Speckle reduction in laser projection using a dynamic deformable mirror.
Tran, Thi-Kim-Trinh; Chen, Xuyuan; Svensen, Øyvind; Akram, Muhammad Nadeem
2014-05-05
Despite of much effort and significant progress in recent years, speckle removal is still a challenge for laser projection technology. In this paper, speckle reduction by dynamic deformable mirror was investigated. Time varying independent speckle patterns were generated due to the angle diversity introduced by the dynamic mirror, and these speckle patterns were averaged out by the camera or human eyes, thus reducing speckle contrast in the final image. The speckle reduction by the wavelength diversity of the lasers was also studied. Both broadband lasers and narrowband laser were used for experiment. It is experimentally shown that speckle suppression can be attained by the widening of the spectrum of the lasers. Lower speckle contrast reduction was attained by the wavelength diversity for narrowband laser compared to the broadband lasers. This method of speckle reduction is suitable in laser projectors for wide screen applications where high power laser illumination is needed.
Understanding the exposure-time effect on speckle contrast measurements for laser displays
NASA Astrophysics Data System (ADS)
Suzuki, Koji; Kubota, Shigeo
2018-02-01
To evaluate the influence of exposure time on speckle noise for laser displays, speckle contrast measurement method was developed observable at a human eye response time using a high-sensitivity camera which has a signal multiplying function. The nonlinearity of camera light sensitivity was calibrated to measure accurate speckle contrasts, and the measuring lower limit noise of speckle contrast was improved by applying spatial-frequency low pass filter to the captured images. Three commercially available laser displays were measured over a wide range of exposure times from tens of milliseconds to several seconds without adjusting the brightness of laser displays. The speckle contrast of raster-scanned mobile projector without any speckle-reduction device was nearly constant over various exposure times. On the contrary to this, in full-frame projection type laser displays equipped with a temporally-averaging speckle-reduction device, some of their speckle contrasts close to the lower limits noise were slightly increased at the shorter exposure time due to the noise. As a result, the exposure-time effect of speckle contrast could not be observed in our measurements, although it is more reasonable to think that the speckle contrasts of laser displays, which are equipped with the temporally-averaging speckle-reduction device, are dependent on the exposure time. This discrepancy may be attributed to the underestimation of temporal averaging factor. We expected that this method is useful for evaluating various laser displays and clarify the relationship between the speckle noise and the exposure time for a further verification of speckle reduction.
Speckle reduction methods in laser-based picture projectors
NASA Astrophysics Data System (ADS)
Akram, M. Nadeem; Chen, Xuyuan
2016-02-01
Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.
Barsky, V E; Lysov, Yu P; Yegorov, E E; Yurasov, D A; Mamaev, D D; Yurasov, R A; Cherepanov, A V; Chudinov, A V; Smoldovskaya, O V; Arefieva, A S; Rubina, A Yu; Zasedatelev, A S
2015-01-01
The aim of this work was to compare different speckle reduction techniques. It was shown that the use of devices based on liquid crystals only leads to partial reduction of speckle contrast. In quantitative luminescent microscopy an application of the mechanical devices when a laser beam is spread within the field of view turned out to be more efficient. Laser speckle noise was virtually eliminated with the developed and manufactured mechanical device comprising a fiber optic ring light guide and the vibrator that permits movement of optical fiber ends towards the laser diode during measurements. The method developed for the analysis of microarrays was successfully applied to the problem of speckle reduction.
Visual based laser speckle pattern recognition method for structural health monitoring
NASA Astrophysics Data System (ADS)
Park, Kyeongtaek; Torbol, Marco
2017-04-01
This study performed the system identification of a target structure by analyzing the laser speckle pattern taken by a camera. The laser speckle pattern is generated by the diffuse reflection of the laser beam on a rough surface of the target structure. The camera, equipped with a red filter, records the scattered speckle particles of the laser light in real time and the raw speckle image of the pixel data is fed to the graphic processing unit (GPU) in the system. The algorithm for laser speckle contrast analysis (LASCA) computes: the laser speckle contrast images and the laser speckle flow images. The k-mean clustering algorithm is used to classify the pixels in each frame and the clusters' centroids, which function as virtual sensors, track the displacement between different frames in time domain. The fast Fourier transform (FFT) and the frequency domain decomposition (FDD) compute the modal properties of the structure: natural frequencies and damping ratios. This study takes advantage of the large scale computational capability of GPU. The algorithm is written in Compute Unifies Device Architecture (CUDA C) that allows the processing of speckle images in real time.
Abou Nader, Christelle; Loutfi, Hadi; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Lteif, Roger; Abboud, Marie
2017-01-01
In this paper, we report measurements of wine viscosity, correlated to polarized laser speckle results. Experiments were performed on white wine samples produced with a single grape variety. Effects of the wine making cellar, the grape variety, and the vintage on wine Brix degree, alcohol content, viscosity, and speckle parameters are considered. We show that speckle parameters, namely, spatial contrast and speckle decorrelation time, as well as the inertia moment extracted from the temporal history speckle pattern, are mainly affected by the alcohol and sugar content and hence the wine viscosity. Principal component analysis revealed a high correlation between laser speckle results on the one hand and viscosity and Brix degree values on the other. As speckle analysis proved to be an efficient method of measuring the variation of the viscosity of white mono-variety wine, one can therefore consider it as an alternative method to wine sensory analysis. PMID:29027936
Nader, Christelle Abou; Loutfi, Hadi; Pellen, Fabrice; Jeune, Bernard Le; Le Brun, Guy; Lteif, Roger; Abboud, Marie
2017-10-13
In this paper, we report measurements of wine viscosity, correlated to polarized laser speckle results. Experiments were performed on white wine samples produced with a single grape variety. Effects of the wine making cellar, the grape variety, and the vintage on wine Brix degree, alcohol content, viscosity, and speckle parameters are considered. We show that speckle parameters, namely, spatial contrast and speckle decorrelation time, as well as the inertia moment extracted from the temporal history speckle pattern, are mainly affected by the alcohol and sugar content and hence the wine viscosity. Principal component analysis revealed a high correlation between laser speckle results on the one hand and viscosity and Brix degree values on the other. As speckle analysis proved to be an efficient method of measuring the variation of the viscosity of white mono-variety wine, one can therefore consider it as an alternative method to wine sensory analysis.
Xu, Mei-fang; Gao, Wen-hong; Shi, Yun-bo; Wang, Hao-quan; Du, Bin-bin
2014-06-01
Speckle suppression has been the research focus in laser display technology. In the present paper, the relation between multiple scattering and the size of speckle grains is established by analyzing the properties of speckle generated by the laser beam through SiO2 suspension. Combined with dynamic light scattering theory, laser speckle suppression due to dynamic multiple scattering scheme introduced by oblique incidence is proposed. A speckle suppression element consists of a static diffuser and a light pipe containing the water suspension of SiO2 microspheres with a diameter of 300 nm and a molar concentration of 3.0 x 10(-4) μm3, which is integrated with the laser display system. The laser beam with different incident angles into the SiO2 suspension affecting the contrast of the speckle images is analyzed by the experiments. The results demonstrate that the contrast of the speckle image can be reduced to 0.067 from 0.43 when the beam with the incident angle of approximately 8 degrees illuminates into the SiO2 suspension. The spatial average of speckle granules and the temporal average of speckle images were achieved by the proposed method, which improved the effect of speckle suppression. The proposed element for speckle suppression improved the reliability and reduced the cost of laser projection system, since no mechanical vibration is needed and it is convenient to integrate the element with the existing projection system.
Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling; ...
2016-03-02
Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling
Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.
Two-Dimensional Laser-Speckle Surface-Strain Gauge
NASA Technical Reports Server (NTRS)
Barranger, John P.; Lant, Christian
1992-01-01
Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.
Human speckle perception threshold for still images from a laser projection system.
Roelandt, Stijn; Meuret, Youri; Jacobs, An; Willaert, Koen; Janssens, Peter; Thienpont, Hugo; Verschaffelt, Guy
2014-10-06
We study the perception of speckle by human observers in a laser projector based on a 40 persons survey. The speckle contrast is first objectively measured making use of a well-defined speckle measurement method. We statistically analyse the results of the user quality scores, revealing that the speckle perception is not only influenced by the speckle contrast settings of the projector, but it is also strongly influenced by the type of image shown. Based on the survey, we derive a speckle contrast threshold for which speckle can be seen, and separately we investigate a speckle disturbance limit that is tolerated by the majority of test persons.
Prediction of venous wound healing with laser speckle imaging.
van Vuuren, Timme Maj; Van Zandvoort, Carina; Doganci, Suat; Zwiers, Ineke; tenCate-Hoek, Arina J; Kurstjens, Ralph Lm; Wittens, Cees Ha
2017-12-01
Introduction Laser speckle imaging is used for noninvasive assessment of blood flow of cutaneous wounds. The aim of this study was to assess if laser speckle imaging can be used as a predictor of venous ulcer healing. Methods After generating the flux speckle images, three regions of interest (ROI) were identified to measure the flow. Sensitivity, specificity, negative predictive value, and positive predictive value for ulcer healing were calculated. Results In total, 17 limbs were included. A sensitivity of 92.3%, specificity of 75.0%, PPV of 80.0%, and NPV 75.0% were found in predicting wound healing based on laser speckle images. Mean flux values were lowest in the center (ROI I) and showed an increase at the wound edge (ROI II, p = 0.03). Conclusion Laser speckle imaging shows acceptable sensitivity and specificity rates in predicting venous ulcer healing. The wound edge proved to be the best probability for the prediction of wound healing.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
Speckle photography during dynamic impact of an energetic material using laser-induced fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay, B.W.; Laabs, G.W.; Henson, B.F.
1997-08-01
Laser and white light speckle photography have been used to observe surface displacement in a number of materials and over a varied range of strain rates. However, each suffers from limitations. We have developed a novel application of speckle photography in very difficult environments by using laser-induced fluorescence to generate the speckle pattern. This permits confinement of the free surface without undue degradation of the correlation upon which speckle methods are based. We have applied this method to measure the surface displacement of a reactive material during dynamic deformation at moderate strain rates. Conventional methods were tried but were unsuccessful,more » necessitating a novel approach. To the best of our knowledge, neither high-speed laser nor white light speckle photography has been performed using energetic materials. These measurements are very difficult because of the low material strength (yield strength {approximately}8{endash}80 MPa), and because significant out-of-plane motion and surface disruption occur during fracture, and early during the deformation process. We report results from experiments in which these major problems have been overcome. {copyright} {ital 1997 American Institute of Physics.}« less
The Study Of Optometry Apparatus Of Laser Speckles
NASA Astrophysics Data System (ADS)
Bao-cheng, Wang; Kun, Yao; Xiu-qing, Wu; Chang-ying, Long; Jia-qi, Shi; Shi-zhong, Shi
1988-01-01
Based on the regularity of laser speckles movement the method of exam the uncorrected eyes is determined. The apparatus with micro-computer and optical transformation is made. Its practical function is excellent.
Speckle perception and disturbance limit in laser based projectors
NASA Astrophysics Data System (ADS)
Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo
2016-04-01
We investigate the level of speckle that can be tolerated in a laser cinema projector. For this purpose, we equipped a movie theatre room with a prototype laser projector. A group of 186 participants was gathered to evaluate the speckle perception of several, short movie trailers in a subjective `Quality of Experience' experiment. This study is important as the introduction of lasers in projection systems has been hampered by the presence of speckle in projected images. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. As is also discussed in [Verschaffelt et al., Scientific Reports 5, art. nr. 14105, 2015] we find that, for moving images, the speckle becomes disturbing if the speckle contrast becomes larger than 6.9% for the red, 6.0% for the green, and 4.8% for the blue primary colors of the projector, whereas for still images the speckle detection threshold is about 3%. As we could not independently tune the speckle contrast of each of the primary colors, this speckle disturbance limit seems to be determined by the 6.9% speckle contrast of the red color as this primary color contains the largest amount of speckle. The speckle disturbance limit for movies thus turns out to be substantially larger than that for still images, and hence is easier to attain.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Wang, Junlan; Wu, Xiaoping; Williams, Fred W.; Schmidt, Richard J.
1997-12-01
Based on multi-scattering speckle theory, the speckle fields generated by plant specimens irradiated by laser light have been studied using a pointwise method. In addition, a whole-field method has been developed with which entire botanical specimens may be studied. Results are reported from measurements made on tomato and apple fruits, orange peel, leaves of tobacco seedlings, leaves of shihu seedlings (a Chinese medicinal herb), soy-bean sprouts, and leaves from an unidentified trailing houseplant. Although differences where observed in the temporal fluctuations of speckles that could be ascribed to differences in age and vitality, the growing tip of the bean sprout and the shihu seedling both generated virtually stationary speckles such as were observed from boiled orange peel and from localised heat-damaged regions on apple fruit. Our results suggest that both the identity of the botanical specimen and the site at which measurements are taken are likely to critically affect the observation or otherwise of temporal fluctuations of laser speckles.
NASA Astrophysics Data System (ADS)
Ulianova, Onega; Moiseeva, Yulia; Filonova, Nadezhda; Subbotina, Irina; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Principles of two-cascaded laser speckle-microscopy prospect for application to express diagnostics of chlamydial infection are developed. Prototype of two-cascaded speckle-microscope is designed and tested. Specific case of illumination of bacterial cells by dynamic speckles is considered. Express method of detection of epithelial cells, containing defects, which are caused by Chlamydia trachomatis bacteria, is suggested. Results of improved recognition of C. trachomatis bacteria are discussed.
NASA Astrophysics Data System (ADS)
Andreev, A. L.; Kompanets, I. N.; Minchenko, M. V.; Pozhidaev, E. P.; Andreeva, T. B.
2008-12-01
A simple method for suppressing speckles in images produced by laser projectors is proposed. The coherence of the laser beam and, therefore, speckles can be destroyed when the beam passes through an electrooptical cell in which a special ferroelectric liquid crystal is used as a modulating medium. The effect is achieved due to the spatially inhomogeneous phase modulation of light when specially shaped bipolar electric pulses are applied to the cell.
Speckle disturbance limit in laser-based cinema projection systems
Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo
2015-01-01
In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain. PMID:26370531
Speckle disturbance limit in laser-based cinema projection systems.
Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo
2015-09-15
In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.
Speckle disturbance limit in laser-based cinema projection systems
NASA Astrophysics Data System (ADS)
Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo
2015-09-01
In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.
Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.
2015-09-01
We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.
Speckle reduction in laser projection displays through angle and wavelength diversity.
Tran, Trinh-Thi-Kim; Svensen, Øyvind; Chen, Xuyuan; Akram, Muhammad Nadeem
2016-02-20
Speckle is the main obstacle for the use of laser light sources in projection technology. This paper focuses on speckle suppression by the reduction of temporal coherence which is provided by the broadband laser light. The investigation of the effect of laser spectrum width and multiple lasers on speckle contrast is discussed. A broader spectrum width of the laser light is attained by the use of multiple semiconductor laser diodes of the broad area type. Measurements of speckle contrast with and without angle diversity are performed for two and four laser diodes. The measurement of speckle contrast for a single laser diode is also presented for comparison. The experimental results show that multiple laser diodes provide lower speckle contrast as compared to a single laser diode. In addition, it is also shown in this paper that the wavelength distribution of independent laser diodes has an effect on speckle contrast. Two different types of blue laser diodes, Nichia NUB802T and Nichia NUB801E, which have slightly different central wavelengths, were used for the measurements. Four laser diodes with a combination of two types of laser diodes offer better speckle contrast reduction than four laser diodes of the same type due to an effective broader spectrum. Additional speckle contrast reduction is achieved through the angle diversity by using a dynamic deformable mirror.
Yamada, Hirotaka; Moriyasu, Kengo; Sato, Hiroto; Hatanaka, Hidekazu
2017-12-11
The speckle reduction for laser projectors has been vigorously studied because speckle causes a serious deterioration in image quality. Most speckle reduction methods can be categorized into wavelength diversity, angular diversity and polarization diversity, which are usually treated independently. In this paper, it is shown that the effect of wavelength diversity and angular diversity on speckle reduction is not independent, and that the effect of wavelength also depends on incidence and observation angles on screen. The speckle reduction effect by wavelength diversity is smaller when the angular diversity is larger. Also, the speckle reduction effect is investigated on various screens including matte and silver screens, and it is shown that the effect of wavelength diversity is larger on matte screen than on silver screen.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina
2018-04-01
Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.
Elastic and plastic strain measurement in high temperature environment using laser speckle
NASA Technical Reports Server (NTRS)
Chiang, Fu-Pen
1992-01-01
Two laser speckle methods are described to measure strain in high temperature environment and thermal strain caused by high temperature. Both are non-contact, non-destructive and remote sensing techniques that can be automated. The methods have different but overlapping ranges of application with one being more suitable for large plastic deformation.
Youssef, Doaa; El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-06-28
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick's texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm.
El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-01-01
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick’s texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm. PMID:28773080
Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa
NASA Astrophysics Data System (ADS)
Sendra, H.; Murialdo, S.; Passoni, L.
2007-11-01
This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon.
Digital Correlation In Laser-Speckle Velocimetry
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Mathys, Donald R.
1992-01-01
Periodic recording helps to eliminate spurious results. Improved digital-correlation process extracts velocity field of two-dimensional flow from laser-speckle images of seed particles distributed sparsely in flow. Method which involves digital correlation of images recorded at unequal intervals, completely automated and has potential to be fastest yet.
Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.
Van Zandt, Noah R; Spencer, Mark F; Steinbock, Michael J; Anderson, Brian M; Hyde, Milo W; Fiorino, Steven T
2018-05-20
Polychromatic laser light can reduce speckle noise in many wavefront-sensing and imaging applications. To help quantify the achievable reduction in speckle noise, this study investigates the accuracy of three polychromatic wave-optics models under the specific conditions of an unresolved object. Because existing theory assumes a well-resolved object, laboratory experiments are used to evaluate model accuracy. The three models use Monte-Carlo averaging, depth slicing, and spectral slicing, respectively, to simulate the laser-object interaction. The experiments involve spoiling the temporal coherence of laser light via a fiber-based, electro-optic modulator. After the light scatters off of the rough object, speckle statistics are measured. The Monte-Carlo method is found to be highly inaccurate, while depth-slicing error peaks at 7.8% but is generally much lower in comparison. The spectral-slicing method is the most accurate, always producing results within the error bounds of the experiment.
Design and Validation of an Infrared Badal Optometer for Laser Speckle (IBOLS)
Teel, Danielle F. W.; Copland, R. James; Jacobs, Robert J.; Wells, Thad; Neal, Daniel R.; Thibos, Larry N.
2009-01-01
Purpose To validate the design of an infrared wavefront aberrometer with a Badal optometer employing the principle of laser speckle generated by a spinning disk and infrared light. The instrument was designed for subjective meridional refraction in infrared light by human patients. Methods Validation employed a model eye with known refractive error determined with an objective infrared wavefront aberrometer. The model eye was used to produce a speckle pattern on an artificial retina with controlled amounts of ametropia introduced with auxiliary ophthalmic lenses. A human observer performed the psychophysical task of observing the speckle pattern (with the aid of a video camera sensitive to infrared radiation) formed on the artificial retina. Refraction was performed by adjusting the vergence of incident light with the Badal optometer to nullify the motion of laser speckle. Validation of the method was performed for different levels of spherical ametropia and for various configurations of an astigmatic model eye. Results Subjective measurements of meridional refractive error over the range −4D to + 4D agreed with astigmatic refractive errors predicted by the power of the model eye in the meridian of motion of the spinning disk. Conclusions Use of a Badal optometer to control laser speckle is a valid method for determining subjective refractive error at infrared wavelengths. Such an instrument will be useful for comparing objective measures of refractive error obtained for the human eye with autorefractors and wavefront aberrometers that employ infrared radiation. PMID:18772719
MATLAB for laser speckle contrast analysis (LASCA): a practice-based approach
NASA Astrophysics Data System (ADS)
Postnikov, Eugene B.; Tsoy, Maria O.; Postnov, Dmitry E.
2018-04-01
Laser Speckle Contrast Analysis (LASCA) is one of the most powerful modern methods for revealing blood dynamics. The experimental design and theory for this method are well established, and the computational recipie is often regarded to be trivial. However, the achieved performance and spatial resolution may considerable differ for different implementations. We comprise a minireview of known approaches to the spatial laser speckle contrast data processing and their realization in MATLAB code providing an explicit correspondence to the mathematical representation, a discussion of available implementations. We also present the algorithm based on the 2D Haar wavelet transform, also supplied with the program code. This new method provides an opportunity to introduce horizontal, vertical and diagonal speckle contrasts; it may be used for processing highly anisotropic images of vascular trees. We provide the comparative analysis of the accuracy of vascular pattern detection and the processing times with a special attention to details of the used MATLAB procedures.
High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera
Dragojević, Tanja; Bronzi, Danilo; Varma, Hari M.; Valdes, Claudia P.; Castellvi, Clara; Villa, Federica; Tosi, Alberto; Justicia, Carles; Zappa, Franco; Durduran, Turgut
2015-01-01
Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions. PMID:26309751
Methods to Enhance Laser Speckle Imaging of High-Flow and Low-Flow Vasculature
Choi, Bernard; Ringold, Tyson L.; Kim, Jeehyun
2012-01-01
The objective of this paper is to present two methods to extend the response range of laser speckle imaging (LSI). We report on the use of two methods (image exposure time control and magnetomotive actuation of exogenous contrast agents) to enhance characterization of high- and low-flow vasculature, respectively. With an exposure time of 10 and 0.01 ms, the linear response range extended to 10 and 280 mm/s, respectively. With application of an AC magnetic field to a solution of stagnant SPIO particles, an apparent increase of ~3× in speckle flow index was induced. PMID:19964103
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, Adel K. (Inventor)
2000-01-01
The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
NASA Technical Reports Server (NTRS)
Chien, C. H.; Swinson, W. F.; Turner, J. L.; Moslehy, F. A.; Ranson, W. F.
1980-01-01
A method for measuring in-plane displacement of a rotating structure by using two laser speckle photographs is described. From the displacement measurements one can calculate strains and stresses due to a centrifugal load. This technique involves making separate speckle photographs of a test model. One photograph is made with the model loaded (model is rotating); the second photograph is made with no load on the model (model is stationary). A sandwich is constructed from the two speckle photographs and data are recovered in a manner similar to that used with conventional speckle photography. The basic theory, experimental procedures of this method, and data analysis of a simple rotating specimen are described. In addition the measurement of in-plane surface displacement components of a deformed solid, and the application of the coupled laser speckle interferometry and boundary-integral solution technique to two dimensional elasticity problems are addressed.
NASA Astrophysics Data System (ADS)
Rubtsov, Vladimir; Kapralov, Sergey; Chalyk, Iuri; Ulianova, Onega; Ulyanov, Sergey
2013-02-01
Statistical properties of laser speckles, formed in skin and mucous of colon have been analyzed and compared. It has been demonstrated that first and second order statistics of "skin" speckles and "mucous" speckles are quite different. It is shown that speckles, formed in mucous, are not Gaussian one. Layered structure of colon mucous causes formation of speckled biospeckles. First- and second- order statistics of speckled speckles have been reviewed in this paper. Statistical properties of Fresnel and Fraunhofer doubly scattered and cascade speckles are described. Non-gaussian statistics of biospeckles may lead to high localization of intensity of coherent light in human tissue during the laser surgery. Way of suppression of highly localized non-gaussian speckles is suggested.
Orun, A B; Seker, H; Uslan, V; Goodyer, E; Smith, G
2017-06-01
The textural structure of 'skin age'-related subskin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. This is achieved by a two-stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ = 650 nm spectral band region. In the second stage, a Bayesian inference method is used to select attributes from which a predictive model is built. This technique enables us to contrast different skin age models, such as the laser speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle-based technique yields better results. The method introduced here is non-invasive, low cost and capable of operating in real time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method
NASA Astrophysics Data System (ADS)
Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.
2009-02-01
Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.
Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilensky, M A; Semyachkina-Glushkovskaya, Oxana V; Timoshina, P A
2012-06-30
The results of experimental approbation of the method of laser full-field speckle-imaging for monitoring the changes in blood microcirculation state of the brain cortex of laboratory rats under the conditions of developing stroke and administration of vasodilating and vasoconstrictive agents are presented. The studies aimed at the choice of the optimal conditions of speckle-image formation and recording were performed and the software implementing an adaptive algorithm for processing the data of measurements was created. The transfer of laser radiation to the probed region of the biotissue was implemented by means of a silica-polymer optical fibre. The problems and prospects ofmore » speckle-imaging of cerebral microcirculation of blood in laboratory and clinical conditions are discussed.« less
NASA Astrophysics Data System (ADS)
Saputra, M. A.; Prajitno, P.
2018-04-01
Blood glucose is the molecule needed for human life, it usually measured invasively (by taking blood). but that measurement is still very vulnerable. The alternative method namely the non-invasive method is very interesting. In addition, the article [1] explains the relationship between the movement of the arterial pulse with glucose concentration, therefore the research study to investigate the correlation between the blood glucose and the movement of laser speckle pattern resulted from the arterial movement will be promising as the non-invasive method for measuring the blood glucose concentration. In this study, the laser speckle pattern imaging method, where the microscopically movement of the object is illuminated by a laser beam and recorded by the high-speed camera in a certain interval time, are used to identify the movement patterns of the artery. From the image processing, the graphs such as electrocardiograph (ECG) can be extracted. The average of the maximum peaks of the graph can be correlated with the blood glucose concentration in the blood, as the same as shown in the article [2]. From the data that has been obtained in this research, the movement of the speckle tends to increase in accordance with the rise of blood glucose concentration.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
NASA Astrophysics Data System (ADS)
Denisova, Yu. L.; Bazylev, N. B.; Rubnikovich, S. P.; Fomin, N. A.
2013-07-01
We have investigated the formation and dynamics of speckle biofi elds formed by hard biotissues of the oral cavity irradiated with low-intensity radiation. We present experimental methods for diagnosing the stressed-strained state of the maxillodental system and orthodontic and orthopedic structures based on speckle technologies and crosscorrelation analysis of speckle biofi elds.
Double-pulse digital speckle pattern interferometry for vibration analysis
NASA Astrophysics Data System (ADS)
Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing
2014-12-01
The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .
Qiu, Jianjun; Li, Yangyang; Huang, Qin; Wang, Yang; Li, Pengcheng
2013-11-18
In laser speckle contrast imaging, it was usually suggested that speckle size should exceed two camera pixels to eliminate the spatial averaging effect. In this work, we show the benefit of enhancing signal to noise ratio by correcting the speckle contrast at small speckle size. Through simulations and experiments, we demonstrated that local speckle contrast, even at speckle size much smaller than one pixel size, can be corrected through dividing the original speckle contrast by the static speckle contrast. Moreover, we show a 50% higher signal to noise ratio of the speckle contrast image at speckle size below 0.5 pixel size than that at speckle size of two pixels. These results indicate the possibility of selecting a relatively large aperture to simultaneously ensure sufficient light intensity and high accuracy and signal to noise ratio, making the laser speckle contrast imaging more flexible.
Laser Speckle Imaging to Monitor Microvascular Blood Flow: A Review.
Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, Joao
2016-01-01
Laser speckle is a complex interference phenomenon that can easily be understood, in concept, but is difficult to predict mathematically, because it is a stochastic process. The use of laser speckle to produce images, which can carry many types of information, is called laser speckle imaging (LSI). The biomedical applications of LSI started in 1981 and, since then, many scientists have improved the laser speckle theory and developed different imaging techniques. During this process, some inconsistencies have been propagated up to now. These inconsistencies should be clarified in order to avoid errors in future works. This review presents a review of the laser speckle theory used in biomedical applications. Moreover, we also make a review of the practical concepts that are useful in the construction of laser speckle imagers. This study is not only an exposition of the concepts that can be found in the literature but also a critical analysis of the investigations presented so far. Concepts like scatterers velocity distribution, effect of static scatterers, optimal speckle size, light penetration angle, and contrast computation algorithms are discussed in detail.
Statistical spatial properties of speckle patterns generated by multiple laser beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2011-08-15
This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as wellmore » as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.« less
1979-11-23
Entered) ACKNOWLEDGMENTS The author hereby expresses his appreciation to Mr. J. A. Schaeffel Jr. for his guidance on interferometry and the computer...were collected by an automated laser speckle interferometry displacement contour analyzer developed by John A. Schaeffel , Jr. [3]. The new method of 10...Fringe Patterns, US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-18, 20 April 1976. 3. Schaeffel , J. A., Automated Laser
Measurement potential of laser speckle velocimetry
NASA Technical Reports Server (NTRS)
Adrian, R. J.
1982-01-01
Laser speckle velocimetry, the measurement of fluid velocity by measuring the translation of speckle pattern or individual particles that are moving with the fluid, is described. The measurement is accomplished by illuminating the fluid with consecutive pulses of Laser Light and recording the images of the particles or the speckles on a double exposed photographic plate. The plate contains flow information throughout the image plane so that a single double exposure may provide data at hundreds or thousands of points in the illuminated region of the fluid. Conventional interrogation of the specklegram involves illuminating the plate to form Young's fringes, whose spacing is inversely proportional to the speckle separation. Subsequently the fringes are digitized and analyzed in a computer to determine their frequency and orientation, yielding the velocity magnitude and orientation. The Young's fringe technique is equivalent to performing a 2-D spatial correlation of the double exposed specklegram intensity pattern, and this observation suggests that correlation should be considered as an alternative processing method. The principle of the correlation technique is examined.
Cerebral capillary velocimetry based on temporal OCT speckle contrast.
Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K
2016-12-01
We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.
Detection of white spot lesions by segmenting laser speckle images using computer vision methods.
Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M
2018-05-05
This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.
NASA Astrophysics Data System (ADS)
Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew
2017-02-01
Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.
NASA Astrophysics Data System (ADS)
Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi
2018-04-01
Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.
Functional laser speckle imaging of cerebral blood flow under hypothermia
NASA Astrophysics Data System (ADS)
Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao
2011-08-01
Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.
Single shot laser speckle based 3D acquisition system for medical applications
NASA Astrophysics Data System (ADS)
Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young
2018-06-01
The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.
NASA Astrophysics Data System (ADS)
Cui, Zhe; Wang, Anting; Ma, Qianli; Ming, Hai
2013-12-01
In this paper, the laser speckle pattern on human retina for a laser projection display is simulated. By introducing a specific eye model `Indiana Eye', the statistical properties of the laser speckle are numerical investigated. The results show that the aberrations of human eye (mostly spherical and chromatic) will decrease the speckle contrast felt by people. When the wavelength of the laser source is 550 nm (green), people will feel the strongest speck pattern and the weakest when the wavelength is 450 nm (blue). Myopia and hyperopia will decrease the speckle contrast by introducing large spherical aberrations. Although aberration is good for speckle reduction, but it will degrade the imaging capability of the eye. The results show that laser source (650 nm) will have the best image quality on the retina. At last, we compare the human eye with an aberration-free imaging system. Both the speckle contrast and the image quality appear different behavior in these two imaging systems. The results are useful when a standardized measurement procedure for speckle contrast needs to be built.
Laser speckle imaging for lesion detection on tooth
NASA Astrophysics Data System (ADS)
Gavinho, Luciano G.; Silva, João. V. P.; Damazio, João. H.; Sfalcin, Ravana A.; Araujo, Sidnei A.; Pinto, Marcelo M.; Olivan, Silvia R. G.; Prates, Renato A.; Bussadori, Sandra K.; Deana, Alessandro M.
