of changes (structural deformations) is obtained, impossible to determine with the application of measurement methods, applied to measure the value of linear convergence (the method with a limited number of bases). Laser scanning, apart from determining the value of volume convergence, gives also the possibility of the visualization of 3D cavern. Moreover, it provides direct information to update mining numerical maps and make it possible to generate various cross-sections through the cavern. The authors analysed the possibility of the application of laser scanning (scanner Faro Focus 3D), as a modern tool allowing the measuring of the value of volume convergence.

  11. Design of a MEMS-based retina scanning system for biometric authentication

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  12. Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction

    NASA Astrophysics Data System (ADS)

    Zang, Y.; Yang, B.

    2018-04-01

    3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  13. An enhanced inertial navigation system based on a low-cost IMU and laser scanner

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok

    2012-06-01

    This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.

  14. Influence of the shielding effect on the formation of a micro-texture on the cermet with nanosecond pulsed laser ablation.

    PubMed

    Yuan, Jiandong; Liang, Liang; Jiang, Lelun; Liu, Xin

    2018-04-01

    The degree of laser pulse overlapping in a laser scanning path has a significant impact on the ablation regime in the laser machining of a micro-texture. In this Letter, a nanosecond pulsed laser is used to prepare the micro-scaled groove on WC-8Co cermet under different scanning speeds. It is observed that as the scanning speed increases, the ablated trace morphology in the first scanning pass transits from a succession of intermittent deep dimples to the consecutive overlapped shallow pits. The test result also indicates that ablated trace morphology with respect to the low scanning speed stems from a plume shielding effect. Moreover, the ablation regime considering the shielding effect in micro-groove formation process is clarified. The critical scanning speed that can circumvent the shielding effect is also summarized with respect to different laser powers.

  15. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    NASA Astrophysics Data System (ADS)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  16. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.

    2014-10-01

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  17. The Use of Terrestrial Laser Scanning for Determining the Driver’s Field of Vision

    PubMed Central

    Zemánek, Tomáš; Cibulka, Miloš; Skoupil, Jaromír

    2017-01-01

    Terrestrial laser scanning (TLS) is currently one of the most progressively developed methods in obtaining information about objects and phenomena. This paper assesses the TLS possibilities in determining the driver’s field of vision in operating agricultural and forest machines with movable and immovable components in comparison to the method of using two light point sources for the creation of shade images according to ISO (International Organization for Standardization) 5721-1. Using the TLS method represents a minimum time saving of 55% or more, according to the project complexity. The values of shading ascertained by using the shadow cast method by the point light sources are generally overestimated and more distorted for small cabin structural components. The disadvantage of the TLS method is the scanner’s sensitivity to a soiled or scratched cabin windscreen and to the glass transparency impaired by heavy tinting. PMID:28902177

  18. The Optimum Dataset method - examples of the application

    NASA Astrophysics Data System (ADS)

    Błaszczak-Bąk, Wioleta; Sobieraj-Żłobińska, Anna; Wieczorek, Beata

    2018-01-01

    Data reduction is a procedure to decrease the dataset in order to make their analysis more effective and easier. Reduction of the dataset is an issue that requires proper planning, so after reduction it meets all the user's expectations. Evidently, it is better if the result is an optimal solution in terms of adopted criteria. Within reduction methods, which provide the optimal solution there is the Optimum Dataset method (OptD) proposed by Błaszczak-Bąk (2016). The paper presents the application of this method for different datasets from LiDAR and the possibility of using the method for various purposes of the study. The following reduced datasets were presented: (a) measurement of Sielska street in Olsztyn (Airbrone Laser Scanning data - ALS data), (b) measurement of the bas-relief that is on the building in Gdańsk (Terrestrial Laser Scanning data - TLS data), (c) dataset from Biebrza river measurment (TLS data).

  19. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    PubMed Central

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave breast imaging. Optical distortions imposed by the imaging tank and coupling bath diminished the effectiveness of the ray tracing approach; however, calibration through image registration techniques reliably produced scans of submillimeter accuracy. Tests of the system with breast-shaped phantoms demonstrated the successful implementation of the scanner for the intended application. PMID:22755695

  20. A novel scanning system using an industrial robot and the workspace measurement and positioning system

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyue; Zhu, Jigui; Yang, Linghui; Lin, Jiarui

    2015-10-01

    The present scanning system consists of an industrial robot and a line-structured laser sensor which uses the industrial robot as a position instrument to guarantee the accuracy. However, the absolute accuracy of an industrial robot is relatively poor compared with the good repeatability in the manufacturing industry. This paper proposes a novel method using the workspace measurement and positioning system (wMPS) to remedy the lack of accuracy of the industrial robot. In order to guarantee the positioning accuracy of the system, the wMPS which is a laser-based measurement technology designed for large-volume metrology applications is brought in. Benefitting from the wMPS, this system can measure different cell-areas by the line-structured laser sensor and fuse the measurement data of different cell-areas by using the wMPS accurately. The system calibration which is the procedure to acquire and optimize the structure parameters of the scanning system is also stated in detail in this paper. In order to verify the feasibility of the system for scanning the large free-form surface, an experiment is designed to scan the internal surface of the door of a car-body in white. The final results show that the measurement data of the whole measuring areas have been jointed perfectly and there is no mismatch in the figure especially in the hole measuring areas. This experiment has verified the rationality of the system scheme, the correctness and effectiveness of the relevant methods.

  1. Underwater Laser Micromilling of Commercially-Pure Titanium Using Different Scan Overlaps

    NASA Astrophysics Data System (ADS)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-01-01

    Underwater laser milling process is a technique for minimizing the thermal damage and gaining a higher material removal rate than processing in air. This paper presents the effect of laser scan overlap on cavity width, depth and surface roughness in the laser milling of commercially-pure titanium in water. The effects of laser pulse energy and pulse repetition rate were also examined, in which a nanosecond pulse laser emitting a 1064-nm wavelength was used in this study. The experimental results indicated that a wide and deep cavity was achievable under high laser energy and large scan overlap. According to the surface roughness, the use of high pulse repetition rate together with low laser energy can promote a smooth laser-milled surface particularly at 50% scan overlap. These findings can further suggest a suitable laser micromilling condition for titanium in roughing and finishing operations.

  2. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    PubMed Central

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  3. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  4. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    PubMed

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  5. 355-nm, nanosecond laser mirror thin film damage competition

    DOE PAGES

    Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; ...

    2017-11-23

    Here, this competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. Finally, in addition to the laser damage resistance results, details of the deposition processes, cleaningmore » method, coating materials and layer count are also shared.« less

  6. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.

    PubMed

    Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao

    2017-04-12

    Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.

  7. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner

    PubMed Central

    San José, Verónica; Bellot-Arcís, Carlos; Tarazona, Beatriz; Zamora, Natalia; O Lagravère, Manuel

    2017-01-01

    Background To compare the reliability and accuracy of direct and indirect dental measurements derived from two types of 3D virtual models: generated by intraoral laser scanning (ILS) and segmented cone beam computed tomography (CBCT), comparing these with a 2D digital model. Material and Methods One hundred patients were selected. All patients’ records included initial plaster models, an intraoral scan and a CBCT. Patients´ dental arches were scanned with the iTero® intraoral scanner while the CBCTs were segmented to create three-dimensional models. To obtain 2D digital models, plaster models were scanned using a conventional 2D scanner. When digital models had been obtained using these three methods, direct dental measurements were measured and indirect measurements were calculated. Differences between methods were assessed by means of paired t-tests and regression models. Intra and inter-observer error were analyzed using Dahlberg´s d and coefficients of variation. Results Intraobserver and interobserver error for the ILS model was less than 0.44 mm while for segmented CBCT models, the error was less than 0.97 mm. ILS models provided statistically and clinically acceptable accuracy for all dental measurements, while CBCT models showed a tendency to underestimate measurements in the lower arch, although within the limits of clinical acceptability. Conclusions ILS and CBCT segmented models are both reliable and accurate for dental measurements. Integration of ILS with CBCT scans would get dental and skeletal information altogether. Key words:CBCT, intraoral laser scanner, 2D digital models, 3D models, dental measurements, reliability. PMID:29410764

  8. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    NASA Astrophysics Data System (ADS)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  9. Fatigue Crack Prognostics by Optical Quantification of Defect Frequency

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Buckner, B. D.; Earthman, J. C.

    2018-01-01

    Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.

  10. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  11. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography.

    PubMed

    Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2016-01-01

    To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.

  12. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  13. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  14. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    PubMed

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  15. Hybrid processing of laser scanning data

    NASA Astrophysics Data System (ADS)

    Badenko, Vladimir; Zotov, Dmitry; Fedotov, Alexander

    2018-03-01

    In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.

  16. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  17. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  18. Effective Data-Driven Calibration for a Galvanometric Laser Scanning System Using Binocular Stereo Vision.

    PubMed

    Tu, Junchao; Zhang, Liyan

    2018-01-12

    A new solution to the problem of galvanometric laser scanning (GLS) system calibration is presented. Under the machine learning framework, we build a single-hidden layer feedforward neural network (SLFN)to represent the GLS system, which takes the digital control signal at the drives of the GLS system as input and the space vector of the corresponding outgoing laser beam as output. The training data set is obtained with the aid of a moving mechanism and a binocular stereo system. The parameters of the SLFN are efficiently solved in a closed form by using extreme learning machine (ELM). By quantitatively analyzing the regression precision with respective to the number of hidden neurons in the SLFN, we demonstrate that the proper number of hidden neurons can be safely chosen from a broad interval to guarantee good generalization performance. Compared to the traditional model-driven calibration, the proposed calibration method does not need a complex modeling process and is more accurate and stable. As the output of the network is the space vectors of the outgoing laser beams, it costs much less training time and can provide a uniform solution to both laser projection and 3D-reconstruction, in contrast with the existing data-driven calibration method which only works for the laser triangulation problem. Calibration experiment, projection experiment and 3D reconstruction experiment are respectively conducted to test the proposed method, and good results are obtained.

  19. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  20. Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires

    PubMed Central

    Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur

    2014-01-01

    Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533

  1. A comparison of mobile scanning to a total station survey at the I-35 and IA 92 interchange in Warren County, Iowa.

    DOT National Transportation Integrated Search

    2012-08-01

    The purpose of this project was to investigate the potential for collecting and using data from mobile terrestrial laser scanning (MTLS) technology that would reduce the need for traditional survey methods for the development of highway improvement p...

  2. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  3. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Yoxall, Edward; Navarro-Cía, Miguel; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C.

    2013-11-01

    We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.

  4. Femtosecond laser fabricating black silicon in alkaline solution

    NASA Astrophysics Data System (ADS)

    Meng, Jiao; Song, Haiying; Li, Xiaoli; Liu, Shibing

    2015-03-01

    An efficient approach for enhancing the surface antireflection is proposed, in which a black silicon is fabricated by a femtosecond laser in alkaline solution. In the experiment, 2 wt% NaOH solution is formulated at room temperature (22 ± 1 °C). Then, a polished silicon is scanned via femtosecond laser irradiation in 2 wt% NaOH solution. Jungle-like microstructures on the black silicon surface are characterized using an atomic force microscopy. The reflectance of the black silicon is measured at the wavelengths ranging from 400 to 750 nm. Compared to the polished silicon, the black silicon can significantly suppress the optical reflection throughout the visible region (<5 %). Meanwhile, we also investigated the factors of the black silicon, including the femtosecond laser pulse energy and the scanning speed. This method is simple and effective to acquire the black silicon, which probably has a large advantage in fast and cost-effective black silicon fabrication.

  5. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  6. Recent advancements in system design for miniaturized MEMS-based laser projectors

    NASA Astrophysics Data System (ADS)

    Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.

    2008-02-01

    Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.

  7. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  8. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  9. Application of a self-compensation mechanism to a rotary-laser scanning measurement system

    NASA Astrophysics Data System (ADS)

    Guo, Siyang; Lin, Jiarui; Ren, Yongjie; Shi, Shendong; Zhu, Jigui

    2017-11-01

    In harsh environmental conditions, the relative orientations of transmitters of rotary-laser scanning measuring systems are easily influenced by low-frequency vibrations or creep deformation of the support structure. A self-compensation method that counters this problem is presented. This method is based on an improved workshop Measurement Positioning System (wMPS) with inclinometer-combined transmitters. A calibration method for the spatial rotation between the transmitter and inclinometer with an auxiliary horizontal reference frame is presented. It is shown that the calibration accuracy can be improved by a mechanical adjustment using a special bubble level. The orientation-compensation algorithm of the transmitters is described in detail. The feasibility of this compensation mechanism is validated by Monte Carlo simulations and experiments. The mechanism mainly provides a two-degrees-of-freedom attitude compensation.

  10. Three-dimensional dynamic deformation monitoring using a laser-scanning system

    NASA Astrophysics Data System (ADS)

    Al-Hanbali, Nedal N.; Teskey, William F.

    1994-10-01

    Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.

  11. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  12. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darvin, M E; Richter, H; Zhu, Y J

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed bymore » using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)« less

  13. Evaluation of 3-D laser scanning equipment : 2016 interim report.

    DOT National Transportation Integrated Search

    2017-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser : scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the e...

  14. Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report

    DOT National Transportation Integrated Search

    2018-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...

  15. Eye Exam: Is a Laser Retina Scan Worthwhile?

    MedlinePlus

    Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...

