NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin
2017-12-01
Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.
2018-05-01
Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.
Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang
2015-06-01
We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.
2018-03-01
Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-04-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-06-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces.
Cunha, Alexandre; Zouani, Omar Farouk; Plawinski, Laurent; Botelho do Rego, Ana Maria; Almeida, Amélia; Vilar, Rui; Durrieu, Marie-Christine
2015-01-01
The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Liu, Zhu; Li, Lin
2018-01-01
Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method
Improved Main Shaft Seal Life in Gas Turbines Using Laser Surface Texturing
NASA Astrophysics Data System (ADS)
McNickle, Alan D.; Etsion, Izhak
2002-10-01
This paper presents a general overview of the improved main shaft seal life in gas turbines using laser surface texturing (LST). The contents include: 1) Laser Surface Texturing System; 2) Seal Schematic with LST applied; 3) Dynamic Rig Tests; 4) Surface Finish Definitions; 5) Wear Test Rig; 6) Dynamic Test Rig; 7) Seal Cross Section-Rig Test; and 8) Typical Test Results. This paper is in viewgraph form.
Influence of Laser Shock Texturing on W9 Steel Surface Friction Property
NASA Astrophysics Data System (ADS)
Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye
2017-09-01
To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.
NASA Astrophysics Data System (ADS)
Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui
2016-01-01
The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong
2016-07-01
Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.
Systems and Methods of Laser Texturing of Material Surfaces and Their Applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)
2014-01-01
The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.
NASA Astrophysics Data System (ADS)
Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina
2018-05-01
The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.
Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser
NASA Astrophysics Data System (ADS)
Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.
2018-03-01
The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.
Surface wettability of silicon substrates enhanced by laser ablation
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin
2010-11-01
Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.
Wettability transition of laser textured brass surfaces inside different mediums
NASA Astrophysics Data System (ADS)
Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui
2018-01-01
Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.
Laser marking as environment technology
NASA Astrophysics Data System (ADS)
Sobotova, Lydia; Badida, Miroslav
2017-11-01
The contribution deals with the laser marking as one of the progressive and environment friendly technologies with utilisation in many branches of industry. Engraving and other types of laser marking of different types of materials are very actual technologies these days. Laser marking decreases the waste creation in comparison with the other classical marking technologies, which use paintings or created chips. In this experimental investigation the laser marking surface texturing of material AL99,7 according to STN 42 4003:1993-08 (STN EN 573) has been conducted. The laser marking machine TruMark 6020 and software TruTops Mark were used. Laser surface texturing after laser marking has been realised under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of engraving or annealing surfaces has been performed using scanning electron microscopy (SEM) technique. The evaluation of roughness of engraved surfaces has been realized according to STN EN ISO 4287 by using Surftest SJ 301. The aim of the contribution was to show how different laser parameters affect the surface texture and colour change of metallic materials while creating minimal waste.
Aluminum Surface Texturing by Means of Laser Interference Metallurgy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jian; Sabau, Adrian S; Jones, Jonaaron F.
2015-01-01
The increasing use of lightweight materials, such as aluminum alloys, in auto body structures requires more effective surface cleaning and texturing techniques to improve the quality of the structural components. The present work introduces a novel surface treatment method using laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface structures. The influences of beam size, laser fluence, wavelength, and pulse number per spot are investigated. High resolution optical profiler images reveal the change of the peak-to-valley height on the laser-treated surface.
UV laser-ablated surface textures as potential regulator of cellular response.
Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim
2010-06-01
Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.
Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity
NASA Astrophysics Data System (ADS)
Wang, X. C.; Wang, B.; Xie, H.; Zheng, H. Y.; Lam, Y. C.
2018-03-01
A single step direct picosecond laser texturing process was demonstrated to be able to obtain a superhydrophobic surface on a nickel substrate, a key material for mold fabrication in the manufacture of various devices, including polymeric microfluidic devices. A two-scale hierarchical surface structure of regular 2D array micro-bumps with nano-ripples was produced on a nickel surface. The laser textured surface initially showed superhydrophilicity with almost complete wetting of the structured surface just after laser treatment, then quickly changed to nearly superhydrophobic with a water contact angle (WCA) of 140° in less than 1 d, and finally became superhydrophobic with a WCA of more than 150° and a contact angle hysteresis (CAH) of less than 5°. The mechanism involved in the process is discussed in terms of surface morphology and surface chemistry. The ultra-fast laser induced NiO catalytic effect was thought to play a key role in modifying the surface chemistry so as to lower the surface energy. The developed process has the potential to improve the performance of nickel mold in the fabrication of microfluidic devices.
Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao
2017-07-01
A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Femtosecond Laser Texturing of Surfaces for Tribological Applications
Kirner, Sabrina V.; Griepentrog, Michael; Spaltmann, Dirk
2018-01-01
Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil. PMID:29762544
Femtosecond Laser Texturing of Surfaces for Tribological Applications.
Bonse, Jörn; Kirner, Sabrina V; Griepentrog, Michael; Spaltmann, Dirk; Krüger, Jörg
2018-05-15
Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil.
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.
2017-01-01
We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.
NASA Astrophysics Data System (ADS)
Ancona, Antonio; Carbone, Giuseppe; De Filippis, Michele; Volpe, Annalisa; Lugarà, Pietro Mario
2014-12-01
Minimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.
Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys
NASA Astrophysics Data System (ADS)
Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.
2018-04-01
Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.
Relation between plastic surface microtexturation and Ag film percolation and resistivity
NASA Astrophysics Data System (ADS)
Rapeaux, Michel; Tribut, Laurent
2017-09-01
Reinforced polycarbonate samples are textured by laser to get hydrophilic or hydrophobic surface. Then, Ag films are deposited on textured and non-textured samples by magnetron sputtering. In-situ resistivity measurement has been done to determine the electrical percolation threshold according to the texturation. Results are discussed and texturation is presented as one option to improve surface insulation in circuit breaker after a short-circuit event.
HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser
NASA Astrophysics Data System (ADS)
Sandoval-Amador, A.; Bayona–Alvarez, Y. M.; Carreño Garcia, H.; Escobar-Rivero, P.; Y Peña-Ballesteros, D.
2017-12-01
In this work, the response of HOS cells on Ti6Al4V ELI textured surfaces by a CO2 laser was evaluated. The test surfaces were; smooth Ti6Al4V, used as the control, and four textured surfaces with linear geometry. These four surfaces had different separation distances between textured lines, D1 (1000 microns), D2 (750 microns), D3 (500 microns) and D4 (250 microns). Toxicity of textured surfaces was assessed by MTT and the cellular adhesion test was performed using HOS ATCC CRL 1543 line cells. This test was done after 5 days of culture in a RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. The results showed that the linear textures present 23% toxicity after 30 days of incubation, nevertheless, the adhesion tests results are inconclusive in such conditions and therefore the effect of the line separation on the cell adhesion cannot be determined.
Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...
2017-08-28
We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek
We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less
Laser surface texturing of polypropylene to increase adhesive bonding
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla
2018-05-01
In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.
Direct femtosecond laser surface structuring of crystalline silicon at 400 nm
NASA Astrophysics Data System (ADS)
Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore
2018-03-01
We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.
Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.
2016-03-01
Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.
HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving
NASA Astrophysics Data System (ADS)
Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.
2016-02-01
The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.
[INVITED] Laser treatment of Inconel 718 alloy and surface characteristics
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.
2016-04-01
Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.
NASA Astrophysics Data System (ADS)
Kromer, R.; Danlos, Y.; Costil, S.
2018-04-01
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.
Faria, D; Abreu, C S; Buciumeanu, M; Dourado, N; Carvalho, O; Silva, F S; Miranda, G
2018-05-01
This work presents a novel texture design for implants surface functionalization, through the creation of line-shaped textures on Ti6Al4V surfaces and subsequent sintering of hydroxyapatite (HAp) powder into the designated locations. HAp-rich locations were designed to avoid HAp detachment during insertion, thus guaranteeing an effective osseointegration. This process starts by creating textured lines using a Nd:YAG laser, filling these lines with HAp powder and sintering HAp using a CO 2 laser. The adhesion of HAp is known to be influenced by HAp sintering parameters, especially laser power and scanning speed and also by the textured lines manufacturing. Different laser parameters combinations were used to assess the sintering and adhesion of HAp to the textured lines. HAp adhesion was assessed by performing high energy ultrasonic cavitation tests and sliding tests mimicking an implant insertion, with Ti6Al4V/HAp specimens sliding against animal bone. The HAp content retained after these tests was measured and results showed that an excellent HAp sintering and adhesion was achieved when using a scan speed of 1 mm/s and laser power between 9 and 9.6 W. It is important to emphasize that results indicated that the HAp bioactivity was maintained when using these conditions, validating this functionalization process for the production of hip prosthesis with improved bioactivity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1534-1545, 2018. © 2017 Wiley Periodicals, Inc.
Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W
2016-02-01
This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chantada, A.; Penide, J.; Riveiro, A.; del Val, J.; Quintero, F.; Meixus, M.; Soto, R.; Lusquiños, F.; Pou, J.
2017-10-01
Tailoring the wetting characteristics of materials has gained much interest in applications related to surface cleaning in both industry and home. Zimbabwe black granite is a middle-to-fine-grained natural stone commonly used as countertops in kitchens and bathrooms. In this study, the laser texturing of Zimbabwe black granite surfaces is investigated with the aim to enhance its hydrophobic character, thus reducing the attachment of contaminants on the surface. Two laser sources (λ = 1064 and 532 nm) were used for this purpose. The treatment is based on the irradiation of the stone by a laser focused on the surface of the targeting sample. The influence of different laser processing parameters on the surface characteristics of granite (wettability, roughness, and chemistry) was statistically assessed. Most suitable laser processing parameters required to obtain the highest hydrophobicity degree were identified. It has been possible to identify the 532 nm laser wavelength as the most effective one to increase the hydrophobic degree of Zimbabwe black granite surface. The phenomenon governing wettability changes was found to be the surface roughness patterns, given the unaltered chemical surface composition after laser processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalchenko, A. M.; Erdemir, A.; Ajayi, O. O.
Changing the surface texture of sliding surfaces is an effective way to manipulate friction and wear of lubricated surfaces. Having realized its potential, we have done very extensive studies on the effects of laser surface texturing (LST, which involves the creation of an array of microdimples on a surface) on friction and wear behavior of oil-lubricated steel surfaces in the early 2000s. In this paper, we reviewed some of our research accomplishments and assessed future directions of the laser texturing field in many diverse industrial applications. Our studies specifically addressed the impact of laser texturing on friction and wear ofmore » both the flat conformal and initial non-conformal point contact configurations using a pin-on-disk test rig under fully-flooded synthetic oil lubricants with different viscosities. Electrical resistance measurement between pin and LST disks was also used to determine the operating lubrication regimes in relation to friction. In conformal contact, we confirmed that LST could significantly expand the operating conditions for hydrodynamic lubrication to significantly much higher loads and slower speeds. In particular, with LST and higher viscosity oils, the low-friction full hydrodynamic regime was shifted to the far left in the Stribeck diagram. Overall, the beneficial effects of laser surface texturing were more pronounced at higher speeds and loads and with higher viscosity oil. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, we determined that LST would produce more abrasive wear on the rubbing counterface compared to the untreated surfaces due to a reduction in lubricant fluid film thickness, as well as the highly uneven and rough nature of the textured surfaces. However, this higher initial wear rate has led to faster generation of a conformal contact, and thus transition from the high-friction boundary to lower friction mixed lubrication regime, resulting in a rapid reduction in the friction coefficient with increased ball wear. Higher density of LST, lower oil viscosity, and hardness of counterface steel surface facilitate an increase of the initial wear, which promotes friction reduction. This phenomenon can be beneficial if the initial accelerated wear on the counterface is acceptable in intended applications. This paper summarizes our experimental investigation of the effect of LST on friction properties and lubrication regime transitions in a unidirectional sliding contact.« less
NASA Astrophysics Data System (ADS)
Dai, F. Z.; Geng, J.; Tan, W. S.; Ren, X. D.; Lu, J. Z.; Huang, Shu
2018-07-01
The Ti6Al4V micro-dimple surfaces fabricated by a masked laser surface texturing (MLST) technique within water were subjected to soft contact laser shock peening (SCLSP) and hard contact laser shock peening (HCLSP). The effects of these two LSP methods on topography, micro-hardness and residual stress distribution were studied. The friction and wear performance under dry friction and oil lubrication were also studied. The enclosure of micro cracks in the micro-dimple bottom was observed when treated by SCLSP and HCLSP. The dry friction and wear test showed that the MLST+HCLSP surfaces had the best wear resistance performance. In the oil lubricated friction test, the occurrence of the hydrodynamic lubrication effect occurred on the micro-dimple surfaces. The MLST+HCLSP exhibited the best friction and wear resistance performance. These were due to the micro-hardness increase, the producing of compressive residual stress and the surface roughness reduction of as treated surfaces.
Laser material micro-working (LMμW): some new surface processes
NASA Astrophysics Data System (ADS)
Daurelio, G.; D'Alonzo, M.