2018-02-01
Computer vision technologies for diagnostic imaging applied to oral lesions, specifically, carious lesions of the teeth, are in their early years of development. The relevance of this public problem, dental caries, worries countries around the world, as it affects almost the entire population, at least once in the life of each individual. The present work demonstrates current techniques for obtaining information about lesions on teeth by segmentation laser speckle imagens (LSI). Laser speckle image results from laser light reflection on a rough surface, and it was considered a noise but has important features that carry information about the illuminated surface. Even though these are basic images, only a few works have analyzed it by application of computer vision methods. In this article, we present the latest results of our group, in which Computer vision techniques were adapted to segment laser speckle images for diagnostic purposes. These methods are applied to the segmentation of images between healthy and lesioned regions of the tooth. These methods have proven to be effective in the diagnosis of early-stage lesions, often imperceptible in traditional diagnostic methods in the clinical practice. The first method uses first-order statistical models, segmenting the image by comparing the mean and standard deviation of the intensity of the pixels. The second method is based on the distance of the chi-square (χ2 ) between the histograms of the image, bringing a significant improvement in the precision of the diagnosis, while a third method introduces the use of fractal geometry, exposing, through of the fractal dimension, more precisely the difference between lesioned areas and healthy areas of a tooth compared to other methods of segmentation. So far, we can observe efficiency in the segmentation of the carious regions. A software was developed for the execution and demonstration of the applicability of the models
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
NASA Astrophysics Data System (ADS)
Minz, Preeti D.; Nirala, A. K.
2016-04-01
In the present study, the laser speckle technique has been used for the quality evaluation of chemically treated cut apples. Chemical pre-treatment includes 1% (w/v) solution of citric acid (CA), sodium chloride (SC), and a combination of CA and sodium chloride (CS). The variation in weight loss, respiration rate, total soluble solids (TSS), titratable acidity (TA), and absorbance of chemically treated cut apples stored at 5 °C was monitored for 11 d. The speckle grain size was calculated by an autocovariance method from the speckled images of freshly cut chemically treated apples. The effect of chemicals on TSS and the TA content variation of the cut apples were well correlated to the linear speckle grain size. Circular degree of polarization confirms the presence of a small scatterer and hence Rayleigh diffusion region. For all the treated cut apples, a decrease in the concentration of small particles nearly after the mid-period of storage results in the fast decay of circular degree of polarization. For non-invasive and fast analysis of the chemical constituent of fruits during minimal processing, the laser speckle can be practically used in the food industry.
Optimization of algorithm of coding of genetic information of Chlamydia
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Ulyanov, Sergey S.; Zaytsev, Sergey S.; Saltykov, Yury V.; Ulianova, Onega V.
2018-04-01
New method of coding of genetic information using coherent optical fields is developed. Universal technique of transformation of nucleotide sequences of bacterial gene into laser speckle pattern is suggested. Reference speckle patterns of the nucleotide sequences of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci serovar I as well are generated. Algorithm of coding of gene information into speckle pattern is optimized. Fully developed speckles with Gaussian statistics for gene-based speckles have been used as criterion of optimization.
Laser Speckle Imaging of Cerebral Blood Flow
NASA Astrophysics Data System (ADS)
Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.
Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.
NASA Technical Reports Server (NTRS)
Abshire, James B.; Mcgarry, Jan F.
1987-01-01
Maximum-likelihood (ML) receivers are frequently used to optimize the timing performance of laser-ranging and laser-altimetry systems in the presence of shot and speckle noise. Monte Carlo method was used to examine ML-receiver performance with return signals in the 10-5000-photoelectron (pe) range. The simulations were performed for shot noise only and for shot and speckle noise. The results agree with previous theory for signal strengths greater than about 100 pe's but show that the theory can significantly underestimate timing errors for weaker received signals. Sharp high-bandwidth features in the detected signals are shown to improve timing performance only if their signal levels are greater than 4-5 pe's.
Speckle averaging system for laser raster-scan image projection
Tiszauer, D.H.; Hackel, L.A.
1998-03-17
The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.
Speckle averaging system for laser raster-scan image projection
Tiszauer, Detlev H.; Hackel, Lloyd A.
1998-03-17
The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.
Robust sensor for turbidity measurement from light scattering and absorbing liquids.
Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik
2009-12-01
Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.
In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection.
Ragol, S; Remer, I; Shoham, Y; Hazan, S; Willenz, U; Sinelnikov, I; Dronov, V; Rosenberg, L; Bilenca, A
2016-01-01
Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager.
In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection
Ragol, S.; Remer, I.; Shoham, Y.; Hazan, S.; Willenz, U.; Sinelnikov, I.; Dronov, V.; Rosenberg, L.; Bilenca, A.
2015-01-01
Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager. PMID:26819831
Lapchuk, Anatoliy; Prygun, Olexandr; Fu, Minglei; Le, Zichun; Xiong, Qiyuan; Kryuchyn, Andriy
2017-06-26
We present the first general theoretical description of speckle suppression efficiency based on an active diffractive optical element (DOE). The approach is based on spectral analysis of diffracted beams and a coherent matrix. Analytical formulae are obtained for the dispersion of speckle suppression efficiency using different DOE structures and different DOE activation methods. We show that a one-sided 2D DOE structure has smaller speckle suppression range than a two-sided 1D DOE structure. Both DOE structures have sufficient speckle suppression range to suppress low-order speckles in the entire visible range, but only the two-sided 1D DOE can suppress higher-order speckles. We also show that a linear shift 2D DOE in a laser projector with a large numerical aperture has higher effective speckle suppression efficiency than the method using switching or step-wise shift DOE structures. The generalized theoretical models elucidate the mechanism and practical realization of speckle suppression.
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Fang, Tao; Sun, Min Yuan; Gao, Wei Nan; Zhang, Shuo; Bi, Yong
2018-07-01
Laser speckle is a major issue for laser projection displays. In various techniques of speckle reduction, speckle is quantified with a speckle contrast value. However, the measured speckle contrast is poorly suited for the subjective speckle perception of a human observer. Here, we investigate the characteristics of human eyes and propose a simplified optical transfer function of human eyes. Accordingly, two human-eye-modeled speckle measuring sets are configured. Based on the experimental set, an advanced electromagnetic micro-scanning mirror (EM-MSM) is exploited; which is of 6.5 mm in diameter and its half angle is 7.8° for a horizontal scan and 6.53° for a vertical scan. Finally, we quantitatively show that images generated with an EM-MSM exhibit superior quality. By providing human-eye-modeled speckle measuring instruments and an EM-MSM for speckle reduction, it has a promising promotion to laser projector development.
Laser Speckle Contrast Imaging of Cerebral Blood Flow
Dunn, Andrew K.
2011-01-01
Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging. PMID:22109805
Improvements In A Laser-Speckle Surface-Strain Gauge
NASA Technical Reports Server (NTRS)
Lant, Christian T.
1996-01-01
Compact optical subsystem incorporates several improvements over optical subsystems of previous versions of laser-speckle surface-strain gauge: faster acquisition of data, faster response to transients, reduced size and weight, lower cost, and less complexity. Principle of operation described previously in "Laser System Measures Two-Dimensional Strain" (LEW-15046), and "Two-Dimensional Laser-Speckle Surface-Strain Gauge" (LEW-15337).
NASA Technical Reports Server (NTRS)
Taback, Israel
1989-01-01
Technique and apparatus developed to reduce speckle in unmodulated laser pulses, using reduced number of optical fibers. Expected to decrease costs of bundles of optical fibers used to transmit unmodulated laser pulses. New apparatus reduces speckle in optically transmitted, unmodulated laser input pulse by introducing number of independent delays into pulse.
NASA Astrophysics Data System (ADS)
Semyachkina-Glushkovskaya, O. V.; Abdurashitov, A. S.; Sindeev, S. S.; Tuchin, V. V.
2016-06-01
Using the method of laser speckle imaging for the simultaneous study of macro- and microcirculation in cerebral vessels of healthy rats, we show that the mechanisms underlying cerebral autoregulation depend on the initial condition of the organism and the sex of individual animals. The pharmacological dose-dependent stimulation of the peripheral arterial pressure increase is not accompanied by the cerebral circulation responses of analogous intensity, but manifests itself as 'compensating' reactions, namely, the redistribution of the blood flow at the level of macro- (in females) and microcirculation (in females and males). The obtained results extend our understanding of the capabilities of laser speckle imaging technique in neurophysiological studies of reserve abilities of cerebral circulation autoregulation under the conditions of hypertensive status formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G
2014-08-31
The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)
Nanosecond pulse lasers for retinal applications.
Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J
2011-08-01
Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have important implications for the treatment of retinal disease. Copyright © 2011 Wiley-Liss, Inc.
Dynamic laser speckle for non-destructive quality evaluation of bread
NASA Astrophysics Data System (ADS)
Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.
2010-10-01
Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.
NASA Technical Reports Server (NTRS)
Barranger, John P.
1990-01-01
A novel optical method of measuring 2-D surface strain is proposed. Two linear strains along orthogonal axes and the shear strain between those axes is determined by a variation of Yamaguchi's laser-speckle strain gage technique. It offers the advantages of shorter data acquisition times, less stringent alignment requirements, and reduced decorrelation effects when compared to a previously implemented optical strain rosette technique. The method automatically cancels the translational and rotational components of rigid body motion while simplifying the optical system and improving the speed of response.
Borges, J P; Lopes, G O; Verri, V; Coelho, M P; Nascimento, P M C; Kopiler, D A; Tibirica, E
2016-09-01
Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.
Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João
2017-12-29
Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.
NASA Astrophysics Data System (ADS)
Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João
2018-01-01
Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.
The melting curve of Ni to 125 GPa: implications for Earth's Fe rich core alloy
NASA Astrophysics Data System (ADS)
Lord, O. T.; Wood, I. G.; Dobson, D. P.; Vocadlo, L.; Thomson, A. R.; Wann, E.; Wang, W.; Edgington, A.; Morard, G.; Mezouar, N.; Walter, M. J.
2014-12-01
The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments and two melting criteria: the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and simultaneous plateaux in temperature vs. laser power functions [1]. Our melting curve (Fig. 1) is in good agreement with most theoretical studies [e.g. 2] and the available shock wave data (Fig. 2). It is, however, dramatically steeper than the previous off-line LH-DAC studies in which the determination of melting was based on the visual observation of motion aided by the laser speckle method [e.g. 3]. We estimate the melting point of Ni at the inner-core boundary (ICB; 330 GPa) to be 5800±700 K (2σ), ~2500 K higher than the estimate based on the laser speckle method [3] and within error of Fe (6230±500 K) as determined in a similar in situ LH-DAC study [4]. We find that laser speckle based melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as melt convection. Our new melting curve suggests that the reduction in ICB temperature due to the alloying of Ni with Fe is likely to be significantly smaller than would be expected had the earlier experimental Ni melting studies been correct. We have applied our methodology to a range of other transition metals (Mo, Ti, V, Cu). In the case of Mo, Ti and V the melting curves are in good agreement with the shock compression and theoretical melting studies but hotter and steeper than those based on the laser speckle method, as with Ni. Cu is an exception in which all studies agree, including those employing the laser speckle method. These results go a long way toward resolving the the long-standing controversy over the phase diagrams of the transition metals as determined from static LH-DAC studies on the one hand, and theoretical and dynamic compression studies on the other. [1] Lord et al. (2014) Phys Earth Planet Inter [2] Pozzo M, Alfè D (2013) Phys Rev B, 88:024111 [3] Errandonea et al. (2001) Phys Rev B, 63:132104 [4] Anzellini et al. (2013) Science, 340:464-466
Valdes, Claudia P.; Varma, Hari M.; Kristoffersen, Anna K.; Dragojevic, Tanja; Culver, Joseph P.; Durduran, Turgut
2014-01-01
We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises. PMID:25136500
Dufour, Suzie; Atchia, Yaaseen; Gad, Raanan; Ringuette, Dene; Sigal, Iliya; Levi, Ofer
2013-01-01
The integrity of the blood brain barrier (BBB) can contribute to the development of many brain disorders. We evaluate laser speckle contrast imaging (LSCI) as an intrinsic modality for monitoring BBB disruptions through simultaneous fluorescence and LSCI with vertical cavity surface emitting lasers (VCSELs). We demonstrated that drug-induced BBB opening was associated with a relative change of the arterial and venous blood velocities. Cross-sectional flow velocity ratio (veins/arteries) decreased significantly in rats treated with BBB-opening drugs, ≤0.81 of initial values. PMID:24156049
Effect of signal intensity and camera quantization on laser speckle contrast analysis
Song, Lipei; Elson, Daniel S.
2012-01-01
Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view. PMID:23304650
Local scattering property scales flow speed estimation in laser speckle contrast imaging
NASA Astrophysics Data System (ADS)
Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.
2015-07-01
Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.
Fluorescence endoscopy using fiber speckle illumination
NASA Astrophysics Data System (ADS)
Nakano, Shuhei; Katagiri, Takashi; Matsuura, Yuji
2018-02-01
An endoscopic fluorescence imaging system based on fiber speckle illumination is proposed. In this system, a multimode fiber for transmission of excitation laser light and collection of fluorescence is inserted into a conventional flexible endoscope. Since the excitation laser light has random speckle structure, one can detect fluorescence signal corresponding to the irradiation pattern if the sample contains fluorophores. The irradiation pattern can be captured by the endoscope camera when the excitation wavelength is within the sensitivity range of the camera. By performing multiple measurements while changing the irradiation pattern, a fluorescence image is reconstructed by solving a norm minimization problem. The principle of our method was experimentally demonstrated. A 2048 pixels image of quantum dots coated on a frosted glass was successfully reconstructed by 32 measurements. We also confirmed that our method can be applied on biological tissues.
Pechersky, Martin J.
1995-01-01
A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, D.; Bointon, P.; Piano, S.; Leach, R. K.
2017-06-01
In this paper we show that, by using a photogrammetry system with and without laser speckle, a large range of additive manufacturing (AM) parts with different geometries, materials and post-processing textures can be measured to high accuracy. AM test artefacts have been produced in three materials: polymer powder bed fusion (nylon-12), metal powder bed fusion (Ti-6Al-4V) and polymer material extrusion (ABS plastic). Each test artefact was then measured with the photogrammetry system in both normal and laser speckle projection modes and the resulting point clouds compared with the artefact CAD model. The results show that laser speckle projection can result in a reduction of the point cloud standard deviation from the CAD data of up to 101 μm. A complex relationship with surface texture, artefact geometry and the laser speckle projection is also observed and discussed.
Principal Component Analysis in the Spectral Analysis of the Dynamic Laser Speckle Patterns
NASA Astrophysics Data System (ADS)
Ribeiro, K. M.; Braga, R. A., Jr.; Horgan, G. W.; Ferreira, D. D.; Safadi, T.
2014-02-01
Dynamic laser speckle is a phenomenon that interprets an optical patterns formed by illuminating a surface under changes with coherent light. Therefore, the dynamic change of the speckle patterns caused by biological material is known as biospeckle. Usually, these patterns of optical interference evolving in time are analyzed by graphical or numerical methods, and the analysis in frequency domain has also been an option, however involving large computational requirements which demands new approaches to filter the images in time. Principal component analysis (PCA) works with the statistical decorrelation of data and it can be used as a data filtering. In this context, the present work evaluated the PCA technique to filter in time the data from the biospeckle images aiming the reduction of time computer consuming and improving the robustness of the filtering. It was used 64 images of biospeckle in time observed in a maize seed. The images were arranged in a data matrix and statistically uncorrelated by PCA technique, and the reconstructed signals were analyzed using the routine graphical and numerical methods to analyze the biospeckle. Results showed the potential of the PCA tool in filtering the dynamic laser speckle data, with the definition of markers of principal components related to the biological phenomena and with the advantage of fast computational processing.
Laser Speckle Imaging of Blood Flow Beneath Static Scattering Media
NASA Astrophysics Data System (ADS)
Regan, Caitlin Anderson
Laser speckle imaging (LSI) is a wide-field optical imaging technique that provides information about the movement of scattering particles in biological samples. LSI is used to create maps of relative blood flow and perfusion in samples such as the skin, brain, teeth, gingiva, and other biological tissues. The presence of static, or non-moving, optical scatterers affects the ability of LSI to provide true quantitative and spatially resolved measurements of blood flow. With in vitro experiments using tissue-simulating phantoms, we determined that temporal analysis of raw speckle image sequences improved the quantitative accuracy of LSI to measure flow beneath a static scattering layer. We then applied the temporal algorithm to assess the potential of LSI to monitor oral health. We designed and tested two generations of miniature LSI devices to measure flow in the pulpal chamber of teeth and in the gingiva. Our preliminary clinical pilot data indicated that speckle contrast may correlate with gingival health. To improve visualization of subsurface blood vessels, we developed a technique called photothermal LSI. We applied a short pulse of laser energy to selectively perturb the motion of red blood cells, increasing the signal from vasculature relative to the surroundings. To study the spectral and depth dependence of laser speckle contrast, we developed a Monte Carlo model of light and momentum transport to simulate speckle contrast. With an increase in the thickness of the overlying static-scattering layer, we observed a quadratic decrease in the quantity of dynamically scattered light collected by the detector. We next applied the model to study multi-exposure speckle imaging (MESI), a method that purportedly improves quantitative accuracy of subsurface blood flow measurements. We unexpectedly determined that MESI faced similar depth limitations as conventional LSI, findings that were supported by in vitro experimental data. Finally, we used the model to study the effects of epidermal melanin absorption on LSI, and demonstrated that speckle contrast is less sensitive to varying melanin content than reflectance. We then proposed a two-wavelength measurement protocol that may enable melanin-independent LSI measurements of blood flow in patients with varying skin types. In conclusion, through in vitro and in silico experiments, we were able to further the understanding of the depth dependent origins of laser speckle contrast as well as the inherent limitations of this technology.
Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...
2017-10-20
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Edgell, D. H.; Froula, D. H.
Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less
Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.
2016-01-01
Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men. PMID:27599202
The SKED: speckle knife edge detector
NASA Astrophysics Data System (ADS)
Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.
2014-06-01
The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.
Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation
NASA Astrophysics Data System (ADS)
Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.
2014-08-01
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.
Pérez, Alberto J; González-Peña, Rolando J; Braga, Roberto; Perles, Ángel; Pérez-Marín, Eva; García-Diego, Fernando J
2018-01-11
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, L.; Albright, B. J.; Rose, H. A.
2013-01-15
Nonlinear physics governing the kinetic behavior of stimulated Raman scattering (SRS) in multi-speckled laser beams has been identified in the trapping regime over a wide range of k{lambda}{sub D} values (here k is the wave number of the electron plasma waves and {lambda}{sub D} is the Debye length) in homogeneous and inhomogeneous plasmas. Hot electrons from intense speckles, both forward and side-loss hot electrons produced during SRS daughter electron plasma wave bowing and filamentation, seed and enhance the growth of SRS in neighboring speckles by reducing Landau damping. Trapping-enhanced speckle interaction through transport of hot electrons, backscatter, and sidescatter SRSmore » light waves enable the system of speckles to self-organize and exhibit coherent, sub-ps SRS bursts with more than 100% instantaneous reflectivity, resulting in an SRS transverse coherence width much larger than a speckle width and a SRS spectrum that peaks outside the incident laser cone. SRS reflectivity is found to saturate above a threshold laser intensity at a level of reflectivity that depends on k{lambda}{sub D}: higher k{lambda}{sub D} leads to lower SRS and the reflectivity scales as {approx}(k{lambda}{sub D}){sup -4}. As k{lambda}{sub D} and Landau damping increase, speckle interaction via sidescattered light and side-loss hot electrons decreases and the occurrence of self-organized events becomes infrequent, leading to the reduction of time-averaged SRS reflectivity. It is found that the inclusion of a moderately strong magnetic field in the laser direction can effectively control SRS by suppressing transverse speckle interaction via hot electron transport.« less
Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.
Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří
2017-11-10
We propose and demonstrate a spectrally-resolved photoluminescence imaging setup based on the so-called single pixel camera - a technique of compressive sensing, which enables imaging by using a single-pixel photodetector. The method relies on encoding an image by a series of random patterns. In our approach, the image encoding was maintained via laser speckle patterns generated by an excitation laser beam scattered on a diffusor. By using a spectrometer as the single-pixel detector we attained a realization of a spectrally-resolved photoluminescence camera with unmatched simplicity. We present reconstructed hyperspectral images of several model scenes. We also discuss parameters affecting the imaging quality, such as the correlation degree of speckle patterns, pattern fineness, and number of datapoints. Finally, we compare the presented technique to hyperspectral imaging using sample scanning. The presented method enables photoluminescence imaging for a broad range of coherent excitation sources and detection spectral areas.
Akram, M Nadeem; Tong, Zhaomin; Ouyang, Guangmin; Chen, Xuyuan; Kartashov, Vladimir
2010-06-10
We utilize spatial and angular diversity to achieve speckle reduction in laser illumination. Both free-space and imaging geometry configurations are considered. A fast two-dimensional scanning micromirror is employed to steer the laser beam. A simple experimental setup is built to demonstrate the application of our technique in a two-dimensional laser picture projection. Experimental results show that the speckle contrast factor can be reduced down to 5% within the integration time of the detector.
Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)
NASA Astrophysics Data System (ADS)
Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard
2016-02-01
Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.
Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J
2013-01-01
Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.
Measurement of concentration of sugar in solutions with laser speckle decorrelation
NASA Astrophysics Data System (ADS)
Mahajan, Swapnil; Trivedi, Vismay; Chhaniwal, Vani; Prajapati, Mahendra; Zalevsky, Zeev; Javidi, Bahram; Anand, Arun
2015-05-01
Measurement of rotation of plane of polarization of linearly polarized light can provide information about the concentration of the optically active system with which it interacts. For substances containing sugar, accurate measurement of rotation of linearly polarized light can provide quantitative information about concentration of sugar in the material. Measurement of sugar concentration is important in areas ranging from blood sugar level measurement in body fluids to measurement of sugar concentrations in juices and other beverages. But in many of these cases, the changes introduced to the state of polarization considering a sample of practical proportion is low and the measurement of low optical rotations becomes necessary. So methods with higher sensitivity, accuracy and resolution need to be developed for the measurement of low optical rotations. Here we describe the development of a compact, low cost, field portable, device for rotation sensing leading to sugar concentration measurements, using speckle de-correlation technique. The developed device measures rotations by determining the changes occurring to a speckle pattern generated by a laser beam passing through the medium under investigation. The device consists of a sample chamber, a diode laser module, a ground glass diffuser and a digital sensor for recording of laser speckle patterns. The device was found to have high resolution and sensitivity.
NASA Technical Reports Server (NTRS)
Hunt, A. J.; Ayers, M. R.; Sibille, L.; Smith, D. D.
2001-01-01
The transition from sol to gel is a process that is critical to the properties of engineered nanomaterials, but one with few available techniques for observing the dynamic processes occurring during the evolution of the gel network. Specifically, the observation of various cluster aggregation models, such as diffusion-limited and reaction-limited cluster growth can be quite difficult. This can be rather important as the actual aggregation model can dramatically influence the mechanical properties of gels, and is significantly affected by the presence of convective flows, or their absence in microgravity. We have developed two new non-intrusive optical methods for observing the aggregation processes within gels in real time. These make use of the dynamic behavior of laser speckle patterns produced when an intense laser source is passed through a gelling sol. The first method is a simplified time-correlation measurement, where the speckle pattern is observed using a CCD camera and information on the movement of the scattering objects is readily apparent. This approach is extremely sensitive to minute variations in the flow field as the observed speckle pattern is a diffraction-based image, and is therefore sensitive to motions within the sol on the order of the wavelength of the probing light. Additionally, this method has proven useful in determining a precise time for the gel-point, an event often difficult to measure. Monitoring the evolution of contrast within the speckle field is another method that has proven useful for studying aeration. In this case, speckle contrast is dependent upon the size (correlation length) and number of scattering centers, increasing with increasing size, and decreasing with increasing numbers. The dynamic behavior of cluster growth in gels causes both of these to change simultaneously with time, the exact rate of which is determined by the specific aggregation model involved. Actual growth processes can now be observed, and the effects of varying gravity fields on the growth processes qualitatively described. Results on preliminary ground-based measurements have been obtained.
Detection of Golden apples' climacteric peak by laser biospeckle measurements.
Nassif, Rana; Nader, Christelle Abou; Afif, Charbel; Pellen, Fabrice; Le Brun, Guy; Le Jeune, Bernard; Abboud, Marie
2014-12-10
In this paper, we report a study in which a laser biospeckle technique is used to detect the climacteric peak indicating the optimal ripeness of fruits. We monitor two batches of harvested Golden apples going through the ripening phase in low- and room-temperature environments, determine speckle parameters, and measure the emitted ethylene concentration using gas chromatography as reference method. Speckle results are then correlated to the emitted ethylene concentration by a principal component analysis. From a practical point of view, this approach allows us to validate biospeckle as a noninvasive and alternative method to respiration rate and ethylene production for climacteric peak detection as a ripening index.
Dynamic laser speckle angiography achieved by eigen-decomposition filtering.
Li, Chenxi; Wang, Ruikang
2017-06-01
A new approach is proposed for statistically analysis of laser speckle signals emerged from a living biological tissue based on eigen-decomposition to separate the dynamic speckle signals due to moving blood cells from the static speckle signals due to static tissue components, upon which to achieve angiography of the interrogated tissue in vivo. The proposed approach is tested by imaging mouse ear pinna in vivo, demonstrating its capability of providing detailed microvascular networks with high contrast, and high temporal and spatial resolutions. It is expected to provide further opportunities for laser speckle imaging in the biomedical and clinical applications where microvascular response to certain stimulus or tissue injury is of interest. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
Fredriksson, Ingemar; Larsson, Marcus
2017-10-01
Laser speckle-based techniques are frequently used to assess microcirculatory blood flow. Perfusion estimates are calculated either by analyzing the speckle fluctuations over time as in laser Doppler flowmetry (LDF), or by analyzing the speckle contrast as in laser speckle contrast imaging (LSCI). The perfusion estimates depend on the amount of blood and its speed distribution. However, the perfusion estimates are commonly given in arbitrary units as they are nonlinear and depend on the magnitude and the spatial distribution of the optical properties in the tissue under investigation. We describe how the spatial confinement of blood to vessels, called the vessel packaging effect, can be modeled in LDF and LSCI, which affect the Doppler power spectra and speckle contrast, and the underlying bio-optical mechanisms for these effects. As an example, the perfusion estimate is reduced by 25% for LDF and often more than 50% for LSCI when blood is located in vessels with an average diameter of 40 μm, instead of being homogeneously distributed within the tissue. This significant effect can be compensated for only with knowledge of the average diameter of the vessels in the tissue. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-12-18
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.
Nadort, Annemarie; Woolthuis, Rutger G.; van Leeuwen, Ton G.; Faber, Dirk J.
2013-01-01
We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources. PMID:24298399
NASA Astrophysics Data System (ADS)
Louie, Daniel C.; Tchvialeva, Lioudmilla; Zeng, Haishan; Lee, Tim K.
2017-02-01
Skin roughness is an important parameter in the characterization of skin and skin lesions, particularly for the purposes of skin cancer detection. Our group had previously constructed a laser speckle device that can detect the roughness in microrelief of the skin. This paper reports on findings made for the further miniaturization of our existing portably-sized device. These findings include the feasibility of adopting a laser diode without temperature control, and the use of a single CCD camera for detection. The coherence length of a laser is a crucial criterion for speckle measurements as it must be within a specific range. The coherence length of a commercial grade 405 nm laser diode was found to be of an appropriate length. Also, after a short warm-up period the coherence length of the laser was found to remain relatively stable, even without temperature control. Although the laser's temperature change during operation may affect its power output and the shape of its spectrum, these are only minor factors in speckle contrast measurements. Our second finding covers a calibration curve to relate speckle measurements to roughness using only parallel polarization from one CCD camera. This was created using experimental data from skin phantoms and tested on in-vivo skin. These improvements are important steps forward in the ongoing development of the laser speckle device, especially towards a clinical device to measure skin roughness and evaluate skin lesions.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
Speckle reduction using deformable mirrors with diffusers in a laser pico-projector.
Chen, Hsuan-An; Pan, Jui-Wen; Yang, Zu-Po
2017-07-24
We propose a design for speckle reduction in a laser pico-projector adopting diffusers and deformable mirrors. This research focuses on speckle noise suppression by changing the angle of divergence of the diffuser. Moreover, the speckle contrast value can be further reduced by the addition of a deformable mirror. The speckle reduction ability obtained using diffusers with different divergence angles is compared. Three types of diffuser designs are compared in the experiments. For Type 1 which uses a circular symmetric diffuser the speckle contrast value can be decreased to 0.0264. For Type 2, the speckle contrast value can be reduced to 0.0267 because of the inclusion of an elliptical distribution diffuser. With Type 3 which includes a combination of the circular distribution diffuser and elliptical distribution diffuser, the speckle contrast value can be reduced to 0.0236. For all three types, the speckle contrast value is lower than 0.05. Under this speckle value, the speckle phenomenon is invisible to the human eye.
Measuring Flow With Laser-Speckle Velocimetry
NASA Technical Reports Server (NTRS)
Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.
1988-01-01
Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.
NASA Astrophysics Data System (ADS)
Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing
2018-02-01
In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.
Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization
Metzger, Nikolaus Klaus; Spesyvtsev, Roman; Bruce, Graham D.; Miller, Bill; Maker, Gareth T.; Malcolm, Graeme; Mazilu, Michael; Dholakia, Kishan
2017-01-01
The accurate determination and control of the wavelength of light is fundamental to many fields of science. Speckle patterns resulting from the interference of multiple reflections in disordered media are well-known to scramble the information content of light by complex but linear processes. However, these patterns are, in fact, exceptionally rich in information about the illuminating source. We use a fibre-coupled integrating sphere to generate wavelength-dependent speckle patterns, in combination with algorithms based on the transmission matrix method and principal component analysis, to realize a broadband and sensitive wavemeter. We demonstrate sub-femtometre wavelength resolution at a centre wavelength of 780 nm, and a broad calibrated measurement range from 488 to 1,064 nm. This compares favourably to the performance of conventional wavemeters. Using this speckle wavemeter as part of a feedback loop, we stabilize a 780 nm diode laser to achieve a linewidth better than 1 MHz. PMID:28580938
Portable laser speckle perfusion imaging system based on digital signal processor.
Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming
2010-12-01
The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.
Correction for spatial averaging in laser speckle contrast analysis
Thompson, Oliver; Andrews, Michael; Hirst, Evan
2011-01-01
Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623
Pérez, Alberto J.; Braga, Roberto; Perles, Ángel; Pérez–Marín, Eva; García-Diego, Fernando J.
2018-01-01
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. PMID:29324692
Speckle-field propagation in 'frozen' turbulence: brightness function approach
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Speckle-field propagation in 'frozen' turbulence: brightness function approach.
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Pechersky, M.J.
1999-07-06
An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.
Pechersky, Martin J.
1999-01-01
An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.
Multi-wavelength speckle reduction for laser pico-projectors using diffractive optics
NASA Astrophysics Data System (ADS)
Thomas, Weston H.
Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. Diffusers are often rotated to achieve temporal averaging of the spatial phase pattern provided by diffuser surface. While diffusers are unable to completely eliminate speckle, they can be utilized to decrease the resultant contrast to provide a more visually acceptable image. This dissertation measures the reduction in speckle contrast achievable through the use of diffractive diffusers. A theoretical Fourier optics model is used to provide the diffuser's stationary and in-motion performance in terms of the resultant contrast level. Contrast measurements of two diffractive diffusers are calculated theoretically and compared with experimental results. In addition, a novel binary diffuser design based on Hadamard matrices will be presented. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values were subsequently measured, showing good agreement with theory and simulated values. Monochromatic speckle contrast values of 0.40 were achieved using the Hadamard diffusers. Finally, color laser projection devices require the use of red, green, and blue laser sources; therefore, using a monochromatic diffractive diffuser may not optimal for color speckle contrast reduction. A simulation of the Hadamard diffusers is conducted to determine the optimum spacing between the two diffusers for polychromatic speckle reduction. Experimental measured results are presented using the optimal spacing of Hadamard diffusers for RGB color speckle reduction, showing 60% reduction in contrast.