  16. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

    PubMed

    Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan

    2005-11-01

    To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95% specificities were 90.0% (95% CI, 86.4%-93.6%), 71.4% (67.4%-75.4%), and 60.0% (56.2%-63.8%), respectively. There was a statistically significant correlation between the scanning laser polarimetry severity score and the VF severity score (R2 = 0.360, P<0.001). Scanning laser polarimetry parameters may not be sufficiently sensitive to detect glaucomatous patients with localized VF damage. Our algorithm using the scanning laser polarimetry deviation map may enhance the understanding of scanning laser polarimetry printouts in terms of the locality, deviation size, and severity of localized retinal nerve fiber layer defects in eyes with localized VF loss.

  17. Laser Pyrometer For Spot Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  18. Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning.

    PubMed

    Jiao, Yunlong; Li, Chuanzong; Wu, Sizhu; Hu, Yanlei; Li, Jiawen; Yang, Liang; Wu, Dong; Chu, Jiaru

    2018-05-16

    We present here a kind of novel multiscale TiO 2 square micropillar arrays on titanium sheets through vertically crossed scanning of femtosecond laser. This multiscale micro-/nanostructure is ascribed to the combination of laser ablation/shock compression/debris self-deposition, which shows superaerophobicity in water with a very small sliding angle. The laser-induced sample displays switchable bubble wettability in water via heating in a dark environment and ultraviolet (UV) irradiation in alcohol. After heating in a dark environment (0.5 h), the ablated titanium surface shows superaerophilicity in water with a bubble contact angle (BCA) of ∼4°, which has a great ability of capturing bubbles in water. After UV irradiation in alcohol (1 h), the sample recovered its superaerophobicity in water and the BCA turns into 156°. The mechanism of reversible switching is believed as the chemical conversion between Ti-OH and Ti-O. It is worth noting that our proposed switching strategy is time-saving and the switch wetting cycle costs only 1.5 h. Then we repeat five switching cycles on the reversibility and the method shows excellent reproducibility and stability. Moreover, laser-induced samples with different scanning spacing (50-120 μm) are fabricated and all of them show switchable underwater bubble wettability via the above tunable methods. Finally, we fabricate hybrid-patterned microstructures to show different patterned bubbles in water on the heated samples. We believe the original works will provide some new insights to researchers in bubble manipulation and gas collection fields.

  19. Design of voice coil motor dynamic focusing unit for a laser scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motorsmore » and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.« less

  20. Noninvasive Intratissue Refractive Index Shaping (IRIS) of the Cornea with Blue Femtosecond Laser Light

    PubMed Central

    Xu, Lisen; Knox, Wayne H.; DeMagistris, Margaret; Wang, Nadan

    2011-01-01

    Purpose. To test the feasibility of intratissue refractive index shaping (IRIS) in living corneas by using 400-nm femtosecond (fs) laser pulses (blue-IRIS). To test the hypothesis that the intrinsic two-photon absorption of the cornea allows blue-IRIS to be performed with greater efficacy than when using 800-nm femtosecond laser pulses. Methods. Fresh cat corneas were obtained postmortem and cut into six wedges. Blue laser pulses at 400 nm, with 100-fs pulse duration at 80 MHz were used to micromachine phase gratings into each corneal wedge at scanning speeds from 1 to 15 mm/s. Grating lines were 1 μm wide, 5 μm apart, and 150 μm below the anterior corneal surface. Refractive index (RI) changes in micromachined regions were measured immediately by recording the diffraction efficiency of inscribed gratings. Six hours later, the corneas were processed for histology, and TUNEL staining was performed to assess whether blue-IRIS causes cell death. Results. Scanning at 1 and 2 mm/s caused overt corneal damage in the form of bubbles and burns. At faster scanning speeds (5, 10, and 15 mm/s), phase gratings were created in the corneal stroma, which were shown to be pure RI changes ranging from 0.037 to 0.021 in magnitude. The magnitude of RI change was inversely related to scanning speed. TUNEL staining showed cell death only around bubbles and burns. Conclusions. Blue-IRIS can be performed safely and effectively in living cornea. Compared with near-infrared laser pulses, blue-IRIS enhances both achievable RI change and scanning speed without the need to dope the tissue with two-photon sensitizers, increasing the clinical applicability of this technique. PMID:21931133

  1. Determination of foveal location using scanning laser polarimetry.

    PubMed

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  2. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  3. Video-rate volumetric functional imaging of the brain at synaptic resolution.

    PubMed

    Lu, Rongwen; Sun, Wenzhi; Liang, Yajie; Kerlin, Aaron; Bierfeld, Jens; Seelig, Johannes D; Wilson, Daniel E; Scholl, Benjamin; Mohar, Boaz; Tanimoto, Masashi; Koyama, Minoru; Fitzpatrick, David; Orger, Michael B; Ji, Na

    2017-04-01

    Neurons and neural networks often extend hundreds of micrometers in three dimensions. Capturing the calcium transients associated with their activity requires volume imaging methods with subsecond temporal resolution. Such speed is a challenge for conventional two-photon laser-scanning microscopy, because it depends on serial focal scanning in 3D and indicators with limited brightness. Here we present an optical module that is easily integrated into standard two-photon laser-scanning microscopes to generate an axially elongated Bessel focus, which when scanned in 2D turns frame rate into volume rate. We demonstrated the power of this approach in enabling discoveries for neurobiology by imaging the calcium dynamics of volumes of neurons and synapses in fruit flies, zebrafish larvae, mice and ferrets in vivo. Calcium signals in objects as small as dendritic spines could be resolved at video rates, provided that the samples were sparsely labeled to limit overlap in their axially projected images.

  4. Laser Embossing of Micro-and Submicrometer Surface Structures in Copper

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Martin; Lorenz, Pierre; Frost, Frank; Zimmer, Klaus

    Micro- and submicrometer structures have been transferred from nickel foils into solid copper surfaces by laser microembossing. The developed arrangement for laser microembossing allows a large-area replication using multi- pulse laser scanning scheme, guaranties a low contamination of the embossed surface and enables the utilization of thick workpieces. In the micrometer range the replicated patterns feature a high accuracy regarding the shape. A significant difference between the master and the replication pattern could be observed for the laser embossing of submicrometer patterns. In conclusion, the results show that the proposed laser embossing process is a promising method with a number of applications in microengineering.

  5. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    PubMed

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  6. Validation of a new noniterative method for accurate position determination of a scanning laser vibrometer

    NASA Astrophysics Data System (ADS)

    Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter

    2000-05-01

    The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.

  7. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    PubMed

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  8. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Evaluation of a laser scanning sensor for variable-rate tree sprayer development

    USDA-ARS?s Scientific Manuscript database

    Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...

  10. Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning

    PubMed Central

    Lin, Yi; Hyyppä, Juha; Kukko, Antero

    2013-01-01

    This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development. PMID:23799493

  11. Application of 3D laser scanning technology in historical building preservation: a case study of a Chinese temple

    NASA Astrophysics Data System (ADS)

    Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang

    2005-06-01

    This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.

  12. High throughput laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  13. Fabrication of single crystalline stripe in Si and Ge film on rolled flexible glass substrate by UV cw micro-chevron laser beam

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang

    2017-08-01

    Micro chevron laser beam annealing (μCLBA) of Si film and Ge film were introduced. Single crystal stripe with a dimension of several tens to hundreds μm in length and 3-8μm in width was formed in Si film or Ge film by scanning μCLBA over the film. Main boundaries in the c-Si stripe were Σ3 CSL twin boundary. Scanning speed of micro linear laser beam annealing (μLLBA) was varied from 0.05 m/s to 8m/s to investigate its influence to crystallinity. Even at 8m/s lateral growth taken place, however, crystal quality was better for slower lateral growth. Crystallization area per energy (APE) of μLLBA was evaluated and compared with other methods. It was found APE of μLLBA was larger than other method, especially for a display with low fill factor of TFT, APE can be several orders of magnitude larger.

  14. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning.

    PubMed

    Chen, Yiwei; Hong, Young-Joo; Makita, Shuichi; Yasuno, Yoshiaki

    2018-03-01

    To correct eye motion artifacts in en face optical coherence tomography angiography (OCT-A) images, a Lissajous scanning method with subsequent software-based motion correction is proposed. The standard Lissajous scanning pattern is modified to be compatible with OCT-A and a corresponding motion correction algorithm is designed. The effectiveness of our method was demonstrated by comparing en face OCT-A images with and without motion correction. The method was further validated by comparing motion-corrected images with scanning laser ophthalmoscopy images, and the repeatability of the method was evaluated using a checkerboard image. A motion-corrected en face OCT-A image from a blinking case is presented to demonstrate the ability of the method to deal with eye blinking. Results show that the method can produce accurate motion-free en face OCT-A images of the posterior segment of the eye in vivo .

  15. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  16. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

    PubMed

    Dalponte, Michele; Coomes, David A

    2016-10-01

    Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks ( r 2  = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.

  17. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma

    PubMed Central

    Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-01-01

    Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131

  18. Integration of Point Clouds Dataset from Different Sensors

    NASA Astrophysics Data System (ADS)

    Abdullah, C. K. A. F. Che Ku; Baharuddin, N. Z. S.; Ariff, M. F. M.; Majid, Z.; Lau, C. L.; Yusoff, A. R.; Idris, K. M.; Aspuri, A.

    2017-02-01

    Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).

  19. Forming a single layer of a composite powder based on the Ti-Nb system via selective laser melting (SLM)

    NASA Astrophysics Data System (ADS)

    Saprykin, A. A.; Sharkeev, Yu P.; Ibragimov, E. A.; Babakova, E. V.; Dudikhin, D. V.

    2016-07-01

    Alloys based on the titanium-niobium system are widely used in implant production. It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At present alloys based on the titanium-niobium system are produced mainly using conventional metallurgical methods. The further subtractive manufacturing an end product results in a lot of wastes, increasing, therefore, its cost. The alternative of these processes is additive manufacturing. Selective laser melting is a technology, which makes it possible to synthesize products of metal powders and their blends. The point of this technology is laser melting a layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. Complex products and working prototypes are made on the base of this technology. The authors of this paper address to the issue of applying selective laser melting in order to synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set of 10x10 mm samples is made in various process conditions. The samples are made by an experimental selective laser synthesis machine «VARISKAF-100MB». The machine provides adjustment of the following process variables: laser emission power, scanning rate and pitch, temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of argon. The porosity and thickness of the sintered layer related to the laser emission power are shown at various scanning rates. It is revealed that scanning rate and laser emission power are adjustable process variables, having the greatest effect on forming the sintered layer.

  20. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.

    PubMed

    Ergun, Bahadir; Sahin, Cumhur; Baz, Ibrahim; Ustuntas, Taner

    2010-06-01

    Terrestrial laser scanning is a popular methodology that is used frequently in the process of documenting historical buildings and cultural heritage. The historical peninsula region sprawls over an area of approximately 1,500 ha and is one of the main aggregate areas of the historical buildings in Istanbul. In this study, terrestrial laser scanning and close range photogrammetry techniques are integrated into each other to create a 3D city model of this part of Istanbul, including some of the buildings that represent the most brilliant areas of Byzantine and Ottoman Empires. Several terrestrial laser scanners with their different specifications were used to solve various geometric scanning problems for distinct areas of the subject city. Photogrammetric method was used for the documentation of the façades of these historical buildings for architectural purposes. This study differentiates itself from the similar ones by its application process that focuses on the geometry, the building texture, and density of the study area. Nowadays, the largest-scale studies among 3D modeling studies, in terms of the methodology of measurement, are urban modeling studies. Because of this large scale, the application of 3D urban modeling studies is executed in a gradual way. In this study, a modeling method based on the façades of the streets was used. In addition, the complimentary elements for the process of modeling were combined in several ways. A street model was presented as a sample, as being the subject of the applied study. In our application of 3D modeling, the modeling based on close range photogrammetry and the data of combined calibration with the data of terrestrial laser scanner were used in a compatible way. The final work was formed with the pedestal data for 3D visualization.

  1. Two-photon microscopy and spectroscopy based on a compact confocal scanning head

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto; Chirico, Giberto; Federici, Federico; Cannone, Fabio; Beretta, Sabrina; Robello, Mauro; Olivini, Francesca; Ramoino, Paola

    2001-07-01

    We have combined a confocal laser scanning head modified for TPE (two-photon excitation) microscopy with some spectroscopic modules to study single molecules and molecular aggregates. The behavior of the TPE microscope unit has been characterized by means of point spread function measurements and of the demonstration of its micropatterning abilities. One-photon and two-photon mode can be simply accomplished by switching from a mono-mode optical fiber (one-photon) coupled to conventional laser sources to an optical module that allows IR laser beam (two- photon/TPE) delivery to the confocal laser scanning head. We have then described the characterization of the two-photon microscope for spectroscopic applications: fluorescence correlation, lifetime and fluorescence polarization anisotropy measurements. We describe the measurement of the response of the two-photon microscope to the light polarization and discuss fluorescence polarization anisotropy measurements on Rhodamine 6G as a function of the viscosity and on a globular protein, the Beta-lactoglobulin B labeled with Alexa 532 at very high dilutions. The average rotational and translational diffusion coefficients measured with fluorescence polarization anisotropy and fluorescence correlation methods are in good agreement with the protein size, therefore validating the use of the microscope for two-photon spectroscopy on biomolecules.