2007-05-01
On the last recent years many new Laser Surface Processes have been studied and tested in the field of the L.M. μW. - Laser Material Micro Working. Still today many of these "young" processes are to study and more and more searches are dedicated to they. These are the Marking, Texturing, Fine Texturing, Filling, Polishing, Micro Shot-Penning, Silking and Colouring. This experimental work reports the results obtained in the field of the Laser Surface Fine Texturing on AISI 304 and 430 Stainless Steels by using a Marking System, that is a Nd:YAG Laser, VECTORMARK type by TRUMPH ( D ). So some new laser surface finishes, called by Authors, - Effetto tessuto, con trama e ordito (Woven effect, with weft and warp) - Effetto pelle scamosciata ( Effect shammy leather ) - Effetto pelle uncinata ( Effect hooked skin ) - Effetto pelle unghiata ( Effect skin looking like scratch ) - Effetto pelle damascata ( Effect damask skin ) - Effetto speculare , ottonato ( Specular effect, looking like brass ) Effetto speculare, bronzato ( specular effect looking like bronze ) - Effetto speculare, argenteo ( specular, looking like silver effect ) - Effetto speculare, ramato ( Specular effect, looking like copper ), Effetto Speculare, dorato ( Specular effect, looking like gold ) - Effetto speculare , dorato, a raggiera ( Specular effect, looking like gold, to aureole) , were carried out. The work is still in progress.
Low-reflectance laser-induced surface nanostructures created with a picosecond laser
NASA Astrophysics Data System (ADS)
Sarbada, Shashank; Huang, Zhifeng; Shin, Yung C.; Ruan, Xiulin
2016-04-01
Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400-860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.
Study on cavitation effect of mechanical seals with laser-textured porous surface
NASA Astrophysics Data System (ADS)
Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.
2012-11-01
Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.
Texturing of polypropylene (PP) with nanosecond lasers
NASA Astrophysics Data System (ADS)
Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.
2016-06-01
Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.
High throughput laser texturing of super-hydrophobic surfaces on steel
NASA Astrophysics Data System (ADS)
Gemini, Laura; Faucon, Marc; Romoli, Luca; Kling, Rainer
2017-03-01
Super-hydrophobic surfaces are nowadays of primary interest in several application fields, as for de-icing devices in the automotive and aerospace industries. In this context, laser surface texturing has widely demonstrated to be an easy one-step method to produce super-hydrophobic surfaces on several materials. In this work, a high average power (up to 40W), high repetition-rate (up to 1MHz), femtosecond infrared laser was employed to produce super-hydrophobic surfaces on 316L steel. The set of process and laser parameters for which the super-hydrophobic behavior is optimized, was obtained by varying the laser energy and repetition rate. The morphology of the textured surfaces was firstly analyzed by SEM and confocal microscope analyses. The contact angle was measured over time in order to investigate the effect of air environment on the hydrophobic properties and define the period of time necessary for the super-hydrophobic properties to stabilize. An investigation on the effect of after-processing cleaning solvents on the CA evolution was carried to assess the influence of the after-processing sample handling on the CA evaluation. Results show that the highest values of contact angle, that is the best hydrophobic behavior, are obtained at high repetition rate and low energy, this way opening up a promising scenario in terms of upscaling for reducing the overall process takt-time.
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2017-07-01
Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.
Laser surface texturing for high control of interference fit joint load bearing
NASA Astrophysics Data System (ADS)
Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.
2017-10-01
Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.
Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser
NASA Astrophysics Data System (ADS)
Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.
2017-10-01
Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.
Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR
NASA Astrophysics Data System (ADS)
Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin
2016-06-01
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.
NASA Astrophysics Data System (ADS)
Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu
2016-03-01
H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław
2016-09-01
The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.
CW laser damage testing of RAR nano-textured fused silica and YAG
NASA Astrophysics Data System (ADS)
MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey
2017-11-01
A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.
Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M
2018-06-04
A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.
NASA Astrophysics Data System (ADS)
Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao
2016-11-01
Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tite, T.; Donnet, C.; Loir, A.-S.
We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.
Improving friction performance of cast iron by laser shock peening
NASA Astrophysics Data System (ADS)
Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda
2015-05-01
According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.
Selective cell response on natural polymer bio-interfaces textured by femtosecond laser
NASA Astrophysics Data System (ADS)
Daskalova, A.; Trifonov, A.; Bliznakova, I.; Nathala, C.; Ajami, A.; Husinsky, W.; Declercq, H.; Buchvarov, I.