Li, Chenxi; Wang, Ruikang
2017-04-01
We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes.
Inducible fluorescent speckle microscopy
Aguiar, Paulo; Belsley, Michael; Maiato, Helder
2016-01-01
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. PMID:26783303
Inducible fluorescent speckle microscopy.
Pereira, António J; Aguiar, Paulo; Belsley, Michael; Maiato, Helder
2016-01-18
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. © 2016 Pereira et al.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-01-01
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513
ERIC Educational Resources Information Center
Peterson, Ivars
1991-01-01
The relationship between theories about electrical conductivity in microscopic wires and laser speckle patterns is described. Practical applications of laser speckle patterns are included. Wave ideas are being used to describe and predict novel phenomena in disordered solids. (KR)
Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry
NASA Astrophysics Data System (ADS)
Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo
2008-12-01
In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.
Assessing blood coagulation status with laser speckle rheology
Tripathi, Markandey M.; Hajjarian, Zeinab; Van Cott, Elizabeth M.; Nadkarni, Seemantini K.
2014-01-01
We have developed and investigated a novel optical approach, Laser Speckle Rheology (LSR), to evaluate a patient’s coagulation status by measuring the viscoelastic properties of blood during coagulation. In LSR, a blood sample is illuminated with laser light and temporal speckle intensity fluctuations are measured using a high-speed CMOS camera. During blood coagulation, changes in the viscoelastic properties of the clot restrict Brownian displacements of light scattering centers within the sample, altering the rate of speckle intensity fluctuations. As a result, blood coagulation status can be measured by relating the time scale of speckle intensity fluctuations with clinically relevant coagulation metrics including clotting time and fibrinogen content. Our results report a close correlation between coagulation metrics measured using LSR and conventional coagulation results of activated partial thromboplastin time, prothrombin time and functional fibrinogen levels, creating the unique opportunity to evaluate a patient’s coagulation status in real-time at the point of care. PMID:24688816
Relationship between analysis of laser speckle image and Knoop hardness on softening enamel.
Koshoji, Nelson H; Prates, Renato A; Bussadori, Sandra K; Bortoletto, Carolina C; de Miranda Junior, Walter G; Librantz, André F H; Leal, Cintia Raquel Lima; Oliveira, Marcelo T; Deana, Alessandro M
2016-09-01
In this study is presented the correlation between laser speckle images and enamel hardness loss. In order to shift the enamel hardness, a dental demineralization model was applied to 32 samples of vestibular bovine teeth. After they were cleaned, cut and polished, the samples were divided into 4 groups and immersed in 30ml of a cola-based soft drink for 10, 20, 30 and 40min twice a day for 7 consecutive days with half the surface protected by two layers of nail polish. Each sample was analyzed by Knoop hardness and laser speckle imaging. Pearson's correlation analysis demonstrated that the laser speckle image technique presents a strong correlation with the hardness loss of the enamel (r=0.7085, p<0.0001). This finding is corroborated by Blend & Altman analysis, in which the data presented a constant behavior throughout the whole interval. For both analyses, more than 95% of the data is within the confidence interval, as expected. This work demonstrates, for the first time to our knowledge, an empirical model for correlating laser speckle images with the loss of tooth enamel hardness. Copyright © 2016. Published by Elsevier B.V.
Measurement of eye aberrations in a speckle field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larichev, A V; Ivanov, P V; Iroshnikov, N G
2001-12-31
The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)
Laser speckle imaging in the spatial frequency domain
Mazhar, Amaan; Cuccia, David J.; Rice, Tyler B.; Carp, Stefan A.; Durkin, Anthony J.; Boas, David A.; Choi, Bernard; Tromberg, Bruce J.
2011-01-01
Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism. PMID:21698018
Vibrating Optical Fibers to Make Laser Speckle Disappear
NASA Technical Reports Server (NTRS)
McGill, Matthew; Scott, V. Stanley
2005-01-01
In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.
Kazmi, S M Shams; Richards, Lisa M; Schrandt, Christian J; Davis, Mitchell A; Dunn, Andrew K
2015-01-01
Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging. PMID:25944593
Determination of maize hardness by biospeckle and fuzzy granularity.
Weber, Christian; Dai Pra, Ana L; Passoni, Lucía I; Rabal, Héctor J; Trivi, Marcelo; Poggio Aguerre, Guillermo J
2014-09-01
In recent years there has been renewed interest in the development of novel grain classification methods that could complement traditional empirical tests. A speckle pattern occurs when a laser beam illuminates an optically rough surface that flickers when the object is active and is called biospeckle. In this work, we use laser biospeckle to classify maize (Zea mays L.) kernel hardness. A series of grains of three types of maize were cut and illuminated by a laser. A series of images were then registered, stored, and processed. These were compared with results obtained by floating test. The laser speckle technique was effective in discriminating the grains based on the presence of floury or vitreous endosperm and could be considered a feasible alternative to traditional floating methods. The results indicate that this methodology can distinguish floury and vitreous grains. Moreover, the assay showed higher discrimination capability than traditional tests. It could be potentially useful for maize classification and to increase the efficiency of processing dry milling corn.
Li, Chenxi; Wang, Ruikang
2017-01-01
Abstract. We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes. PMID:28384709
Applying laser speckle images to skin science: skin lesion differentiation by polarization
NASA Astrophysics Data System (ADS)
Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.
2011-09-01
Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.
Applying laser speckle images to skin science: skin lesion differentiation by polarization
NASA Astrophysics Data System (ADS)
Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.
2012-01-01
Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.
Pre-cataract surgery test using speckle pattern
NASA Astrophysics Data System (ADS)
Jutamulia, Suganda; Wihardjo, Erning; Widjaja, Joewono
2016-11-01
A laser diode device for pre cataract surgery test is proposed. The operation is based on the speckle generated on the retina by the cataract lens, when the cataract lens is illuminated with a coherent laser light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, Vasilii I; Soskin, M S
2013-02-28
A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2018-01-01
Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2018-06-01
Optical trapping and guiding using laser have been proven to be useful for non-contact and non-invasive manipulation of small objects such as biological cells, organelles within cells, and dielectric particles. We have numerically investigated so far the motion of a Brownian particle suspended in still water under the illumination of a speckle pattern generated by the interference of coherent light scattered by a rough object. In the present study, we investigate numerically the motion of a particle in a water flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation with its size, flow velocity, maximum irradiance, and moving velocity of the speckle pattern to confirm the feasibility of the present method for performing optical trapping and guiding of the particle in the flow.
Rice, Tyler B.; Konecky, Soren D.; Owen, Christopher; Choi, Bernard; Tromberg, Bruce J.
2012-01-01
Laser Speckle Imaging (LSI) is fast, noninvasive technique to image particle dynamics in scattering media such as biological tissue. While LSI measurements are independent of the overall intensity of the laser source, we find that spatial variations in the laser source profile can impact measured flow rates. This occurs due to differences in average photon path length across the profile, and is of significant concern because all lasers have some degree of natural Gaussian profile in addition to artifacts potentially caused by projecting optics. Two in vivo measurement are performed to show that flow rates differ based on location with respect to the beam profile. A quantitative analysis is then done through a speckle contrast forward model generated within a coherent Spatial Frequency Domain Imaging (cSFDI) formalism. The model predicts remitted speckle contrast as a function of spatial frequency, optical properties, and scattering dynamics. Comparison with experimental speckle contrast images were done using liquid phantoms with known optical properties for three common beam shapes. cSFDI is found to accurately predict speckle contrast for all beam shapes to within 5% root mean square error. Suggestions for improving beam homogeneity are given, including a widening of the natural beam Gaussian, proper diffusing glass spreading, and flat top shaping using microlens arrays. PMID:22741080
Yu, Zhan; Li, Yuanyang; Liu, Lisheng; Guo, Jin; Wang, Tingfeng; Yang, Guoqing
2017-11-10
The speckle pattern (line by line) sequential extraction (SPSE) metric is proposed by the one-dimensional speckle intensity level crossing theory. Through the sequential extraction of received speckle information, the speckle metrics for estimating the variation of focusing spot size on a remote diffuse target are obtained. Based on the simulation, we will give some discussions about the SPSE metric range of application under the theoretical conditions, and the aperture size will affect the metric performance of the observation system. The results of the analyses are verified by the experiment. This method is applied to the detection of relative static target (speckled jitter frequency is less than the CCD sampling frequency). The SPSE metric can determine the variation of the focusing spot size over a long distance, moreover, the metric will estimate the spot size under some conditions. Therefore, the monitoring and the feedback of far-field spot will be implemented laser focusing system applications and help the system to optimize the focusing performance.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Interaction of Francisella tularensis bacterial cells with dynamic speckles
NASA Astrophysics Data System (ADS)
Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zudina, Irina; Zhang, Zhihong; Sibo, Zhou; Luo, Qingming
2006-08-01
Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are caused by speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out. Role of coherence of light in the processes of laser-cell interaction is analyzed.
An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor
NASA Astrophysics Data System (ADS)
Liscombe, Michael
3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Saknite, Inga; Spigulis, Janis
2014-05-01
Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.
Hajjarian, Zeinab; Nadkarni, Seemantini K
2013-01-01
Biological fluids fulfill key functionalities such as hydrating, protecting, and nourishing cells and tissues in various organ systems. They are capable of these versatile tasks owing to their distinct structural and viscoelastic properties. Characterizing the viscoelastic properties of bio-fluids is of pivotal importance for monitoring the development of certain pathologies as well as engineering synthetic replacements. Laser Speckle Rheology (LSR) is a novel optical technology that enables mechanical evaluation of tissue. In LSR, a coherent laser beam illuminates the tissue and temporal speckle intensity fluctuations are analyzed to evaluate mechanical properties. The rate of temporal speckle fluctuations is, however, influenced by both optical and mechanical properties of tissue. Therefore, in this paper, we develop and validate an approach to estimate and compensate for the contributions of light scattering to speckle dynamics and demonstrate the capability of LSR for the accurate extraction of viscoelastic moduli in phantom samples and biological fluids of varying optical and mechanical properties.
Hajjarian, Zeinab; Nadkarni, Seemantini K.
2013-01-01
Biological fluids fulfill key functionalities such as hydrating, protecting, and nourishing cells and tissues in various organ systems. They are capable of these versatile tasks owing to their distinct structural and viscoelastic properties. Characterizing the viscoelastic properties of bio-fluids is of pivotal importance for monitoring the development of certain pathologies as well as engineering synthetic replacements. Laser Speckle Rheology (LSR) is a novel optical technology that enables mechanical evaluation of tissue. In LSR, a coherent laser beam illuminates the tissue and temporal speckle intensity fluctuations are analyzed to evaluate mechanical properties. The rate of temporal speckle fluctuations is, however, influenced by both optical and mechanical properties of tissue. Therefore, in this paper, we develop and validate an approach to estimate and compensate for the contributions of light scattering to speckle dynamics and demonstrate the capability of LSR for the accurate extraction of viscoelastic moduli in phantom samples and biological fluids of varying optical and mechanical properties. PMID:23705028
Dynamic laser speckle analyzed considering inhomogeneities in the biological sample
NASA Astrophysics Data System (ADS)
Braga, Roberto A.; González-Peña, Rolando J.; Viana, Dimitri Campos; Rivera, Fernando Pujaico
2017-04-01
Dynamic laser speckle phenomenon allows a contactless and nondestructive way to monitor biological changes that are quantified by second-order statistics applied in the images in time using a secondary matrix known as time history of the speckle pattern (THSP). To avoid being time consuming, the traditional way to build the THSP restricts the data to a line or column. Our hypothesis is that the spatial restriction of the information could compromise the results, particularly when undesirable and unexpected optical inhomogeneities occur, such as in cell culture media. It tested a spatial random approach to collect the points to form a THSP. Cells in a culture medium and in drying paint, representing homogeneous samples in different levels, were tested, and a comparison with the traditional method was carried out. An alternative random selection based on a Gaussian distribution around a desired position was also presented. The results showed that the traditional protocol presented higher variation than the outcomes using the random method. The higher the inhomogeneity of the activity map, the higher the efficiency of the proposed method using random points. The Gaussian distribution proved to be useful when there was a well-defined area to monitor.
Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds
Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.
2016-01-01
Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494
Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.
Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J; Jain, Rakesh K; Nadkarni, Seemantini K
2016-12-01
Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g 2 (t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10 -9 ), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa - 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10 -7 ). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.
Numerical considerations on control of motion of nanoparticles using scattering field of laser light
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2017-05-01
Most of optical manipulation techniques proposed so far depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories; however, it is still challenging to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates a speckle pattern which consists of random interference speckle grains with well-defined statistical properties. In the present study, we numerically investigate the motion of a Brownian particle suspended in water under the illumination of a speckle pattern. Particle-captured time and size of particle-captured area are quantitatively estimated in relation to an optical force and a speckle diameter to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.
Ringkamp, Matthias; Wooten, Matthew; Carson, Benjamin S; Lim, Michael; Hartke, Timothy; Guarnieri, Michael
2016-02-01
Percutaneous treatments for trigeminal neuralgia are safe, simple, and effective for achieving good pain control. Procedural risks could be minimized by using noninvasive imaging techniques to improve the placement of the radiofrequency thermocoagulation probe into the trigeminal ganglion. Positioning of a probe is crucial to maximize pain relief and to minimize unwanted side effects, such as denervation in unaffected areas. This investigation examined the use of laser speckle imaging during probe placement in an animal model. This preclinical safety study used nonhuman primates, Macaca nemestrina (pigtail monkeys), to examine whether real-time imaging of blood flow in the face during the positioning of a coagulation probe could monitor the location and guide the positioning of the probe within the trigeminal ganglion. Data from 6 experiments in 3 pigtail monkeys support the hypothesis that laser imaging is safe and improves the accuracy of probe placement. Noninvasive laser speckle imaging can be performed safely in nonhuman primates. Because improved probe placement may reduce morbidity associated with percutaneous rhizotomies, efficacy trials of laser speckle imaging should be conducted in humans.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors
NASA Astrophysics Data System (ADS)
Thomas, Weston; Middlebrook, Christopher
2014-12-01
Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.
Beam uniformity analysis of infrared laser illuminators
NASA Astrophysics Data System (ADS)
Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.
2015-02-01
Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.
Tailored laser beam shaping for efficient and accurate microstructuring
NASA Astrophysics Data System (ADS)
Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.
2018-02-01
Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.
Evaluating platelet aggregation dynamics from laser speckle fluctuations.
Hajjarian, Zeinab; Tshikudi, Diane M; Nadkarni, Seemantini K
2017-07-01
Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g 2 (t) , from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.
Laser speckle imaging based on photothermally driven convection.
Regan, Caitlin; Choi, Bernard
2016-02-01
Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications.
Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter
2015-12-01
A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.
NASA Astrophysics Data System (ADS)
Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter
2017-03-01
The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.
Real-time blood flow visualization using the graphics processing unit
NASA Astrophysics Data System (ADS)
Yang, Owen; Cuccia, David; Choi, Bernard
2011-01-01
Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ~10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark.
Real-time blood flow visualization using the graphics processing unit
Yang, Owen; Cuccia, David; Choi, Bernard
2011-01-01
Laser speckle imaging (LSI) is a technique in which coherent light incident on a surface produces a reflected speckle pattern that is related to the underlying movement of optical scatterers, such as red blood cells, indicating blood flow. Image-processing algorithms can be applied to produce speckle flow index (SFI) maps of relative blood flow. We present a novel algorithm that employs the NVIDIA Compute Unified Device Architecture (CUDA) platform to perform laser speckle image processing on the graphics processing unit. Software written in C was integrated with CUDA and integrated into a LabVIEW Virtual Instrument (VI) that is interfaced with a monochrome CCD camera able to acquire high-resolution raw speckle images at nearly 10 fps. With the CUDA code integrated into the LabVIEW VI, the processing and display of SFI images were performed also at ∼10 fps. We present three video examples depicting real-time flow imaging during a reactive hyperemia maneuver, with fluid flow through an in vitro phantom, and a demonstration of real-time LSI during laser surgery of a port wine stain birthmark. PMID:21280915
Laser speckle imaging based on photothermally driven convection
Regan, Caitlin; Choi, Bernard
2016-01-01
Abstract. Laser speckle imaging (LSI) is an interferometric technique that provides information about the relative speed of moving scatterers in a sample. Photothermal LSI overcomes limitations in depth resolution faced by conventional LSI by incorporating an excitation pulse to target absorption by hemoglobin within the vascular network. Here we present results from experiments designed to determine the mechanism by which photothermal LSI decreases speckle contrast. We measured the impact of mechanical properties on speckle contrast, as well as the spatiotemporal temperature dynamics and bulk convective motion occurring during photothermal LSI. Our collective data strongly support the hypothesis that photothermal LSI achieves a transient reduction in speckle contrast due to bulk motion associated with thermally driven convection. The ability of photothermal LSI to image structures below a scattering medium may have important preclinical and clinical applications. PMID:26927221
Evaluating platelet aggregation dynamics from laser speckle fluctuations
Hajjarian, Zeinab; Tshikudi, Diane M.; Nadkarni, Seemantini K.
2017-01-01
Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies. PMID:28717586
Optimal speckle noise reduction filter for range gated laser illuminated imaging
NASA Astrophysics Data System (ADS)
Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur
2016-09-01
Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.
Ear swelling test by using laser speckle imaging with a long exposure time
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Kuznetsov, Yuri; Preise, Dina; Meglinski, Igor; Harmelin, Alon
2014-06-01
Laser speckle imaging with long exposure time has been applied noninvasively to visualize the immediate reaction of cutaneous vessels in mice in response to a known primary irritant and potential allergen-methyl salicylate. The compound has been used topically on the surface of the pinna and the reaction of the vascular network was examined. We demonstrate that irritant-induced acute vascular reaction can be effectively and accurately detected by laser speckle imaging technique. The current approach holds a great promise for application in routine screening of the cutaneous vascular response induced by contact agents, screenings of mouse ear swelling test, and testing the allergenic potential of new synthetic materials and healthcare pharmaceutical products.
Optical vortices as potential indicators of biophysical dynamics
NASA Astrophysics Data System (ADS)
Majumdar, Anindya; Kirkpatrick, Sean J.
2017-03-01
Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.
Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin
2017-11-10
High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.
Real-time monitoring of corks' water absorption using laser speckle temporal correlation
NASA Astrophysics Data System (ADS)
Nassif, Rana; Abou Nader, Christelle; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie
2015-08-01
Physical and mechanical properties of cork allow it solving many types of problems and make it suitable for a wide range of applications. Our objective consists into studying cork's water absorption by analyzing the dynamic speckle field using the temporal correlation method. Experimental results show that the medium was inert at first with the absence of activity, and as the cap cork was more and more immersed into water, the presence of the activity becomes more significant. This temporal parameter revealed the sensibility of biospeckle method to monitor the amount of absorbed water by cork caps.
Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin
2016-03-01
We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.
NASA Astrophysics Data System (ADS)
Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin
2016-03-01
We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogami, M; Kulkarni, R; Wang, H
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collateralsmore » and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)« less
Imaging in laser spectroscopy by a single-pixel camera based on speckle patterns
NASA Astrophysics Data System (ADS)
Žídek, K.; Václavík, J.
2016-11-01
Compressed sensing (CS) is a branch of computational optics able to reconstruct an image (or any other information) from a reduced number of measurements - thus significantly saving measurement time. It relies on encoding the detected information by a random pattern and consequent mathematical reconstruction. CS can be the enabling step to carry out imaging in many time-consuming measurements. The critical step in CS experiments is the method to invoke encoding by a random mask. Complex devices and relay optics are commonly used for the purpose. We present a new approach of creating the random mask by using laser speckles from coherent laser light passing through a diffusor. This concept is especially powerful in laser spectroscopy, where it does not require any complicated modification of the current techniques. The main advantage consist in the unmatched simplicity of the random pattern generation and a versatility of the pattern resolution. Unlike in the case of commonly used random masks, here the pattern fineness can be adjusted by changing the laser spot size being diffused. We demonstrate the pattern tuning together with the connected changes in the pattern statistics. In particular, the issue of patterns orthogonality, which is important for the CS applications, is discussed. Finally, we demonstrate on a set of 200 acquired speckle patterns that the concept can be successfully employed for single-pixel camera imaging. We discuss requirements on detector noise for the image reconstruction.
Optoelectronic imaging of speckle using image processing method
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Wang, Pengfei
2018-01-01
A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.
Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system
NASA Astrophysics Data System (ADS)
Sun, Shen; Hayes-Gill, Barrie R.; He, Diwei; Zhu, Yiqun; Huynh, Nam T.; Morgan, Stephen P.
2016-08-01
Full field laser Doppler imaging (LDI) and single exposure laser speckle contrast imaging (LSCI) are directly compared using a novel instrument which can concurrently image blood flow using both LDI and LSCI signal processing. Incorporating a commercial CMOS camera chip and a field programmable gate array (FPGA) the flow images of LDI and the contrast maps of LSCI are simultaneously processed by utilizing the same detected optical signals. The comparison was carried out by imaging a rotating diffuser. LDI has a linear response to the velocity. In contrast, LSCI is exposure time dependent and does not provide a linear response in the presence of static speckle. It is also demonstrated that the relationship between LDI and LSCI can be related through a power law which depends on the exposure time of LSCI.
Monitoring of bread cooling by statistical analysis of laser speckle patterns
NASA Astrophysics Data System (ADS)
Lyubenova, Tanya; Stoykova, Elena; Nacheva, Elena; Ivanov, Branimir; Panchev, Ivan; Sainov, Ventseslav
2013-03-01
The phenomenon of laser speckle can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of speckle dynamics. The paper presents the results of non-destructive monitoring of bread cooling by co-occurrence matrix and temporal structure function analysis of speckle patterns which have been recorded continuously within a few days. In total, 72960 and 39680 images were recorded and processed for two similar bread samples respectively. The experiments proved the expected steep decrease of activity related to the processes in the bread samples during the first several hours and revealed its oscillating character within the next few days. Characterization of activity over the bread sample surface was also obtained.
NASA Astrophysics Data System (ADS)
Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo
2018-07-01
Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Ulianova, Onega V.; Zaytsev, Sergey S.; Saltykov, Yury V.; Feodorova, Valentina A.
2018-04-01
The transformation mechanism for a nucleotide sequence of the Chlamydia trachomatis gene into a speckle pattern has been considered. The first and second-order statistics of gene-based speckles have been analyzed. It has been demonstrated that gene-based speckles do not obey Gaussian statistics and belong to the class of speckles with a small number of scatterers. It has been shown that gene polymorphism can be easily detected through analysis of the statistical characteristics of gene-based speckles.
Remer, Itay; Bilenca, Alberto
2015-11-01
Photoplethysmography is a well-established technique for the noninvasive measurement of blood pulsation. However, photoplethysmographic devices typically need to be in contact with the surface of the tissue and provide data from a single contact point. Extensions of conventional photoplethysmography to measurements over a wide field-of-view exist, but require advanced signal processing due to the low signal-to-noise-ratio of the photoplethysmograms. Here, we present a noncontact method based on temporal sampling of time-integrated speckle using a camera-phone for noninvasive, widefield measurements of physiological parameters across the human fingertip including blood pulsation and resting heart-rate frequency. The results show that precise estimation of these parameters with high spatial resolution is enabled by measuring the local temporal variation of speckle patterns of backscattered light from subcutaneous skin, thereby opening up the possibility for accurate high resolution blood pulsation imaging on a camera-phone. Camera-phone laser speckle imager along with measured relative blood perfusion maps of a fingertip showing skin perfusion response to a pulse pressure applied to the upper arm. The figure is for illustration only; the imager was stabilized on a stand throughout the experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vass, J.; Šmíd, R.; Randall, R. B.; Sovka, P.; Cristalli, C.; Torcianti, B.
2008-04-01
This paper presents a statistical technique to enhance vibration signals measured by laser Doppler vibrometry (LDV). The method has been optimised for LDV signals measured on bearings of universal electric motors and applied to quality control of washing machines. Inherent problems of LDV are addressed, particularly the speckle noise occurring when rough surfaces are measured. The presence of speckle noise is detected using a new scalar indicator kurtosis ratio (KR), specifically designed to quantify the amount of random impulses generated by this noise. The KR is a ratio of the standard kurtosis and a robust estimate of kurtosis, thus indicating the outliers in the data. Since it is inefficient to reject the signals affected by the speckle noise, an algorithm for selecting an undistorted portion of a signal is proposed. The algorithm operates in the time domain and is thus fast and simple. The algorithm includes band-pass filtering and segmentation of the signal, as well as thresholding of the KR computed for each filtered signal segment. Algorithm parameters are discussed in detail and instructions for optimisation are provided. Experimental results demonstrate that speckle noise is effectively avoided in severely distorted signals, thus improving the signal-to-noise ratio (SNR) significantly. Typical faults are finally detected using squared envelope analysis. It is also shown that the KR of the band-pass filtered signal is related to the spectral kurtosis (SK).
Digital Holographic Interferometry and Speckle Correlation
NASA Astrophysics Data System (ADS)
Yamaguchi, Ichirou
2010-04-01
Relations and combinations between holographic interferometry and speckle correlation in contouring by phase-shifting digital holography are discussed. Three-dimensional distributions of correlations of the complex amplitudes and intensities before and after the laser wavelength shift are calculated in numerical simulations where a rough surface is modeled with random numbers. Fringe localization related to speckle displacement as well as speckle suppression in phase analysis are demonstrated for general surface shape and recording conditions.
Intensity correlation measurement system by picosecond single shot soft x-ray laser.
Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko
2010-01-01
We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.
Visualisation of blood and lymphatic vessels with increasing exposure time of the detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchenko, V V; Kuznetsov, Yu L; Meglinski, I V
2013-07-31
We describe the laser speckle contrast method for simultaneous noninvasive imaging of blood and lymphatic vessels of living organisms, based on increasing detector exposure time. In contrast to standard methods of fluorescent angiography, this technique of vascular bed imaging and lymphatic and blood vessel demarcation does not employ toxic fluorescent markers. The method is particularly promising with respect to the physiology of the cardiovascular system under in vivo conditions. (laser applications in biology and medicine)
Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas
2015-04-14
X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.
Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B
2013-01-01
Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Improvement of Speckle Contrast Image Processing by an Efficient Algorithm.
Steimers, A; Farnung, W; Kohl-Bareis, M
2016-01-01
We demonstrate an efficient algorithm for the temporal and spatial based calculation of speckle contrast for the imaging of blood flow by laser speckle contrast analysis (LASCA). It reduces the numerical complexity of necessary calculations, facilitates a multi-core and many-core implementation of the speckle analysis and enables an independence of temporal or spatial resolution and SNR. The new algorithm was evaluated for both spatial and temporal based analysis of speckle patterns with different image sizes and amounts of recruited pixels as sequential, multi-core and many-core code.
Bio-speckle assessment of bruising in fruits
NASA Astrophysics Data System (ADS)
Pajuelo, M.; Baldwin, G.; Rabal, H.; Cap, N.; Arizaga, R.; Trivi, M.
2003-07-01
The dynamic speckle patterns or bio-speckle is a phenomenon produced by laser illumination of active materials, such as a biological tissue. Fruits, even hard peel ones, show a speckle activity that can be related to maturity, turgor, damage, aging, and mechanical properties. In this case, we suggest a bio-speckle technique as a potential methodology for the study of impact on apples and the analysis of bruises produced by them. The aim is to correlate physical properties of apples with quality factors using a non-contact and non-invasive technique.
Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming
2011-11-01
Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.
Speckle techniques for determining stresses in moving objects
NASA Technical Reports Server (NTRS)
Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.
1978-01-01
Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.
Measuring the circular motion of small objects using laser stroboscopic images.
Wang, Hairong; Fu, Y; Du, R
2008-01-01
Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.
Two-Color Laser Speckle Shift Strain Measurement System
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John
1996-01-01
A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.
To what extent is coherence lost in tissue?
NASA Astrophysics Data System (ADS)
Hode, Tomas; Jenkins, Peter; Jordison, Stefan; Hode, Lars
2011-03-01
In a series of experiments we investigated the extent to which coherence is preserved in tissue. We investigated whether the decrease in coherence length is dependent upon the coherence length of the illuminating light and possibly also if the light is polarized. We compared highly coherent light from a HeNe laser, and less coherent light from a semiconductor laser, in scattering media such as raw ground beef. We studied the laser speckle contrast after passing through 1 - 2 cm of meat. The conclusion is that the laser light is still coherent enough to form laser speckles after passing through a 2 cm thickness of meat.
NASA Astrophysics Data System (ADS)
Lee, Soohyun; Lee, Changho; Cheon, Gyeongwoo; Kim, Jongmin; Jo, Dongki; Lee, Jihoon; Kang, Jin U.
2018-02-01
A commercial ophthalmic laser system (R;GEN, Lutronic Corp) was integrated with a swept-source optical coherence tomography (OCT) imaging system for real-time tissue temperature monitoring. M-scan OCT images were acquired during laser-pulse radiation, and speckle variance OCT (svOCT) images were analyzed to deduce temporal signal variations related to tissue temperature change from laser-pulse radiation. A phantom study shows that svOCT magnitude increases abruptly after laser pulse radiation and recovered exponentially, and the peak intensity of svOCT image was linearly dependent on pulse laser energy until it saturates. A study using bovine iris also showed signal variation dependence on the laser pulse radiation, and the variation was more distinctive with higher energy level.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
Laser Speckle Photography: Some Simple Experiments for the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Bates, B.; And Others
1986-01-01
Describes simple speckle photography experiments which are easy to set up and require only low cost standard laboratory equipment. Included are procedures for taking single, double, and multiple exposures. (JN)
Time-resolved speckle effects on the estimation of laser-pulse arrival times
NASA Technical Reports Server (NTRS)
Tsai, B.-M.; Gardner, C. S.
1985-01-01
A maximum-likelihood (ML) estimator of the pulse arrival in laser ranging and altimetry is derived for the case of a pulse distorted by shot noise and time-resolved speckle. The performance of the estimator is evaluated for pulse reflections from flat diffuse targets and compared with the performance of a suboptimal centroid estimator and a suboptimal Bar-David ML estimator derived under the assumption of no speckle. In the large-signal limit the accuracy of the estimator was found to improve as the width of the receiver observational interval increases. The timing performance of the estimator is expected to be highly sensitive to background noise when the received pulse energy is high and the receiver observational interval is large. Finally, in the speckle-limited regime the ML estimator performs considerably better than the suboptimal estimators.
NASA Astrophysics Data System (ADS)
Ulianova, Onega V.; Ulyanov, Sergey S.; Sazanova, Elena V.; Zhihong, Zhang; Sibo, Zhou; Luo, Qingming; Zudina, Irina; Bednov, Andrey
2006-05-01
Biochemical, biophysical and optical aspects of interaction of low-coherent light with bacterial cells have been discussed. Influence of low-coherent speckles on the colonies grows is investigated. It has been demonstrated that effects of light on the inhibition of cells (Francisella Tularensis) are connected with speckle dynamics. The regimes of illumination of cell suspension with purpose of devitalization of hazard bacteria, caused very dangerous infections, such as tularemia, are found. Mathematical model of interaction of low-coherent laser radiation with bacteria suspension has been proposed. Computer simulations of the processes of laser-cells interaction have been carried out.