  2. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    USDA-ARS?s Scientific Manuscript database

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  3. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    NASA Astrophysics Data System (ADS)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  4. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  5. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    PubMed

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  6. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2016-05-01

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.

    Here, this competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. Finally, in addition to the laser damage resistance results, details of the deposition processes, cleaningmore » method, coating materials and layer count are also shared.« less

  8. Femtosecond Chirp-Free Transient Absorption Method And Apparatus

    DOEpatents

    McBranch, Duncan W.; Klimov, Victor I.

    2001-02-20

    A method and apparatus for femtosecond transient absorption comprising phase-sensitive detection, spectral scanning and simultaneous controlling of a translation stage to obtain TA spectra information having at least a sensitivity two orders of magnitude higher than that for single-shot methods, with direct, simultaneous compensation for chirp as the data is acquired. The present invention includes a amplified delay translation stage which generates a splittable frequency-doubled laser signal at a predetermined frequency f, a controllable means for synchronously modulating one of the laser signals at a repetition rate of f/2, applying the laser signals to a material to be sample, and acquiring data from the excited sample while simultaneously controlling the controllable means for synchronously modulating.

  9. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  10. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  11. Determining Directions of Ultrasound in Solids

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1987-01-01

    Ultrasound shadows cast by grooves. Improved method for determining direction of ultrasound in materials is shadow method using Scanning laser acoustic microscopy (SLAM). Direction of ultrasound calculated from dimensions of groove and portion of surface groove shields from ultrasound. Method has variety of applications in nontraditional quality-control applications.

  12. Terrestrial laser scanning used to detect asymmetries in boat hulls

    NASA Astrophysics Data System (ADS)

    Roca-Pardiñas, Javier; López-Alvarez, Francisco; Ordóñez, Celestino; Menéndez, Agustín; Bernardo-Sánchez, Antonio

    2012-01-01

    We describe a methodology for identifying asymmetries in boat hull sections reconstructed from point clouds captured using a terrestrial laser scanner (TLS). A surface was first fit to the point cloud using a nonparametric regression method that permitted the construction of a continuous smooth surface. Asymmetries in cross-sections of the surface were identified using a bootstrap resampling technique that took into account uncertainty in the coordinates of the scanned points. Each reconstructed section was analyzed to check, for a given level of significance, that it was within the confidence interval for the theoretical symmetrical section. The method was applied to the study of asymmetries in a medium-sized yacht. Identified were differences of up to 5 cm between the real and theoretical sections in some parts of the hull.

  13. Fabrication of two-dimensional periodic structures on silicon after scanning irradiation with femtosecond laser multi-beams

    NASA Astrophysics Data System (ADS)

    Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun

    2016-04-01

    Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.

  14. Point cloud registration from local feature correspondences-Evaluation on challenging datasets.

    PubMed

    Petricek, Tomas; Svoboda, Tomas

    2017-01-01

    Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.

  15. [Preparation of panax notoginseng saponins-tanshinone H(A) composite method for pulmonary delivery with spray-drying method and its characterization].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-02-01

    To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.

  16. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  17. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding withmore » linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.« less

  18. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy.

    PubMed

    Teo, Stephanie M; Ofori-Okai, Benjamin K; Werley, Christopher A; Nelson, Keith A

    2015-05-01

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.

  19. Spatially sculpted laser scissors for study of DNA damage and repair

    NASA Astrophysics Data System (ADS)

    Stephens, Jared; Mohanty, Samarendra K.; Genc, Suzanne; Kong, Xiangduo; Yokomori, Kyoko; Berns, Michael W.

    2009-09-01

    We present a simple and efficient method for controlled linear induction of DNA damage in live cells. By passing a pulsed laser beam through a cylindrical lens prior to expansion, an elongated elliptical beam profile is created with the ability to expose controlled linear patterns while keeping the beam and the sample stationary. The length and orientation of the beam at the sample plane were reliably controlled by an adjustable aperture and rotation of the cylindrical lens, respectively. Localized immunostaining by the DNA double strand break (DSB) markers phosphorylated H2AX (γH2AX) and Nbs1 in the nuclei of HeLa cells exposed to the ``line scissors'' was shown via confocal imaging. The line scissors method proved more efficient than the scanning mirror and scanning stage methods at induction of DNA DSB damage with the added benefit of having a greater potential for high throughput applications.

  20. Laser Scanning Reader For Automated Data Entry Operations

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1980-02-01

    The use of the Universal Product Code (UPC) in conjunction with the laser-scanner-equipped electronic checkout system has made it technologically possible for supermarket stores to operate more efficiently and accurately. At present, more than 90% of the packages in grocery stores have been marked by the manufacturer with laser-scannable UPC symbols and the installation of laser scanning systems is expected to expand into all major chain stores. Areas to be discussed are: system design features, laser-scanning pattern generation, signal-processing logical considerations, UPC characteristics and encodation.

  1. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  2. Figures of merit for laser beam quality

    NASA Technical Reports Server (NTRS)

    Milster, T. D.; Walker, E. P.

    1993-01-01

    It was shown how full-width at half maximum (FWHM), full-width at 1/e(sup 2) (FW1/e(sup 2)), Strehl ratio, and encircled energy figures of merit vary with different types of aberration and measurement methods. The array sampling method and the slit-scan method are examined in detail. Our irradiance in the exit pupil of the optical system is a simple gaussian. It was found that in general the slit-scan method and the array method do not yield the same result. The width measurements for the central lobe of the diffraction pattern are very insensitive to aberration.

  3. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  4. Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser

    NASA Astrophysics Data System (ADS)

    Mincuzzi, Girolamo; Vesce, Luigi; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.

    2009-09-01

    By identifying the right combination of laser parameters, in particular the integrated laser fluence Φ, we fabricated dye solar cells (DSCs) with UV laser-sintered TiO2 films exhibiting a power conversion efficiency η =5.2%, the highest reported for laser-sintered devices. η is dramatically affected by Φ and a clear trend is reported. Significantly, DSCs fabricated by raster scanning the laser beam to sinter the TiO2 films are made as efficient as those with oven-sintered ones. These results, confirmed on three batches of cells, demonstrate the remarkable potential (noncontact, local, low cost, rapid, selective, and scalable) of scanning laser processing applied to DSC technology.

  5. Single shot laser speckle based 3D acquisition system for medical applications

    NASA Astrophysics Data System (ADS)

    Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young

    2018-06-01

    The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.

  6. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  7. Mobile Laser Scanning for Indoor Modelling

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  8. Combination of intracellular staining of retrogradely labeled neurons and anterograde fluorescent tracing: use of the confocal laser scanning microscope.

    PubMed

    Shi, C; Cassell, M D

    1993-04-01

    This report describes a combined retrograde tracing, intracellular injection and anterograde fluorescence labeling method using the application of confocal laser scanning microscopy. By simultaneously viewing the morphology of identified projection neurons and the distribution of anterogradely labeled fibers and terminals, this approach allows accurate characterization of the anatomical relationships between these two elements. To demonstrate this approach, the retrograde tracer Fast Blue was injected into the bed nucleus of stria terminalis (BNST) and the anterograde tracer tetramethylrhodamine-conjugated dextran was injected into the insular cortex in adult rats. After one week survival time, the brains were fixed and sectioned on a vibratome. Individual BNST projecting neurons identified in the amygdaloid complex on 120 microns thick sections were intracellularly injected with Lucifer Yellow under visual control and analyzed with confocal laser scanning microscopy. The results demonstrate that images from very thin optical sections can clearly show potential synaptic contacts between anterograde labeling and intracellularly labeled projecting neurons. Stacked images from optical sections show, in very great detail, the morphology of projection neurons in three-dimensions. Compared to other methodological combinations, the present method provides a more simple and efficient means to trace three successive components of a putative neuron chain.

  9. Algorithm for transforming the coordinates of lunar objects while changing from various coordinate systems into the selenocentric one

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Mikhaylov, Aleksandr

    2013-04-01

    The selenocentric network of objects setting the coordinate system on the Moon, with the origin coinciding with the mass centre and axes directed along the inertia axes can become one of basic elements of the coordinate-time support for lunar navigation with use of cartographic materials and control objects. A powerful array of highly-precise and multiparameter information obtained by modern space vehicles allows one to establish Lunar Reference Frames (LRF) of an essentially another accuracy. Here, a special role is played by the results of scanning the lunar surface by the Lunar Reconnaissance Orbiter(LRO) American mission. The coordinates of points calculated only from the results of laser scanning have high enough accuracy of position definition with respect to each other, but it is possible to check up the real accuracy of spatial tie and improve the coordinates only by a network of points whose coordinates are computed both from laser scanning and other methods too, for example, by terrestrial laser location, space photogrammetry methods, and so on. The paper presents the algorithm for transforming selenocentric coordinate systems and the accuracy estimation of changing from one lunar coordinate system to another one. Keywords: selenocentric coordinate system, coordinate-time support.

  10. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    NASA Astrophysics Data System (ADS)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  11. Confocal Laser Scanning Microscopy, a New In Vivo Diagnostic Tool for Schistosomiasis

    PubMed Central

    Holtfreter, Martha Charlotte; Nohr-Łuczak, Constanze; Guthoff, Rudolf Friedrich; Reisinger, Emil Christian

    2012-01-01

    Background The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM) permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. Methodology/Principal Findings The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality). Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. Conclusion/Significance We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable. PMID:22529947

  12. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  13. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  14. High throughput solar cell ablation system

    DOEpatents

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  15. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  16. Method for studying gas composition in the human mastoid cavity by use of laser spectroscopy.

    PubMed

    Lindberg, Sven; Lewander, Märta; Svensson, Tomas; Siemund, Roger; Svanberg, Katarina; Svanberg, Sune

    2012-04-01

    We evaluated a method for gas monitoring in the mastoid cavity using tunable diode laser spectroscopy by comparing it to simultaneously obtained computed tomographic (CT) scans. The presented optical technique measures free gases, oxygen (O2), and water vapor (H2O) within human tissue by use of low-power diode lasers. Laser light was sent into the tip of the mastoid process, and the emerging light at the level of the antrum was captured with a detector placed on the skin. The absorption of H2O was used to monitor the probed gas volume of the mastoid cavity, and it was compared to the CT scan-measured volume. The ratio between O2 absorption and H2O absorption estimated the O2 content in the mastoid cavity and thus the ventilation. The parameters were compared to the grading of mastoid cavities based on the CT scans (n = 31). The reproducibility of the technique was investigated by measuring each mastoid cavity 4 times. Both O2 and H2O were detected with good reproducibility. The H2O absorption and the CT volume correlated (r = 0.69). The average ratio between the normalized O2 absorption and the H2O absorption signals was 0.7, indicating a lower O2 content than in surrounding air (expected ratio, 1.0), which is consistent with previous findings made by invasive techniques. All mastoid cavities with radiologic signs of disease were detected. Laser spectroscopy monitoring appears to be a usable tool for noninvasive investigations of gas composition in the mastoid cavity, providing important clinical information regarding size and ventilation.

  17. Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan

    2018-01-01

    Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.

  18. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    PubMed

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  19. Sealing ability of three root-end filling materials prepared using an erbium: Yttrium aluminium garnet laser and endosonic tip evaluated by confocal laser scanning microscopy

    PubMed Central

    Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita

    2015-01-01

    Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420

  20. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    PubMed Central

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  1. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tereshchenko, S. A., E-mail: tsa@miee.ru; Savelyev, M. S.; Podgaetsky, V. M.

    A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scanmore » data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.« less

  2. Applications and requirements for MEMS scanner mirrors

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  3. Control methods for merging ALSM and ground-based laser point clouds acquired under forest canopies

    NASA Astrophysics Data System (ADS)

    Slatton, Kenneth C.; Coleman, Matt; Carter, William E.; Shrestha, Ramesh L.; Sartori, Michael

    2004-12-01

    Merging of point data acquired from ground-based and airborne scanning laser rangers has been demonstrated for cases in which a common set of targets can be readily located in both data sets. However, direct merging of point data was not generally possible if the two data sets did not share common targets. This is often the case for ranging measurements acquired in forest canopies, where airborne systems image the canopy crowns well, but receive a relatively sparse set of points from the ground and understory. Conversely, ground-based scans of the understory do not generally sample the upper canopy. An experiment was conducted to establish a viable procedure for acquiring and georeferencing laser ranging data underneath a forest canopy. Once georeferenced, the ground-based data points can be merged with airborne points even in cases where no natural targets are common to both data sets. Two ground-based laser scans are merged and georeferenced with a final absolute error in the target locations of less than 10cm. This is comparable to the accuracy of the georeferenced airborne data. Thus, merging of the georeferenced ground-based and airborne data should be feasible. The motivation for this investigation is to facilitate a thorough characterization of airborne laser ranging phenomenology over forested terrain as a function of vertical location in the canopy.

  4. Laser Vacuum Furnace for Zone Refining

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zurburg, F. W.; Penn, W. M.

    1986-01-01

    Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.

  5. Tilt-tuned etalon locking for tunable laser stabilization.

    PubMed

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  6. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.

    PubMed

    Boyde, A; Vesely, P; Gray, C; Jones, S J

    1994-01-01

    Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.