2018-02-01
This study reports on the evaluation of laser processed natural polymer-chitosan, which is under consideration as a biointerface used for temporary applications as skin and cartilage substitutes. It is employed for tissue engineering purposes, since it possesses a significant degree of biocompatibility and biodegradability. Chitosan-based thin films were processed by femtosecond laser radiation to enhance the surface properties of the material. Various geometry patterns were produced on polymer surfaces and employed to examine cellular adhesion and orientation. The topography of the modified zones was observed using scanning electron microscopy and confocal microscopy. Test of the material cytotoxicity was performed by evaluating the life/dead cell correlation. The obtained results showed that texturing with femtosecond laser pulses is appropriate method to initiate a predefined cellular response. Formation of surface modifications in the form of foams with an expansion of the material was created under laser irradiation with a number of applied laser pulses from N = 1-5. It is shown that irradiation with N > 5 results in disturbance of microfoam. Material characterization reveals a decrease in water contact angle values after laser irradiation of chitosan films. Consequently, changes in surface roughness of chitosan thin-film surface result in its functionalization. Cultivation of MC3T3 and ATMSC cells show cell orientational migration concerning different surface patterning. The influence of various pulse durations (varying from τ = 30-500 fs) over biofilms surface was examined regarding the evolution of surface morphology. The goal of this study was to define the optimal laser conditions (laser energy, number of applied pulses, and pulse duration) to alter surface wettability properties and porosity to improve material performance. The acquired set of results indicate the way to tune the surface properties to optimize cell-interface interaction.
Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals
NASA Astrophysics Data System (ADS)
Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto
2014-08-01
Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.
NASA Astrophysics Data System (ADS)
Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves
2016-12-01
Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.
NASA Astrophysics Data System (ADS)
Chik, N.; Zain, W. S. Wan Md; Mohamad, A. J.; Sidek, M. Z.; Ibrahim, W. H. Wan; Reif, A.; Rakebrandt, J. H.; Pfleging, W.; Liu, X.
2018-05-01
Bacterial adhesion has become a significant problem in many industries causing billions of dollars for its complicated removal treatment and maintenance. In this study, metal surfaces undergone treatment with ultrafast laser with varies power. The microstructure produced on its original surfaces were expected to prevent the adhesion of Escherichia coli (E. coli) ATCC 8739 and Staphylococcus aureus (S. aureus) ATCC 6838. The laser treatment was performed at 380 fs pulse duration, 515 µm central wavelength and a repetition rate of 200 kHz. Stainless steel AISI 316L was treated with an average laser power of 0.04 W (SS-0.04) and 0.11 W (SS-0.11), while Grade 5 titanium alloy was tested with high laser power 0.11 W (T-0.11). The adhesion was observed after 16 hours and the number of adhering bacteria was counted per cm2. The result achieved shows that, increasing the average laser power is leading to an enhanced S. aureus adhesion while E. coli adhesion is reduced which is due to the hydrophobicity interaction and difference in surface texture. Meanwhile, the laser treatment showed significant reduction of the bacterial adhesion on its surface compared to the polished surfaces. Thus, ultrafast laser texturing can be suggested as a promising method to reduce the bacterial adhesion, which reduced the adhesion of >80% for E. coli and >20% for S. aureus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian
If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining andmore » grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.« less
NASA Astrophysics Data System (ADS)
Jasinski, Jaroslaw Jan; Lubas, Malgorzata; Kurpaska, Lukasz; Napadlek, Wojciech; Sitarz, Maciej
2018-07-01
The article presents spectroscopic investigation of Ti 99.2 based functional substrates formed by hybrid oxidation process. Surface treatments were performed by combining methods of fluidized bed atmospheric diffusion treatment (FADT) with physical vapor deposition (PVD) - magnetron sputtering and laser surface texturing (LST) treatments. The processes were implemented to form a titanium diffusive layer saturated with oxygen in the substrate and a tight homogeneous oxide coating on Ti surface deposited with magnetron sputtering or laser texturing technique. The hybrid treatment was realized in Al2O3 fluidized bed reactor with air atmosphere, at 640 °C for 8 h and 12 h. At the same time, magnetron sputtering with the use of TiO2 target at a pressure of 3 × 102 mbar and laser surface texturing treatment with Nd:YAG λ = 1064 nm was performed. In order to investigate the effects of hybrid oxidation, microscopic (AFM, CLSM, SEM/SEM-EDX), spectroscopic (RS) and X-ray investigations (GID-XRD) were performed. Applied hybrid technique made possible to combine the effects of the generated layers and to reduce the stresses in the area of the PVD coating/oxidized Ti substrate interface. Furthermore, Raman spectroscopy results obtained at oxide layers manufactured with different variants of oxidation allowed detailed analysis of the created oxides. The coatings have shown structure with a Tiα(O) diffusion zone, a TiO2 rutile and anatase oxide zone deposited and textured on the substrate. Phase composition and morphology of these oxides is essential for the osseointegration process i.e. intensity of hydroxyapatite growing on the implant surface. Performed processes influenced the surface roughness parameter and cause the increase of substrate functional properties, which are important for biomedical applications.