NASA Astrophysics Data System (ADS)
Yokoi, Naomichi; Aizu, Yoshihisa
2017-04-01
Optical manipulation techniques proposed so far almost depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories, however, it is still a challenging work to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates speckles which are random interference patterns with well-defined statistical properties. In the present study, we numerically investigate the motion of a particle in a flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation to a flow velocity and a speckle contrast to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke
Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less
NASA Astrophysics Data System (ADS)
Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernández, J. C.
2009-11-01
A suite of three-dimensional (3D) VPIC [K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of "at scale" 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.
Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.
Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T
2013-04-01
Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Lee, Tim K.; Markhvida, Igor; Zeng, Haishan; Doronin, Alexander; Meglinski, Igor
2014-03-01
The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation.
Podbreznik, Peter; Đonlagić, Denis; Lešnik, Dejan; Cigale, Boris; Zazula, Damjan
2013-10-01
A cost-efficient plastic optical fiber (POF) system for unobtrusive monitoring of human vital signs is presented. The system is based on speckle interferometry. A laser diode is butt-coupled to the POF whose exit face projects speckle patterns onto a linear optical sensor array. Sequences of acquired speckle images are transformed into one-dimensional signals by using the phase-shifting method. The signals are analyzed by band-pass filtering and a Morlet-wavelet-based multiresolutional approach for the detection of cardiac and respiratory activities, respectively. The system is tested with 10 healthy nonhospitalized persons, lying supine on a mattress with the embedded POF. Experimental results are assessed statistically: precisions of 98.8% ± 1.5% and 97.9% ± 2.3%, sensitivities of 99.4% ± 0.6% and 95.3% ± 3%, and mean delays between interferometric detections and corresponding referential signals of 116.6 ± 55.5 and 1299.2 ± 437.3 ms for the heartbeat and respiration are obtained, respectively.
Reducing misfocus-related motion artefacts in laser speckle contrast imaging.
Ringuette, Dene; Sigal, Iliya; Gad, Raanan; Levi, Ofer
2015-01-01
Laser Speckle Contrast Imaging (LSCI) is a flexible, easy-to-implement technique for measuring blood flow speeds in-vivo. In order to obtain reliable quantitative data from LSCI the object must remain in the focal plane of the imaging system for the duration of the measurement session. However, since LSCI suffers from inherent frame-to-frame noise, it often requires a moving average filter to produce quantitative results. This frame-to-frame noise also makes the implementation of rapid autofocus system challenging. In this work, we demonstrate an autofocus method and system based on a novel measure of misfocus which serves as an accurate and noise-robust feedback mechanism. This measure of misfocus is shown to enable the localization of best focus with sub-depth-of-field sensitivity, yielding more accurate estimates of blood flow speeds and blood vessel diameters.
Towle, Erica L.; Richards, Lisa M.; Kazmi, S. M. Shams; Fox, Douglas J.; Dunn, Andrew K.
2013-01-01
BACKGROUND Assessment of the vasculature is critical for overall success in cranial vascular neurological surgery procedures. Although several methods of monitoring cortical perfusion intraoperatively are available, not all are appropriate or convenient in a surgical environment. Recently, 2 optical methods of care have emerged that are able to obtain high spatial resolution images with easily implemented instrumentation: indocyanine green (ICG) angiography and laser speckle contrast imaging (LSCI). OBJECTIVE To evaluate the usefulness of ICG and LSCI in measuring vessel perfusion. METHODS An experimental setup was developed that simultaneously collects measurements of ICG fluorescence and LSCI in a rodent model. A 785-nm laser diode was used for both excitation of the ICG dye and the LSCI illumination. A photothrombotic clot model was used to occlude specific vessels within the field of view to enable comparison of the 2 methods for monitoring vessel perfusion. RESULTS The induced blood flow change demonstrated that ICG is an excellent method for visualizing the volume and type of vessel at a single point in time; however, it is not always an accurate representation of blood flow. In contrast, LSCI provides a continuous and accurate measurement of blood flow changes without the need of an external contrast agent. CONCLUSION These 2 methods should be used together to obtain a complete understanding of tissue perfusion. PMID:22843129
Low-cost laser speckle contrast imaging of blood flow using a webcam.
Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.
Low-cost laser speckle contrast imaging of blood flow using a webcam
Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082
Basak, Kausik; Dey, Goutam; Mahadevappa, Manjunatha; Mandal, Mahitosh; Sheet, Debdoot; Dutta, Pranab Kumar
2016-09-01
Laser speckle contrast imaging (LSCI) provides a noninvasive and cost effective solution for in vivo monitoring of blood flow. So far, most of the researches consider changes in speckle pattern (i.e. correlation time of speckle intensity fluctuation), account for relative change in blood flow during abnormal conditions. This paper introduces an application of LSCI for monitoring wound progression and characterization of cutaneous wound regions on mice model. Speckle images are captured on a tumor wound region at mice leg in periodic interval. Initially, raw speckle images are converted to their corresponding contrast images. Functional characterization begins with first segmenting the affected area using k-means clustering, taking wavelet energies in a local region as feature set. In the next stage, different regions in wound bed are clustered based on progressive and non-progressive nature of tissue properties. Changes in contrast due to heterogeneity in tissue structure and functionality are modeled using LSCI speckle statistics. Final characterization is achieved through supervised learning of these speckle statistics using support vector machine. On cross evaluation with mice model experiment, the proposed approach classifies the progressive and non-progressive wound regions with an average sensitivity of 96.18%, 97.62% and average specificity of 97.24%, 96.42% respectively. The clinical information yield with this approach is validated with the conventional immunohistochemistry result of wound to justify the ability of LSCI for in vivo, noninvasive and periodic assessment of wounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Verification of micro-scale photogrammetry for smooth three-dimensional object measurement
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard
2017-05-01
By using sub-millimetre laser speckle pattern projection we show that photogrammetry systems are able to measure smooth three-dimensional objects with surface height deviations less than 1 μm. The projection of laser speckle patterns allows correspondences on the surface of smooth spheres to be found, and as a result, verification artefacts with low surface height deviations were measured. A combination of VDI/VDE and ISO standards were also utilised to provide a complete verification method, and determine the quality parameters for the system under test. Using the proposed method applied to a photogrammetry system, a 5 mm radius sphere was measured with an expanded uncertainty of 8.5 μm for sizing errors, and 16.6 μm for form errors with a 95 % confidence interval. Sphere spacing lengths between 6 mm and 10 mm were also measured by the photogrammetry system, and were found to have expanded uncertainties of around 20 μm with a 95 % confidence interval.
Dynamic speckle study of microbial growth
NASA Astrophysics Data System (ADS)
Vincitorio, F. M.; Mulone, C.; Marcuzzi, P. A.; Budini, N.; Freyre, C.; Lopez, A. J.; Ramil, A.
2015-08-01
In this work we present a characterization of yeast dynamic speckle activity during growth in an isolated agar culture medium. We found that it is possible to detect the growth of the microorganisms even before they turn out to be visible. By observing the time evolution of the speckle activity at different regions of the culture medium we could extract a map of the growth process, which served to analyze how the yeast develops and spreads over the agar's medium. An interesting point of this study concerns with the influence of the laser light on the yeast growth rate. We have found that yeast finds hard to develop at regions with higher laser light illumination, although we used a synchronous system to capture the speckle pattern. The results obtained in this work would serve us as a starting point to fabricate a detector of growing microorganism colonies, with obvious interesting applications in diverse areas.
NASA Astrophysics Data System (ADS)
Glize, K.; Rousseaux, C.; Bénisti, D.; Dervieux, V.; Gremillet, L.; Baton, S. D.; Lancia, L.
2017-03-01
In this paper, we investigate, both experimentally and numerically, the backward stimulated Raman scattering (SRS) excited collectively by two laser pulses. The experiments have been carried out at the LULI facility using two co-propagating 1- μ m wavelength, 1.5- ps duration laser pulses focused in a preformed underdense plasma. A particular emphasis is laid on the configuration where the pulses are focused side-by-side, with a lateral distance of 80 - 90 μ m , but not simultaneously. It is experimentally demonstrated that a weak-intensity speckle, ineffective when fired alone in a preformed plasma, yields a significant SRS-induced reflectivity if launched a few picoseconds after a strong one. The data have been obtained by using both highly space-time resolved Thomson diagnostics and space-resolved SRS reflectivity measurements. By choosing either parallel or orthogonal polarizations for the two laser pulses, our experiments shed light on the role of either electrostatic or electromagnetic seeding in enhancing SRS from weak-intensity speckles. A major finding is that seeding operates over unexpectedly long times ( 15 - 20 ps under our experimental conditions). Similar results are obtained in lower-density plasmas, or when the weak pulse is smoothed by a random phase plate, thus leading to multiple speckle interaction, while the strong pulse is focused within the speckle pattern. The data are discussed with the help of particle-in-cell numerical simulations, which confirm the destabilizing effect of the strong pulse over the weak one after a short transient time.
The research of multi-frame target recognition based on laser active imaging
NASA Astrophysics Data System (ADS)
Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan
2013-09-01
Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.
Laser-induced speckle scatter patterns in Bacillus colonies
Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon
2014-01-01
Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840
Optical measurement of sound using time-varying laser speckle patterns
NASA Astrophysics Data System (ADS)
Leung, Terence S.; Jiang, Shihong; Hebden, Jeremy
2011-02-01
In this work, we introduce an optical technique to measure sound. The technique involves pointing a coherent pulsed laser beam on the surface of the measurement site and capturing the time-varying speckle patterns using a CCD camera. Sound manifests itself as vibrations on the surface which induce a periodic translation of the speckle pattern over time. Using a parallel speckle detection scheme, the dynamics of the time-varying speckle patterns can be captured and processed to produce spectral information of the sound. One potential clinical application is to measure pathological sounds from the brain as a screening test. We performed experiments to demonstrate the principle of the detection scheme using head phantoms. The results show that the detection scheme can measure the spectra of single frequency sounds between 100 and 2000 Hz. The detection scheme worked equally well in both a flat geometry and an anatomical head geometry. However, the current detection scheme is too slow for use in living biological tissues which has a decorrelation time of a few milliseconds. Further improvements have been suggested.
Albright, B. J.; Yin, L.; Bowers, K. J.; ...
2016-03-04
Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves(IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less
NASA Astrophysics Data System (ADS)
Suheshkumar Singh, M.; Rajan, K.; Vasu, R. M.
2011-05-01
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6mm in diameter, separated by 8mm between them. Three samples are made. One inclusion has Young's modulus E of 40kPa. The second inclusion has either a Young's modulus E of 20kPa, or scattering coefficient of μs'=3.00mm-1 or absorption coefficient of μa=0.03mm-1. The optical absorption (μa), reduced scattering (μs') coefficient, and the Young's modulus of the background are μa=0.01mm-1, μs'=1.00mm-1 and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of μa=0.03mm-1, E =40kPa and μs'=3.00mm-1. The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of μa, μs', and Young's modulus of the tissue mimicking medium are also carried out.
Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion.
Jakobsen, M L; Yura, H T; Hanson, S G
2012-03-20
This paper analyzes the dynamics of objective laser speckles as the distance between the object and the observation plane continuously changes. With the purpose of applying optical spatial filtering velocimetry to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity of the spatial filter, the nonlinear response between speckle motion and observation distance, and the influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate performance and potential applications of the technology. © 2012 Optical Society of America
Postharvest Monitoring of Tomato Ripening Using the Dynamic Laser Speckle
Pieczywek, Piotr Mariusz; Nowacka, Małgorzata; Dadan, Magdalena; Wiktor, Artur; Rybak, Katarzyna; Witrowa-Rajchert, Dorota; Zdunek, Artur
2018-01-01
The dynamic laser speckle (biospeckle) method was tested as a potential tool for the assessment and monitoring of the maturity stage of tomatoes. Two tomato cultivars—Admiro and Starbuck—were tested. The process of climacteric maturation of tomatoes was monitored during a shelf life storage experiment. The biospeckle phenomena were captured using 640 nm and 830 nm laser light wavelength, and analysed using two activity descriptors based on biospeckle pattern decorrelation—C4 and ε. The well-established optical parameters of tomatoes skin were used as a reference method (luminosity, a*/b*, chroma). Both methods were tested with respect to their prediction capabilities of the maturity and destructive indicators of tomatoes—firmness, chlorophyll and carotenoids content. The statistical significance of the tested relationships were investigated by means of linear regression models. The climacteric maturation of tomato fruit was associated with an increase in biospckle activity. Compared to the 830 nm laser wavelength the biospeckle activity measured at 640 nm enabled more accurate predictions of firmness, chlorophyll and carotenoids content. At 640 nm laser wavelength both activity descriptors (C4 and ε) provided similar results, while at 830 nm the ε showed slightly better performance. The linear regression models showed that biospeckle activity descriptors had a higher correlation with chlorophyll and carotenoids content than the a*/b* ratio and luminosity. The results for chroma were comparable with the results for both biospeckle activity indicators. The biospeckle method showed very good results in terms of maturation monitoring and the prediction of the maturity indices of tomatoes, proving the possibility of practical implementation of this method for the determination of the maturity stage of tomatoes. PMID:29617343
Regan, Caitlin; Hayakawa, Carole; Choi, Bernard
2017-12-01
Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.
Regan, Caitlin; Hayakawa, Carole; Choi, Bernard
2017-01-01
Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions. PMID:29296499
NASA Astrophysics Data System (ADS)
Abookasis, David; Moshe, Tomer
2014-11-01
This paper demonstrates the insertion of lens array in the front of a CCD camera in a laser speckle imaging (LSI) like-technique to acquire multiple speckle reflectance projections for imaging blood flow in an intact biological tissue. In some of LSI applications, flow imaging is obtained by thinning or removing of the upper tissue layers to access blood vessels. In contrast, with the proposed approach flow imaging can be achieved while the tissue is intact. In the system, each lens from an hexagonal lens array observed the sample from slightly different perspectives and captured with a CCD camera. In the computer, these multiview raw images are converted to speckled contrast maps. Then, a self-deconvolution shift-and-add algorithm is employed for processing yields high contrast flow information. The method is experimentally validated first with a plastic tube filled with scattering liquid running at different controlled flow rates hidden in a biological tissue and then extensively tested for imaging of cerebral blood flow in an intact rodent head experience different conditions. A total of fifteen mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=5) consisted of injured mice experience hypoxic ischemic brain injury monitored for ~40 min. Group 2 (n=5) injured mice experience anoxic brain injury monitored up to 20 min. Group 3 (n=5) experience functional activation monitored up to ~35 min. To increase tissue transparency and the penetration depth of photons through head tissue layers, an optical clearing method was employed. To our knowledge, this work presents for the first time the use of lens array in LSI scheme.
Laser backlight unit based on a leaky optical fiber
NASA Astrophysics Data System (ADS)
Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro
2012-07-01
A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.
Application of laser speckle to randomized numerical linear algebra
NASA Astrophysics Data System (ADS)
Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif
2018-02-01
We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.
The role of photographic parameters in laser speckle or particle image displacement velocimetry
NASA Technical Reports Server (NTRS)
Lourenco, L.; Krothapalli, A.
1987-01-01
The parameters involved in obtaining the multiple exposure photographs in the laser speckle velocimetry method (to record the light scattering by the seeding particles) were optimized. The effects of the type, concentration, and dimensions of the tracer, the exposure conditions (time between exposures, exposure time, and number of exposures), and the sensitivity and resolution of the film on the quality of the final results were investigated, photographing an experimental flow behind an impulsively started circular cylinder. The velocity data were acquired by digital processing of Young's fringes, produced by point-by-point scanning of a photographic negative. Using the optimal photographing conditions, the errors involved in the estimation of the fringe angle and spacing were of the order of 1 percent for the spacing and +/1 deg for the fringe orientation. The resulting accuracy in the velocity was of the order of 2-3 percent of the maximum velocity in the field.
NASA Astrophysics Data System (ADS)
Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING
2018-03-01
The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.
Integration of instrumentation and processing software of a laser speckle contrast imaging system
NASA Astrophysics Data System (ADS)
Carrick, Jacob J.
Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.
NASA Astrophysics Data System (ADS)
Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio
2015-08-01
Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.
Method and apparatus for precision laser micromachining
Chang, Jim; Warner, Bruce E.; Dragon, Ernest P.
2000-05-02
A method and apparatus for micromachining and microdrilling which results in a machined part of superior surface quality is provided. The system uses a near diffraction limited, high repetition rate, short pulse length, visible wavelength laser. The laser is combined with a high speed precision tilting mirror and suitable beam shaping optics, thus allowing a large amount of energy to be accurately positioned and scanned on the workpiece. As a result of this system, complicated, high resolution machining patterns can be achieved. A cover plate may be temporarily attached to the workpiece. Then as the workpiece material is vaporized during the machining process, the vapors condense on the cover plate rather than the surface of the workpiece. In order to eliminate cutting rate variations as the cutting direction is varied, a randomly polarized laser beam is utilized. A rotating half-wave plate is used to achieve the random polarization. In order to correctly locate the focus at the desired location within the workpiece, the position of the focus is first determined by monitoring the speckle size while varying the distance between the workpiece and the focussing optics. When the speckle size reaches a maximum, the focus is located at the first surface of the workpiece. After the location of the focus has been determined, it is repositioned to the desired location within the workpiece, thus optimizing the quality of the machined area.
NASA Astrophysics Data System (ADS)
Ghijsen, Michael T.; Tromberg, Bruce J.
2017-03-01
Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.
Modeling of the Light Speckle Field Structure Inside a Multilayer Human Skin Tissue
NASA Astrophysics Data System (ADS)
Barun, V. V.; Dik, S. K.; Ivanov, A. P.; Abramovich, N. D.
2013-11-01
We present an analytic method and the results of investigating the characteristics of the interference pattern formed by multiply scattered light in a multilayer biological tissue of the type of human skin at the wavelengths of the visible and neat IR spectral regions under laser irradiation. Calculations were performed with the use of the known solutions of the equations of radiation transfer in the biotissue and the relation between the theory of propagation of light in a scattering medium and the coherence theory. The radial structure of the light field in the depth of the human skin formed by coherent and incoherent radiation depending on its biophysical parameters has been investigated. The characteristic sizes of speckles in each layer of the skin have been estimated. The biophysical factors connected with the volume concentration of blood in the dermis and the degree of its oxygenation influencing the contrast of the speckle pattern in the dermis have been discussed. The possibility of formulating and solving inverse problems of biomedical optics on the restoration of blood parameters from measurements of speckle characteristics has been shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.
1997-09-01
In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B {bold 29}, 186 (1982); Y. Kato {ital et al.}, Phys. Rev. Lett. {bold 53}, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasmamore » atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities. {copyright} {ital 1997 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Mannoh, Emmanuel; Thomas, Giju; Solorzano, Carmen C.; Mahadevan-Jansen, Anita
2017-02-01
As many as 80,000 patients a year in the US undergo thyroidectomies or parathyroidectomies for diseased glands. About 21% of these surgeries result in disruption of blood supply to health parathyroid glands, which, if unaddressed, may result in long-term hypocalcemia. Surgeons need to know as soon as possible whether or not the blood supply to a parathyroid gland has been disrupted, as this informs their decision on whether or not to excise and reimplant the gland. There is a non-trivial failure rate involved in this transplantation process, and in the absence of an objective gold-standard surgeons often rely on subjective visual inspection in making this decision. Here we present Laser Speckle Imaging as a real-time objective method to assess parathyroid viability. Our device consists of a 785 nm laser source and a near-infrared camera with a zoom lens, positioned above the surgical field with an articulated arm. With the laser diffusing light onto the tissue, the camera acquires images which are processed in real-time and displayed on a monitor. These speckle contrast images are then averaged and the relative difference in speckle contrast between the parathyroid gland and surrounding thyroid tissue is calculated and correlated with the surgeon's assessment of viability. Preliminary findings from in vivo measurement of 9 diseased glands show 100% agreement with the surgeon when taking a greater than 5% relative difference to indicate devascularization. This device has the potential to be used as an intraoperative tool for assessing parathyroid viability.
Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation
Kazmi, S. M. Shams; Balial, Satyajit; Dunn, Andrew K.
2014-01-01
Improved Laser Speckle Contrast Imaging (LSCI) blood flow analyses that incorporate inverse models of the underlying laser-tissue interaction have been used to develop more quantitative implementations of speckle flowmetry such as Multi-Exposure Speckle Imaging (MESI). In this paper, we determine the optimal camera exposure durations required for obtaining flow information with comparable accuracy with the prevailing MESI implementation utilized in recent in vivo rodent studies. A looping leave-one-out (LOO) algorithm was used to identify exposure subsets which were analyzed for accuracy against flows obtained from analysis with the original full exposure set over 9 animals comprising n = 314 regional flow measurements. From the 15 original exposures, 6 exposures were found using the LOO process to provide comparable accuracy, defined as being no more than 10% deviant, with the original flow measurements. The optimal subset of exposures provides a basis set of camera durations for speckle flowmetry studies of the microcirculation and confers a two-fold faster acquisition rate and a 28% reduction in processing time without sacrificing accuracy. Additionally, the optimization process can be used to identify further reductions in the exposure subsets for tailoring imaging over less expansive flow distributions to enable even faster imaging. PMID:25071956
Laser Speckle Contrast Imaging: theory, instrumentation and applications.
Senarathna, Janaka; Rege, Abhishek; Li, Nan; Thakor, Nitish V
2013-01-01
Laser Speckle Contrast Imaging (LSCI) is a wide field of view, non scanning optical technique for observing blood flow. Speckles are produced when coherent light scattered back from biological tissue is diffracted through the limiting aperture of focusing optics. Mobile scatterers cause the speckle pattern to blur; a model can be constructed by inversely relating the degree of blur, termed speckle contrast to the scatterer speed. In tissue, red blood cells are the main source of moving scatterers. Therefore, blood flow acts as a virtual contrast agent, outlining blood vessels. The spatial resolution (~10 μm) and temporal resolution (10 ms to 10 s) of LSCI can be tailored to the application. Restricted by the penetration depth of light, LSCI can only visualize superficial blood flow. Additionally, due to its non scanning nature, LSCI is unable to provide depth resolved images. The simple setup and non-dependence on exogenous contrast agents have made LSCI a popular tool for studying vascular structure and blood flow dynamics. We discuss the theory and practice of LSCI and critically analyze its merit in major areas of application such as retinal imaging, imaging of skin perfusion as well as imaging of neurophysiology.
Mobile phone based laser speckle contrast imager for assessment of skin blood flow
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis
2014-10-01
Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.
Theoretical and experimental analysis of laser altimeters for barometric measurements over the ocean
NASA Technical Reports Server (NTRS)
Tsai, B. M.; Gardner, C. S.
1984-01-01
The statistical characteristics and the waveforms of ocean-reflected laser pulses are studied. The received signal is found to be corrupted by shot noise and time-resolved speckle. The statistics of time-resolved speckle and its effects on the timing accuracy of the receiver are studied in the general context of laser altimetry. For estimating the differential propagation time, various receiver timing algorithms are proposed and their performances evaluated. The results indicate that, with the parameters of a realistic altimeter, a pressure measurement accuracy of a few millibars is feasible. The data obtained from the first airborne two-color laser altimeter experiment are processed and analyzed. The results are used to verify the pressure measurement concept.
Andreev, Alexander L; Andreeva, Tatiana B; Kompanets, Igor N; Zalyapin, Nikolay V
2018-02-20
Spatially inhomogeneous modulation of a phase delay with the depth of the order π or more makes it possible to destroy phase relations in a laser beam passing through an electro-optical cell with the ferroelectric liquid crystal (FLC) and, as a consequence, to suppress speckle noise in images formed by this beam. Such a modulation is a consequence of chaotic changes in the position of the scattering indicatrix of helix-free FLC, when an electro-optical cell is simultaneously supplied with a low-frequency and high-frequency bipolar control voltage. In this work, the phase modulation and effective suppressing of the speckles are realized using a new type of helix-free FLC material with periodic deformations of smectic layers.
NASA Astrophysics Data System (ADS)
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.
2017-01-01
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.
2012-02-01
Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.
Laser speckle based digital optical methods in structural mechanics: A review
NASA Astrophysics Data System (ADS)
De la Torre, I. Manuel; Hernández Montes, María del Socorro; Flores-Moreno, J. Mauricio; Santoyo, Fernando Mendoza
2016-12-01
Laser Speckle Correlation, Electronic Speckle Pattern Interferometry and Digital Holographic interferometry have evolved for decades to become relevant techniques in many fields of today's wide spectrum of knowledge and disciplines. Indeed, with today's advances in optics, photonics, electronics and computing there are many important applications for them and strictly speaking there are an almost infinite number of applications that one can think of, as they are non-contact optical techniques that can be used to measure mechanical parameters ranging from a few microns to hundreds of nanometers. In this review we will explore and discuss some relevant applications in structural mechanics in the fields of materials in engineering, biomedical and art preservation and restoration. This work will take the reader from a succinct historical account on the development of these techniques, followed by a brief theoretical description for each one that will then facilitate the introduction of the results chosen as the key applications, ending the review with the conclusions. From the myriad of papers now available in the web, we will only present those that we believe are the most illustrative applications within three lustrum, 2000 to 2015, all set to give a frame that place these optical techniques as mature technologies with an absolute relevance to conduct metrology in many fields.
Breast cancer early detection via tracking of skin back-scattered secondary speckle patterns
NASA Astrophysics Data System (ADS)
Bennett, Aviya; Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev
2018-02-01
Breast cancer has become a major cause of death among women. The lifetime risk of a woman developing this disease has been established as one in eight. The most useful way to reduce breast cancer death is to treat the disease as early as possible. The existing methods of early diagnostics of breast cancer are mainly based on screening mammography or Magnetic Resonance Imaging (MRI) periodically conducted at medical facilities. In this paper the authors proposing a new approach for simple breast cancer detection. It is based on skin stimulation by sound waves, illuminating it by laser beam and tracking the reflected secondary speckle patterns. As first approach, plastic balls of different sizes were placed under the skin of chicken breast and detected by the proposed method.
NASA Astrophysics Data System (ADS)
Darwiesh, M.; El-Sherif, Ashraf F.; El-Ghandour, Hatem; Aly, Hussein A.; Mokhtar, A. M.
2011-03-01
Optical imaging systems are widely used in different applications include tracking for portable scanners; input pointing devices for laptop computers, cell phones, and cameras, fingerprint-identification scanners, optical navigation for target tracking, and in optical computer mouse. We presented an experimental work to measure and analyze the laser speckle pattern (LSP) produced from different optical sources (i.e. various color LEDs, 3 mW diode laser, and 10mW He-Ne laser) with different produced operating surfaces (Gabor hologram diffusers), and how they affects the performance of the optical imaging systems; speckle size and signal-to-noise ratio (signal is represented by the patches of the speckles that contain or carry information, and noise is represented by the whole remaining part of the selected image). The theoretical and experimental studies of the colorimetry (color correction is done in the color images captured by the optical imaging system to produce realistic color images which contains most of the information in the image by selecting suitable gray scale which contains most of the informative data in the image, this is done by calculating the accurate Red-Green-Blue (RGB) color components making use of the measured spectrum for light sources, and color matching functions of International Telecommunication Organization (ITU-R709) for CRT phosphorus, Tirinton-SONY Model ) for the used optical sources are investigated and introduced to present the relations between the signal-to-noise ratios with different diffusers for each light source. The source surface coupling has been discussed and concludes that the performance of the optical imaging system for certain source varies from worst to best based on the operating surface. The sensor /surface coupling has been studied and discussed for the case of He-Ne laser and concludes the speckle size is ranged from 4.59 to 4.62 μm, which are slightly different or approximately the same for all produced diffusers (which satisfies the fact that the speckle size is independent on the illuminating surface). But, the calculated value of signal-tonoise ratio takes different values ranged from 0.71 to 0.92 for different diffuser. This means that the surface texture affects the performance of the optical sensor because, all images captured for all diffusers under the same conditions [same source (He-Ne laser), same distances of the experimental set-up, and the same sensor (CCD camera)].
Optical characterization of display screens by speckle-contrast measurements
NASA Astrophysics Data System (ADS)
Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel
2012-10-01
In recent years, the flat-panel display (FPD) technology has undergone great development. Currently, FPDs are present in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surface which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider images shown in these types of displays to have more vivid colours compared with matte-screen displays. However, external light sources may cause unpleasant reflections on the glossy screens. These reflections can be reduced by a matte treatment in the front surface of FPDs. In this work, we present a method to characterize the front surface of FPDs using laser speckle patterns. We characterized three FPDs: a Samsung XL2370 LCD monitor of 23" with matte screen, a Toshiba Satellite A100 laptop of 15.4" with glossy screen, and a Papyre electronic book reader. The results show great differences in speckle contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs which have different types of front surfaces.
Roughness Measurement of Dental Materials
NASA Astrophysics Data System (ADS)
Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo
2016-06-01
This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.
Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S
2015-10-01
The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light.
NASA Astrophysics Data System (ADS)
Hosoda, Masaki; Wang, Jing; Tsikudi, Diane; Nadkarni, Seemantini
2016-02-01
Acute myocardial infarction is frequently caused by the rupture of coronary plaques with severely compromised viscoelastic properties. We have developed a new optical technology termed intravascular laser speckle imaging (ILSI) that evaluates plaque viscoelastic properties, by measuring the time scale (time constant, τ) of temporally evolving laser speckle fluctuations. To enable coronary evaluation in vivo, an optical ILSI catheter has been developed that accomplishes omni-directional illumination and viewing of the entire coronary circumference without the need for mechanical rotation. Here, we describe the capability of ILSI for evaluating human coronary atherosclerosis in cadaveric hearts. ILSI was conducted in conjunction with optical coherence tomography (OCT) imaging in five human cadaveric hearts. The left coronary artery (LCA), left anterior descending (LAD), left circumflex artery (LCx), and right coronary artery (RCA) segments were resected and secured on custom-developed coronary holders to enable accurate co-registration between ILSI, OCT, and histopathology. Speckle time constants, τ, calculated from each ILSI section were compared with lipid and collagen content measured from quantitative Histopathological analysis of the corresponding Oil Red O and Picrosirius Red stained sections. Because the presence of low viscosity lipid elicits rapid speckle fluctuations, we observed an inverse correlation between τ measured by ILSI and lipid content (R= -0.64, p< 0.05). In contrast, the higher viscoelastic modulus of fibrous regions resulted in a positive correlation between τ and collagen content (R= 0.54, p< 0.05). These results demonstrate the feasibility of conducting ILSI evaluation of arterial mechanical properties using a miniaturized omni-directional catheter.
Statistical spatio-temporal properties of the Laser MegaJoule speckle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Cain, A.; Sajer, J. M.; Riazuelo, G.
2012-10-15
This paper investigates a statistical model to describe the spatial and temporal properties of hot spots generated by the superimposition of multiple laser beams. In the context of the Laser MegaJoule design, we introduce the formula for contrasts, trajectories and velocities of the speckle pattern. Single bundle of four beams, two-cones and three-cones configurations are considered. Statistical properties of the speckle in the zone where all the beams overlap are studied with different configurations of polarizations. These properties are shown to be very different from the case of one single bundle of four beams. The configuration of polarization has onlymore » a slight effect in the two-cones or three cones configuration. Indeed, the impact of the double polarization smoothing is reduced in the area in which all the beams overlap, while it is much more significant when they split. Moreover, the size of the hot-spots decreases as the number of laser beams increases, but we show that their velocity decreases. As a matter of fact, the maximal velocity of hot spots is found to be only about 10{sup -5} of the velocity of light and the integrated contrast is about 15% when the beams overlap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.