  7. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  8. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  9. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  10. Recommendations for the design and the installation of large laser scanning microscopy systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  11. Development of Smart Precision Forest in Conifer Plantation in Japan Using Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Katoh, M.; Deng, S.; Takenaka, Y.; Cheung, K.; Oono, K.; Horisawa, M.; Hyyppä, J.; Yu, X.; Liang, X.; Wang, Y.

    2017-10-01

    Currently, the authors are planning to launch a consortium effort toward Japan's first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack) is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  12. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadbandmore » excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.« less

  13. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  14. Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-05-01

    Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.

  15. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  16. Widely tunable laser frequency offset lock with 30 GHz range and 5 THz offset.

    PubMed

    Biesheuvel, J; Noom, D W E; Salumbides, E J; Sheridan, K T; Ubachs, W; Koelemeij, J C J

    2013-06-17

    We demonstrate a simple and versatile method to greatly extend the tuning range of optical frequency shifting devices, such as acousto-optic modulators (AOMs). We use this method to stabilize the frequency of a tunable narrow-band continuous-wave (CW) laser to a transmission maximum of an external Fabry-Perot interferometer (FPI) with a tunable frequency offset. This is achieved through a servo loop which contains an in-loop AOM for simple radiofrequency (RF) tuning of the optical frequency over the full 30 GHz mode-hop-free tuning range of the CW laser. By stabilizing the length of the FPI to a stabilized helium-neon (HeNe) laser (at 5 THz offset from the tunable laser) we simultaneously transfer the ~ 1 MHz absolute frequency stability of the HeNe laser to the entire 30 GHz range of the tunable laser. Thus, our method allows simple, wide-range, fast and reproducible optical frequency tuning and absolute optical frequency measurements through RF electronics, which is here demonstrated by repeatedly recording a 27-GHz-wide molecular iodine spectrum at scan rates up to 500 MHz/s. General technical aspects that determine the performance of the method are discussed in detail.

  17. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    NASA Astrophysics Data System (ADS)

    Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.

    2016-05-01

    Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  18. Z-scan theoretical and experimental studies for accurate measurements of the nonlinear refractive index and absorption of optical glasses near damage threshold

    NASA Astrophysics Data System (ADS)

    Olivier, Thomas; Billard, Franck; Akhouayri, Hassan

    2004-06-01

    Self-focusing is one of the dramatic phenomena that may occur during the propagation of a high power laser beam in a nonlinear material. This phenomenon leads to a degradation of the wave front and may also lead to a photoinduced damage of the material. Realistic simulations of the propagation of high power laser beams require an accurate knowledge of the nonlinear refractive index γ. In the particular case of fused silica and in the nanosecond regime, it seems that electronic mechanisms as well as electrostriction and thermal effects can lead to a significant refractive index variation. Compared to the different methods used to measure this parmeter, the Z-scan method is simple, offers a good sensitivity and may give absolute measurements if the incident beam is accurately studied. However, this method requires a very good knowledge of the incident beam and of its propagation inside a nonlinear sample. We used a split-step propagation algorithm to simlate Z-scan curves for arbitrary beam shape, sample thickness and nonlinear phase shift. According to our simulations and a rigorous analysis of the Z-scan measured signal, it appears that some abusive approximations lead to very important errors. Thus, by reducing possible errors on the interpretation of Z-scan experimental studies, we performed accurate measurements of the nonlinear refractive index of fused silica that show the significant contribution of nanosecond mechanisms.

  19. Laser-induced fluorescence imaging of bacteria

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  20. Improved Real-Time Scan Matching Using Corner Features

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.

    2016-06-01

    The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the successive scan using least squares. These estimated transformation parameters are used to calculate an adjusted initialization for scan matching process. The presented method can be employed solely to match the successive scans and also can be used to aid other accustomed iterative methods to achieve more effective and faster converge. The performance and time consumption of the proposed approach is compared with ICP algorithm alone without initialization in different scenarios such as static period, fast straight movement, and sharp manoeuvers.

  1. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  2. Virtual environment assessment for laser-based vision surface profiling

    NASA Astrophysics Data System (ADS)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  3. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy

    PubMed Central

    Stanciu, Stefan G.; Tranca, Denis E.; Hristu, Radu; Stanciu, George A.

    2017-01-01

    Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance. We demonstrate this approach on zebrafish retinal tissue. The proposed method holds important implications for the in-depth understanding of biological items through the prism of ASNOM and CLSM data complementarity. PMID:29296474

  5. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  6. Demonstration of bacterial biofilms in culture-negative silicone stent and jones tube.

    PubMed

    Parsa, Kami; Schaudinn, Christoph; Gorur, Amita; Sedghizadeh, Parish P; Johnson, Thomas; Tse, David T; Costerton, John W

    2010-01-01

    To demonstrate the presence of bacterial biofilms on a dacryocystorhinostomy silicone stent and a Jones tube. One dacryocystorhinostomy silicone stent and one Jones tube were removed from 2 patients who presented with an infection of their respective nasolacrimal system. Cultures were obtained, and the implants were processed for scanning electron microscopy and confocal laser scanning microscopy, advanced microscopic methods that are applicable for detection of uncultivable biofilm organisms. Routine bacterial cultures revealed no growth, but bacterial biofilms on outer and inner surfaces of both implants were confirmed by advanced microscopic techniques. To the authors' knowledge, this is the first article that documents the presence of biofilms on a Crawford stent or a Jones tube on patients who presented with infections involving the nasolacrimal system. Although initial cultures revealed absence of any bacterial growth, confocal laser scanning microscopy and scanning electron microscopy documented bacterial colonization. Clinicians should consider the role of biofilms and the limitation of our standard culturing techniques while treating patients with device- or implant-related infections.

  7. On the measurement of guided wavefields via air-coupled ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.

    2015-03-01

    Guided wavefields are now routinely measured with scanning laser vibrometers for both characterization of guided wave propagation and damage assessment. However, these measurements are usually time-consuming, particularly for imaging of large areas, primarily because of the degree of signal averaging required to reduce incoherent noise. A scanned air-coupled transducer is an alternative wavefield acquisition method that is based upon recording the very small amplitude pressure waves that leak into air from the out-of-plane motion of the guided wavefield. Air-coupled methods are attractive because they are not sensitive to small variations in surface optical reflectivity and special surface preparations are thus not necessary. In addition, not as much averaging is needed, making the acquisition process much faster. Unlike laser vibrometry, the recorded signals are not a direct measure of the wave motion, but experiments have shown that the acquired wavefields resemble those obtained from laser-based systems. For the work presented here, wavefield data were recorded with both methods for the same aluminum plate and composite panel specimens. Data are qualitatively compared in several domains to assess differences in temporal characteristics and modal content. Although signals are not identical, it is shown that the air-coupled transducer data exhibits similar modal content to that of the laser vibrometry data and may provide a reasonable alternative for some applications.

  8. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    PubMed Central

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature. PMID:25505977

  9. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    PubMed

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  10. A dual growing method for the automatic extraction of individual trees from mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Li, Lin; Li, Dalin; Zhu, Haihong; Li, You

    2016-10-01

    Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.

  11. Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries

    DOT National Transportation Integrated Search

    2016-05-01

    Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...

  12. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  13. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    NASA Astrophysics Data System (ADS)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  14. Limits of Active Laser Triangulation as an Instrument for High Precision Plant Imaging

    PubMed Central

    Paulus, Stefan; Eichert, Thomas; Goldbach, Heiner E.; Kuhlmann, Heiner

    2014-01-01

    Laser scanning is a non-invasive method for collecting and parameterizing 3D data of well reflecting objects. These systems have been used for 3D imaging of plant growth and structure analysis. A prerequisite is that the recorded signals originate from the true plant surface. In this paper we studied the effects of species, leaf chlorophyll content and sensor settings on the suitability and accuracy of a commercial 660 nm active laser triangulation scanning device. We found that surface images of Ficus benjamina leaves were inaccurate at low chlorophyll concentrations and a long sensor exposure time. Imaging of the rough waxy leaf surface of leek (Allium porrum) was possible using very low exposure times, whereas at higher exposure times penetration and multiple refraction prevented the correct imaging of the surface. A comparison of scans with varying exposure time enabled the target-oriented analysis to identify chlorotic, necrotic and healthy leaf areas or mildew infestations. We found plant properties and sensor settings to have a strong influence on the accuracy of measurements. These interactions have to be further elucidated before laser imaging of plants is possible with the high accuracy required for e.g., the observation of plant growth or reactions to water stress. PMID:24504106

  15. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    NASA Astrophysics Data System (ADS)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.

  16. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  17. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  18. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    NASA Astrophysics Data System (ADS)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  19. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  20. High-Precision Photothermal Ablation Using Biocompatible Palladium Nanoparticles and Laser Scanning Microscopy

    PubMed Central

    2018-01-01

    Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice. PMID:29320154

  1. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  2. Terrestrial laser scanning for geometry extraction and change monitoring of rubble mound breakwaters

    NASA Astrophysics Data System (ADS)

    Puente, I.; Lindenbergh, R.; González-Jorge, H.; Arias, P.

    2014-05-01

    Rubble mound breakwaters are coastal defense structures that protect harbors and beaches from the impacts of both littoral drift and storm waves. They occasionally break, leading to catastrophic damage to surrounding human populations and resulting in huge economic and environmental losses. Ensuring their stability is considered to be of vital importance and the major reason for setting up breakwater monitoring systems. Terrestrial laser scanning has been recognized as a monitoring technique of existing infrastructures. Its capability for measuring large amounts of accurate points in a short period of time is also well proven. In this paper we first introduce a method for the automatic extraction of face geometry of concrete cubic blocks, as typically used in breakwaters. Point clouds are segmented based on their orientation and location. Then we compare corresponding cuboids of three co-registered point clouds to estimate their transformation parameters over time. The first method is demonstrated on scan data from the Baiona breakwater (Spain) while the change detection is demonstrated on repeated scan data of concrete bricks, where the changing scenario was simulated. The application of the presented methodology has verified its effectiveness for outlining the 3D breakwater units and analyzing their changes at the millimeter level. Breakwater management activities could benefit from this initial version of the method in order to improve their productivity.

  3. [Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach].

    PubMed

    Drewniak, Tomasz; Rzepecki, Maciej; Juszczak, Kajetan; Kwiatek, Wojciech; Bielecki, Jakub; Zieliński, Krzysztof; Ruta, Andrzej; Czekierda, Łukasz; Moczulskis, Zbigniew

    2011-01-01

    The main problem in nephron sparing surgery (NSS) is to preserve renal tumors oncological purity during the removal of the tumor with a margin of macroscopically unchanged kidney tissue while keeping the largest possible amount of normal parenchyma of the operated kidney. The development of imaging techniques, in particular IGT (Image Guided Therapy) allows precise imaging of the surgical field and, therefore, is essential in improving the effectiveness of NSS (increase of nephron sparing with the optimal radicality). The aim of this study was to develop a method of the three-dimensional (3D) imaging of the kidney tumor and its lodge in the operated kidney using 3D laser scanner during NSS procedure. Additionally, the animal model of visualization was developed. The porcine kidney model was used to test the set built up with HD cameras and linear laser scanner connected to a laptop with graphic software (David Laser Scanner, Germany) showing the surface of the kidney and the lodge after removal the chunk of renal parenchyma. Additionally, the visualization and reconstruction was performed on animal porcine model. Moreover, 5 patients (3 women, 2 men) aged from 37 to 68 years (mean 56), diagnosed with kidney tumors in CT scans with a diameter of 3.7-6.9 cm (mean 4.9) were operated in our Department this year, scanning the surface during the treatment with the kidney tumor and kidney tumor after it is removed with a margin of renal tissue. In one case, the lodge of removed tumor was scanned. Dimensions in 3D reconstruction images of laser scans in the study of animal model and the images obtained intraoperatively were compared with the dimensions evaluated during preoperative CT scans, intraoperative measurements. Three-dimensional imaging laser scanner operating field loge resected tumor and the tumor on the kidney of animal models and during NSS treatments for patients with kidney tumors is possible in real time with an accuracy of -2 mm do +9 mm (+/- 3 mm). The duration of data acquisition by laser scanner and obtain three-dimensional image of the operating field takes an average of 13 seconds +/- 2 seconds. Movements associated with breathing and heart rate did not affect on the quality of the reconstruction. The imposition of the scanned surface texture occurs in real time, allowing you to identify renal parenchymal structures such as renal cortex, pyramids, pyelo-calices complex. Imaging control of NSS procedures is possible in animal models and in real time intraoperatively. The comparison of tumor size and the tumor lodge obtained in preoperative CT scans with the measurements during NSS procedure provide the surgeon to assess the extent of macroscopic estimation of the resection. This procedure helps the surgeon in obtaining oncological radicality with saving as much normal tissue kidney as possible. Performance of the imaging methods should be evaluated on a larger group of patients with kidney tumors eligible for NSS treatment.

  4. D Survey in Complex Archaeological Environments: AN Approach by Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Ebolese, D.; Dardanelli, G.; Lo Brutto, M.; Sciortino, R.