Boinovich, Ludmila B; Modin, Evgeny B; Sayfutdinova, Adeliya R; Emelyanenko, Kirill A; Vasiliev, Alexander L; Emelyanenko, Alexandre M
2017-10-24
Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.
Youssef, Doaa; El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-06-28
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick's texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm.
El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah
2017-01-01
The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick’s texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm. PMID:28773080
NASA Astrophysics Data System (ADS)
Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud
2016-06-01
Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.
Triangular laser-induced submicron textures for functionalising stainless steel surfaces
NASA Astrophysics Data System (ADS)
Romano, Jean-Michel; Garcia-Giron, Antonio; Penchev, Pavel; Dimov, Stefan
2018-05-01
Processing technologies that engineer surfaces with sub-micron topographies are of a growing interest to a range of optical, hydrophobic and microbiological applications. One of the promising technologies for creating such topographies employs ultra-short laser pulses to produce laser-induced periodic surface structures (LIPSS) that often result in non-regular, quasi-periodic nanoripples and nanopillars. In this research near infrared ultra-short pulses of 310 fs with a circular polarisation was used to texture ferritic stainless steel workpieces. A single-step process was designed to generate low spatial frequency LIPSS (LSFL) over relatively large areas. Apart from highly regular and homogeneous parallel lines with approximately 900 nm periodicity, extraordinarily uniform triangular-LSFL in hexagonal arrangements was created. The generation of such LSFL was found to be highly repeatable but very sensitive to the used laser processing settings. Therefore, the sensitivity of triangular-LSFL formation to the used laser processing settings, i.e. pulse to pulse distance, pulse fluence and focal plane offsets, were investigated in regard to the resulting morphologies and functional properties, i.e. structural colors and super-hydrophobicity. Finally, the capability of this technology for producing uniform triangular-shaped LSFL on relatively large surface areas of stainless steel plates was studied.
Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture
Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio
2012-01-01
The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535
High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells
Daniel, Claus; Blue, Craig A.; Ott, Ronald D.
2014-08-19
Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.
NASA Astrophysics Data System (ADS)
Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling
2016-12-01
The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.
2014-05-12
We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.
Design and characterization of textured surfaces for applications in the food industry
NASA Astrophysics Data System (ADS)
Lazzini, G.; Romoli, L.; Blunt, L.; Gemini, L.
2017-12-01
The aim of this work is to design, manufacture and characterize surface morphologies on AISI 316L stainless steel produced by a custom designed laser-texturing strategy. Surface textures were characterized at a micrometric dimension in terms of areal parameters compliant with ISO 25178, and correlations between these parameters and processing parameters (e.g. laser energy dose supplied to the material, repetition rate of the laser pulses and scanning velocity) were investigated. Preliminary efforts were devoted to the research of special requirements for surface morphology that, according to the commonly accepted research on the influence of surface roughness on cellular adhesion on surfaces, should discourage the formation of biofilms. The topographical characterization of the surfaces was performed with a coherence scanning interferometer. This approach showed that increasing doses of energy to the surfaces increased the global level of roughness as well as the surface complexity. Moreover, the behavior of the parameters S pk, S vk also indicates that, due to the ablation process, an increase in the energy dose causes an average increase in the height of the highest peaks and in the depth of the deepest dales. The study of the density of peaks S pd showed that none of the surfaces analyzed here seem to perfectly match the conditions dictated by the theories on cellular adhesion to confer anti-biofouling properties. However, this result seems to be mainly due to the limits of the resolving power of coherence scanning interferometry, which does not allow the resolution of sub-micrometric features which could be crucial in the prevention of cellular attachment.
Light Management in Transparent Conducting Oxides by Direct Fabrication of Periodic Surface Arrays
NASA Astrophysics Data System (ADS)
Eckhardt, S.; Sachse, C.; Lasagni, A. F.