2014-03-15
The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incidentmore » laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.« less
Coherent Laser Radar System Theory.
1987-11-05
This program is aimed at developing a system theory for the emerging technology of multifunction coherent CO2 laser radars. It builds upon previous...work funded by U.S. Army Research Office contract DAAG29-80-K-0022. Keywords include: Laser radar theory, Radar system theory , and Laser speckle.
Speckle field as a multiple particle trap
NASA Astrophysics Data System (ADS)
Shvedov, V. G.; Rode, A. V.; Izdebskaya, Ya. V.; Desyatnikov, A. S.; Krolikowski, W.; Kivshar, Yu. S.
2010-04-01
We demonstrate that a speckle pattern in the spatially coherent laser field transmitted by a diffuser forms a multitude of three-dimensional bottle-shaped micro-traps. These multiple traps serve as a means for an effective trapping of large number of air-born absorbing particles. Confinement of up to a few thousand particles in air with a single beam has been achieved. The ability to capture light-absorbing particles suspended in gases by optical means opens up rich and diverse practical opportunities, including development of photonic shielding/fencing for environmental protection in nanotechnology industry and new methods of touch-free air transport of particles and small containers, which may hold dangerous substances, or viruses and living cells.
Development of optical systems. [holographic technique for monitoring crystal growth
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1995-01-01
Several key aspects of multi-color holography and laser speckle technique to study holographic reconstructions are considered in the report. Holographic fringe contrast in two-color holography in the presence of a fluid cell in the object beam is discussed in detail. A specific example of triglycine sulfate crystal growth is also considered. A breadboard design using fiber optics and diode lasers for three-color holography for fluid experiments is presented. A possible role of multi-color holography in various new applications is summarized. Finally, the use of a a laser speckle technique is demonstrated for the study of holographic reconstructions. The demonstration is performed using a Spacelab 3 hologram.
Quantification and Reconstruction in Photoacoustic Tomography
NASA Astrophysics Data System (ADS)
Guo, Zijian
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic (PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.
Dynamic Speckle Imaging with Low-Cost Devices
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Arizaga, Ricardo; Rabal, Hector; Molesini, Giuseppe
2008-01-01
Light from a rough sample surface illuminated with a laser consists of a speckle pattern. If the surface evolves with time, the pattern becomes dynamic, following the activity of the sample. This phenomenon is used both in research and in industry to monitor processes and systems that change with time. The measuring equipment generally includes…
Off-axis holographic laser speckle contrast imaging of blood vessels in tissues
NASA Astrophysics Data System (ADS)
Abdurashitov, Arkady; Bragina, Olga; Sindeeva, Olga; Sergey, Sindeev; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.
2017-09-01
Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 μm of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.
NASA Astrophysics Data System (ADS)
Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming
2015-03-01
The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.
Speckle contrast diffuse correlation tomography of complex turbid medium flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chong; Irwin, Daniel; Lin, Yu
2015-07-15
Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupledmore » to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.« less
Araie, M
1999-12-01
We have developed an apparatus utilizing laser speckle phenomenon which can measure the peripheral circulation in the iris, choroid, retina and optic nerve head (ONH) and blood velocity through retinal vessels in the living eye non-invasively and quantitatively. A blue-component argon laser (wavelength 488 nm) was used for measurement of peripheral circulation in the retina and a diode laser (wavelength 808 nm) for measurements of peripheral circulation in the iris, posterior choroid and ONH, and measurement of centerline blood velocity through retinal vessels. A fundus camera (TRC-WT 3, Topcon) was equipped with a laser source and an image sensor where the speckle pattern from the fundus appears, and the data were analyzed with a personal computer to give a normalized blur (NB) value or a square blur rate (SBR) value, both quantitative indices of blood velocity. The NB value, whose computation requires much less time, was adopted to evaluate peripheral circulation because of non-linear correlation between the NB and actual blood velocity in the range above 20 mm/sec. The SBR value, whose computation requires a longer time, was adopted for measurement of blood velocity through retinal vessels. Measurement field in the living eye was 1.06 x 1.06 mm at its maximum and reproducibility index of the in vivo measurement in the rabbit iris, choroid, retina, and ONH was approximately 10%. When blood flow was changed by intraocular pressure (IOP) change in rabbit eyes, NB values obtained from the iris, choroid, and retina showed a significant correlation with the blood flow simultaneously determined with the colored microsphere technique in the same eye, and the NB obtained from the ONH also correlated with the blood flow determined with the H2 gas clearance method. Stepwise reduction in the ocular perfusion pressure (OPP) by stepwise increment of IOP resulted in proportional reduction in the iris- and choroid-NB. On the other hand, the retina- or ONH-NB remained almost unaltered at OPP levels above 50 mmHg, and decreased along with OPP at levels less than 50 mmHg. By monitoring NB values for 2 hours, presence or absence of autoregulatory mechanism against OPP change in the choroidal and ONH circulation was studied in rabbits. Throughout the experimental period of 2 hours, the choroidal NB was changed along with the OPP change, suggesting absence of blood flow autoregulation in this tissue. In the ONH, however, the NB returned to the baseline after its transient increase or decrease when the OPP was continuously increased or decreased, showing the presence of an autoregulatory mechanism in the ONH circulation. However, the time course of the NB resumption depended on the extent of OPP change. These results indicated that the laser speckle method can be useful in investigating the autoregulatory mechanism and processes of peripheral circulation in ocular tissues. Unilateral instillation of drugs with vasodilative activity (ifenprodil, betaxolol or nipradilol) in rabbit eyes significantly increased ONH and/or choroidal circulation. The extent in change in the ONH and/or choroidal circulation correlated with the number of doses, but not with the extent of IOP reduction, which suggested that the observed effects were attributable to the drug which penetrated locally. Intravenous administration of a Ca(2+)-antagonist (nicardipine, nilvadipine or pranidipine) significantly increased choroidal or retinal circulation in rabbits. The ONH circulation, however, was not affected by nicardipine, but affected by nilvadipine or pranidipine. Given the same effect on the ONH circulation, systemic hypotensive effect was stronger in pranidipine than in nilvadipine, which suggested that nilvadipine can be used in patients with ocular circulatory insufficiency. A modification of the laser speckle apparatus used for animal experiments was devised so that the NB or SBR values could be measured in human eyes every 0.12 sec on a real-time basis. (ABSTRACT TRUN
Correcting for motion artifact in handheld laser speckle images
NASA Astrophysics Data System (ADS)
Lertsakdadet, Ben; Yang, Bruce Y.; Dunn, Cody E.; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J.; Choi, Bernard
2018-03-01
Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4 % when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.
NASA Astrophysics Data System (ADS)
Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian
2017-06-01
The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.
Laser speckle technique for burner liner strain measurements
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1982-01-01
Thermal and mechanical strains were measured on samples of a common material used in jet engine burner liners, which were heated from room temperature to 870 C and cooled back to 220 C, in a laboratory furnance. The physical geometry of the sample surface was recorded at selected temperatures by a set of 12 single exposure speckle-grams. Sequential pairs of specklegrams were compared in a heterodyne interferometer which give high precision measurement of differential displacements. Good speckle correlation between the first and last specklegrams is noted which allows a check on accumulate errors.
Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique
NASA Technical Reports Server (NTRS)
Wiedlocher, D. E.; Kinser, D. L.
1992-01-01
Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.
Langmuir wave damping decreases slowly
NASA Astrophysics Data System (ADS)
Rose, Harvey
2006-10-01
The onset of stimulated Raman scatter in a single laser speckle occurs (D. S. Montgomery et al., Phys. Plasmas, 9, 2311 (2002)) at lower laser intensity, I, than predicted by linear theory based on classical Landau damping, νL, of the SRS daughter Langmuir wave. Does this imply that SRS onset in a speckled laser beam, propagating through long scale length plasma, is also at odds with linear theory? It has been shown (Harvey A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)) that linear convective gain in speckles with large fluctuations of I about the average, , leads to onset at a value of , Ic, small compared to that for onset in a uniform beam. While nonlinear electron trapping effects may occur in very intense speckles, whether or not these effects are sufficient to lower the onset value of below Ic depends on how strongly electrons must be trapped before there is significant reduction in νL. As the amplitude of an SRS daughter Langmuir wave increases, its νL decreases by the factor ν/φb, due to the competition between electron trapping, with electron bounce frequency, φb, and escape of these trapped electrons by advection out of a speckle's side, at rate ν. This result (Harvey A. Rose and David A. Russell, Phys. Plasmas, 8, 4784 (2001)) is valid for ν/φb 1. In this talk I present a nonlinear, transit time damping, calculation of νL and find that reduction by a factor of two does not occur until φb/ν 5. This slow turn on of trapping effects suggests that the linear calculation of Ic is NIF relevant.
Evaluating the Viscoelastic Properties of Tissue from Laser Speckle Fluctuations
Hajjarian, Zeinab; Nadkarni, Seemantini K.
2012-01-01
Most pathological conditions such as atherosclerosis, cancer, neurodegenerative, and orthopedic disorders are accompanied with alterations in tissue viscoelasticity. Laser Speckle Rheology (LSR) is a novel optical technology that provides the invaluable potential for mechanical assessment of tissue in situ. In LSR, the specimen is illuminated with coherent light and the time constant of speckle fluctuations, τ, is measured using a high speed camera. Prior work indicates that τ is closely correlated with tissue microstructure and composition. Here, we investigate the relationship between LSR measurements of τ and sample mechanical properties defined by the viscoelastic modulus, G*. Phantoms and tissue samples over a broad range of viscoelastic properties are evaluated using LSR and conventional mechanical testing. Results demonstrate a strong correlation between τ and |G*| for both phantom (r = 0.79, p <0.0001) and tissue (r = 0.88, p<0.0001) specimens, establishing the unique capability of LSR in characterizing tissue viscoelasticity. PMID:22428085
Application of laser speckle contrast image in the evaluation of arthritis animal model
NASA Astrophysics Data System (ADS)
Son, Taeyoon; Jang, Won Hyuk; Park, Jihoon; Yoon, Hyung-Ju; Lee, Jeon; Kim, Wan-Uk; Jung, Byungjo
2013-03-01
Arthritis is a chronic inflammatory disease that induces potentially damaging and commonly disabling. Various imaging modalities have been used for the evaluation of arthritis. This study aimed to investigate the feasibility of laser speckle contrast image (LSCI) in the evaluation of the severity and early stage of arthritis in animal model. Arthritis was induced on mouse foot and evaluated by a trained expert and the LSCI. The arthritis severity was quantitatively evaluated by speckle index (SI) computed from LSCI. In visual inspection by an expert, it was difficult to evaluate the arthritis because there was no noticeable different between control mouse group (CMG) and arthritis mouse group (AMG) in erythema. However, arthritis was easily evaluated by significant SI different between the CMG and AMG. In addition, the LSCI also successfully evaluated the early stage of arthritis, presenting different SI distribution depending on lesion.
High pressure melting curve of platinum up to 35 GPa
NASA Astrophysics Data System (ADS)
Patel, Nishant N.; Sunder, Meenakshi
2018-04-01
Melting curve of Platinum (Pt) has been measured up to 35 GPa using our laboratory based laser heated diamond anvil cell (LHDAC) facility. Laser speckle method has been employed to detect onset of melting. High pressure melting curve of Pt obtained in the present study has been compared with previously reported experimental and theoretical results. The melting curve measured agrees well within experimental error with the results of Kavner et al. The experimental data fitted with simon equation gives (∂Tm/∂P) ˜25 K/GPa at P˜1 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, A L; Andreeva, T B; Kompanets, I N
We have studied the method for suppressing speckle noise in patterns produced by a laser based on a fast-response electro-optical cell with a ferroelectric liquid crystal (FLC) in which helicoid is absent, i.e., compensated for. The character of smectic layer deformation in an electric field is considered along with the mechanism of spatially inhomogeneous phase modulation of a laser beam passing through the cell which is accompanied by the destruction of phase relations in the beam. Advantages of a helix-free FLC cell are pointed out as compared to helical crystal cells studied previously. (liquid crystal devices)
Flux or speed? Examining speckle contrast imaging of vascular flows
Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.
2015-01-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384
Flux or speed? Examining speckle contrast imaging of vascular flows.
Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K
2015-07-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking.
Laser speckle tracking for monitoring and analysis of retinal photocoagulation
NASA Astrophysics Data System (ADS)
Seifert, Eric; Bliedtner, Katharina; Brinkmann, Ralf
2014-02-01
Laser coagulation of the retina is an established treatment for several retinal diseases. The absorbed laser energy and thus the induced thermal damage varies with the transmittance and scattering properties of the anterior eye media and with the pigmentation of the fundus. The temperature plays the most important role in the coagulation process. An established approach to measure a mean retinal temperature rise is optoacoustics, however it provides limited information on the coagulation. Phase sensitive OCT potentially offers a three dimensional temporally resolved temperature distribution but is very sensitive to slightest movements which are clinically hard to avoid. We develop an optical technique able to monitor and quantify thermally and coagulation induced tissue movements (expansions and contractions) and changes in the tissue structure by dynamic laser speckle analysis (LSA) offering a 2D map of the affected area. A frequency doubled Nd:YAG laser (532nm) is used for photocoagulation. Enucleated porcine eyes are used as targets. The spot is 100μm. A Helium Neon laser (HeNe) is used for illumination. The backscattered light of a HeNe is captured with a camera and the speckle pattern is analyzed. A Q-switched Nd:YLF laser is used for simultaneous temperature measurements with the optoacoustic approach. Radial tissue movements in the micrometer regime have been observed. The signals evaluation by optical flow algorithms and generalized differences tuned out to be able to distinguish between regions with and without immediate cell damage. Both approaches have shown a sensitivity of 93% and a specificity above 99% at their optimal threshold.
Applications of polarization speckle in skin cancer detection and monitoring
NASA Astrophysics Data System (ADS)
Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil
2018-01-01
Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.
New method for remote and repeatable monitoring of intraocular pressure variations.
Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev
2014-02-01
We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.
Optical detection of metastatic cancer cells using a scanned laser pico-projection system
NASA Astrophysics Data System (ADS)
Huang, Chih-Ling; Chiu, Wen-Tai; Lo, Yu-Lung; Chuang, Chin-Ho; Chen, Yu-Bin; Chang, Shu-Jing; Ke, Tung-Ting; Cheng, Hung-Chi; Wu, Hua-Lin
2015-03-01
Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro.
Optical characterization of display screens by speckle patterns
NASA Astrophysics Data System (ADS)
Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel
2013-10-01
In recent years, flat-panel display (FPD) technology has undergone great development, and now FPDs appear in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surfaces, which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider these displays to show more vivid colors compared with matte-screen displays. However, on the glossy screens, external light sources may cause unpleasant reflections that can be reduced by a matte treatment in the front surface. In this work, we present a method to characterize FPD screens using laser-speckle patterns. We characterize three FPDs: a Samsung XL2370 LCD monitor of 23 in. with matte screen, a Toshiba Satellite A100 LCD laptop of 15.4 in. with glossy screen, and a Grammata Papyre 6.1 electronic book reader of 6 in. with ePaper screen (E-ink technology). The results show great differences in speckle-contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs that have different types of front surfaces.
Uncooperative target-in-the-loop performance with backscattered speckle-field effects
NASA Astrophysics Data System (ADS)
Kansky, Jan E.; Murphy, Daniel V.
2007-09-01
Systems utilizing target-in-the-loop (TIL) techniques for adaptive optics phase compensation rely on a metric sensor to perform a hill climbing algorithm that maximizes the far-field Strehl ratio. In uncooperative TIL, the metric signal is derived from the light backscattered from a target. In cases where the target is illuminated with a laser with suffciently long coherence length, the potential exists for the validity of the metric sensor to be compromised by speckle-field effects. We report experimental results from a scaled laboratory designed to evaluate TIL performance in atmospheric turbulence and thermal blooming conditions where the metric sensors are influenced by varying degrees of backscatter speckle. We compare performance of several TIL configurations and metrics for cases with static speckle, and for cases with speckle fluctuations within the frequency range that the TIL system operates. The roles of metric sensor filtering and system bandwidth are discussed.
A decade of innovation with laser speckle metrology
NASA Astrophysics Data System (ADS)
Ettemeyer, Andreas
2003-05-01
Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.
NASA Astrophysics Data System (ADS)
Ke, Jingtang; Pryputniewicz, Ryszard J.
Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.
Handheld, point-of-care laser speckle imaging
Farraro, Ryan; Fathi, Omid; Choi, Bernard
2016-01-01
Abstract. Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was <2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p>0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow. PMID:27579578
Magnetomotive laser speckle imaging
Kim, Jeehyun; Oh, Junghwan; Choi, Bernard
2010-01-01
Laser speckle imaging (LSI) involves analysis of reflectance images collected during coherent optical excitation of an object to compute wide-field maps of tissue blood flow. An intrinsic limitation of LSI for resolving microvascular architecture is that its signal depends on relative motion of interrogated red blood cells. Hence, with LSI, small-diameter arterioles, venules, and capillaries are difficult to resolve due to the slow flow speeds associated with such vasculature. Furthermore, LSI characterization of subsurface blood flow is subject to blurring due to scattering, further limiting the ability of LSI to resolve or quantify blood flow in small vessels. Here, we show that magnetic activation of superparamagnetic iron oxide (SPIO) nanoparticles modulate the speckle flow index (SFI) values estimated from speckle contrast analysis of collected images. With application of an ac magnetic field to a solution of stagnant SPIO particles, an apparent increase in SFI is induced. Furthermore, with application of a focused dc magnetic field, a focal decrease in SFI values is induced. Magnetomotive LSI may enable wide-field mapping of suspicious tissue regions, enabling subsequent high-resolution optical interrogation of these regions. Similarly, subsequent photoactivation of intravascular SPIO nanoparticles could then be performed to induce selective photothermal destruction of unwanted vasculature. PMID:20210436
Handheld, point-of-care laser speckle imaging
NASA Astrophysics Data System (ADS)
Farraro, Ryan; Fathi, Omid; Choi, Bernard
2016-09-01
Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was <2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p>0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow.
Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.
Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde
2017-03-01
Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.
Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fluckiger, L.; Rupp, D.; Adolph, M.
The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less
Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals
Fluckiger, L.; Rupp, D.; Adolph, M.; ...
2016-04-13
The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less
Klijn, Eva; Hulscher, Hester C; Balvers, Rutger K; Holland, Wim P J; Bakker, Jan; Vincent, Arnaud J P E; Dirven, Clemens M F; Ince, Can
2013-02-01
The goal of awake neurosurgery is to maximize resection of brain lesions with minimal injury to functional brain areas. Laser speckle imaging (LSI) is a noninvasive macroscopic technique with high spatial and temporal resolution used to monitor changes in capillary perfusion. In this study, the authors hypothesized that LSI can be useful as a noncontact method of functional brain mapping during awake craniotomy for tumor removal. Such a modality would be an advance in this type of neurosurgery since current practice involves the application of invasive intraoperative single-point electrocortical (electrode) stimulation and measurements. After opening the dura mater, patients were woken up, and LSI was set up to image the exposed brain area. Patients were instructed to follow a rest-activation-rest protocol in which activation consisted of the hand-clenching motor task. Subsequently, exposed brain areas were mapped for functional motor areas by using standard electrocortical stimulation (ECS). Changes in the LSI signal were analyzed offline and compared with the results of ECS. In functional motor areas of the hand mapped with ECS, cortical blood flow measured using LSI significantly increased from 2052 ± 818 AU to 2471 ± 675 AU during hand clenching, whereas capillary blood flow did not change in the control regions (areas mapped using ECS with no functional activity). The main finding of this study was that changes in laser speckle perfusion as a measure of cortical microvascular blood flow when performing a motor task with the hand relate well to the ECS map. The authors have shown the feasibility of using LSI for direct visualization of cortical microcirculatory blood flow changes during neurosurgery.
Towards real time speckle controlled retinal photocoagulation
NASA Astrophysics Data System (ADS)
Bliedtner, Katharina; Seifert, Eric; Stockmann, Leoni; Effe, Lisa; Brinkmann, Ralf
2016-03-01
Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.
Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke
Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R
2010-01-01
Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321
NASA Astrophysics Data System (ADS)
Fedosov, I. V.; Tuchin, Valerii V.; Galanzha, E. I.; Solov'eva, A. V.; Stepanova, T. V.
2002-11-01
The direction-sensitive method of microflow velocity measurements based on the space — time correlation properties of the dynamic speckle field is described and used for in vivo monitoring of lymph flow in the vessels of rat mesentery. The results of measurements are compared with the data obtained from functional video microscopy of the microvessel region.
Real time speckle monitoring to control retinal photocoagulation
NASA Astrophysics Data System (ADS)
Bliedtner, Katharina; Seifert, Eric; Brinkmann, Ralf
2017-07-01
Photocoagulation is a treatment modality for several retinal diseases. Intra- and inter-individual variations of the retinal absorption as well as ocular transmission and light scattering makes it impossible to achieve a uniform effective exposure with one set of laser parameters. To guarantee a uniform damage throughout the therapy a real-time control is highly requested. Here, an approach to realize a real-time optical feedback using dynamic speckle analysis in-vivo is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633 nm diode laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. An algorithm is presented that can discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes and that seems to be robust to noise in-vivo. Tissue changes in rabbits during retinal coagulation could be observed for different lesion strengths. This algorithm can run on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage.
Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images
Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde
2017-01-01
Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality. PMID:28663860
Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun
2017-04-22
A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing.
Lee, Jaekwon; Moon, Seunghwan; Lim, Juhun; Gwak, Min-Joo; Kim, Jae Gwan; Chung, Euiheon; Lee, Jong-Hyun
2017-01-01
A new authentication method employing a laser and a scanner is proposed to improve image contrast of the finger vein and to extract blood flow pattern for liveness detection. A micromirror reflects a laser beam and performs a uniform raster scan. Transmissive vein images were obtained, and compared with those of an LED. Blood flow patterns were also obtained based on speckle images in perfusion and occlusion. Curvature ratios of the finger vein and blood flow intensities were found to be nearly constant, regardless of the vein size, which validated the high repeatability of this scheme for identity authentication with anti-spoofing. PMID:28441728
Fractality of pulsatile flow in speckle images
NASA Astrophysics Data System (ADS)
Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.
2016-05-01
The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.
Speckle-correlation monitoring of the microhemodynamics of internal organs
NASA Astrophysics Data System (ADS)
Zimnyakov, D. A.; Khmara, M. B.; Vilensky, M. A.; Kozlov, V. V.; Sadovoĭ, A. V.; Gorfinkel, I. V.; Zdrajevsky, R. A.; Isaeva, A. A.
2009-12-01
The results of preliminary experimental studies of the possibility of monitoring blood microcirculation in surface layers of internal organs of laboratory animals in the course of laparotomy using full-field speckle correlometry are presented. The transmission of laser radiation to the probed part of the organ and the delivery of scattered speckle-modulated radiation to the detector (a CMOS camera) are performed using a fiberoptic endoscopic system. In the course of experiments, the microhemodynamics of the intestine, liver, spleen, kidneys, and pancreas in rat in a normal state and under induced ischemia and peritonitis, as well as under the action of drugs with clearly pronounced vasodilative effects (lidocaine, papaverine), is studied. The problems and prospects of speckle-correlation monitoring of the microhemodynamics of internal organs under laboratory and clinical conditions are discussed.
Instantaneous Doppler Global Velocimetry Measurements of a Rotor Wake: Lessons Learned
NASA Technical Reports Server (NTRS)
Meyers, James; Fleming, Gary A.; Gorton, Susan Althoff; Berry, John D.
1998-01-01
A combined Doppler Global Velocimetry (DGV) and Projection Moir Interferometry (PMI) investigation of a helicopter rotor wake flow field and rotor blade deformation is presented. The three-component DGV system uses a single-frequency, frequency-doubled Nd:YAG laser to obtain instantaneous velocity measurements in the flow. The PMI system uses a pulsed laser-diode bar to obtain blade bending and twist measurements at the same instant that DGV measured the flow. The application of pulse lasers to DGV and PMI in large-scale wind tunnel applications represents a major step forward in the development of these technologies. As such, a great deal was learned about the difficulties of using these instruments to obtain instantaneous measurements in large facilities. Laser speckle and other image noise in the DGV data images were found to be traceable to the Nd:YAG laser. Although image processing techniques were used to virtually eliminate laser speckle noise, the source of low-frequency image noise is still under investigation. The PMI results agreed well with theoretical predictions of blade bending and twist.
Development of a multi-exposure speckle imaging for mice brain imaging
NASA Astrophysics Data System (ADS)
Soleimanzad, Haleh; Gurden, Hirac; Pain, Frédéric
2017-02-01
In the last decade, Laser Speckle Contrast Imaging (LSCI) has been proposed and validated for imaging cerebral blood flow at the rodent brain surface in vivo. The technique relies on the calculation of the spatial speckle contrast, which is related to the velocity of scatterers (red blood cells). The implementation of the technique requires a partial craniotomy so that the brain tissues of interest can be illuminated with a laser diode. However, the studies of changes in the microcirculation during disease progression or treatment require longitudinal studies (i.e. imaging is done repeatedly over weeks or even months). Practically, the less invasive way to obtain such data is to image through the thinned skull without a craniotomy. However the presence of static scatterers (skull) will affect the speckle calculation and produce a bias in the estimation of the microcirculation changes. An extension to LSCI, termed Multi-Exposure Speckle Imaging (MESI) was proposed and validated a few years ago that address these limitations. It relies on a model of the speckle contrast as a function of the exposure time and the proportion of static scatterers. Here, we used MESI with the aim of repeatedly imaging the olfactory bulb of mice models of obesity. First, we have developed a MESI set up which was characterized on microfluidic flow phantoms with different flow-rates and channel diameters to simulate blood flow in animal model characteristics. Second, we show that MESI can discriminate flows in the presence of static scatterers and it can measure flow changes consistently. Finally we provide an in vivo validation of the technique in mice with and without a craniotomy.
Single shot imaging through turbid medium and around corner using coherent light
NASA Astrophysics Data System (ADS)
Li, Guowei; Li, Dayan; Situ, Guohai
2018-01-01
Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1991-03-01
The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.
Calibration of a speckle-based compressive sensing receiver
NASA Astrophysics Data System (ADS)
Sefler, George A.; Shaw, T. Justin; Stapleton, Andrew D.; Valley, George C.
2017-02-01
Optical speckle in a multimode waveguide has been proposed to perform the function of a compressive sensing (CS) measurement matrix (MM) in a receiver for GHz-band radio frequency (RF) signals. Unlike other devices used for the CS MM, e.g. the digital micromirror device (DMD) used in the single pixel camera, the elements of the speckle MM are not known before use and must be measured and calibrated. In our system, the RF signal is modulated on a repetitively pulsed chirped wavelength laser source, generated from mode-locked laser pulses that have been dispersed in time or from an electrically addressed distributed Bragg reflector laser. Next, the optical beam with RF propagates through a multimode fiber or waveguide, which applies different weights in wavelength (or equivalently time) and space and performs the function of the CS MM. The output of the guide is directed to or imaged on a bank of photodiodes with integration time set to the pulse length of the chirp waveform. The output of each photodiode is digitized by an analog-to-digital converter (ADC), and the data from these ADCs are used to form the CS measurement vector. Accurate recovery of the RF signal from CS measurements depends critically on knowledge of the weights in the MM. Here we present results using a stable wavelength laser source to probe the guide.
Tangled nonlinear driven chain reactions of all optical singularities
NASA Astrophysics Data System (ADS)
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Correcting for motion artifact in handheld laser speckle images.
Lertsakdadet, Ben; Yang, Bruce Y; Dunn, Cody E; Ponticorvo, Adrien; Crouzet, Christian; Bernal, Nicole; Durkin, Anthony J; Choi, Bernard
2018-03-01
Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4 % when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Target-in-the-loop phasing of a fiber laser array fed by a linewidth-broadened master oscillator
NASA Astrophysics Data System (ADS)
Hyde, Milo W.; Tyler, Glenn A.; Rosado Garcia, Carlos
2017-05-01
In a recent paper [J. Opt. Soc. Am. A 33, 1931-1937 (2016)], the target-in-the-loop (TIL) phasing of an RF-modulated or multi-phase-dithered fiber laser array, fed by a linewidth-broadened master oscillator (MO) source, was investigated. It was found that TIL phasing was possible even on a target with scattering features separated by more than the MO's coherence length as long as the received, backscattered irradiance changed with the array's modulation or phase dither. To simplify the problem and gain insight into how temporal coherence affects TIL phasing, speckle and atmospheric turbulence were omitted from the analysis. Here, the scenario analyzed in the prior work is generalized by including speckle and turbulence. First, the key analytical result from the prior paper is reviewed. Simulations, including speckle and turbulence, are then performed to test whether the conclusions derived from that result hold under more realistic conditions.
Sharif, S.A.; Taydas, E.; Mazhar, A.; Rahimian, R.; Kelly, K.M.; Choi, B.; Durkin, A.J.
2012-01-01
Port wine stain (PWS) birthmarks are one class of benign congenital vascular malformation. Laser therapy is the most successful treatment modality of PWS. Unfortunately, this approach has limited efficacy, with only 10% of patients experiencing complete blanching of the PWS. To address this problem, several research groups have developed technologies and methods designed to study treatment outcome and improve treatment efficacy. This paper reviews seven optical imaging techniques currently in use or under development to assess treatment efficacy, focusing on: Reflectance spectrophotometers/tristimulus colorimeters, Laser Doppler flowmetry (LDF) and Laser Doppler imaging (LDI), Cross-polarized diffuse reflectance color imaging system (CDR), Reflectance Confocal Microscopy (RCM), Optical Coherence Tomography (OCT), Spatial Frequency Domain Imaging (SFDI), and Laser Speckle Imaging (LSI). PMID:22804872
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, R.L.; Lefebvre, E.; Langdon, A.B.
1999-04-01
Control of filamentation and stimulated Raman and Brillouin scattering is shown to be possible by use of both spatial and temporal smoothing schemes. The spatial smoothing is accomplished by the use of phase plates [Y. Kato and K. Mima, Appl. Phys. {bold 329}, 186 (1982)] and polarization smoothing [Lefebvre {ital et al.}, Phys. Plasmas {bold 5}, 2701 (1998)] in which the plasma is irradiated with two orthogonally polarized, uncorrelated speckle patterns. The temporal smoothing considered here is smoothing by spectral dispersion [Skupsky {ital et al.}, J. Appl. Phys. {bold 66}, 3456 (1989)] in which the speckle pattern changes on themore » laser coherence time scale. At the high instability gains relevant to laser fusion experiments, the effect of smoothing must include the competition among all three instabilities. {copyright} {ital 1999 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Ulianova, O. V.; Uianov, S. S.; Li, Pengcheng; Luo, Qingming
2011-04-01
A new method of photoinactivation of bacteria aimed at producing prototypes of vaccine preparations against extremely dangerous infections is described. The reactogenicity of the new prophylactic preparations was studied using the laser speckle contrast analysis (LASCA). The performed experimental studies show that bacterial suspensions, irradiated using different regimes of photoinactivation, do not cause detrimental effect on the blood microcirculation in laboratory animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulianova, O V; Uianov, S S; Li Pengcheng
2011-04-30
A new method of photoinactivation of bacteria aimed at producing prototypes of vaccine preparations against extremely dangerous infections is described. The reactogenicity of the new prophylactic preparations was studied using the laser speckle contrast analysis (LASCA). The performed experimental studies show that bacterial suspensions, irradiated using different regimes of photoinactivation, do not cause detrimental effect on the blood microcirculation in laboratory animals. (optical technologies in biophysics and medicine)
Kaluzny, Bartlomiej J; Szkulmowski, Maciej; Bukowska, Danuta M; Wojtkowski, Maciej
2014-04-01
We evaluate Spectral OCT (SOCT) with a speckle contrast reduction technique using resonant scanner for assessment of corneal surface changes after excimer laser photorefractive keratectomy (PRK) and we compare healing process between conventional PRK and transepithelial PRK. The measurements were performed before and after the surgery. Obtained results show that SOCT with a resonant scanner speckle contrast reduction is capable of providing information regarding the healing process after PRK. The main difference between the healing processes of PRK and TransPRK, assessed by SOCT, was the time to cover the stroma with epithelium, which was shorter in the TransPRK group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Zhanwei; Xie Huimin; Fang Daining
2007-03-15
In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less
Speckle dynamics under ergodicity breaking
NASA Astrophysics Data System (ADS)
Sdobnov, Anton; Bykov, Alexander; Molodij, Guillaume; Kalchenko, Vyacheslav; Jarvinen, Topias; Popov, Alexey; Kordas, Krisztian; Meglinski, Igor
2018-04-01
Laser speckle contrast imaging (LSCI) is a well-known and versatile approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues. In most conventional implementations of LSCI the ergodic regime is typically assumed valid. However, most composite turbid scattering media, especially biological tissues, are non-ergodic, containing a mixture of dynamic and static centers of light scattering. In the current study, we examined the speckle contrast in different dynamic conditions with the aim of assessing limitations in the quantitative interpretation of speckle contrast images. Based on a simple phenomenological approach, we introduced a coefficient of speckle dynamics to quantitatively assess the ratio of the dynamic part of a scattering medium to the static one. The introduced coefficient allows one to distinguish real changes in motion from the mere appearance of static components in the field of view. As examples of systems with static/dynamic transitions, thawing and heating of Intralipid samples were studied by the LSCI approach.