    2018-05-01

    The survey of archaeological sites by appropriate geomatics technologies is an important research topic. In particular, the 3D survey by terrestrial laser scanning has become a common practice for 3D archaeological data collection. Even if terrestrial laser scanning survey is quite well established, due to the complexity of the most archaeological contexts, many issues can arise and make the survey more difficult. The aim of this work is to describe the methodology chosen for a terrestrial laser scanning survey in a complex archaeological environment according to the issues related to the particular structure of the site. The developed approach was used for the terrestrial laser scanning survey and documentation of a part of the archaeological site of Elaiussa Sebaste in Turkey. The proposed technical solutions have allowed providing an accurate and detailed 3D dataset of the study area. In addition, further products useful for archaeological analysis were also obtained from the 3D dataset of the study area.

  5. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.

    PubMed

    Friedli, Michael; Kirchgessner, Norbert; Grieder, Christoph; Liebisch, Frank; Mannale, Michael; Walter, Achim

    2016-01-01

    Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and precision agriculture applications. In future studies, the TLS method can be readily applied to detect the effects of plant stresses such as drought, limited nutrient availability or compacted soil on different genotypes or on spatial variance in fields.

  6. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  7. New technologies in dentistry

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima A. A.; Brugnera, Aldo, Jr.; Pecora, Jesus D.

    1999-05-01

    The technology in dentistry has been developed significantly lately, increasing the technological level of new materials, methods and equipment have been developed. Undoubtedly the CO2 laser has contributed to this evolution particular to the treatment of the infected dentin. CO2 laser can sterilize and promote increase 6 to 8 times of dentin resistance, through the transformation the hydroxyapatite in calcium-phosphato-hydroxyapatite. We can reassure our patients about the use of pulsed CO2 laser due to better preservation of dental structure and its benefits permitting advanced esthetic treatments. The CEREC system, registers a tri-dimensional image of the preparation through a scan system, and sends it to the computer and the operator will edit the restorations so the equipment will finish porcelain restoration. The authors used a new laser 650 nm for caries detection and the other low lever laser (670 nm and 730 nm) considered an auxiliary method to prevent and treat the hypersensitivity in dentin.

  8. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  9. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.

  10. Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser.

    PubMed

    Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe

    2014-01-01

    Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P < 0.05) on both sides (left, 808 nm: hair clearance of 72.16%; right, 755 nm: hair clearance of 71.30%). The difference in reduction between the two lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.

  11. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  12. Importance of Laser Scanning Resolution in the Process of Recreating the Architectural Details of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Pawłowicz, Joanna A.

    2017-10-01

    The TLS method (Terrestrial Laser Scanning) may replace the traditional building survey methods, e.g. those requiring the use measuring tapes or range finders. This technology allows for collecting digital data in the form of a point cloud, which can be used to create a 3D model of a building. In addition, it allows for collecting data with an incredible precision, which translates into the possibility to reproduce all architectural features of a building. This data is applied in reverse engineering to create a 3D model of an object existing in a physical space. This study presents the results of a research carried out using a point cloud to recreate the architectural features of a historical building with the application of reverse engineering. The research was conducted on a two-storey residential building with a basement and an attic. Out of the building’s façade sticks a veranda featuring a complicated, wooden structure. The measurements were taken at the medium and the highest resolution using a ScanStation C10 laser scanner by Leica. The data obtained was processed using specialist software, which allowed for the application of reverse engineering, especially for reproducing the sculpted details of the veranda. Following digitization, all redundant data was removed from the point cloud and the cloud was subjected to modelling. For testing purposes, a selected part of the veranda was modelled by means of two methods: surface matching and Triangulated Irregular Network. Both modelling methods were applied in the case of data collected at medium and the highest resolution. Creating a model based on data obtained at medium resolution, both by means of the surface matching and the TIN method, does not allow for a precise recreation of architectural details. The study presents certain sculpted elements recreated based on the highest resolution data with superimposed TIN juxtaposed against a digital image. The resulting model is very precise. Creating good models requires highly accurate field data. It is important to properly choose the distance between the measuring station and the measured object in order to ensure that the angles of incidence (horizontal and vertical) of the laser beam are as straight as possible. The model created based on medium resolution offers very poor quality of details, i.e. only the bigger, basic elements of each detail are clearly visible, while the smaller ones are blurred. This is why in order to obtain data sufficient to reproduce architectural details laser scanning should be performed at the highest resolution. In addition, modelling by means of the surface matching method should be avoided - a better idea is to use the TIN method. In addition to providing a realistically-looking visualization, the method has one more important advantage - it is 4 times faster than the surface matching method.

  13. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  14. The Brain Physics: Multi Laser Beam Interaction with the Brain Topions (the Brain Neurocenters)

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-03-01

    A novel method for the treatment of the neurological diseases is proposed. The multiple-energy laser photons (the blue scanning photons and ultraviolet focusing photons) interact with the specific DNA molecules within the topion (such as Parkinson's and Alzheimer's brain topion) via the matching of laser frequency with the oscillation eigen-frequency of a particular molecule within the DNA. In this way, the corrupt molecules (the structure of molecules) can be manipulated so as to treat (eliminate) the neurological disease. Supported by Nikola Tesla Labs, Stefan University.

  15. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  16. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  17. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  18. Application of scanning laser Doppler vibrometry for delamination detection in composite structures

    NASA Astrophysics Data System (ADS)

    Kudela, Pawel; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw

    2017-12-01

    In this paper application of scanning laser Doppler vibrometry for delamination detection in composite structures was presented. Delamination detection was based on a guided wave propagation method. In this papers results from numerical and experimental research were presented. In the case of numerical research, the Spectral Element Method (SEM) was utilized, in which a mesh was composed of 3D spectral elements. SEM model included also a piezoelectric transducer. In the experimental research guided waves were excited using the piezoelectric transducer whereas the sensing process was conducted using scanning laser Doppler vibrometer (SLDV). Analysis of guided wave propagation and its interaction with delamination was based on a full wavefield approach. Attention was focused on interactions of guided waves with delamination manifested by A0 mode reflection, A0 mode entrapment, and S0/A0 mode conversion. Delamination was simulated by a teflon insert located between plies of composite material. Results of interaction with symmetrically and nonsymmetrical placed delamination (in respect to the composite sample thickness) were presented. Moreover, the authors investigated different size of delaminations. Damage detection was based on a new signal processing algorithm proposed by the authors. In this approach the weighted RMS was utilized selectively. It means that the summation in RMS formula was performed only for a specially selected time instances. Results for simple composite panels, panel with honeycomb core, and real stiffened composite panel from the aircraft were presented.

  19. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    PubMed

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  20. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  1. Real-time mapping of the corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy

    NASA Astrophysics Data System (ADS)

    Guthoff, Rudolf F.; Zhivov, Andrey; Stachs, Oliver

    2010-02-01

    The aim of the study was to produce two-dimensional reconstruction maps of the living corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy in real time. CLSM source data (frame rate 30Hz, 384x384 pixel) were used to create large-scale maps of the scanned area by selecting the Automatic Real Time (ART) composite mode. The mapping algorithm is based on an affine transformation. Microscopy of the sub-basal nerve plexus was performed on normal and LASIK eyes as well as on rabbit eyes. Real-time mapping of the sub-basal nerve plexus was performed in large-scale up to a size of 3.2mm x 3.2mm. The developed method enables a real-time in vivo mapping of the sub-basal nerve plexus which is stringently necessary for statistically firmed conclusions about morphometric plexus alterations.

  2. Comparison of Single and Multi-Scale Method for Leaf and Wood Points Classification from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie

    2018-04-01

    The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.

  3. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  4. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  5. Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass.

    PubMed

    Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin

    2015-09-07

    Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites.

  6. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method

    PubMed Central

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-01-01

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis. PMID:28029121

  7. Change Analysis in Structural Laser Scanning Point Clouds: The Baseline Method.

    PubMed

    Shen, Yueqian; Lindenbergh, Roderik; Wang, Jinhu

    2016-12-24

    A method is introduced for detecting changes from point clouds that avoids registration. For many applications, changes are detected between two scans of the same scene obtained at different times. Traditionally, these scans are aligned to a common coordinate system having the disadvantage that this registration step introduces additional errors. In addition, registration requires stable targets or features. To avoid these issues, we propose a change detection method based on so-called baselines. Baselines connect feature points within one scan. To analyze changes, baselines connecting corresponding points in two scans are compared. As feature points either targets or virtual points corresponding to some reconstructable feature in the scene are used. The new method is implemented on two scans sampling a masonry laboratory building before and after seismic testing, that resulted in damages in the order of several centimeters. The centres of the bricks of the laboratory building are automatically extracted to serve as virtual points. Baselines connecting virtual points and/or target points are extracted and compared with respect to a suitable structural coordinate system. Changes detected from the baseline analysis are compared to a traditional cloud to cloud change analysis demonstrating the potential of the new method for structural analysis.

  8. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  9. Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction

    DOT National Transportation Integrated Search

    2015-08-28

    Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...

  10. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  11. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  12. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  13. Classification of Mobile Laser Scanning Point Clouds from Height Features

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Lemmens, M.; van Oosterom, P.

    2017-09-01

    The demand for 3D maps of cities and road networks is steadily growing and mobile laser scanning (MLS) systems are often the preferred geo-data acquisition method for capturing such scenes. Because MLS systems are mounted on cars or vans they can acquire billions of points of road scenes within a few hours of survey. Manual processing of point clouds is labour intensive and thus time consuming and expensive. Hence, the need for rapid and automated methods for 3D mapping of dense point clouds is growing exponentially. The last five years the research on automated 3D mapping of MLS data has tremendously intensified. In this paper, we present our work on automated classification of MLS point clouds. In the present stage of the research we exploited three features - two height components and one reflectance value, and achieved an overall accuracy of 73 %, which is really encouraging for further refining our approach.

  14. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  15. A novel method for the identification of inorganic and organic gunshot residue particles of lead-free ammunitions from the hands of shooters using scanning laser ablation-ICPMS and Raman micro-spectroscopy.

    PubMed

    Abrego, Zuriñe; Grijalba, Nagore; Unceta, Nora; Maguregui, Maite; Sanchez, Alicia; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2014-12-07

    A method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (SLA-ICPMS) and Raman micro-spectroscopy for the detection and identification of compounds consistent with gunshot residue particles (GSR) has been developed. The method has been applied to the characterization of particles resulting from the discharge of firearms using lead-free ammunition. Modified tape lifts were used to collect the inorganic and organic residues from skin surfaces in a single sample. Using SLA-ICPMS, aggregates related to the composition of the ammunition, such as Cu-Zn-Sn, Zr-Sr, Cu-Zn, Al-Ti, or Al-Sr-Zr were detected, but this composition is only consistent with GSR from lead-free ammunitions. Additional evidence was provided by micro-Raman spectroscopy, which identified the characteristic organic groups of the particles as centralite, diphenylamine or their nitrated derivatives, which are indicative of GSR.

  16. Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy.

    PubMed

    Lu, Yang; Bernabeu, Miguel O; Lammer, Jan; Cai, Charles C; Jones, Martin L; Franco, Claudio A; Aiello, Lloyd Paul; Sun, Jennifer K

    2016-12-01

    Diabetic retinopathy (DR) is the leading cause of visual loss in working-age adults worldwide. Previous studies have found hemodynamic changes in the diabetic eyes, which precede clinically evident pathological alterations of the retinal microvasculature. There is a pressing need for new methods to allow greater understanding of these early hemodynamic changes that occur in DR. In this study, we propose a noninvasive method for the assessment of hemodynamics around the fovea (a region of the eye of paramount importance for vision). The proposed methodology combines adaptive optics scanning laser ophthalmoscopy and computational fluid dynamics modeling. We compare results obtained with this technique with in vivo measurements of blood flow based on blood cell aggregation tracking. Our results suggest that parafoveal hemodynamics, such as capillary velocity, wall shear stress, and capillary perfusion pressure can be noninvasively and reliably characterized with this method in both healthy and diabetic retinopathy patients.

  17. Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Lu, Yang; Bernabeu, Miguel O.; Lammer, Jan; Cai, Charles C.; Jones, Martin L.; Franco, Claudio A.; Aiello, Lloyd Paul; Sun, Jennifer K.

    2016-01-01

    Diabetic retinopathy (DR) is the leading cause of visual loss in working-age adults worldwide. Previous studies have found hemodynamic changes in the diabetic eyes, which precede clinically evident pathological alterations of the retinal microvasculature. There is a pressing need for new methods to allow greater understanding of these early hemodynamic changes that occur in DR. In this study, we propose a noninvasive method for the assessment of hemodynamics around the fovea (a region of the eye of paramount importance for vision). The proposed methodology combines adaptive optics scanning laser ophthalmoscopy and computational fluid dynamics modeling. We compare results obtained with this technique with in vivo measurements of blood flow based on blood cell aggregation tracking. Our results suggest that parafoveal hemodynamics, such as capillary velocity, wall shear stress, and capillary perfusion pressure can be noninvasively and reliably characterized with this method in both healthy and diabetic retinopathy patients. PMID:28078170

  18. Purchase of a Laser Scanning Confocal Microscope at Xavier University of Louisiana

    DTIC Science & Technology

    2016-05-04

    SECURITY CLASSIFICATION OF: The purpose of this grant was to purchase a laser scanning confocal microscope to be used by multiple laboratories at...was being developed for undergraduate education. Over the course of the funding period, the microscope was purchased and installed, multiple training...Distribution Unlimited UU UU UU UU 04-05-2016 1-Feb-2015 31-Jan-2016 Final Report: Purchase of a Laser Scanning Confocal Microscope at Xavier

  19. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    PubMed

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Controllable laser thermal cleavage of sapphire wafers

    NASA Astrophysics Data System (ADS)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  1. Laser treatment of cutaneous lesions with image-guided fine spot-scanning irradiation

    NASA Astrophysics Data System (ADS)

    Nitta, Isami; Zhao, Xuefeng; Kanno, Akihiro; Kan, Yasushi; Yoshimasa, Takezawa; Maruyama, Tomohiro; Maeda, Yoshitaka

    2007-11-01

    We propose a new laser irradiation method for the treatment of cutaneous lesions in plastic surgery. In general, lasers with a spot size of 1 to 10 mm are used in irradiation on diseased skin. Although the target absorbs more light energy according to the theory of selective photothermolysis, the surrounding tissue, however, is still somewhat damaged. In proposed method, an f-theta lens, which is assembled by a shrink fitter, focuses the irradiation laser beam to a very fine spot with the size of 125 μm. Guided by the captured object-image, such laser beam is conducted by a pair of galvanometer-driven mirrors to irradiate only the desired tissue target without thermal damage to surrounding tissue. Moreover, an optical coherence tomography, whose probe is capable of wide field of view, can be used to provide the guidance information for the best treatment. The usefulness of the developed laser therapy apparatus was demonstrated by performing an experiment on the removal of tattoo pigment.