Line- and hexagonal-like periodic textures were fabricated on aluminium zinc oxide (AZO) using direct laser interference patterning method. It was found that hexagonally patterned surfaces show a higher performance in both transparency and diffraction properties compared to line-like textured and non-patterned substrates. Furthermore, the electrical resistance of the processed AZO coated substrates remained below the tolerance values for transparent conducting electrodes.
Olofinjana, Bolutife; Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.; ...
2015-06-06
Surface texturing or topographical design is one of the primary techniques to control friction and wear performance of surfaces in tribological contact. Laser surface texturing (LST), whereby a laser beam is used to produce regular arrays of dimples on a surface, has been demonstrated to reduce friction in conformal lubricated contacts. Friction and wear behavior under boundary lubrication is also known to be dependent on the formation and durability of the tribochemical film formed from lubricant additives. In this paper, the effects of LST on the formation and durability of tribochemical films and its consequent impacts on friction and wearmore » behavior in various lubrication regimes were evaluated. Friction and wear tests that cycled through different lubrication regimes were conducted with both polished and LST treated surfaces using a synthetic lubricant with and without model additives of ZDDP and MoDTC mixture. In the base oil without additives, LST produced noticeable reduction in friction in all lubrication regimes. However, with low-friction model additives, friction was higher in tests with LST due to significant differences in the tribochemical film formation in the polished and LST surfaces, as well as the sliding counterface. Continuous tribo-films were formed on ball conterface rubbed against polished surfaces while the films were streaky and discontinuous in ball rubbed against LST surfaces. LST produced more wear on the ball counterface in both base and additized oils. Lastly, no measurable wear was observed in both the polished and LST flat specimens.« less
Sharp improvement of flashover strength from composite micro-textured surfaces
NASA Astrophysics Data System (ADS)
Huo, Yankun; Liu, Wenyuan; Ke, Changfeng; Chang, Chao; Chen, Changhua
2017-09-01
A composite micro-textured surface structure is proposed and demonstrated to enhance the surface flashover strength of polymer insulators used in vacuum. The structure is fabricated in two stages, with periodic triangular grooves of approximately 210 μm in width formed in the first stage and micro-holes of approximately 2 μm coated on the inner surface of grooves in the second. The aim is to exploit the synergistic effects between the grooves and micro-holes to suppress the secondary electron yield to obtain a better flashover performance. To acquire insulators with the composite micro-textured surface, the CO2 laser processing technique is applied to treat the surface of the PMMA insulators. The test results show that the flashover voltages of the insulators with the two-stage fabricated structure increase by 150% compared with the untreated samples in the best state. Compared with the traditional macro-groove structures on insulators, the proposed composite micro-textured insulators exhibit a better surface flashover performance.
Characterisation of group behaviour surface texturing with multi-layers fitting method
NASA Astrophysics Data System (ADS)
Kang, Zhengyang; Fu, Yonghong; Ji, Jinghu; Wang, Hao
2016-07-01
Surface texturing was widely applied in improving the tribological properties of mechanical components, but study of measurement of this technology was still insufficient. This study proposed the multi-layers fitting (MLF) method to characterise the dimples array texture surface. Based on the synergistic effect among the dimples, the 3D morphology of texture surface was rebuilt by 2D stylus profiler in the MLF method. The feasible regions of texture patterns and sensitive parameters were confirmed by non-linear programming, and the processing software of MLF method was developed based on the Matlab®. The characterisation parameters system of dimples was defined mathematically, and the accuracy of MLF method was investigated by comparison experiment. The surface texture specimens were made by laser surface texturing technology, in which high consistency of dimples' size and distribution was achieved. Then, 2D profiles of different dimples were captured by employing Hommel-T1000 stylus profiler, and the data were further processed by MLF software to rebuild 3D morphology of single dimple. The experiment results indicated that the MLF characterisation results were similar to those of Wyko T1100, the white light interference microscope. It was also found that the stability of MLF characterisation results highly depended on the number of captured cross-sections.