Applications of lasers to production metrology, control, and machine 'Vision'
NASA Astrophysics Data System (ADS)
Pryor, T. R.; Erf, R. K.; Gara, A. D.
1982-06-01
General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.
Analysis of eroded bovine teeth through laser speckle imaging
NASA Astrophysics Data System (ADS)
Koshoji, Nelson H.; Bussadori, Sandra K.; Bortoletto, Carolina C.; Oliveira, Marcelo T.; Prates, Renato A.; Deana, Alessandro M.
2015-02-01
Dental erosion is a non-carious lesion that causes progressive tooth wear of structure through chemical processes that do not involve bacterial action. Its origin is related to eating habits or systemic diseases involving tooth contact with substances that pose a very low pH. This work demonstrates a new methodology to quantify the erosion by coherent light scattering of tooth surface. This technique shows a correlation between acid etch duration and laser speckle contrast map (LASCA). The experimental groups presented a relative contrast between eroded and sound tissue of 17.8(45)%, 23.4 (68)% 39.2 (40)% and 44.3 (30)%, for 10 min, 20 min, 30 min and 40 min of acid etching, respectively.
Qin, Jia; Shi, Lei; Dziennis, Suzan; Reif, Roberto; Wang, Ruikang K.
2014-01-01
In this paper, we describe a newly developed synchronized dual-wavelength laser speckle contrast imaging (SDW-LSCI) system, which contains two cameras that are synchronously triggered to acquire data. The system can acquire data at a high spatiotemporal resolution (up to 500Hz for ~1000×1000 pixels). A mouse model of stroke is used to demonstrate the capability for imaging the fast changes (within tens of milliseconds) in oxygenated and deoxygenated hemoglobin concentration, and the relative changes in blood flow in the mouse brain, through an intact cranium. This novel imaging technology will enable the study of fast hemodynamics and metabolic changes in vascular diseases. PMID:23027260
Intraluminal laser speckle rheology using an omni-directional viewing catheter
Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Hajjarian, Zeinab; Nadkarni, Seemantini K.
2016-01-01
A number of disease conditions in luminal organs are associated with alterations in tissue mechanical properties. Here, we report a new omni-directional viewing Laser Speckle Rheology (LSR) catheter for mapping the mechanical properties of luminal organs without the need for rotational motion. The LSR catheter incorporates multiple illumination fibers, an optical fiber bundle and a multi-faceted mirror to permit omni-directional viewing of the luminal wall. By retracting the catheter using a motor-drive assembly, cylindrical maps of tissue mechanical properties are reconstructed. Evaluation conducted in a test phantom with circumferentially-varying mechanical properties demonstrates the capability of the LSR catheter for the accurate mechanical assessment of luminal organs. PMID:28101407
NASA Astrophysics Data System (ADS)
Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo
2016-03-01
This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.
Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing
NASA Astrophysics Data System (ADS)
Timoshina, Polina A.; Zinchenko, Ekaterina M.; Tuchina, Daria K.; Sagatova, Madina M.; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.
2017-03-01
In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning.
Lensless digital holography with diffuse illumination through a pseudo-random phase mask.
Bernet, Stefan; Harm, Walter; Jesacher, Alexander; Ritsch-Marte, Monika
2011-12-05
Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
Collective stimulated Brillouin backscatter
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel; Rose, Harvey
2007-11-01
We develop the statistical theory of linear collective stimulated Brillouin backscatter (CBSBS) in spatially and temporally incoherent laser beam. Instability is collective because it does not depend on the dynamics of isolated hot spots (speckles) of laser intensity, but rather depends on averaged laser beam intensity, optic f/#, and laser coherence time, Tc. CBSBS has a much larger threshold than a classical coherent beam's in long-scale-length high temperature plasma. It is a novel regime in which Tc is too large for applicability of well-known statistical theories (RPA) but Tc must be small enough to suppress single speckle processes such as self-focusing. Even if laser Tc is too large for a priori applicability of our theory, collective forward SBS^1, perhaps enhanced by high Z dopant, and its resultant self-induced Tc reduction, may regain the CBSBS regime. We identified convective and absolute CBSBS regimes. The threshold of convective instability is inside the typical parameter region of NIF designs. Well above incoherent threshold, the coherent instability growth rate is recovered. ^1 P.M. Lushnikov and H.A. Rose, Plasma Physics and Controlled Fusion, 48, 1501 (2006).
Hecht, Nils; Woitzik, Johannes; König, Susanne; Horn, Peter; Vajkoczy, Peter
2013-07-01
Currently, there is no adequate technique for intraoperative monitoring of cerebral blood flow (CBF). To evaluate laser speckle imaging (LSI) for assessment of relative CBF, LSI was performed in 30 patients who underwent direct surgical revascularization for treatment of arteriosclerotic cerebrovascular disease (ACVD), Moyamoya disease (MMD), or giant aneurysms, and in 8 control patients who underwent intracranial surgery for reasons other than hemodynamic compromise. The applicability and sensitivity of LSI was investigated through baseline perfusion and CO2 reactivity testing. The dynamics of LSI were assessed during bypass test occlusion and flow initiation procedures. Laser speckle imaging permitted robust (pseudo-) quantitative assessment of relative microcirculatory flow and standard bypass grafting resulted in significantly higher postoperative baseline perfusion values in ACVD and MMD. The applicability and sensitivity of LSI was shown by a significantly reduced CO2 reactivity in ACVD (9.6±9%) and MMD (8.5±8%) compared with control (31.2±5%; P<0.0001). In high- and intermediate-flow bypass patients, LSI was characterized by a dynamic real-time response to acute perfusion changes and ultimately confirmed a sufficient flow substitution through the bypass graft. Thus, LSI can be used for sensitive and continuous, non-invasive real-time visualization and measurement of relative cortical CBF in excellent spatial-temporal resolution.
Real-time speckle reduction in optical coherence tomography using the dual window method.
Zhao, Yang; Chu, Kengyeh K; Eldridge, Will J; Jelly, Evan T; Crose, Michael; Wax, Adam
2018-02-01
Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing.
NASA Astrophysics Data System (ADS)
Vilensky, M. A.; Semyachkina-Glushkovskaya, O. V.; Timoshina, P. A.; Berdnikova, V. A.; Kuznetsova, Y. V.; Semyachkin-Glushkovsky, I. A.; Agafonov, D. N.; Tuchin, V. V.
2012-06-01
This paper presents the results of experimental study of full field laser speckle imaging due to cortex microcirculation state monitoring for laboratory rats under conditions of stroke and the introduction of agents. Three groups of experimental animals from five animals in each group were studied. The behavior of blood flow, studied by speckle imaging technique, matched the expected physiological response to an impact.
NASA Astrophysics Data System (ADS)
Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.
2010-10-01
New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.
NASA Astrophysics Data System (ADS)
Ulyanov, Alexander S.; Lyapina, Anna M.; Ulianova, Onega V.; Feodorova, Valentina A.
2011-03-01
New field of application of fractal dimensions is proposed. A technique, based on the calculation of fractal dimension, was used for express-diagnostics and identification of bacteria of the vaccine strain Yersinia pestis EV line NIIEG. Purpose of this study was the experimental investigation of properties of speckle patterns, formed under laser illumination of a single colony of the strain that was grown on different agars.
Nakagami-based total variation method for speckle reduction in thyroid ultrasound images.
Koundal, Deepika; Gupta, Savita; Singh, Sukhwinder
2016-02-01
A good statistical model is necessary for the reduction in speckle noise. The Nakagami model is more general than the Rayleigh distribution for statistical modeling of speckle in ultrasound images. In this article, the Nakagami-based noise removal method is presented to enhance thyroid ultrasound images and to improve clinical diagnosis. The statistics of log-compressed image are derived from the Nakagami distribution following a maximum a posteriori estimation framework. The minimization problem is solved by optimizing an augmented Lagrange and Chambolle's projection method. The proposed method is evaluated on both artificial speckle-simulated and real ultrasound images. The experimental findings reveal the superiority of the proposed method both quantitatively and qualitatively in comparison with other speckle reduction methods reported in the literature. The proposed method yields an average signal-to-noise ratio gain of more than 2.16 dB over the non-convex regularizer-based speckle noise removal method, 3.83 dB over the Aubert-Aujol model, 1.71 dB over the Shi-Osher model and 3.21 dB over the Rudin-Lions-Osher model on speckle-simulated synthetic images. Furthermore, visual evaluation of the despeckled images shows that the proposed method suppresses speckle noise well while preserving the textures and fine details. © IMechE 2015.
NASA Technical Reports Server (NTRS)
Lourenco, L. M. M.; Krothapalli, A.
1987-01-01
One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.
Measuring vibrational motion in the presence of speckle using off-axis holography.
Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony
2016-02-20
We present a holographic laser vibrometer designed to mitigate the effects of speckle noise when measuring the vibrational motion of a rough object. We show that multiplexing the interferometric measurement across 105 pixels provides a 50 dB reduction in the incoherent noise. Using a high-speed camera, this enables a displacement sensitivity of 50 fm/√Hz with a bandwidth of 12.5 kHz when measuring rough objects, representing a 20 dB improvement compared with a commercially available single-detector-based laser vibrometer. Finally, we show that the holographic vibrometer system is capable of stand-off acoustic sensing by measuring the acoustic-induced vibrations of a piece of paper with sensitivity as low as 10 dB (re 20 μPa). The ability to sensitively and noninvasively measure the vibrations of arbitrary rough surfaces could enable new applications in laser vibrometry.
Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng
2017-04-17
Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.
Random laser illumination: an ideal source for biomedical polarization imaging?
NASA Astrophysics Data System (ADS)
Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.
2016-03-01
Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.
Three-dimensional laser radar modeling
NASA Astrophysics Data System (ADS)
Steinvall, Ove K.; Carlsson, Tomas
2001-09-01
Laser radars have the unique capability to give intensity and full 3-D images of an object. Doppler lidars can give velocity and vibration characteristics of an objects. These systems have many civilian and military applications such as terrain modelling, depth sounding, object detection and classification as well as object positioning. In order to derive the signal waveform from the object one has to account for the laser pulse time characteristics, media effects such as the atmospheric attenuation and turbulence effects or scattering properties, the target shape and reflection (BRDF), speckle noise together with the receiver and background noise. Finally the type of waveform processing (peak detection, leading edge etc.) is needed to model the sensor output to be compared with observations. We have developed a computer model which models performance of a 3-D laser radar. We will give examples of signal waveforms generated from model different targets calculated by integrating the laser beam profile in space and time over the target including reflection characteristics during different speckle and turbulence conditions. The result will be of help when designing and using new laser radar systems. The importance of different type of signal processing of the waveform in order to fulfil performance goals will be shown.
Summary of laser speckle photogrammetry for HOST
NASA Technical Reports Server (NTRS)
Pollack, Frank G.
1986-01-01
High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.
Milstein, Dan M.J.; Ince, Can; Gisbertz, Suzanne S.; Boateng, Kofi B.; Geerts, Bart F.; Hollmann, Markus W.; van Berge Henegouwen, Mark I.; Veelo, Denise P.
2016-01-01
Abstract Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs. Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2). Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05). It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements between different investigators. LSCI provides spatial and temporal information on the location of adequate tissue perfusion and may thus be an important aid in optimizing surgical and anesthesiological procedures for strategically selecting anastomotic site in patients undergoing esophagectomy with GTR. PMID:27336874
Milstein, Dan M J; Ince, Can; Gisbertz, Suzanne S; Boateng, Kofi B; Geerts, Bart F; Hollmann, Markus W; van Berge Henegouwen, Mark I; Veelo, Denise P
2016-06-01
Gastric tube reconstruction (GTR) is a high-risk surgical procedure with substantial perioperative morbidity. Compromised arterial blood supply and venous congestion are believed to be the main etiologic factors associated with early and late anastomotic complications. Identifying low blood perfusion areas may provide information on the risks of future anastomotic leakage and could be essential for improving surgical techniques. The aim of this study was to generate a method for gastric microvascular perfusion analysis using laser speckle contrast imaging (LSCI) and to test the hypothesis that LSCI is able to identify ischemic regions on GTRs.Patients requiring elective laparoscopy-assisted GTR participated in this single-center observational investigation. A method for intraoperative evaluation of blood perfusion and postoperative analysis was generated and validated for reproducibility. Laser speckle measurements were performed at 3 different time pointes, baseline (devascularized) stomach (T0), after GTR (T1), and GTR at 20° reverse Trendelenburg (T2).Blood perfusion analysis inter-rater reliability was high, with intraclass correlation coefficients for each time point approximating 1 (P < 0.0001). Baseline (T0) and GTR (T1) mean blood perfusion profiles were highest at the base of the stomach and then progressively declined towards significant ischemia at the most cranial point or anastomotic tip (P < 0.01). After GTR, a statistically significant improvement in mean blood perfusion was observed in the cranial gastric regions of interest (P < 0.05). A generalized significant decrease in mean blood perfusion was observed across all GTR regions of interest during 20° reverse Trendelenburg (P < 0.05).It was feasible to implement LSCI intraoperatively to produce blood perfusion assessments on intact and reconstructed whole stomachs. The analytical design presented in this study resulted in good reproducibility of gastric perfusion measurements between different investigators. LSCI provides spatial and temporal information on the location of adequate tissue perfusion and may thus be an important aid in optimizing surgical and anesthesiological procedures for strategically selecting anastomotic site in patients undergoing esophagectomy with GTR.
Anabitarte, Francisco; Rodríguez-Cobo, Luis; López-Higuera, José-Miguel; Cobo, Adolfo
2012-12-01
To estimate the acoustic plasma energy in laser-induced breakdown spectroscopy (LIBS) experiments, a light collecting and acoustic sensing device based on a coil of plastic optical fiber (POF) is proposed. The speckle perturbation induced by the plasma acoustic energy was monitored using a CCD camera placed at the end of a coil of multimode POF and processed with an intraimage contrast ratio method. The results were successfully verified with the acoustic energy measured by a reference microphone. The proposed device is useful for normalizing LIBS spectra, enabling a better estimation of the sample's chemical composition.
Kaluzny, Bartlomiej J.; Szkulmowski, Maciej; Bukowska, Danuta M.; Wojtkowski, Maciej
2014-01-01
We evaluate Spectral OCT (SOCT) with a speckle contrast reduction technique using resonant scanner for assessment of corneal surface changes after excimer laser photorefractive keratectomy (PRK) and we compare healing process between conventional PRK and transepithelial PRK. The measurements were performed before and after the surgery. Obtained results show that SOCT with a resonant scanner speckle contrast reduction is capable of providing information regarding the healing process after PRK. The main difference between the healing processes of PRK and TransPRK, assessed by SOCT, was the time to cover the stroma with epithelium, which was shorter in the TransPRK group. PMID:24761291
NASA Astrophysics Data System (ADS)
Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev
2016-09-01
We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.
Crawford, D C; Bell, D S; Bamber, J C
1993-01-01
A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.
Real-time speckle reduction in optical coherence tomography using the dual window method
Zhao, Yang; Chu, Kengyeh K.; Eldridge, Will J.; Jelly, Evan T.; Crose, Michael; Wax, Adam
2018-01-01
Speckle is an intrinsic noise of interferometric signals which reduces contrast and degrades the quality of optical coherence tomography (OCT) images. Here, we present a frequency compounding speckle reduction technique using the dual window (DW) method. Using the DW method, speckle noise is reduced without the need to acquire multiple frames. A ~25% improvement in the contrast-to-noise ratio (CNR) was achieved using the DW speckle reduction method with only minimal loss (~17%) in axial resolution. We also demonstrate that real-time speckle reduction can be achieved at a B-scan rate of ~21 frames per second using a graphic processing unit (GPU). The DW speckle reduction technique can work on any existing OCT instrument without further system modification or extra components. This makes it applicable both in real-time imaging systems and during post-processing. PMID:29552398
A novel method for repeatedly generating speckle patterns used in digital image correlation
NASA Astrophysics Data System (ADS)
Zhang, Juan; Sweedy, Ahmed; Gitzhofer, François; Baroud, Gamal
2018-01-01
Speckle patterns play a key role in Digital Image Correlation (DIC) measurement, and generating an optimal speckle pattern has been the goal for decades now. The usual method of generating a speckle pattern is by manually spraying the paint on the specimen. However, this makes it difficult to reproduce the optimal pattern for maintaining identical testing conditions and achieving consistent DIC results. This study proposed and evaluated a novel method using an atomization system to repeatedly generate speckle patterns. To verify the repeatability of the speckle patterns generated by this system, simulation and experimental studies were systematically performed. The results from both studies showed that the speckle patterns and, accordingly, the DIC measurements become highly accurate and repeatable using the proposed atomization system.
Early diagnosis of teeth erosion using polarized laser speckle imaging
NASA Astrophysics Data System (ADS)
Nader, Christelle Abou; Pellen, Fabrice; Loutfi, Hadi; Mansour, Rassoul; Jeune, Bernard Le; Brun, Guy Le; Abboud, Marie
2016-07-01
Dental erosion starts with a chemical attack on dental tissue causing tooth demineralization, altering the tooth structure and making it more sensitive to mechanical erosion. Medical diagnosis of dental erosion is commonly achieved through a visual inspection by the dentist during dental checkups and is therefore highly dependent on the operator's experience. The detection of this disease at preliminary stages is important since, once the damage is done, cares become more complicated. We investigate the difference in light-scattering properties between healthy and eroded teeth. A change in light-scattering properties is observed and a transition from volume to surface backscattering is detected by means of polarized laser speckle imaging as teeth undergo acid etching, suggesting an increase in enamel surface roughness.
Theoretical and experimental analyses of the performance of two-color laser ranging systems
NASA Technical Reports Server (NTRS)
Im, K. E.; Gardner, C. S.
1985-01-01
The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.
Remote sensing of atmospheric winds using a coherent, CW lidar and speckle-turbulence interaction
NASA Technical Reports Server (NTRS)
Holmes, J. F.; Amzajerdian, F.; Gudimetla, V. S. R.; Hunt, J. M.
1986-01-01
Speckle turbulence interaction has the potential for allowing single ended remote sensing of the path averaged vector crosswind in a plane perpendicular to the line of sight to a target. If a laser transmitter is used to illuminate a target, the resultant speckle field generated by the target is randomly perturbed by the atmospheric turbulence as it propagates back to the location of the transmitter-receiver. When a cross wind is present, this scintillation pattern will move with time across the receiver. A continuous wave (cw) laser transmitter of modest power level in conjunction with optical heterodyne detection was used to exploit the speckel turbulence interaction and measure the crosswind. The use of a cw transmitter at 10.6 microns and optical heterodyne detection has many advantages over direct detection and a double pulsed source in the visible or near infrared. These advantages include the availability of compact, reliable and inexpensive transmitters, better penetration of smoke, dust and fog; stable output power; low beam pointing jitter; and considerably reduced complexity in the receiver electronics.
Measurement of high temperature strain by the laser-speckle strain gauge
NASA Technical Reports Server (NTRS)
Yamaguchi, I.
1984-01-01
By using the laser-speckle strain gauge, the strain of metal at the temperature lower than 250 C is measured. The principle of the gauge is to measure the expansion or contraction of the fine structures of surface by detecting the resultant speckle displacement in an optoelectronic way, whereby the effect of rigid-body motion is automatically cancelled out with the aid of a differential detection system. A transportable apparatus was built and a comparison experiment performed with a resistance strain gauge at room temperature. It has a strain sensitivity of .00002, a gauge length smaller than 1 mm, and no upper limit in a range of strain measurement. In the measurement of high-temperature strain it is free from the need for a dummy gauge and insensitive to an electric drift effect. As examples of strain measurement at high-temperature, thermal expansion and contraction of a top of a soldering iron are measured. The interval of the measurement can be made at shortest 1.6 sec. and the change in the strain is clearly followed until the ultimate stationary temperature is reached.
Demonstration test of burner liner strain measuring system
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1984-01-01
A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.
NASA Technical Reports Server (NTRS)
Brockman, P.; Hess, R. V.; Staton, L. D.; Bair, C. H.
1980-01-01
Atmospheric trace constituent measurements with higher vertical resolution than attainable with passive radiometers are discussed. Infrared differential absorption lidar (DIAL), which depends on Mie scattering from aerosols, has special advantages for tropospheric and lower stratospheric applications and has great potential importance for measurements from shuttle and aircraft. Differential absorption lidar data reduction involves comparing large amplitude signals which have small differences. The accuracy of the trace constituent concentration inferred from DIAL measurements depends strongly on the errors in determining the amplitude of the signals. Thus, the commonly used SNR expression (signal divided by noise in the absence of signal) is not adequate to describe DIAL measurement accuracy and must be replaced by an expression which includes the random coherent (speckle) noise within the signal. A comprehensive DIAL computer algorithm is modified to include heterodyne detection and speckle noise. Examples for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system are given.
The melting curve of Ni to 1 Mbar
NASA Astrophysics Data System (ADS)
Lord, Oliver T.; Wood, Ian G.; Dobson, David P.; Vočadlo, Lidunka; Wang, Weiwei; Thomson, Andrew R.; Wann, Elizabeth T. H.; Morard, Guillaume; Mezouar, Mohamed; Walter, Michael J.
2014-12-01
The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments in which two melting criteria were used: firstly, the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and secondly, plateaux in temperature vs. laser power functions in both in situ and off-line experiments. Our new melting curve, defined by a Simon-Glatzel fit to the data where TM (K) = [ (PM/18.78 ± 10.20 + 1) ]1/2.42 ± 0.66 × 1726, is in good agreement with the majority of the theoretical studies on Ni melting and matches closely the available shock wave melting data. It is however dramatically steeper than the previous off-line LH-DAC studies in which determination of melting was based on the visual observation of motion aided by the laser speckle method. We estimate the melting point (TM) of Ni at the inner-core boundary (ICB) pressure of 330 GPa to be TM = 5800 ± 700 K (2 σ), within error of the value for Fe of TM = 6230 ± 500 K determined in a recent in situ LH-DAC study by similar methods to those employed here. This similarity suggests that the alloying of 5-10 wt.% Ni with the Fe-rich core alloy is unlikely to have any significant effect on the temperature of the ICB, though this is dependent on the details of the topology of the Fe-Ni binary phase diagram at core pressures. Our melting temperature for Ni at 330 GPa is ∼2500 K higher than that found in previous experimental studies employing the laser speckle method. We find that those earlier melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as convective motion of a melt. This finding has significant implications for our understanding of the high-pressure melting behaviour of a number of other transition metals.
Design and evaluation of a miniature laser speckle imaging device to assess gingival health
Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard
2016-01-01
Abstract. Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53; p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease. PMID:27787545
Design and evaluation of a miniature laser speckle imaging device to assess gingival health
NASA Astrophysics Data System (ADS)
Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard
2016-10-01
Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53 p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease.
Nephron blood flow dynamics measured by laser speckle contrast imaging
Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin
2011-01-01
Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025
Advanced high temperature static strain sensor development
NASA Technical Reports Server (NTRS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-01-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Advanced high temperature static strain sensor development
NASA Astrophysics Data System (ADS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-08-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Speckle in the diffraction patterns of Hendricks-Teller and icosahedral glass models
NASA Technical Reports Server (NTRS)
Garg, Anupam; Levine, Dov
1988-01-01
It is shown that the X-ray diffraction patterns from the Hendricks-Teller model for layered systems and the icosahedral glass models for the icosahedral phases show large fluctuations between nearby scattering wave vectors and from sample to sample, that are quite analogous to laser speckle. The statistics of these fluctuations are studied analytically for the first model and via computer simulations for the second. The observability of these effects is discussed briefly.
NASA Astrophysics Data System (ADS)
Liu, Qian; Zhou, Sibo; Zhang, Zhihong; Luo, Qingming
2005-01-01
Laser speckle contrast imaging (LSCI) is a noninvasive optical image technique that has been developed for imaging in vivo blood flow dynamics and vascular structure with high spatial and temporal resolution. It records the full-field spatio-temporal characteristics of microcirculation in real time without the need of laser beam flying. In this paper applications of this technique for monitoring changes of blood flow and vascular structure following photodynamic therapy (PDT) in vivo model were demonstrated. In this study, an in vivo model of chick chorioallantoic membrane (CAM) at embryo age (EA) of 10~13 days, was observed following PDT irradiated by a power tunable laser diode (λ = 656.5 nm). Laser intensity incident on the treatment site was maintained at 40 mW/cm2 and photosensitizer of Pyropheophorbide Acid (Pyro-Acid) was used. CAM was adopted in PDT since it is a transparent in vivo model and the irradiated lights of laser can penetrate tumor with greater depth. The laser delivered through fiber bundle to the treatment site in PDT also acted as the coherent light source of LSCI. This study shows that LSCI can be used to assess the efficacy of peripheral vessels damage of tumor in PDT by monitoring changes of blood flow and vascular structure.
Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns
NASA Astrophysics Data System (ADS)
Mazzoleni, Paolo; Zappa, Emanuele; Matta, Fabio; Sutton, Michael A.
2015-12-01
The accuracy and spatial resolution of full-field deformation measurements performed through digital image correlation are greatly affected by the frequency content of the speckle pattern, which can be effectively controlled using particles with well-defined and consistent shape, size and spacing. This paper introduces a novel toner-transfer technique to impress a well-defined and repeatable speckle pattern on plane and curved surfaces of metallic and cement composite specimens. The speckle pattern is numerically designed, printed on paper using a standard laser printer, and transferred onto the measurement surface via a thermo-mechanical process. The tuning procedure to compensate for the difference between designed and toner-transferred actual speckle size is presented. Based on this evidence, the applicability of the technique is discussed with respect to surface material, dimensions and geometry. Proof of concept of the proposed toner-transfer technique is then demonstrated for the case of a quenched and partitioned welded steel plate subjected to uniaxial tensile loading, and for an aluminum plate exposed to temperatures up to 70% of the melting point of aluminum and past the melting point of typical printer toner powder.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
Manipulation of long-term dynamics in a colloidal active matter system using speckle light fields
NASA Astrophysics Data System (ADS)
Pince, Ercag; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio
Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomena. Examples can be given from organelles performing tasks in the cytoplasm to large animals moving in patchy environment. Here, we use speckle light fields to study the anomalous diffusion in an active matter system consisting of micron-sized silica particles(diameter 5 μm) and motile bacterial cells (E. coli). The speckle light fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power is needed to obtain an effective disordered optical landscape for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the long-term dynamics of the active matter system and observed an enhanced diffusion of particles interacting with the active bacterial bath in the speckle light fields. We showed that this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interest.
NASA Astrophysics Data System (ADS)
Maksimova, L. A.; Ryabukho, P. V.; Mysina, N. Yu.; Lyakin, D. V.; Ryabukho, V. P.
2018-04-01
We have investigated the capabilities of the method of digital speckle interferometry for determining subpixel displacements of a speckle structure formed by a displaceable or deformable object with a scattering surface. An analysis of spatial spectra of speckle structures makes it possible to perform measurements with a subpixel accuracy and to extend the lower boundary of the range of measurements of displacements of speckle structures to the range of subpixel values. The method is realized on the basis of digital recording of the images of undisplaced and displaced speckle structures, their spatial frequency analysis using numerically specified constant phase shifts, and correlation analysis of spatial spectra of speckle structures. Transformation into the frequency range makes it possible to obtain quantities to be measured with a subpixel accuracy from the shift of the interference-pattern minimum in the diffraction halo by introducing an additional phase shift into the complex spatial spectrum of the speckle structure or from the slope of the linear plot of the function of accumulated phase difference in the field of the complex spatial spectrum of the displaced speckle structure. The capabilities of the method have been investigated in natural experiment.
Dynamic laser speckle applied to the analysis of maturation process of irradiated fresh fruits
NASA Astrophysics Data System (ADS)
Vincitorio, F. M.; Budini, N.; Freyre, C.; Mulone, C.; Fiorucci, M. P.; López, A. J.; Ramil, A.
2012-10-01
The treatment of fresh fruits with different doses of ionizing radiation has been found effective for delaying ripening and, in this way, to extend shelf life. This preservation method is likely to produce some functional or constitutive changes in the cellular structure of the fruit. In this work, a test of the effectiveness of fruit irradiation with relatively low doses was performed by using dynamic speckle imaging. Bananas from a same lot were chosen, being a first series of them irradiated with different doses of 0.2, 0.4 and 0.6 kGy (Gy = J/kg) and a second series with doses of 0.2, 0.4, 0.6 and 1 kGy. Non irradiated bananas (0 kGy) were considered as the lot reference for contrast. Irradiation was carried out at the Semi-Industrial Cobalt 60 facility of the Ezeiza Atomic Center, with an activity of 6 × 105 Curie and a dose rate of 28.5 Gy/min. The objective of this work is to analyze differences in the maturation process between irradiated and nonirradiated fruits by means of dynamic speckle pattern evaluation.
Full-field speckle interferometry for non-contact photoacoustic tomography.
Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf
2015-05-21
A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.
Speckle tracking as a method to measure hemidiaphragm excursion.
Goutman, Stephen A; Hamilton, James D; Swihart, Blake; Foerster, Bradley; Feldman, Eva L; Rubin, Jonathan M
2017-01-01
Diaphragm excursion measured via ultrasound may be an important imaging outcome measure of respiratory function. We developed a new method for measuring diaphragm movement and compared it to the more traditional M-mode method. Ultrasound images of the right and left hemidiaphragms were collected to compare speckle tracking and M-mode measurements of diaphragm excursion. Speckle tracking was performed using EchoInsight (Epsilon Imaging, Ann Arbor, Michigan). Six healthy subjects without a history of pulmonary diseases were included in this proof-of-concept study. Speckle tracking of the diaphragm is technically possible. Unlike M-mode, speckle tracking carries the advantage of reliable visualization and measurement of the left hemidiaphragm. Speckle tracking accounted for diaphragm movement simultaneously in the cephalocaudad and mediolateral directions, unlike M-mode, which is 1-dimensional. Diaphragm speckle tracking may represent a novel, more robust method for measuring diaphragm excursion, especially for the left hemidiaphragm. Muscle Nerve 55: 125-127, 2017. © 2016 Wiley Periodicals, Inc.