  2. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  3. Methodology for evaluate the form deviations for formula one nose car

    NASA Astrophysics Data System (ADS)

    Bere, Paul; Neamtu, Calin

    2014-06-01

    The paper presents a measuring strategy for a Formula One car using a Coordinate Measuring Machine (CMM) and a 3D laser scanning devices. The measurement procedures outlined the dimensional deviation of the CAD model and prototype made of composite material. The authors present two methods for the determination of symmetry for components of a Formula One car based on measuring and 3D scanning.

  4. Comparison of Bolton analysis and Little’s irregularity index on laser scanned three-dimensional digital study models with conventional study models

    NASA Astrophysics Data System (ADS)

    Kurnia, H.; Noerhadi, N. A. I.

    2017-08-01

    Three-dimensional digital study models were introduced following advances in digital technology. This study was carried out to assess the reliability of digital study models scanned by a laser scanning device newly assembled. The aim of this study was to compare the digital study models and conventional models. Twelve sets of dental impressions were taken from patients with mild-to-moderate crowding. The impressions were taken twice, one with alginate and the other with polyvinylsiloxane. The alginate impressions were made into conventional models, and the polyvinylsiloxane impressions were scanned to produce digital models. The mesiodistal tooth width and Little’s irregularity index (LII) were measured manually with digital calipers on the conventional models and digitally on the digital study models. Bolton analysis was performed on each study models. Each method was carried out twice to check for intra-observer variability. The reproducibility (comparison of the methods) was assessed using independent-sample t-tests. The mesiodistal tooth width between conventional and digital models did not significantly differ (p > 0.05). Independent-sample t-tests did not identify statistically significant differences for Bolton analysis and LII (p = 0.603 for Bolton and p = 0894 for LII). The measurements of the digital study models are as accurate as those of the conventional models.

  5. 3D laser scanning in civil engineering - measurements of volume of earth masses

    NASA Astrophysics Data System (ADS)

    Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.

    2018-03-01

    Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering

  6. Evaluation of conjunctival inflammatory status by confocal scanning laser microscopy and conjunctival brush cytology in patients with atopic keratoconjunctivitis (AKC)

    PubMed Central

    Wakamatsu, Tais Hitomi; Okada, Naoko; Kojima, Takashi; Matsumoto, Yukihiro; Ibrahim, Osama M.A.; Adan, Enrique Sato; Fukagawa, Kazumi; Katakami, Chikako; Tsubota, Kazuo; Shimazaki, Jun; Fujishima, Hiroshi

    2009-01-01

    Purpose To elucidate the status of the conjunctival inflammation in atopic keratoconjunctivitis (AKC) using laser scanning confocal microscopy and compare the relevant findings with conjunctival brush cytology in a prospective controlled study. Methods Twenty eyes from 20 AKC patients as well as 16 eyes from 16 age and sex matched normal subjects were studied. The subjects underwent tear film break-up time (BUT), fluorescein and Rose Bengal staining of the ocular surface, conjunctival confocal microscopy, Schirmer test, and brush cytology. Brush cytology specimens and in vivo confocal microscopy scans underwent evaluation for inflammatory cell densities. Results Brush cytology specimens and in vivo confocal microscopy scans from AKC patients revealed significantly higher numbers of inflammatory cells (p<0.05). Conjunctival inflammatory cell density showed a negative correlation with tear stability and a positive correlation with vital staining scores and conjunctival injection grades. The extent of conjunctival inflammation assessed by in vivo confocal microscopy showed a strong positive linear correlation with the inflammation status evaluated by brush cytology. The corneal inflammatory cell density assessed by in vivo confocal microscopy showed a significant negative correlation with tear stability and a positive linear correlation with corneal fluorescein staining. Conclusions Confocal scanning laser microscopy is an efficient, noninvasive, and a promising tool for the quantitative assessment of conjunctival inflammation, a parameter of this new technology which correlated well with subjective and objective ocular surface clinical findings. PMID:19693288

  7. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  8. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    NASA Astrophysics Data System (ADS)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  9. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  10. Assessment of deformations in mining areas using the Riegl VZ-400 terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Szwarkowski, Dariusz; Moskal, Magdalena

    2018-04-01

    The article discusses the use of terrestrial laser scanning to assess deformations in mining areas. Using the terrestrial laser scanning Riegl VZ-400, control measurements within the historical location of the underground coal mine in Zabrze were made. Two laser scanning measurements were taken over the course of one year. The research made it possible to determine changes in surface deformation on the shallowly located mining excavations. Differences in the terrain may be due to subsidence associated with the influence of underground mining and pose a threat to the adjacent road infrastructure and structures.

  11. Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Dhingra, Shonali; D'Urso, Brian

    2017-01-01

    Mirror galvanometer systems (galvos) are commonly employed in research and commercial applications in areas involving laser imaging, laser machining, laser-light shows, and others. Here, we present a robust, moderate-speed, and cost-efficient home-built galvo system. The mechanical part of this design consists of one mirror, which is tilted around two axes with multiple surface transducers. We demonstrate the ability of this galvo by scanning the mirror using a computer, via a custom driver circuit. The performance of the galvo, including scan range, noise, linearity, and scan speed, is characterized. As an application, we show that this galvo system can be used in a confocal scanning microscopy system.

  12. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wuu, Cheng-Shie

    2013-02-01

    The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub-millimeter accuracy of the phantom positioning between the reference scan and the actual scan is demonstrated to be essential. The fast scanner is shown to be able to scan gel phantoms with a wider field of view (5 mm from the edge of the scanned dosimeters) and at a speed 10 to 20 times faster than the OCTOPUS™ scanner. A large uncertainty of 5% (defined as the ratio of the standard deviation to the mean) is typically observed in the reconstructed images, owing to the inaccuracy in the phantom positioning process. Methods for further improvement of the accuracy of the in-house modified OCTOPUS™-10× scanner are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less

  14. Application of albumin protein and indocyanine green chromophore for tissue soldering by using an IR diode laser: ex vivo and in vivo studies.

    PubMed

    Khosroshahi, M E; Nourbakhsh, M S; Saremi, S; Hooshyar, A; Rabbani, Sh; Tabatabai, F; Anvari, M Sotudeh

    2010-12-01

    We sought to examine the impact of different parameters of laser soldering on the thermophysical properties of the skin and to optimize these parameters for sealing a full-thickness incision in the rat skin under closed feedback control under in vivo conditions. Laser tissue soldering based on protein as biologic glues and other compounds can provide greater bond strength and less collateral damage. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. In ex vivo study, the temperature increase, number of scan (Ns), and scan velocity (Vs) were investigated. In ex vivo studies, four skin incisions were made over rat dorsa and were closed by using two different methods: (a) wound closure by suture and (b) closure by using an automated temperature-controlled system. An automated soldering system was developed based on a diode laser, IR detector, photodiode, digital thermocouple, and camera. The true temperature of heated tissue was determined by using a calibration software method. The results showed that at each laser irradiance (I), the tensile strength (σ) of incisions repaired in the static mode is higher than in the dynamic mode. It must also be noted that the tensile strength of the repaired skin wound was increased by increasing the irradiance in both static and dynamic modes. However, in parallel, an increase in the corresponding temperature was observed. The tensile strength was measured for sutured and laser-soldered tissue after 2 to 10 postoperative days. Histopathologic studies showed a better healing and less inflammatory reactions than with those caused by standard sutures after day 7. It is demonstrated that automated laser soldering technique can be practical provided the optothermal properties of tissue is carefully optimized.

  15. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  16. Laser beam apparatus and method for analyzing solar cells

    DOEpatents

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  17. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  18. Modeling of biaxial gimbal-less MEMS scanning mirrors

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  19. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  20. Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

    PubMed Central

    Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038

  1. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    PubMed

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  2. D Recording, Modelling and Visualisation of the Fortification Kristiansten in Trondheim (norway) by Photogrammetric Methods and Terrestrial Laser Scanning in the Framework of Erasmus Programmes

    NASA Astrophysics Data System (ADS)

    Kersten, T.; Lindstaedt, M.; Maziull, L.; Schreyer, K.; Tschirschwitz, F.; Holm, K.

    2015-02-01

    In this contribution the 3D recording, 3D modelling and 3D visualisation of the fortification Kristiansten in Trondheim (Norway) by digital photogrammetry and terrestrial laser scanning are presented. The fortification Kristiansten was built after the large city fire in the year 1681 above the city and has been a museum since 1997. The recording of the fortress took place in each case at the end of August/at the beginning of September 2010 and 2011 during two two-week summer schools with the topic "Digital Photogrammetry & Terrestrial Laser Scanning for Cultural Heritage Documentation" at NTNU Trondheim with international students in the context of ERASMUS teaching programs. For data acquisition, a terrestrial laser scanner and digital SLR cameras were used. The establishment of a geodetic 3D network, which was later transformed into the Norwegian UTM coordinate system using control points, ensured a consistent registration of the scans and an orientation of the photogrammetric images. The fortress buildings were constructed in detail from photogrammetric photographs and point clouds using AutoCAD, while the fortress area and walls were modelled by triangle meshing in Geomagic. The visualisation of the fortress was carried out 2013 with the software Cinema 4D in the context of a lecture in the Master study programme Geomatics. The 3D model was textured and afterwards presented in a video. This 3D model was finally transferred into the game engine Unity for an interactive 3D visualisation on 3D monitors.

  3. A shape-based segmentation method for mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen

    2013-07-01

    Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.

  4. Modeling Of A Monocular, Full-Color, Laser-Scanning, Helmet-Mounted Display for Aviator Situational Awareness

    DTIC Science & Technology

    2017-03-27

    USAARL Report No. 2017-10 Modeling of a Monocular, Full -Color, Laser- Scanning, Helmet-Mounted Display for Aviator Situational Awareness By Thomas...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 27-03-2017 Final 2002-2003 Modeling of a Monocular, Full -Color, Laser-Scanning, Helmet...was the idea of modeling HMDs by producing computer imagery for an observer to evaluate the quality of symbology. HMD, ANVIS, HGU-56P, Virtual

  5. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  6. Methods on observation of fluorescence micro-imaging for microalgae

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Zhuang, Hui-ru; Chen, Rong; Lei, Jin-pin; Liao, Xiao-hua; Lin, Wen-suo

    2007-11-01

    Objective: Auto-fluorescence micro-imaging of microalgae are observed by using of laser scanning confocal microscopy (LSCM) and fluorescence microscopy, so as to investigate the effect of auto fluorescence alteration on growth of irradiated microalgae irradiated, meanwhile, the method of microalgae cells stained also to be studied. Methods: Platymonas subcordiformis, Phaeodactylum tricormutum and Isochyrsis zhanjiangensis cells are stained with acridine orange, and observed by fluorescence microscopy; the three types microalgae mentioned above are irradiated by Nd:YAP laser with 10w at 1341nm, irradiating time:12s, 30s, 35s and 55s, than to be cultured 6 days, and the auto fluorescence images and fluorescence spectra of algae cells are obtained by LSCM on lambda scan mode, at excitation 488nm (Ar + laser). Results: It is showed that the shapes and the structural features of microalgae cells stained can be seen clearly, and the cytoplasm and nucleus also can be observed. The chloroplasts in cell is bigger on promoting effects, conversely, it is to be mutilated, deformation and shrink. Contrast to the CK, the peak positions of fluorescence of algae cells irradiated is similar to the whole while the peak light intensity alters. On irradiation of promoting dose, however, the auto fluorescence intensity is enhanced more than control. Conclusions: The method of cell stained can be used to observed genetic material in microalgae. There are obvious effects for laser irradiating to chloroplasts in cells, the bigger chloroplasts the greater fluorescence intensity. Physiological incentive effects of microalgae irradiated can be given expression on fluorescence characteristics and fluorescence intensity alteration of cells.

  7. Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica.

    PubMed

    Hu, Guohang; Zhao, Yuanan; Liu, Xiaofeng; Li, Dawei; Xiao, Qiling; Yi, Kui; Shao, Jianda

    2013-08-01

    A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.