Acousto-optical imaging using a powerful long pulse laser
NASA Astrophysics Data System (ADS)
Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre
2008-06-01
Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could allow obtaining both the sensitivity and the fast response time necessary for biodiagnostic applications.
Progress in standoff surface contaminant detector platform
NASA Astrophysics Data System (ADS)
Dupuis, Julia R.; Giblin, Jay; Dixon, John; Hensley, Joel; Mansur, David; Marinelli, William J.
2017-05-01
Progress towards the development of a longwave infrared quantum cascade laser (QLC) based standoff surface contaminant detection platform is presented. The detection platform utilizes reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. The platform employs an ensemble of broadband QCLs with a spectrally selective detector to interrogate target surfaces at 10s of m standoff. A version of the Adaptive Cosine Estimator (ACE) featuring class based screening is used for detection and discrimination in high clutter environments. Detection limits approaching 0.1 μg/cm2 are projected through speckle reduction methods enabling detector noise limited performance. The design, build, and validation of a breadboard version of the QCL-based surface contaminant detector are discussed. Functional test results specific to the QCL illuminator are presented with specific emphasis on speckle reduction.
NASA Astrophysics Data System (ADS)
Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.
2016-03-01
Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.
Iterative Self-Dual Reconstruction on Radar Image Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Charles; Medeiros, Fatima; Ushizima, Daniela
2010-05-21
Imaging systems as ultrasound, sonar, laser and synthetic aperture radar (SAR) are subjected to speckle noise during image acquisition. Before analyzing these images, it is often necessary to remove the speckle noise using filters. We combine properties of two mathematical morphology filters with speckle statistics to propose a signal-dependent noise filter to multiplicative noise. We describe a multiscale scheme that preserves sharp edges while it smooths homogeneous areas, by combining local statistics with two mathematical morphology filters: the alternating sequential and the self-dual reconstruction algorithms. The experimental results show that the proposed approach is less sensitive to varying window sizesmore » when applied to simulated and real SAR images in comparison with standard filters.« less
Laser speckle visibility acoustic spectroscopy in soft turbid media
NASA Astrophysics Data System (ADS)
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-03-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
Laser speckle contrast imaging using light field microscope approach
NASA Astrophysics Data System (ADS)
Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai
2018-01-01
In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.
Salem, Ran; Matityahu, Shlomi; Melchior, Aviva; Nikolaevsky, Mark; Noked, Ori; Sterer, Eran
2015-09-01
The precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision. As an application, the melting curve of Te was measured up to 35 GPa. The results are found to be in good agreement with previous data obtained at pressures up to 10 GPa.
Kang, Jinbum; Lee, Jae Young; Yoo, Yangmo
2016-06-01
Effective speckle reduction in ultrasound B-mode imaging is important for enhancing the image quality and improving the accuracy in image analysis and interpretation. In this paper, a new feature-enhanced speckle reduction (FESR) method based on multiscale analysis and feature enhancement filtering is proposed for ultrasound B-mode imaging. In FESR, clinical features (e.g., boundaries and borders of lesions) are selectively emphasized by edge, coherence, and contrast enhancement filtering from fine to coarse scales while simultaneously suppressing speckle development via robust diffusion filtering. In the simulation study, the proposed FESR method showed statistically significant improvements in edge preservation, mean structure similarity, speckle signal-to-noise ratio, and contrast-to-noise ratio (CNR) compared with other speckle reduction methods, e.g., oriented speckle reducing anisotropic diffusion (OSRAD), nonlinear multiscale wavelet diffusion (NMWD), the Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), and the Bayesian nonlocal means filter (OBNLM). Similarly, the FESR method outperformed the OSRAD, NMWD, LPNDSF, and OBNLM methods in terms of CNR, i.e., 10.70 ± 0.06 versus 9.00 ± 0.06, 9.78 ± 0.06, 8.67 ± 0.04, and 9.22 ± 0.06 in the phantom study, respectively. Reconstructed B-mode images that were developed using the five speckle reduction methods were reviewed by three radiologists for evaluation based on each radiologist's diagnostic preferences. All three radiologists showed a significant preference for the abdominal liver images obtained using the FESR methods in terms of conspicuity, margin sharpness, artificiality, and contrast, p<0.0001. For the kidney and thyroid images, the FESR method showed similar improvement over other methods. However, the FESR method did not show statistically significant improvement compared with the OBNLM method in margin sharpness for the kidney and thyroid images. These results demonstrate that the proposed FESR method can improve the image quality of ultrasound B-mode imaging by enhancing the visualization of lesion features while effectively suppressing speckle noise.
Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine
Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit
2015-01-01
Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821
Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka
2013-01-01
Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment.
Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka
2013-01-01
Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment. PMID:24049697
Laser speckle micro-rheology for biomechanical evaluation of breast tumors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hajjarian Kashany, Zeinab; Nadkarni, Seemantini K.
2016-03-01
The stiffness of the extra cellular matrix (ECM) is recognized as a key regulator of cancer cell proliferation, migration and invasion. Therefore technologies that quantify ECM stiffness with micro-scale scale resolution will likely provide important insights into neoplastic progression. Laser Speckle Micro-Rheology (LSM) is a novel optical tool for measuring tissue viscoelastic properties with micro-scale resolution. In LSM, speckle images are collected through an objective lens by a high-speed camera. Spatio-temporal correlation analysis of speckle frames yields the intensity autocorrelation function, g2(t), for each pixel, and subsequently a 2D map of viscoelastic modulus, G*(ω) is reconstructed. Here, we investigate the utility of LSM for micro-mechanical evaluation of the ECM in human breast lesions. Specimens collected 18 women undergoing lumpectomy or mastectomy were evaluated with LSM. Because collagen is the key protein associated with ECM stiffness, G*(ω) maps obtained from LSM were compared with collagen content measured by second harmonic generation (SHG) microscopy. Regions of low G*(ω), identified by LSM, corresponded to low-intensity SHG signal and adipose tissue. Likewise, regions with high G*(ω) in LSM images matched high intensity SHG signal caused by desmoplastic collagen accumulation. Quantitative regression analysis demonstrated a strong, statistically significant correlation between G*(ω) and SHG signal intensity (R=0.66 p< 0.01). These findings highlight the capability of LSM for quantifying the ECM micro-mechanics, potentially providing important insights into the biomechanical regulators of breast cancer progression.
Peregrina-Barreto, Hayde; Perez-Corona, Elizabeth; Rangel-Magdaleno, Jose; Ramos-Garcia, Ruben; Chiu, Roger; Ramirez-San-Juan, Julio C
2017-06-01
Visualization of deep blood vessels in speckle images is an important task as it is used to analyze the dynamics of the blood flow and the health status of biological tissue. Laser speckle imaging is a wide-field optical technique to measure relative blood flow speed based on the local speckle contrast analysis. However, it has been reported that this technique is limited to certain deep blood vessels (about ? = 300 ?? ? m ) because of the high scattering of the sample; beyond this depth, the quality of the vessel’s image decreases. The use of a representation based on homogeneity values, computed from the co-occurrence matrix, is proposed as it provides an improved vessel definition and its corresponding diameter. Moreover, a methodology is proposed for automatic blood vessel location based on the kurtosis analysis. Results were obtained from the different skin phantoms, showing that it is possible to identify the vessel region for different morphologies, even up to 900 ?? ? m in depth.
Speckle noise suppression method in holographic display using time multiplexing
NASA Astrophysics Data System (ADS)
Liu, Su-Juan; Wang, Di; Li, Song-Jie; Wang, Qiong-Hua
2017-06-01
We propose a method to suppress the speckle noise in holographic display using time multiplexing. The diffractive optical elements (DOEs) and the subcomputer-generated holograms (sub-CGHs) are generated, respectively. The final image is reconstructed using time multiplexing of the subimages and the final subimages. Meanwhile, the speckle noise of the final image is suppressed by reducing the coherence of the reconstructed light and separating the adjacent image points in space. Compared with the pixel separation method, the experiments demonstrate that the proposed method suppresses the speckle noise effectively with less calculation burden and lower demand for frame rate of the spatial light modulator. In addition, with increases of the DOEs and the sub-CGHs, the speckle noise is further suppressed.
Fourier ptychographic microscopy at telecommunication wavelengths using a femtosecond laser
NASA Astrophysics Data System (ADS)
Ahmed, Ishtiaque; Alotaibi, Maged; Skinner-Ramos, Sueli; Dominguez, Daniel; Bernussi, Ayrton A.; de Peralta, Luis Grave
2017-12-01
We report the implementation of the Fourier Ptychographic Microscopy (FPM) technique, a phase retrieval technique, at telecommunication wavelengths using a low-coherence ultrafast pulsed laser source. High quality images, near speckle-free, were obtained with the proposed approach. We demonstrate that FPM can also be used to image periodic features through a silicon wafer.
NASA Astrophysics Data System (ADS)
Wang, Xianmin; Li, Bo; Xu, Qizhi
2016-07-01
The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mysina, N Yu; Maksimova, L A; Ryabukho, V P
Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the resultsmore » of numerical experiments. (laser applications and other topics in quantum electronics)« less
NASA Astrophysics Data System (ADS)
Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev
2016-06-01
We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.
Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Bosch, Johan G; Aja-Fernández, Santiago
2015-08-01
The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most accurate method to measure the motion and strain with an average median motion error of 0.42 mm and a median strain error of 2.0 ± 0.9%, 2.1 ± 1.3% and 7.1 ± 4.9% for circumferential, longitudinal and radial strain respectively. It also showed its capability to identify abnormal segments with reduced cardiac function and timing differences for the dyssynchrony cases. These results indicate that the proposed diffeomorphic speckle tracking method provides robust and accurate motion and strain estimation. Copyright © 2015. Published by Elsevier B.V.
3D displacement field measurement with correlation based on the micro-geometrical surface texture
NASA Astrophysics Data System (ADS)
Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François
2011-07-01
Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.
NASA Astrophysics Data System (ADS)
Ulianova, Onega; Subbotina, Irina; Filonova, Nadezhda; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Feodorova, Valentina
2018-04-01
Methods of t-LASCA and s-LASCA imaging have been firstly adapted to the problem of monitoring of blood microcirculation in chicken embryo model. Set-up for LASCA imaging of chicken embryo is mounted. Disorders of blood microcirculation in embryonated chicken egg, infected by Chlamydia trachomatis, are detected. Speckle-imaging technique is compared with white-light ovoscopy and new method of laser ovoscopy, based on the scattering of coherent light, advantages of LASCA imaging for the early detection of developmental process of chlamydial agent is demonstrated.
Molnár, Eszter; Molnár, Bálint; Lohinai, Zsolt; Tóth, Zsuzsanna; Benyó, Zoltán; Hricisák, Laszló; Windisch, Péter
2017-01-01
The laser speckle contrast imaging (LSCI) is proved to be a reliable tool in flap monitoring in general surgery; however, it has not been evaluated in oral surgery yet. We applied the LSCI to compare the effect of a xenogeneic collagen matrix (Geistlich Mucograft®) to connective tissue grafts (CTG) on the microcirculation of the modified coronally advanced tunnel technique (MCAT) for gingival recession coverage. Gingival microcirculation and wound fluid were measured before and after surgery for six months at twenty-seven treated teeth. In males, the flap microcirculation was restored within 3 days for both grafts followed by a hyperemic response. During the first 8 days the blood flow was higher at xenogeneic graft comparing to the CTG. In females, the ischemic period lasted for 7–12 days depending on the graft and no hyperemic response was observed. Females had more intense and prolonged wound fluid production. The LSCI method is suitable to capture the microcirculatory effect of the surgical intervention in human oral mucosa. The application of xenogeneic collagen matrices as a CTG substitute does not seem to restrain the recovery of graft bed circulation. Gender may have an effect on postoperative circulation and inflammation. PMID:28232940
Molnár, Eszter; Molnár, Bálint; Lohinai, Zsolt; Tóth, Zsuzsanna; Benyó, Zoltán; Hricisák, Laszló; Windisch, Péter; Vág, János
2017-01-01
The laser speckle contrast imaging (LSCI) is proved to be a reliable tool in flap monitoring in general surgery; however, it has not been evaluated in oral surgery yet. We applied the LSCI to compare the effect of a xenogeneic collagen matrix (Geistlich Mucograft®) to connective tissue grafts (CTG) on the microcirculation of the modified coronally advanced tunnel technique (MCAT) for gingival recession coverage. Gingival microcirculation and wound fluid were measured before and after surgery for six months at twenty-seven treated teeth. In males, the flap microcirculation was restored within 3 days for both grafts followed by a hyperemic response. During the first 8 days the blood flow was higher at xenogeneic graft comparing to the CTG. In females, the ischemic period lasted for 7-12 days depending on the graft and no hyperemic response was observed. Females had more intense and prolonged wound fluid production. The LSCI method is suitable to capture the microcirculatory effect of the surgical intervention in human oral mucosa. The application of xenogeneic collagen matrices as a CTG substitute does not seem to restrain the recovery of graft bed circulation. Gender may have an effect on postoperative circulation and inflammation.
Verho, Tuukka; Karppinen, Pasi; Gröschel, André H; Ikkala, Olli
2018-01-01
Mollusk nacre is a prototypical biological inorganic-organic composite that combines high toughness, stiffness, and strength by its brick-and-mortar microstructure, which has inspired several synthetic mimics. Its remarkable fracture toughness relies on inelastic deformations at the process zone at the crack tip that dissolve stress concentrations and stop cracks. The micrometer-scale structure allows resolving the size and shape of the process zone to understand the fracture processes. However, for better scalability, nacre-mimetic nanocomposites with aligned inorganic or graphene nanosheets are extensively pursued, to avoid the packing problems of mesoscale sheets like in nacre or slow in situ biomineralization. This calls for novel methods to explore the process zone of biomimetic nanocomposites. Here the fracture of nacre and nacre-inspired clay/polymer nanocomposite is explored using laser speckle imaging that reveals the process zone even in absence of changes in optical scattering. To demonstrate the diagnostic value, compared to nacre, the nacre-inspired nanocomposite develops a process zone more abruptly with macroscopic crack deflection shown by a flattened process zone. In situ scanning electron microscopy suggests similar toughening mechanisms in nanocomposite and nacre. These new insights guide the design of nacre-inspired nanocomposites toward better mechanical properties to reach the level of synergy of their biological model.
NASA Astrophysics Data System (ADS)
Rubnikovich, S. P.; Denisova, Yu. A.; Fomin, N. A.
2017-11-01
A method has been developed for estimating the stressed-strained state in the ″orthodontic apparatus-dentin″ system with the use of laser-optical diagnostics based on speckle photography. We have determined the indices of the stressed-strained state in the ″orthodontic apparatus-dentin″ system depending on the composition and form of the orthodontic arch cross section. We have determined the optimum indices of the stressed-strained state of orthodontic arches in patients with periodontium diseases in combination with maxillodental anomalies and deformations, to which the following arches correspond: from copper-nickel-titanium (CuNiTi) alloy with circular (0.012″, 0.013″, 0.014″, 0.016″, 0.018″), and rectangular (0.014 × 0.025″, 0.016 × 0.025″) cross sections, from titanium-molybdenum alloy (TMA) with a rectangular cross section (0.016 × 0.025″), and from stainless steel (SS) with a circular (0.016″, 0.018″) cross section. Direct correlation has been established between indices of the stressed-strained state in the ″orthodontic apparatus-dentin″ system and the periodontium capillary pressure (r = 0.78, p < 0.05), as well as inverse strong correlation with the periodontium microcirculation intensity (r = -0.88, p < 0.05).
Switchable skin window induced by optical clearing method for dermal blood flow imaging
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Rui; Zhu, Dan
2013-06-01
Optical imaging techniques have shown tremendous potential for assessing cutaneous microcirculation, but the imaging depth and contrast is limited by the strong scattering of skin. Current skin windows have to be fulfilled by surgical operation and suffer from some side effects. In this study, a switchable skin window was developed by topical application of an optical clearing agent (OCA) and saline on rat skin in vivo. The validity of the skin window was evaluated by the laser speckle contrast imaging technique, and the safety of OCA to the body was tested through histologic examinations. The results indicated that administration of OCA or saline on rat skin in vivo can open or close the window of skin repeatedly for three days. With the repair effect of hyaluronic acid and Vaseline, it is able to repeatedly visualize the dermal blood vessels and flow distribution. Long-term observation shows that there is no abnormal reflection in micro-structure, body weight, organ coefficients, histopathologic lesions, or toxic reactions compared with a control group. This switchable window will provide an effective tool not only for cutaneous microcirculation with laser speckle contrast imaging, but also for diagnosis and treatment of peripheral vascular diseases, including tumor research with various optical imaging techniques.
Barcelos, Amanda; Lamas, Cristiane; Tibiriça, Eduardo
2017-07-28
Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.
NASA Astrophysics Data System (ADS)
Song, Lipei; Wang, Xueyan; Zhang, Ru; Zhang, Kuanshou; Zhou, Zhen; Elson, Daniel S.
2018-07-01
The fluctuation of contrast caused by statistical noise degenerates the temporal/spatial resolution of laser speckle contrast imaging (LSCI) and limits the maximum speed when imaging. In this study, we investigated the application of the anisotropic diffusion filter (ADF) to temporal LSCI and found that the edge magnitude parameter of the ADF can be determined by the mean of the contrast image. Because the edge magnitude parameter is usually denoted as K, we term this the K-constant ADF (KC-ADF) and show that temporal sensitivity is improved when imaging because of the enhanced signal-to-noise ratio when using the KC-ADF in small-animal experiments. The cardiac cycle of a rat as high as 390 bpm can be imaged with an industrial camera.
Digital reconstruction of Young's fringes using Fresnel transformation
NASA Astrophysics Data System (ADS)
Kulenovic, Rudi; Song, Yaozu; Renninger, P.; Groll, Manfred
1997-11-01
This paper deals with the digital numerical reconstruction of Young's fringes from laser speckle photography by means of the Fresnel-transformation. The physical model of the optical reconstruction of a specklegram is a near-field Fresnel-diffraction phenomenon which can be mathematically described by the Fresnel-transformation. Therefore, the interference phenomena can be directly calculated by a microcomputer.If additional a CCD-camera is used for specklegram recording the measurement procedure and evaluation process can be completely carried out in a digital way. Compared with conventional laser speckle photography no holographic plates, no wet development process and no optical specklegram reconstruction are needed. These advantages reveal a wide future in scientific and engineering applications. The basic principle of the numerical reconstruction is described, the effects of experimental parameters of Young's fringes are analyzed and representative results are presented.
Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis
NASA Astrophysics Data System (ADS)
Tearney, Guillermo J.; Bouma, Brett E.
2002-04-01
Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.
NASA Astrophysics Data System (ADS)
Young, Anthony; Vishwanath, Karthik
2016-03-01
Reactive hyperemia refers to an increase of blood flow in tissue post release of an occlusion in the local vasculature. Measuring the temporal response of reactive hyperemia, post-occlusion in patients has the potential to shed information about microvascular diseases such as systemic sclerosis and diabetes. Laser speckle contrast imaging (LSCI) is an imaging technique capable of sensing superficial blood flow in tissue which can be used to quantitatively assess reactive hyperemia. Here, we employ LSCI using coherent sources in the blue, green and red wavelengths to evaluate reactive hyperemia in healthy human volunteers. Blood flow in the forearms of subjects were measured using LSCI to assess the time-course of reactive hyperemia that was triggered by a pressure cuff applied to the biceps of the subjects. Raw speckle images were acquired and processed to yield blood-flow parameters from a region of interest before, during and after application of occlusion. Reactive hyperemia was quantified via two measures - (1) by calculating the difference between the peak LSCI flow during the hyperemia and baseline flow, and (2) by measuring the amount of time that elapsed between the release of the occlusion and peak flow. These measurements were acquired in three healthy human participants, under the three laser wavelengths employed. The studies shed light on the utility of in vivo LSCI-based flow sensing for non-invasive assessment of reactive hyperemia responses and how they varied with the choice source wavelength influences the measured parameters.
Speckle-modulation for speckle reduction in optical coherence tomography
NASA Astrophysics Data System (ADS)
Liba, Orly; Lew, Matthew D.; SoRelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de la Zerda, Adam
2018-02-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise, known as speckle noise, which imposes significant limitations on its diagnostic capabilities. Here we show Speckle- Modulating OCT (SM-OCT), a method based purely on light manipulation, which can remove speckle noise, including noise originating from sample multiple back-scattering. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns, without compromising spatial resolution. The uncorrelated speckle patterns are created by scrambling the phase of the light with sub-resolution features using a moving ground-glass diffuser in the optical path of the sample arm. This method can be implemented in existing OCTs as a relatively low-cost add-on. SM-OCT speckle statistics follow the expected decrease in speckle contrast as the number of averaged scans increases. Within a scattering phantom, SM-OCT provides a 2.5-fold increase in effective resolution compared to conventional OCT. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin - features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. Our results indicate that SM-OCT has the potential to improve the current diagnostic and intra-operative capabilities of OCT.
Speckle reduction in digital holography with resampling ring masks
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Jin, Guofan
2018-01-01
One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.
NASA Astrophysics Data System (ADS)
Nelson, Douglas Harold
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.
Hrabovský, Miroslav
2014-01-01
The purpose of the study is to show a proposal of an extension of a one-dimensional speckle correlation method, which is primarily intended for determination of one-dimensional object's translation, for detection of general in-plane object's translation. In that view, a numerical simulation of a displacement of the speckle field as a consequence of general in-plane object's translation is presented. The translation components a x and a y representing the projections of a vector a of the object's displacement onto both x- and y-axes in the object plane (x, y) are evaluated separately by means of the extended one-dimensional speckle correlation method. Moreover, one can perform a distinct optimization of the method by reduction of intensity values representing detected speckle patterns. The theoretical relations between the translation components a x and a y of the object and the displacement of the speckle pattern for selected geometrical arrangement are mentioned and used for the testifying of the proposed method's rightness. PMID:24592180
Speckle-modulating optical coherence tomography in living mice and humans.
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M; Chu, Steven; de la Zerda, Adam
2017-06-20
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin-features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
Speckle-modulating optical coherence tomography in living mice and humans
Liba, Orly; Lew, Matthew D.; SoRelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de la Zerda, Adam
2017-01-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner’s corpuscle in the human fingertip skin—features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. PMID:28632205
Speckle-modulating optical coherence tomography in living mice and humans
NASA Astrophysics Data System (ADS)
Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam
2017-06-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry
NASA Astrophysics Data System (ADS)
Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre
2013-03-01
In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.
Deformation, Fracture and Explosive Properties of Reactive Materials.
1985-02-01
pump was adjusted such that the oressure inside the system did not exceed 10- 5 torr at maximum gas evol ut ion. c) Laser Initiation In a separate...of the impact and ignition processes. Laser - L speckle, used in conjun ion with a specimen loaded in the Brazilian test geometry which gives ten*le...by heating slowly, by fracturing single crystals and by laser irradiation.- Dfferent reaction pathways were found in each case and these are
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Kazmi, S. M. S.; Olin, Katherine E.; Waldron, James S.; Fox, Douglas J.; Dunn, Andrew K.
2017-03-01
Monitoring cerebral blood flow (CBF) during neurosurgery is essential for detecting ischemia in a timely manner for a wide range of procedures. Multiple clinical studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable, label-free CBF monitoring technique during neurosurgery. LSCI is an optical imaging method that provides blood flow maps with high spatiotemporal resolution requiring only a coherent light source, a lens system, and a camera. However, the quantitative accuracy and sensitivity of LSCI is limited and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study (n = 7) recorded multiple exposure times from the same cortical tissue area, and demonstrates that shorter exposure times (≤1 ms) provide the highest dynamic range and sensitivity for sampling flow rates in human neurovasculature. This study also combined exposure times using the MESI model, demonstrating high correlation with proper image calibration and acquisition. The physiological accuracy of speckle-estimated flow was validated using conservation of flow analysis on vascular bifurcations. Flow estimates were highly conserved in MESI and 1 ms exposure LSCI, with percent errors at 6.4% ± 5.3% and 7.2% ± 7.2%, respectively, while 5 ms exposure LSCI had higher errors at 21% ± 10% (n = 14 bifurcations). Results from this study demonstrate the importance of exposure time selection for LSCI, and that intraoperative MESI can be performed with high quantitative accuracy.
Method and system for enabling real-time speckle processing using hardware platforms
NASA Technical Reports Server (NTRS)
Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)
2012-01-01
An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.
Evaluation of a satellite laser ranging technique using pseudonoise code modulated laser diodes
NASA Technical Reports Server (NTRS)
Ball, Carolyn Kay
1987-01-01
Several types of Satellite Laser Ranging systems exist, operating with pulsed, high-energy lasers. The distance between a ground point and an orbiting satellite can be determined to within a few centimeters. A new technique substitutes pseudonoise code modulated laser diodes, which are much more compact, reliable and less costly, for the lasers now used. Since laser diode technology is only now achieving sufficiently powerful lasers, the capabilities of the new technique are investigated. Also examined are the effects of using an avalanche photodiode detector instead of a photomultiplier tube. The influence of noise terms (including background radiation, detector dark and thermal noise and speckle) that limit the system range and performance is evaluated.
Hot-Spot Ignition Mechanisms for Explosives and Propellants
NASA Astrophysics Data System (ADS)
Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.
1992-05-01
This paper describes the response of explosives to stress and impact and in particular the mechanisms of `hot-spot' production. Samples in the form of single crystals, powder layers, pressed pellets, gels, polymer bonded explosives (PBXs) and propellants have been studied. Techniques used include a drop-weight facility with transparent anvils which allows photography at microsecond framing intervals, an instrumented drop-weight machine, a miniaturized Hopkinson bar system for high strain rate property measurement, laser speckle for studying the deformation and fracture of PBXs, an automated system for analysing speckle patterns and heat sensitive film for recording the positions and temperatures of hot spots. Polishing and staining methods have been developed to observe the microstructure of PBXs and failure during quasi-static loading. Ignition, when it occurred, took place at local hot-spot sites. Evidence is discussed for a variety of ignition mechanisms including adiabatic shear of the explosive, adiabatic heating of trapped gases during cavity collapse, viscous flow, friction, fracture and shear of added particles and triboluminescent discharge.
Laser Doppler position sensor for position and shape measurements of fast rotating objects
NASA Astrophysics Data System (ADS)
Czarske, Jürgen; Pfister, Thorsten; Büttner, Lars
2006-08-01
We report about a novel optical method based on laser Doppler velocimetry for position and shape measurements of moved solid state surfaces with approximately one micrometer position resolution. 3D shape measurements of a rotating cylinder inside a turning machine as well as tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm and 586 m/s blade tip velocity are presented. All results are in good agreement with conventional reference probes. The measurement accuracy of the laser Doppler position sensor is investigated in dependence of the speckle pattern. Furthermore, it is shown that this sensor offers high temporal resolution and high position resolution simultaneously and that shading can be reduced compared to triangulation. Consequently, the presented laser Doppler position sensor opens up new perspectives in the field of real-time manufacturing metrology and process control, for example controlling the turning and the grinding process or for future developments of turbo machines.
Progress in coherent laser radar
NASA Technical Reports Server (NTRS)
Vaughan, J. M.
1986-01-01
Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.
NASA Astrophysics Data System (ADS)
Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao
2015-09-01
Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong
2011-08-01
We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.
The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities
Choi, Bernard; Tan, Wenbin; Jia, Wangcun; White, Sean M.; Moy, Wesley J.; Yang, Bruce Y.; Zhu, Jiang; Chen, Zhongping; Kelly, Kristen M.; Nelson, J. Stuart
2016-01-01
Here, we review our current knowledge on the etiology and treatment of port-wine stain (PWS) birthmarks. Current treatment options have significant limitations in terms of efficacy. With the combination of 1) a suitable preclinical microvascular model, 2) laser speckle imaging (LSI) to evaluate blood-flow dynamics, and 3) a longitudinal experimental design, rapid preclinical assessment of new phototherapies can be translated from the lab to the clinic. The combination of photodynamic therapy (PDT) and pulsed-dye laser (PDL) irradiation achieves a synergistic effect that reduces the required radiant exposures of the individual phototherapies to achieve persistent vascular shutdown. PDL combined with anti-angiogenic agents is a promising strategy to achieve persistent vascular shutdown by preventing reformation and reperfusion of photocoagulated blood vessels. Integration of LSI into the clinical workflow may lead to surgical image guidance that maximizes acute photocoagulation, is expected to improve PWS therapeutic outcome. Continued integration of noninvasive optical imaging technologies and biochemical analysis collectively are expected to lead to more robust treatment strategies. PMID:27013846
1985-09-30
layers of the retina as seen in retinitis pigmentosa (Wolbarsht & Landers, 1980; Stefansson et al, 1981 a). Those are all long-term effects with a delay...block numoer) FIELD GROUP SUB-GROUP retinal damage center-surround 20 05 laser injury cat retina 20 06 visual perception N02 anesthesia 19. ABSTRACT...Continue on reverse if necessary and identify by block number) The reports of retinal damage from exposure to short pulse laser energy without any
NASA Astrophysics Data System (ADS)
Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.
2017-08-01
Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.
Chien-Ching Ma; Ching-Yuan Chang
2013-07-01
Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.
Speckle interferometry with temporal phase evaluation for measuring large-object deformation.
Joenathan, C; Franze, B; Haible, P; Tiziani, H J
1998-05-01
We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.
MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?
Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence
2017-09-01
Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.
SAR Speckle Noise Reduction Using Wiener Filter
NASA Technical Reports Server (NTRS)
Joo, T. H.; Held, D. N.
1983-01-01
Synthetic aperture radar (SAR) images are degraded by speckle. A multiplicative speckle noise model for SAR images is presented. Using this model, a Wiener filter is derived by minimizing the mean-squared error using the known speckle statistics. Implementation of the Wiener filter is discussed and experimental results are presented. Finally, possible improvements to this method are explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios
Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A totalmore » of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.« less
Multiresolution generalized N dimension PCA for ultrasound image denoising
2014-01-01
Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917
Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry
NASA Astrophysics Data System (ADS)
Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping
2003-04-01
A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.
Fast image processing with a microcomputer applied to speckle photography
NASA Astrophysics Data System (ADS)
Erbeck, R.
1985-11-01
An automated image recognition system is described for speckle photography investigations in fluid dynamics. The system is employed for characterizing the pattern of interference fringes obtained using speckle interferometry. A rotating ground glass serves as a screen on which laser light passing through a specklegraph plate, the flow and a compensation plate (CP) is shone to produce a compensated Young's pattern. The image produced on the ground glass is photographed by a video camera whose signal is digitized and processed through a microcomputer using a 6502 CPU chip. The normalized correlation function of the intensity is calculated in two directions of the recorded pattern to obtain the wavelength and the light deflection angle. The system has a capability of one picture every two seconds. Sample data are provided for a free jet of CO2 issuing into air in both laminar and turbulent form.
Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Karnabatidis, Dimitrios; Hazle, John D; Kagadis, George C
2014-07-01
Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists' qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. A new wavelet-based EFCM clustering model was introduced toward noise reduction and detail preservation. The proposed method improves the overall US image quality, which in turn could affect the decision-making on whether additional imaging and/or intervention is needed.