  8. Laser-Bioplasma Interaction: Excitation and Suppression of the Brain Waves by the Multi-photon Pulsed-operated Fiber Lasers in the Ultraviolet Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander; IAPS-team Team

    2017-10-01

    The novel study of the laser excitation-suppression of the brain waves is proposed. It is based on the pulsed-operated multi-photon fiber-laser interaction with the brain parvalbumin (PV) neurons. The repetition frequency matches the low frequency brain waves (5-100 Hz); enabling the resonance-scanning of the wide range of the PV neurons (the generators of the brain wave activity). The tunable fiber laser frequencies are in the ultraviolet frequency range, thus enabling the monitoring of the PV neuron-DNA, within the 10s of milliseconds. In medicine, the method can be used as an ``instantaneous-on-off anesthetic.'' Supported by Nikola Tesla Labs, Stefan University.

  9. Adaptive laser conditioning of reflective thin film based on photo thermal lens probe

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zheng, Yi; Zhang, Qinghua; Pan, Feng; Wei, Yaowei; Wang, Jian; Xu, Qiao

    2017-12-01

    A novel laser conditioning (LC) concept that performs adaptive control of exposure fluence is proposed. As photo-thermal absorption effect can discover defects responsible for laser-induced damage of reflective thin film, in situ photo-thermal lens probe is introduced in conventional LC procedure to detect defects during raster-scanning. The absorptance signal is fed back to guide the adaptive control of exposure fluence. By this method, the damage risk accompanying with LC can be reduced to a rather low level. In order to test the performance of adaptive laser conditioning (ALC), an experimental setup has been built, and several film samples have been tested. The results show that ALC is effective at reducing laser damage risk.

  10. An in-vitro evaluation of the effect of 980 nm diode laser irradiation on intra-canal dentin surface and dentinal tubule openings after biomechanical preparation: Scanning electron microscopic study

    PubMed Central

    Jhingan, Pulkit; Sandhu, Meera; Jindal, Garima; Goel, Deepti; Sachdev, Vinod

    2015-01-01

    Context: Very recently, diode laser has been used for disinfecting the root canals in endodontic treatment and increasing its success rate and longevity utilizing the thermal effect of laser on surrounding tissues. Aims: The aim of this study is to evaluate the effect of 980 nm laser irradiation on intra-canal dentin surface – scanning electron microscopic (SEM) - in-vitro study. Methods: A total of 40 single-rooted freshly extracted permanent teeth were collected. Teeth were sectioned at the cemento-enamel junction using diamond disc. Root canals of all samples were prepared using hand ProTaper, which were randomly assigned into two groups (n = 20 each). Group 1: Receiving no treatment after biomechanical preparation; Group 2: 980 nm diode laser-treated root canals. Teeth were prepared for SEM analysis to check the size of intra-canal dentinal tubule openings. Statistical Analysis Used: Data were analyzed using SPSS V.16 software and compared using Levene's and independent t-test. Results: On statistical analysis, width of intracanal dentinal tubule openings in Group 1 (control) was significantly higher than those observed in Group 2 (diode laser-treated) (P < 0.001). Conclusion: This study showed that the application of 980 nm diode laser on intra-radicular dentin resulted in ultrastructural alterations resulting in melting of dentin. PMID:26097338

  11. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  12. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  13. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    NASA Astrophysics Data System (ADS)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  14. Mobile laser scanning applied to the earth sciences

    USGS Publications Warehouse

    Brooks, Benjamin A.; Glennie, Craig; Hudnut, Kenneth W.; Ericksen, Todd; Hauser, Darren

    2013-01-01

    Lidar (light detection and ranging), a method by which the precise time of flight of emitted pulses of laser energy is measured and converted to distance for reflective targets, has helped scientists make topographic maps of Earth's surface at scales as fine as centimeters. These maps have allowed the discovery and analysis of myriad otherwise unstudied features, such as fault scarps, river channels, and even ancient ruins [Glennie et al., 2013b].

  15. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  16. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  17. Ultrafast-laser dicing of thin silicon wafers: strategies to improve front- and backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Stroj, Sandra; Bodea, Marius; Schwarz, Elisabeth; Fasching, Gernot

    2017-12-01

    Thin 50-µm silicon wafers are used to improve heat dissipation of chips with high power densities. However, mechanical dicing methods cause chipping at the edges of the separated dies that reduce the mechanical stability. Thermal load changes may then lead to sudden chip failure. Recent investigations showed that the mechanical stability of the cut chips could be increased using ultrashort-pulsed lasers, but only at the laser entrance (front) side and not at the exit (back) side. The goal of this study was to find strategies to improve both front- and backside breaking strength of chips that were cut out of an 8″ wafer with power metallization using an ultrafast laser. In a first experiment, chips were cut by scanning the laser beam in single lines across the wafer using varying fluencies and scan speeds. Three-point bending tests of the cut chips were performed to measure front and backside breaking strengths. The results showed that the breaking strength of both sides increased with decreasing accumulated fluence per scan. Maximum breaking strengths of about 1100 MPa were achieved at the front side, but only below 600 MPa were measured for the backside. A second experiment was carried out to optimize the backside breaking strength. Here, parallel line scans to increase the distance between separated dies and step cuts to minimize the effect of decreasing fluence during scribing were performed. Bending tests revealed that breaking strengths of about 1100 MPa could be achieved also on the backside using the step cut. A reason for the superior performance could be found by calculating the fluence absorbed by the sidewalls. The calculations suggested that an optimal fluence level to minimize thermal side effects and periodic surface structures was achieved due to the step cut. Remarkably, the best breaking strengths values achieved in this study were even higher than the values obtained on state of the art ns-laser and mechanical dicing machines. This is the first study to the knowledge of the authors, which demonstrates that ultrafast-laser dicing improves the mechanical stability of thin silicon chips.

  18. Development and applications of optical interferometric micrometrology in the Angstrom and subangstrom range

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Abel, Phillip B.

    1988-01-01

    The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.

  19. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy.

    PubMed

    Meinke, Martina C; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  20. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  1. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    PubMed Central

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  2. Imaging polarimetry of macular disease

    NASA Astrophysics Data System (ADS)

    Miura, Masahiro; Elsner, Ann E.; Petrig, Benno L.; VanNasdale, Dean A.; Zhao, Yanming; Iwasaki, Takuya

    2008-02-01

    Polarization properties of the human eye have long been used to study the tissues of the human retina, as well as to improve retinal imaging, and several new technologies using polarized light are in use or under development. 1-8 The most typical polarimetry technique in ophthalmology clinic is a scanning laser polarimetry for the glaucoma diagnosis. 1,2 In the original conceptualization, the thickness of the retinal nerve fiber layer is estimated using the birefringent component of light returning from the ocular fundus. More recently, customized software to analyze data from scanning laser polarimetry was developed to investigate the polarization properties of the macular disease. 5-8 In this study, we analyzed macular disease with imaging polarimetry, which provides a method for the noninvasive assessment of macular disease.

  3. Creating 3D models of historical buildings using geospatial data

    NASA Astrophysics Data System (ADS)

    Alionescu, Adrian; Bǎlǎ, Alina Corina; Brebu, Floarea Maria; Moscovici, Anca-Maria

    2017-07-01

    Recently, a lot of interest has been shown to understand a real world object by acquiring its 3D images of using laser scanning technology and panoramic images. A realistic impression of geometric 3D data can be generated by draping real colour textures simultaneously captured by a colour camera images. In this context, a new concept of geospatial data acquisition has rapidly revolutionized the method of determining the spatial position of objects, which is based on panoramic images. This article describes an approach that comprises inusing terrestrial laser scanning and panoramic images captured with Trimble V10 Imaging Rover technology to enlarge the details and realism of the geospatial data set, in order to obtain 3D urban plans and virtual reality applications.

  4. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.

    PubMed

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  5. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    PubMed Central

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321

  6. Combined high contrast and wide field of view in the scanning laser ophthalmoscope through dual detection of light paths

    NASA Astrophysics Data System (ADS)

    Carles, Guillem; Muyo, Gonzalo; van Hemert, Jano; Harvey, Andrew R.

    2017-11-01

    We demonstrate a multimode detection system in a scanning laser ophthalmoscope (SLO) that enables simultaneous operation in confocal, indirect, and direct modes to permit an agile trade between image contrast and optical sensitivity across the retinal field of view to optimize the overall imaging performance, enabling increased contrast in very wide-field operation. We demonstrate the method on a wide-field SLO employing a hybrid pinhole at its image plane, to yield a twofold increase in vasculature contrast in the central retina compared to its conventional direct mode while retaining high-quality imaging across a wide field of the retina, of up to 200 deg and 20 μm on-axis resolution.

  7. Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.

  8. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  9. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  10. Advanced optical system for scanning-spot photorefractive keratectomy (PRK)

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo

    1999-06-01

    Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

  11. Laser polishing of additive manufactured Ti alloys

    NASA Astrophysics Data System (ADS)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  12. Scanning laser microscope for imaging nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  13. Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system.

    PubMed

    Tomita, Minoru; Watabe, Miyuki; Yukawa, Satoshi; Nakamura, Nobuo; Nakamura, Tadayuki; Magnago, Thomas

    2014-02-01

    To evaluate the clinical outcomes of laser in situ keratomileusis (LASIK) to correct myopia or myopic astigmatism using the Amaris 750S 750 Hz excimer laser. Private LASIK center, Tokyo, Japan. Case series. Patients with myopia or myopic astigmatism (spherical equivalent -0.50 to -11.63 diopters [D]), a corrected distance visual acuity (CDVA) of 20/20 or better, and an estimated residual bed thickness of 300 μm or more had LASIK using the aspheric aberration-free ablation profile of the 750 Hz scanning-spot laser and the Femto LDV Crystal Line femtosecond laser for flap creation. Study parameters included uncorrected distance visual acuity (UDVA), CDVA, manifest refraction, astigmatism, and higher-order aberrations (HOAs). The study included 1280 eyes (685 patients). At 3 months, 96.6% of eyes had a UDVA of 20/20 or better and 99.1% had 20/32 or better; 94.1% of eyes were within ± 0.50 D of the intended correction and 98.9% were within ± 1.00 D; 89.7% of eyes had no residual cylinder and 96.0% had a postoperative astigmatism of less than 0.50 D. All eyes had a postoperative CDVA of 20/20 or better. The HOAs increased postoperatively (P<.001), with mean total postoperative corneal and ocular HOAs of 0.66 μm ± 0.20 (SD) and 0.56 ± 0.23 μm, respectively. The efficacy index and safety index were 1.02 and 1.06, respectively. Laser in situ keratomileusis with the 750 Hz scanning-spot laser was safe, effective, and predictable. No specific clinical side effects that might be associated with a high repetition rate occurred. Mr. Magnago is an employee of Schwind eye-tech-solutions GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Use of parallel computing in mass processing of laser data

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Bratuś, R.; Prochaska, M.; Rzonca, A.

    2015-12-01

    The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.

  15. A scanning PIV method for fine-scale turbulence measurements

    NASA Astrophysics Data System (ADS)

    Lawson, John M.; Dawson, James R.

    2014-12-01

    A hybrid technique is presented that combines scanning PIV with tomographic reconstruction to make spatially and temporally resolved measurements of the fine-scale motions in turbulent flows. The technique uses one or two high-speed cameras to record particle images as a laser sheet is rapidly traversed across a measurement volume. This is combined with a fast method for tomographic reconstruction of the particle field for use in conjunction with PIV cross-correlation. The method was tested numerically using DNS data and with experiments in a large mixing tank that produces axisymmetric homogeneous turbulence at . A parametric investigation identifies the important parameters for a scanning PIV set-up and provides guidance to the interested experimentalist in achieving the best accuracy. Optimal sheet spacings and thicknesses are reported, and it was found that accurate results could be obtained at quite low scanning speeds. The two-camera method is the most robust to noise, permitting accurate measurements of the velocity gradients and direct determination of the dissipation rate.

  16. Analysis of atmospheric pollutant metals by laser ablation inductively coupled plasma mass spectrometry with a radial line-scan dried-droplet approach

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoxing; Qian, Yuan; Guo, Yanchuan; Wei, Nannan; Li, Yulan; Yao, Jian; Wang, Guanghua; Ma, Jifei; Liu, Wei

    2017-12-01

    A novel method has been improved for analyzing atmospheric pollutant metals (Be, Mn, Fe, Co, Ni, Cu, Zn, Se, Sr, Cd, and Pb) by laser ablation inductively coupled plasma mass spectrometry. In this method, solid standards are prepared by depositing droplets of aqueous standard solutions on the surface of a membrane filter, which is the same type as used for collecting atmospheric pollutant metals. Laser parameters were optimized, and ablation behaviors of the filter discs were studied. The mode of radial line scans across the filter disc was a representative ablation strategy and can avoid error from the inhomogeneous filter standards and marginal effect of the filter disc. Pt, as the internal standard, greatly improved the correlation coefficient of the calibration curve. The developed method provides low detection limits, from 0.01 ng m- 3 for Be and Co to 1.92 ng m- 3 for Fe. It was successfully applied for the determination of atmospheric pollutant metals collected in Lhasa, China. The analytical results showed good agreement with those obtained by conventional liquid analysis. In contrast to the conventional acid digestion procedure, the novel method not only greatly reduces sample preparation and shortens the analysis time but also provides a possible means for studying the spatial distribution of atmospheric filter samples.