Express RGB mapping of three to five skin chromophores
NASA Astrophysics Data System (ADS)
Oshina, Ilze; Spigulis, Janis; Rubins, Uldis; Kviesis-Kipge, Edgars; Lauberts, Kalvis
2017-07-01
Skin melanin, oxy- and deoxy-hemoglobin were snapshot-mapped under simultaneous 448-532-659 nm laser illumination by a smartphone RGB camera. Experimental prototypes for double-snapshot RGB mapping of four (melanin, bilirubin, oxy- and deoxy-hemoglobin) and five (melanin, bilirubin, lipids, oxy- and deoxy-hemoglobin) skin chromophores with reduced laser speckle artefacts have been developed and tested. A set of 405-448-532-659 nm lasers were used for four chromophores mapping, and a set of 405-448-532-659-842 nm lasers for five chromophores mapping. Clinical tests confirmed functionality of the developed devices.
In vivo lateral blood flow velocity measurement using speckle size estimation.
Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R
2014-05-01
In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method across a field of view and combination with an appropriate axial flow estimator. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.
2017-10-01
Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel
Speckle: tool for diagnosis assistance
NASA Astrophysics Data System (ADS)
Carvalho, O.; Guyot, S.; Roy, L.; Benderitter, M.; Clairac, B.
2006-09-01
In this paper, we present a new approach of the speckle phenomenon. This method is based on the fractal Brownian motion theory and allows the extraction of three stochastic parameters to characterize the speckle pattern. For the first time, we present the results of this method applied to the discrimination of the healthy vs. pathologic skin. We also demonstrate, in case of the scleroderma, than this method is more accurate than the classical frequential approach.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
NASA Astrophysics Data System (ADS)
Van der Auweraer, H.; Steinbichler, H.; Vanlanduit, S.; Haberstok, C.; Freymann, R.; Storer, D.; Linet, V.
2002-04-01
Accurate structural models are key to the optimization of the vibro-acoustic behaviour of panel-like structures. However, at the frequencies of relevance to the acoustic problem, the structural modes are very complex, requiring high-spatial-resolution measurements. The present paper discusses a vibration testing system based on pulsed-laser holographic electronic speckle pattern interferometry (ESPI) measurements. It is a characteristic of the method that time-triggered (and not time-averaged) vibration images are obtained. Its integration into a practicable modal testing and analysis procedure is reviewed. The accumulation of results at multiple excitation frequencies allows one to build up frequency response functions. A novel parameter extraction approach using spline-based data reduction and maximum-likelihood parameter estimation was developed. Specific extensions have been added in view of the industrial application of the approach. These include the integration of geometry and response information, the integration of multiple views into one single model, the integration with finite-element model data and the prior identification of the critical panels and critical modes. A global procedure was hence established. The approach has been applied to several industrial case studies, including car panels, the firewall of a monovolume car, a full vehicle, panels of a light truck and a household product. The research was conducted in the context of the EUREKA project HOLOMODAL and the Brite-Euram project SALOME.
Comparison of Filters Dedicated to Speckle Suppression in SAR Images
NASA Astrophysics Data System (ADS)
Kupidura, P.
2016-06-01
This paper presents the results of research on the effectiveness of different filtering methods dedicated to speckle suppression in SAR images. The tests were performed on RadarSat-2 images and on an artificial image treated with simulated speckle noise. The research analysed the performance of particular filters related to the effectiveness of speckle suppression and to the ability to preserve image details and edges. Speckle is a phenomenon inherent to radar images - a deterministic noise connected with land cover type, but also causing significant changes in digital numbers of pixels. As a result, it may affect interpretation, classification and other processes concerning radar images. Speckle, resembling "salt and pepper" noise, has the form of a set of relatively small groups of pixels of values markedly different from values of other pixels representing the same type of land cover. Suppression of this noise may also cause suppression of small image details, therefore the ability to preserve the important parts of an image, was analysed as well. In the present study, selected filters were tested, and methods dedicated particularly to speckle noise suppression: Frost, Gamma-MAP, Lee, Lee-Sigma, Local Region, general filtering methods which might be effective in this respect: Mean, Median, in addition to morphological filters (alternate sequential filters with multiple structuring element and by reconstruction). The analysis presented in this paper compared the effectiveness of different filtering methods. It proved that some of the dedicated radar filters are efficient tools for speckle suppression, but also demonstrated a significant efficiency of the morphological approach, especially its ability to preserve image details.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
Diffraction-controlled backscattering threshold and application to Raman gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe
2011-04-15
In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less
Application of a liquid crystal spatial light modulator to laser marking.
Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P
2011-04-20
Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.
2017-03-01
Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.
Diffractive elements for generating microscale laser beam patterns: a Y2K problem
NASA Astrophysics Data System (ADS)
Teiwes, Stephan; Krueger, Sven; Wernicke, Guenther K.; Ferstl, Margit
2000-03-01
Lasers are widely used in industrial fabrication for engraving, cutting and many other purposes. However, material processing at very small scales is still a matter of concern. Advances in diffractive optics could provide for laser systems that could be used for engraving or cutting of micro-scale patterns at high speeds. In our paper we focus on the design of diffractive elements which can be used for this special application. It is a common desire in material processing to apply 'discrete' as well as 'continuous' beam patterns. Especially, the latter case is difficult to handle as typical micro-scale patterns are characterized by bad band-limitation properties, and as speckles can easily occur in beam patterns. It is shown in this paper that a standard iterative design method usually fails to obtain diffractive elements that generate diffraction patterns with acceptable quality. Insights gained from an analysis of the design problems are used to optimize the iterative design method. We demonstrate applicability and success of our approach by the design of diffractive phase elements that generate a discrete and a continuous 'Y2K' pattern.
NASA Astrophysics Data System (ADS)
Ma, Ning; Zhao, Juan; Hanson, Steen G.; Takeda, Mitsuo; Wang, Wei
2016-10-01
Laser speckle has received extensive studies of its basic properties and associated applications. In the majority of research on speckle phenomena, the random optical field has been treated as a scalar optical field, and the main interest has been concentrated on their statistical properties and applications of its intensity distribution. Recently, statistical properties of random electric vector fields referred to as Polarization Speckle have come to attract new interest because of their importance in a variety of areas with practical applications such as biomedical optics and optical metrology. Statistical phenomena of random electric vector fields have close relevance to the theories of speckles, polarization and coherence theory. In this paper, we investigate the correlation tensor for stochastic electromagnetic fields modulated by a depolarizer consisting of a rough-surfaced retardation plate. Under the assumption that the microstructure of the scattering surface on the depolarizer is as fine as to be unresolvable in our observation region, we have derived a relationship between the polarization matrix/coherency matrix for the modulated electric fields behind the rough-surfaced retardation plate and the coherence matrix under the free space geometry. This relation is regarded as entirely analogous to the van Cittert-Zernike theorem of classical coherence theory. Within the paraxial approximation as represented by the ABCD-matrix formalism, the three-dimensional structure of the generated polarization speckle is investigated based on the correlation tensor, indicating a typical carrot structure with a much longer axial dimension than the extent in its transverse dimension.
Using of methods of speckle optics for Chlamydia trachomatis typing
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Zaytsev, Sergey S.; Ulianova, Onega V.; Saltykov, Yury V.; Feodorova, Valentina A.
2017-03-01
Specific method of transformation of nucleotide of gene into speckle pattern is suggested. Reference speckle pattern of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci as well is generated. Perspectives of proposed technique in the gene identification and detection of natural genetic mutations as single nucleotide polymorphism (SNP) are demonstrated.
Speckle reduction of OCT images using an adaptive cluster-based filtering
NASA Astrophysics Data System (ADS)
Adabi, Saba; Rashedi, Elaheh; Conforto, Silvia; Mehregan, Darius; Xu, Qiuyun; Nasiriavanaki, Mohammadreza
2017-02-01
Optical coherence tomography (OCT) has become a favorable device in the dermatology discipline due to its moderate resolution and penetration depth. OCT images however contain grainy pattern, called speckle, due to the broadband source that has been used in the configuration of OCT. So far, a variety of filtering techniques is introduced to reduce speckle in OCT images. Most of these methods are generic and can be applied to OCT images of different tissues. In this paper, we present a method for speckle reduction of OCT skin images. Considering the architectural structure of skin layers, it seems that a skin image can benefit from being segmented in to differentiable clusters, and being filtered separately in each cluster by using a clustering method and filtering methods such as Wiener. The proposed algorithm was tested on an optical solid phantom with predetermined optical properties. The algorithm was also tested on healthy skin images. The results show that the cluster-based filtering method can reduce the speckle and increase the signal-to-noise ratio and contrast while preserving the edges in the image.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
Laser speckle velocimetry for robot manufacturing
NASA Astrophysics Data System (ADS)
Charrett, Thomas O. H.; Bandari, Yashwanth K.; Michel, Florent; Ding, Jialuo; Williams, Stewart W.; Tatam, Ralph P.
2017-06-01
A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot.
Automated Reduction of Data from Images and Holograms
NASA Technical Reports Server (NTRS)
Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)
1987-01-01
Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.
Laser-speckle-visibility acoustic spectroscopy in soft turbid media.
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-01-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.
Laser-speckle-visibility acoustic spectroscopy in soft turbid media
NASA Astrophysics Data System (ADS)
Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard
2014-01-01
We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.
Investigation of the ripeness of oil palm fresh fruit bunches using bio-speckle imaging
NASA Astrophysics Data System (ADS)
Salambue, R.; Adnan, A.; Shiddiq, M.
2018-03-01
The ripeness of the oil palm Fresh Fruit Bunches (FFB) determines the yield of the oil produced. Traditionally there are two ways to determine FFB ripeness which are the number of loose fruits and the color changes. Nevertheless, one drawback of visual determination is subjective and qualitative judgment. In this study, the FFB ripeness was investigated using laser based image processing technique. The advantages of using this technique are non-destructive, simple and quantitative. The working principle of the investigation is that a FFB is inserted into a light tight box which contains a laser diode and a CMOS camera, the FFB is illuminated, and then an image is recorded. The FFB image recorder was performed on four FFB fractions i.e. F0, F3, F4 and F5 on the front and rear surfaces at three sections. The recorded images are speckled granules that have light intensity variation (bio-speckle imaging). The feature extracted from the specked image is the contrast value obtained from the average gray value intensity and the standard deviation. Based on the contrast values, the four fractions of FFB can be grouped into three levels of ripeness of unripe (F0), ripe (F3) and overripe (F4 and F5) on the front surface of base section of FFB by 75%.
Skin microrelief as a diagnostic tool (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Phillips, Jamie; Zeng, Haishan; McLean, David; Lui, Harvey; Lee, Tim K.
2017-02-01
Skin surface roughness is an important property for differentiating skin diseases. Recently, roughness has also been identified as a potential diagnostic indicator in the early detection of skin cancer. Objective quantification is usually carried out by creating silicone replicas of the skin and then measuring the replicas. We have developed an alternative in-vivo technique to measure skin roughness based on laser speckle. Laser speckle is the interference pattern produced when coherent light is used to illuminate a rough surface and the backscattered light is imaged. Acquiring speckle contrast measurements from skin phantoms with controllable roughness, we created a calibration curve by linearly interpolating between measured points. This calibration curve accounts for internal scattering and is designed to evaluate skin microrelief whose root-mean-square roughness is in the range of 10-60 micrometers. To validate the effectiveness of our technique, we conducted a study to measure 243 skin lesions including actinic keratosis (8), basal cell carcinoma (24), malignant melanoma (31), nevus (73), squamous cell carcinoma (19), and seborrheic keratosis (79). The average roughness values ranged from 26 to 57 micrometers. Malignant melanoma was ranked as the smoothest and squamous cell carcinoma as the roughest lesion. An ANOVA test confirmed that malignant melanoma has significantly smaller roughness than other lesion types. Our results suggest that skin microrelief can be used to detect malignant melanoma from other skin conditions.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Whole-Field Experimental Stress Analysis Using Laser Speckle Interferometry.
1981-02-14
region. UNCLASSIFIED SECURITY CLASSIFICATtON OF THIS PAGE(When Data Entrerd) ACKNOWLEDGMENTS The author expresses appreciation to Mr. J. A. Schaeffel ...for Aperture Analysis of Interferograms A system for analyzing interferograms developed by Schaeffel [6] was used to analyze selected areas on the...found in Schaeffel [6]. A Spectra Physics Model 125 He-Ne laser was used as the light source with the beam expanded through a Spectra Physics model 332
Real time laser speckle imaging monitoring vascular targeted photodynamic therapy
NASA Astrophysics Data System (ADS)
Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor
2017-02-01
Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Luo, Weihua; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming
2007-05-01
Laser speckle temporal contrast analysis (LSTCA) was used to image the cerebral blood flow (CBF) of ischemic area in reperfused mini-stroke model in rats. Focal cortical ischemia in male Sprague-Dawley rats (n=20) was induced by deliberate ligation of multiple branches of the middle cerebral artery (MCA) together with a nylon ring and the dura. LSTCA was used to monitor the spatio-temporal characteristics of cerebral blood flow dynamics in the rat somatosensory cortex in the ischemic and reperfused stages. The infarction volume was measured by 2, 3, 5- triphenyltetrazolium chloride (TTC) staining 24 hours after reperfusion. The distribution of changes in cerebral blood flow which outlined by the laser speckle imaging represented the relative CBF gradient (21.98+/-1.96%, 67.2+/-1.67 %, 107.24+/-4.71 % of the baseline) from ischemic core, penumbra zone to normal tissue immediately after cortical ischemia, in which a central ischemic core had little or no perfusion surrounded by a penumbral region with reduced perfusion, in addition, we had shown the existence of a surrounding region of hyperemic tissue; Thereafter a postrecanalization hyperperfusion occurred in the same infarct core since 24 hours after reperfusion (242.62+/-18.52% of the baseline). Histology of the ischemic regions at 24 hours after reperfusion revealed small focal infarcts that were typically 3~4 mm in diameter, approximately equal to the nylon ring in size and position and essentially accordant with the spatial distribution of the ischemic cortex with below 30% residual CBF of the pre-ischemic baseline. It was demonstrated that this technique of LSTCA was easy to implement and availably used to image the spatial and temporal evolution of CBF changes with high resolution in rat reperfused mini-stroke model.
Hack, Erwin; Gundu, Phanindra Narayan; Rastogi, Pramod
2005-05-10
An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.
Simulation of speckle patterns with pre-defined correlation distributions.
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S
2016-03-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques.
Simulation of speckle patterns with pre-defined correlation distributions
Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.
2016-01-01
We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589
Evaluation of a high framerate multi-exposure laser speckle contrast imaging setup
NASA Astrophysics Data System (ADS)
Hultman, Martin; Fredriksson, Ingemar; Strömberg, Tomas; Larsson, Marcus
2018-02-01
We present a first evaluation of a new multi-exposure laser speckle contrast imaging (MELSCI) system for assessing spatial variations in the microcirculatory perfusion. The MELSCI system is based on a 1000 frames per second 1-megapixel camera connected to a field programmable gate arrays (FPGA) capable of producing MELSCI data in realtime. The imaging system is evaluated against a single point laser Doppler flowmetry (LDF) system during occlusionrelease provocations of the arm in five subjects. Perfusion is calculated from MELSCI data using current state-of-the-art inverse models. The analysis displayed a good agreement between measured and modeled data, with an average error below 6%. This strongly indicates that the applied model is capable of accurately describing the MELSCI data and that the acquired data is of high quality. Comparing readings from the occlusion-release provocation showed that the MELSCI perfusion was significantly correlated (R=0.83) to the single point LDF perfusion, clearly outperforming perfusion estimations based on a single exposure time. We conclude that the MELSCI system provides blood flow images of enhanced quality, taking us one step closer to a system that accurately can monitor dynamic changes in skin perfusion over a large area in real-time.
Jones, Phill B.; Shin, Hwa Kyoung; Boas, David A.; Hyman, Bradley T.; Moskowitz, Michael A.; Ayata, Cenk; Dunn, Andrew K.
2009-01-01
Real-time investigation of cerebral blood flow (CBF), and oxy- and deoxyhemoglobin concentration (HbO, HbR) dynamics has been difficult until recently due to limited spatial and temporal resolution of techniques like laser Doppler flowmetry and magnetic resonance imaging (MRI). The combination of laser speckle flowmetry (LSF) and multispectral reflectance imaging (MSRI) yields high-resolution spatiotemporal maps of hemodynamic and metabolic changes in response to functional cortical activation. During acute focal cerebral ischemia, changes in HbO and HbR are much larger than in functional activation, resulting in the failure of the Beer-Lambert approximation to yield accurate results. We describe the use of simultaneous LSF and MSRI, using a nonlinear Monte Carlo fitting technique, to record rapid changes in CBF, HbO, HbR, and cerebral metabolic rate of oxygen (CMRO2) during acute focal cerebral ischemia induced by distal middle cerebral artery occlusion (dMCAO) and reperfusion. This technique captures CBF and CMRO2 changes during hemodynamic and metabolic events with high temporal and spatial resolution through the intact skull and demonstrates the utility of simultaneous LSF and MSRI in mouse models of cerebrovascular disease. PMID:19021335
Son, Taeyoon; Kang, Heesung; Jung, Byungjo
2016-05-01
Intense pulsed light (IPL) with low energy insufficient to completely destroy a vasculature was applied to rabbit ears to investigate vasculature alteration. Glycerol was combined with IPL to enhance the transfer efficacy of IPL energy. Both trans-illumination and laser speckle contrast images were obtained and analyzed after treatment. The application of IPL and glycerol combination induced vasodilation and improvement in blood flow. Moreover, such phenomenon was maintained over time. IPL may be applied to treat blood circulatory diseases by inducing vasodilation and to improve blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyajo, Akira; Hasegawa, Hideyuki
2018-07-01
At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.
NASA Astrophysics Data System (ADS)
Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki
To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.
Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.; ...
2018-04-27
One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.
One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less
NASA Astrophysics Data System (ADS)
Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.
2014-03-01
Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.
NASA Astrophysics Data System (ADS)
Samuel, Boni; Retheesh, R.; Zaheer Ansari, Md; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.
2017-10-01
Quality evaluation of fruits and vegetables is of great concern as there is a shortage of unadulterated items on the market. Even unadulterated fruits and vegetables, especially those with soft tissue, cannot be stored for longer times due to physical and chemical changes. Moreover, damage can occur during harvest and in the post-harvest period, while preserving or transporting the fruits and vegetables. This work describes the use of a laser dynamic speckle imaging technique as a powerful optoelectronic tool for the quality evaluation of certain seasonal fruits and vegetables in an Indian market. A simple optical configuration was designed for developing the dynamic speckle imagining system to record dynamic specklegrams of the specimens under different conditions. These images were analysed using a cross-correlation function and the temporal history of specklegrams. The technique can be effectively adapted to the industrial environment and would be beneficial for all stakeholders in the field.
Laser speckle decorrelation for fingerprint acquisition
NASA Astrophysics Data System (ADS)
Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo
2012-09-01
Biometry is gaining popularity as a physical security approach in situations where a high level of security is necessary. Currently, biometric solutions are embedded in a very large and heterogeneous group of applications. One of the most sensible is for airport security access to boarding gates. More airports are introducing biometric solutions based on face, fingerprint or iris recognition for passenger identification. In particular, fingerprints are the most widely used biometric, and they are mandatorily included in electronic identification documents. One important issue, which is difficult to address in traditional fingerprint acquisition systems, is preventing contact between subsequent users; sebum, which can be a potential vector for contagious diseases. Currently, non-contact devices are used to overcome this problem. In this paper, a new contact device based on laser speckle decorrelation is presented. Our system has the advantage of being compact and low-cost compared with an actual contactless system, allowing enhancement of the sebum pattern imaging contrast in a simple and low-cost way. Furthermore, it avoids the spreading of contagious diseases.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Controlling Laser Plasma Instabilities Using Temporal Bandwidth
NASA Astrophysics Data System (ADS)
Tsung, Frank; Weaver, J.; Lehmberg, R.
2016-10-01
We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
NASA Astrophysics Data System (ADS)
Popescu, Dan P.; Hewko, Mark D.; Sowa, Michael G.
2007-01-01
This study demonstrates a simple method for attenuating the speckle noise generated by coherent multiple-scattered photons in optical-coherence tomography images. The method could be included among the space-diversity techniques used for speckle reduction. It relies on displacing the sample along a weakly focused beam in the sample arm of the interferometer, acquiring a coherent image for each sample position and adding the individual images to form a compounded image. It is proven that the compounded image displays a reduction in the speckle noise generated by multiple scattered photons and an enhancement in the intensity signal caused by single-backscattered photons. To evaluate its potential biomedical applications, the method is used to investigate in vitro a caries lesion affecting the enamel layer of a wisdom tooth. Because of the uncorrelated nature of the speckle noise the compounded image provides a better mapping of the lesion compared to a single (coherent) image.
Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin
2017-06-01
Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu; Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334
2015-01-15
We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systemsmore » compared to the bandwidth currently available to temporally smoothed glass-based laser systems.« less
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
Recent progress in tissue optical clearing for spectroscopic application
NASA Astrophysics Data System (ADS)
Sdobnov, A. Yu.; Darvin, M. E.; Genina, E. A.; Bashkatov, A. N.; Lademann, J.; Tuchin, V. V.
2018-05-01
This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc. Structural images of different skin layers obtained ex vivo for porcine ear skin samples at application of Omnipaque™ and glycerol solutions during 60 min. Red color corresponds to TPEAF signal channel. Green color corresponds to SHG signal channel.
Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation.
Khodadad, Davood; Singh, Alok Kumar; Pedrini, Giancarlo; Sjödahl, Mikael
2016-09-20
The objective of this paper is to describe a full-field deformation measurement method based on 3D speckle displacements. The deformation is evaluated from the slope of the speckle displacement function that connects the different reconstruction planes. For our experiment, a symmetrical arrangement with four illuminations parallel to the planes (x,z) and (y,z) was used. Four sets of speckle patterns were sequentially recorded by illuminating an object from the four directions, respectively. A single camera is used to record the holograms before and after deformations. Digital speckle photography is then used to calculate relative speckle displacements in each direction between two numerically propagated planes. The 3D speckle displacements vector is calculated as a combination of the speckle displacements from the holograms recorded in each illumination direction. Using the speckle displacements, problems associated with rigid body movements and phase wrapping are avoided. In our experiment, the procedure is shown to give the theoretical accuracy of 0.17 pixels yielding the accuracy of 2×10-3 in the measurement of deformation gradients.
NASA Astrophysics Data System (ADS)
Shin, Jaewook; Bosworth, Bryan T.; Foster, Mark A.
2017-02-01
The process of multiple scattering has inherent characteristics that are attractive for high-speed imaging with high spatial resolution and a wide field-of-view. A coherent source passing through a multiple-scattering medium naturally generates speckle patterns with diffraction-limited features over an arbitrarily large field-of-view. In addition, the process of multiple scattering is deterministic allowing a given speckle pattern to be reliably reproduced with identical illumination conditions. Here, by exploiting wavelength dependent multiple scattering and compressed sensing, we develop a high-speed 2D time-stretch microscope. Highly chirped pulses from a 90-MHz mode-locked laser are sent through a 2D grating and a ground-glass diffuser to produce 2D speckle patterns that rapidly evolve with the instantaneous frequency of the chirped pulse. To image a scene, we first characterize the high-speed evolution of the generated speckle patterns. Subsequently we project the patterns onto the microscopic region of interest and collect the total light from the scene using a single high-speed photodetector. Thus the wavelength dependent speckle patterns serve as high-speed pseudorandom structured illumination of the scene. An image sequence is then recovered using the time-dependent signal received by the photodetector, the known speckle pattern evolution, and compressed sensing algorithms. Notably, the use of compressed sensing allows for reconstruction of a time-dependent scene using a highly sub-Nyquist number of measurements, which both increases the speed of the imager and reduces the amount of data that must be collected and stored. We will discuss our experimental demonstration of this approach and the theoretical limits on imaging speed.
1980-03-01
Ennos, A. E., " Measurement by Laser Photography," National Physical Laboratory, Division of Optical Metrology, Teddington, Middlesex, U.K. 9. Archbold...Field Measurement ," Optics and Laser TechnoloZ, pp. 216 - 219, October 1776. 149 37. Khetan, R. P., and Chiang, F. P., "Strain Analysis by One Beam...AD-AO85 145 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 17/8 SURFACE DISPLACEMENT MEASUREMENTS , STRAIN AND VIBRATIONAL ANALY-ETC(U) MAR GO A B
Tibirica, Eduardo; Barcelos, Amanda; Lamas, Cristiane
2018-06-01
This article represents data associated with a prior publication from our research group, under the title: Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy [1]. Patients with definite infective endocarditis, under stable clinical conditions, were prospectively included. The clinical and laboratory features are presented for each of them in raw form. Microvascular reactivity was evaluated using a laser speckle contrast imaging (LSCI) system with a laser wavelength of 785 nm. LSCI was used in combination with the iontophoresis of acetylcholine (ACh) or sodium nitroprusside (SNP) for the noninvasive, continuous measurement of cutaneous microvascular perfusion changes in arbitrary perfusion units (APU). The images were analyzed using the manufacturer's software. One skin site on the ventral surface of the forearm was chosen for the experiment. Microvascular reactivity was also evaluated using post-occlusive reactive hyperemia, whereby arterial occlusion was achieved with supra-systolic pressure (50 mmHg above the systolic arterial pressure) using a sphygmomanometer for three minutes. Following the release of pressure, maximum flux was measured. Data on cutaneous microvascular density were obtained using intravital video-capillaroscopy. The data obtained may be helpful by showing the usefulness of laser-based noninvasive techniques in systemic infectious diseases other than sepsis, in different clinical settings and countries.
Resolution experiments using the white light speckle method.
Conley, E; Cloud, G
1991-03-01
Noncoherent light speckle methods have been successfully applied to gauge the motion of glaciers and buildings. Resolution of the optical method was limited by the aberrating turbulent atmosphere through which the images were collected. Sensitivity limitations regarding this particular application of speckle interferometry are discussed and analyzed. Resolution limit experiments that were incidental to glacier flow studies are related to the basic theory of astronomical imaging. Optical resolution of the ice flow measurement technique is shown to be in substantial agreement with the sensitivity predictions of astronomy theory.
Measurement of elasto-plastic deformations by speckle interferometry
NASA Astrophysics Data System (ADS)
Bova, Marco; Bruno, Luigi; Poggialini, Andrea
2010-09-01
In the paper the authors present an experimental equipment for elasto-plastic characterization of engineering materials by tensile tests. The stress state is imposed to a dog bone shaped specimen by a testing machine fixed on the optical table and designed for optimizing the performance of a speckle interferometer. All three displacement components are measured by a portable speckle interferometer fed by three laser diodes of 50 mW, by which the deformations of a surface of about 6×8 mm2 can be fully analyzed in details. All the equipment is driven by control electronics designed and realized on purpose, by which it is possible to accurately modify the intensity of the illumination sources, the position of a PZT actuator necessary for applying phase-shifting procedure, and the overall displacement applied to the specimen. The experiments were carried out in National Instrument LabVIEW environment, while the processing of the experimental data in Wolfram Mathematica environment. The paper reports the results of the elasto-plastic characterization of a high strength steel specimen.
Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS
Lee, Sooheyong; Roseker, W.; Gutt, C.; ...
2013-10-08
The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less
NASA Astrophysics Data System (ADS)
Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa
2018-05-01
In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.
Richards, Lisa M.; Towle, Erica L.; Fox, Douglas J.; Dunn, Andrew K.
2014-01-01
Abstract. Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient’s electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had 25%±27% noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to 20%±21%, while image registration resulted in a further noise reduction of 15%±4%. Combined ECG filtering and image registration significantly reduced the noise to 6.2%±2.6% (p<0.05). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with <3% difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images. PMID:26157974
Statistics of biospeckles with application to diagnostics of periodontitis
NASA Astrophysics Data System (ADS)
Starukhin, Pavel Y.; Kharish, Natalia A.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Tuchin, Valery V.
1999-04-01
Results of Monte-Carlo simulations Doppler shift are presented for the model of random medium that contain moving particles. The single-layered and two-layered configurations of the medium are considered. Doppler shift of the frequency of laser light is investigated as a function of such parameters as absorption coefficient, scattering coefficient, and thickness of the medium. Possibility of application of speckle interferometry for diagnostics in dentistry has been analyzed. Problem of standardization of the measuring procedure has been studied. Deviation of output characteristics of Doppler system for blood microcirculation measurements has been investigated. Dependence of form of Doppler spectrum on the number of speckles, integration by aperture, has been studied in experiments in vivo.
1991-02-10
25. 1"S. revised mcp recerved Apnil 10, 19W, thnnsmte into a VAX- 11 computer. Fringf_ spacing * acceped for puablI Al 126. 1990 This paPetis a...W.Il.Peters, W.F.llanson mtid S.WI.-MN1il, "Detcrintation of dis. placements using an improved (digit al rorrela Ii’’i ii’’ h. . 111 aad Vision Y*omput ing...experiimental mcchaniics", Experiment al Mechianics, Vol.25, No.3, pp 232-.1-1 (1985). 5.~ A.Rosenfeld and A.C.Kak, Digital Pict nre processing, Vol 1
NASA Astrophysics Data System (ADS)
Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.
2018-03-01
This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.
NASA Technical Reports Server (NTRS)
Opower, Hans (Editor)
1990-01-01
Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.
Accelerated numerical processing of electronically recorded holograms with reduced speckle noise.
Trujillo, Carlos; Garcia-Sucerquia, Jorge
2013-09-01
The numerical reconstruction of digitally recorded holograms suffers from speckle noise. An accelerated method that uses general-purpose computing in graphics processing units to reduce that noise is shown. The proposed methodology utilizes parallelized algorithms to record, reconstruct, and superimpose multiple uncorrelated holograms of a static scene. For the best tradeoff between reduction of the speckle noise and processing time, the method records, reconstructs, and superimposes six holograms of 1024 × 1024 pixels in 68 ms; for this case, the methodology reduces the speckle noise by 58% compared with that exhibited by a single hologram. The fully parallelized method running on a commodity graphics processing unit is one order of magnitude faster than the same technique implemented on a regular CPU using its multithreading capabilities. Experimental results are shown to validate the proposal.
NASA Astrophysics Data System (ADS)
Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.
2016-03-01
A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.
NASA Astrophysics Data System (ADS)
Zhao, Xia; Wang, Guang-xin
2008-12-01
Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.
Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking
NASA Astrophysics Data System (ADS)
Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.
2017-03-01
Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.
Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation
1990-05-01
process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE
Zaitsev, Vladimir Y; Matveyev, Alexandr L; Matveev, Lev A; Gelikonov, Grigory V; Gelikonov, Valentin M; Vitkin, Alex
2015-07-01
Feasibility of speckle tracking in optical coherence tomography (OCT) based on digital image correlation (DIC) is discussed in the context of elastography problems. Specifics of applying DIC methods to OCT, compared to processing of photographic images in mechanical engineering applications, are emphasized and main complications are pointed out. Analytical arguments are augmented by accurate numerical simulations of OCT speckle patterns. In contrast to DIC processing for displacement and strain estimation in photographic images, the accuracy of correlational speckle tracking in deformed OCT images is strongly affected by the coherent nature of speckles, for which strain-induced complications of speckle “blinking” and “boiling” are typical. The tracking accuracy is further compromised by the usually more pronounced pixelated structure of OCT scans compared with digital photographic images in classical DIC applications. Processing of complex-valued OCT data (comprising both amplitude and phase) compared to intensity-only scans mitigates these deleterious effects to some degree. Criteria of the attainable speckle tracking accuracy and its dependence on the key OCT system parameters are established.
NASA Astrophysics Data System (ADS)
Gorczynska, Iwona; Migacz, Justin; Zawadzki, Robert J.; Sudheendran, Narendran; Jian, Yifan; Tiruveedhula, Pavan K.; Roorda, Austin; Werner, John S.
2015-07-01
We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.