  17. A new linear structured light module based on the MEMS micromirror

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Shen, Wenjiang; Yu, Huijun

    2017-10-01

    A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.

  18. Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreeja, V. G.; Reshmi, R.; Devasia, Sebin

    In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and –C-H groups. The synthesized sample has goodmore » crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532 nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.« less

  19. Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization Cost Savings

    DTIC Science & Technology

    2016-01-30

    SPONSORED REPORT SERIES Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative...Report Series Make or Buy: An Analysis of the Impacts of 3D Printing Operations, 3D Laser Scanning Technology, and Collaborative Product Lifecycle...Application Areas for 3D Printing ........................................................ 36 Figure 15. Potential Applications of 3D

  20. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates.

    PubMed

    Spencer, Austin P; Hill, Robert J; Peters, William K; Baranov, Dmitry; Cho, Byungmoon; Huerta-Viga, Adriana; Carollo, Alexa R; Curtis, Anna C; Jonas, David M

    2017-06-01

    In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 μm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

  1. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    NASA Astrophysics Data System (ADS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  2. Rapid age determination of oysters using LA-ICP-MS line scans of shell Mg/Ca ratios

    NASA Astrophysics Data System (ADS)

    Gillikin, D. P.; Durham, S. R.; Goodwin, D. H.

    2016-02-01

    Magnesium to calcium (Mg/Ca) ratios exhibit a strong temperature dependence in foraminifera and corals, but not in bivalve mollusks. Various studies have reported Mg/Ca-temperature relationships with R2 values ranging from 0.3 to 0.8 and significantly different relationships for bivalves growing at different salinities. However, this poor temperature correlation does not render Mg/Ca data useless. A weak temperature dependence would allow time (seasons and years) to be determined along the growth axis of shells. This would provide information about age, growth rate and also allow other proxies to be aligned with time. Typically, oxygen isotopes (δ18O) are used to age shells without clear periodic growth lines, which is time consuming and expensive. Line scans using laser ablation systems can cover several centimeters of shell in a few minutes. We test this method on the resilifer of two oyster species (Crassostrea gigas and C. virginica) using a 193 nm Laser-Ablation-ICP-MS. Living oysters were collected from San Francisco Bay, North Carolina, South Carolina, and the Gulf of Mexico; fossil shells (Pleistocene) were also collected in South Carolina. Shells were sampled for δ18O values and Mg/Ca ratios. We use annual cycles in δ18O values to confidently determine age, then apply the Mg/Ca technique. Shells of both species exhibit annual cyclicity in Mg/Ca ratios using spot and line scan laser sampling, which matche the seasonal cyclicity determined using δ18O values. Results show a good correlation between ages determined using the different methods. We conclude that LA-ICP-MS line scans offer a rapid and inexpensive technique for determining age, growth rate, and timing of shell growth in oyster reslifers.

  3. Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures

    NASA Astrophysics Data System (ADS)

    Lenda, Grzegorz; Uznański, Andrzej; Strach, Michał; Lewińska, Paulina

    2016-06-01

    The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.

  4. Laser scanning cytometry as a tool for biomarker validation

    NASA Astrophysics Data System (ADS)

    Mittag, Anja; Füldner, Christiane; Lehmann, Jörg; Tarnok, Attila

    2013-03-01

    Biomarkers are essential for diagnosis, prognosis, and therapy. As diverse is the range of diseases the broad is the range of biomarkers and the material used for analysis. Whereas body fluids can be relatively easily obtained and analyzed, the investigation of tissue is in most cases more complicated. The same applies for the screening and the evaluation of new biomarkers and the estimation of the binding of biomarkers found in animal models which need to be transferred into applications in humans. The latter in particular is difficult if it recognizes proteins or cells in tissue. A better way to find suitable cellular biomarkers for immunoscintigraphy or PET analyses may be therefore the in situ analysis of the cells in the respective tissue. In this study we present a method for biomarker validation using Laser Scanning Cytometry which allows the emulation of future in vivo analysis. The biomarker validation is exemplarily shown for rheumatoid arthritis (RA) on synovial membrane. Cryosections were scanned and analyzed by phantom contouring. Adequate statistical methods allowed the identification of suitable markers and combinations. The fluorescence analysis of the phantoms allowed the discrimination between synovial membrane of RA patients and non-RA control sections by using median fluorescence intensity and the "affected area". As intensity and area are relevant parameters of in vivo imaging (e.g. PET scan) too, the presented method allows emulation of a probable outcome of in vivo imaging, i.e. the binding of the target protein and hence, the validation of the potential of the respective biomarker.

  5. Optimal lens design and use in laser-scanning microscopy

    PubMed Central

    Negrean, Adrian; Mansvelder, Huibert D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of superior quality that fully make use of high-NA low-magnification objectives, offering diffraction-limited imaging over a large FOV and wavelength range. We constructed a two-photon laser-scanning microscope with optimized custom lenses which had a near diffraction limit point-spread-function (PSF) with less than 3.6% variation over a 400 µm FOV and less than 0.5 µm lateral color between 750 and 1050 nm. PMID:24877017

  6. Scanned-wavelength diode laser sensors for harsh environments

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Sanders, Scott T.; Zhou, Xin; Ma, Lin; Mattison, Daniel W.; Hanson, Ronald K.

    2002-09-01

    Diode laser absorption offers the possibility of high-speed, robust, and rugged sensors for a wide variety of practical applications. Pressure broadening complicates absorption measurements of gas temperature and species concentrations in high-pressure, high-temperature practical environments. More agile wavelength scanning can enable measurements of temperature and species concentrations in flames and engines as demonstrated by example measurements using wavelength scanning of a single DFB in laboratory flames or a vertical cavity surface emitting laser (VCSEL) in a pulse detonation engine environment. Although the blending of multiple transitions by pressure broadening complicates the atmospheric pressure spectrum of C2H4 fuel, a scanned wavelength strategy enables quantitative measurement of fuel/oxidizer stoichiometry. Wavelength-agile scanning techniques enable high-speed measurements in these harsh environments.

  7. Monitoring tree health with a dual-wavelength terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hancock, S.

    2013-12-01

    Steven Hancock1, Rachel Gaulton1, Mark Danson2 1School of Civil Engineering and Geosciences, Newcastle University, UK, steven.hancock@ncl.ac.uk, rachel.gaulton@ncl.ac.uk 2 School of Environment and Life Sciences, University of Salford, UK, F.M.Danson@salford.ac.uk Forests are a vital part of the Earth's carbon cycle and drive interactions between the land and atmosphere. Accurate and repeatable measurement of forests is essential for understanding the Earth system. Terrestrial laser scanning can be a powerful tool for characterising forests. However, there are a number of issues that have yet to be resolved. Commercial laser scanners are optimised for measuring buildings and other hard targets. Vegetation canopies are complex and porous, confounding standard interpretation techniques. Commercial systems struggle with partial hits and cannot distinguish leaf from wood (Danson et al 2007). A new generation of terrestrial laser scanners, optimised for vegetation measurement, are in development. The Salford Advanced Laser Canopy Analyser (SALCA, Gaulton et al 2013) aims to overcome these issues using full-waveform analysis and two wavelengths (1064 nm and 1545 nm), allowing the characterisation of a porous canopy, the identification of leaf and wood and derivation of information on leaf biochemistry. Gaulton et al (2013) showed that SALCA is capable of measuring the Equivalent Water Thickness (EWT) of individual leaves in laboratory conditions. In this study, the method was applied to complete tree canopies. A controlled experiment simulating a small 'forest' of potted broadleaved (Tilia cordata) and coniferous trees (Pinus nigra) was established and groups subjected to different moisture stresses over a one month period. Trees were repeatedly scanned by SALCA and regular measurements were made of leaf EWT, stomatal conductance, chlorophyll content, spectral properties (using an ASD field spectroradiometer) and, for a limited number of trees, leaf area (by destructive harvesting). Trees were arranged so that some were clearly visible to the scanner and could be analysed individually (a best case scenario) whilst others were grouped to form a denser, more realistic canopy (a worse case scenario). A method was developed to simultaneously extract canopy structure (leaf area, tree height and clumping) and leaf biochemistry (EWT) from the laser scanner data. These results were compared to ground to assess their accuracy. References Danson, F. M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2007. Forest canopy gap fraction from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 4, 157-160. Gaulton R., Danson F. M., Ramirez F. A., Gunawan O., 2013. The potential of dual-wavelength laser scanning for estimating vegetation moisture content. Remote Sensing of Environment, 132, 32-39.

  8. Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation

    NASA Astrophysics Data System (ADS)

    Sanders, Scott Thomas; Mattison, Daniel W.; Ma, Lin; Jeffries, Jay B.; Hanson, Ronald K.

    2002-06-01

    The rapid, broad wavelength scanning capabilities of advanced diode lasers allow extension of traditional diode-laser absorption techniques to high pressure, transient, and generally hostile environments. Here, we demonstrate this extension by applying a vertical cavity surface-emitting laser (VCSEL) to monitor gas temperature and pressure in a pulse detonation engine (PDE). Using aggressive injection current modulation, the VCSEL is scanned through a 10 cm-1 spectral window at megahertz rates roughly 10 times the scanning range and 1000 times the scanning rate of a conventional diode laser. The VCSEL probes absorption lineshapes of the ~ 852 nm D2 transition of atomic Cs, seeded at ~ 5 ppm into the feedstock gases of a PDE. Using these lineshapes, detonated-gas temperature and pressure histories, spanning 2000 4000 K and 0.5 30 atm, respectively, are recorded with microsecond time response. The increasing availability of wavelength-agile diode lasers should support the development of similar sensors for other harsh flows, using other absorbers such as native H2O.

  9. An improved scan laser with a VO2 programmable mirror

    NASA Astrophysics Data System (ADS)

    Chivian, J. S.; Scott, M. W.; Case, W. E.; Krasutsky, N. J.

    1985-04-01

    A 10.6-microns scan laser has been constructed and operated with an off-axis cathode ray tube, high reflectance multilayer thin-film structures, and a tapered plasma discharge tube. Equations are given for the switching time of a high-reflectance spot on the VO2 and for the relation of scan laser output power to cavity geometry, cavity losses, and the gain of the active CO2 medium. A scan capability of 2100 easily resolvable directions was demonstrated, and sequential and randomly addressed spot rates of 100,000/sec were achieved. The equations relating output power and cavity mode size were experimentally verified using a nonscanned beam.

  10. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  11. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  12. Methods and apparatus for laser beam scanners with different actuating mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  13. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  14. Correlation of a scanning laser derived oedema index and visual function following grid laser treatment for diabetic macular oedema.

    PubMed

    Hudson, C; Flanagan, J G; Turner, G S; Chen, H C; Young, L B; McLeod, D

    2003-04-01

    To correlate change of an oedema index derived by scanning laser tomography with change of visual function in patients undergoing grid laser photocoagulation for clinically significant diabetic macular oedema (DMO). The sample comprised 24 diabetic patients with retinal thickening within 500 micro m of the fovea. Inclusion criteria included a logMAR visual acuity of 0.25, or better. Patients were assessed twice before a single session of grid laser treatment and within 1 week of, and at 1, 2, 4, and 12 weeks after, treatment. At each visit, patients underwent logMAR visual acuity, conventional and short wavelength automated perimetry (SWAP), and scanning laser tomography. Each visual function parameter was correlated with the mean oedema index. The mean oedema index represented the z-profile signal width divided by the maximum reflectance intensity (arbitrary units). A Pearson correlation coefficient (Bonferroni corrected) was undertaken on the data set of each patient. 13 patients exhibited significant correlation of the mean oedema index and at least one measure of visual function for the 10 degrees x 10 degrees scan field while 10 patients correlated for the 20 degrees x 20 degrees scan field. Seven patients demonstrated correlation for both scan fields. Laser photocoagulation typically resulted in an immediate loss of perimetric sensitivity whereas the oedema index changed over a period of weeks. Localised oedema did not impact upon visual acuity or letter contrast sensitivity when situated extrafoveally. Correlation of change of the oedema index and of visual function following grid laser photocoagulation was not found in all patients. An absence of correlation can be explained by the localised distribution of DMO in this sample of patients, as well as by differences in the time course of change of the oedema index and visual function. The study has objectively documented change in the magnitude and distribution of DMO following grid laser treatment and has established the relation of this change to the change in visual function.

  15. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  16. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  17. Nano-material processing with laser radiation in the near field of a scanning probe tip

    NASA Astrophysics Data System (ADS)

    Jersch, J.; Demming, F.; Hildenhagen, J.; Dickmann, K.

    1998-04-01

    We report preliminary results of using a scanning probe microscope/laser combination to perform nanostructuring on insulator and metal surfaces in air. This technique enables processing of structures with a lateral resolution of approximately 10 nm. In this paper we present our last structuring results with both scanning tunnelling and scanning force microscopy. Some possible interaction mechanisms responsible for the structuring will be discussed.

  18. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  19. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions.

    PubMed

    Ryan, Robert W; Wolf, Tamir; Spetzler, Robert F; Coons, Stephen W; Fink, Yoel; Preul, Mark C

    2010-02-01

    The CO(2) laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO(2) laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO(2) laser fiber to conventional methods for incising neural tissue. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO(2) energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. The photonic bandgap fiber CO(2) laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.

  20. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    NASA Astrophysics Data System (ADS)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

Top