NASA Astrophysics Data System (ADS)
Chaabani, Anouar; Njeh, Anouar; Donner, Wolfgang; Klein, Andreas; Hédi Ben Ghozlen, Mohamed
2017-05-01
Ba0.65Sr0.35TiO3 (BST) thin films of 300 nm were deposited on Pt(111)/TiO2/SiO2/Si(001) substrates by radio frequency magnetron sputtering. Two thin films with different (111) and (001) fiber textures were prepared. X-ray diffraction was applied to measure texture. The raw pole figure data were further processed using the MTEX quantitative texture analysis software for plotting pole figures and calculating elastic constants and Young’s modulus from the orientation distribution function (ODF) for each type of textured fiber. The calculated elastic constants were used in the theoretical studies of surface acoustics waves (SAW) propagating in two types of multilayered BST systems. Theoretical dispersion curves were plotted by the application of the ordinary differential equation (ODE) and the stiffness matrix methods (SMM). A laser acoustic waves (LAW) technique was applied to generate surface acoustic waves (SAW) propagating in the BST films, and from a recursive process, the effective Young’s modulus are determined for the two samples. These methods are used to extract and compare elastic properties of two types of BST films, and quantify the influence of texture on the direction-dependent Young’s modulus.
Effect of micro-scale texturing on the cutting tool performance
NASA Astrophysics Data System (ADS)
Vasumathy, D.; Meena, Anil
2018-05-01
The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.
Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou
2016-01-01
Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.
Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou
2016-01-01
Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658
Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing
NASA Astrophysics Data System (ADS)
Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun
2018-01-01
Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.
Injection moulding of plastic parts with laser textured surfaces with optical applications
NASA Astrophysics Data System (ADS)
Pina-Estany, J.; García-Granada, A. A.; Corull-Massana, E.
2018-05-01
The purpose of this work is to manufacture micro and nanotextured surfaces on plastic injection moulds with the aim of replicating them and obtaining plastic parts with optical applications. Different patterns are manufactured with nanosecond and femtosecond lasers in order to obtain three different optical applications: (i) homogeneous light diffusion (ii) 1D light directionality and (iii) 2D light directionality. Induction heating is used in the injections in order to improve the textures degree of replication. The steel mould and the plastic parts are analyzed with a confocal/focus variation microscope and with a surface roughness tester. A mock-up and a luminance camera are used to evaluate the homogeneity and luminance of the homogeneous light diffusion application in comparison with the current industrial solutions.
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...
2018-06-06
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
NASA Astrophysics Data System (ADS)
Bezdomnikov, A. A.; Emel'yanenko, A. M.; Emel'yanenko, K. A.; Boinovich, L. B.
2018-01-01
A method is proposed for fabricating textured superhydrophobic surfaces of silicone rubber with mechanical resistance toward liquid or freezing aqueous solutions. The anti-icing characteristics of silicone rubber samples that differ in the wetting characteristics and mechanical stability of their micro- and nanotextures are derived by analyzing the delays in the freezing of supercooled sessile water drops deposited on the sample surface. The longest delay in freezings are observed for sessile water drops on superhydrophobic surfaces prepared by laser texturing with subsequent application of a layer of a hydrophobic agent to consolidate the textural elements. Delay in freezings can be as long as tens of hours on such surfaces at T = -18°C. The prepared superhydrophobic surfaces exhibit greater anti-icing ability with respect to aqueous salt solutions than to deionized water.
NASA Astrophysics Data System (ADS)
Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris
2015-07-01
In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.
The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response.
Raimbault, Ophélie; Benayoun, Stephane; Anselme, Karine; Mauclair, Cyril; Bourgade, Tatiana; Kietzig, Anne-Marie; Girard-Lauriault, Pierre-Luc; Valette, Stephane; Donnet, Christophe
2016-12-01
To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75μm; depth: 1-10μm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25μm and deeper than 5μm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5μm. There, the cells are sensitive to the microscale structures and go on spreading following these structures. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, D.; Bointon, P.; Piano, S.; Leach, R. K.
2017-06-01
In this paper we show that, by using a photogrammetry system with and without laser speckle, a large range of additive manufacturing (AM) parts with different geometries, materials and post-processing textures can be measured to high accuracy. AM test artefacts have been produced in three materials: polymer powder bed fusion (nylon-12), metal powder bed fusion (Ti-6Al-4V) and polymer material extrusion (ABS plastic). Each test artefact was then measured with the photogrammetry system in both normal and laser speckle projection modes and the resulting point clouds compared with the artefact CAD model. The results show that laser speckle projection can result in a reduction of the point cloud standard deviation from the CAD data of up to 101 μm. A complex relationship with surface texture, artefact geometry and the laser speckle projection is also observed and discussed.
Enhancement of endothelialisation of coronary stents by laser surface engineering.
Li, Lin; Mirhosseini, Nazanin; Michael, Alun; Liu, Zhu; Wang, Tao
2013-11-01
Coronary stents have been widely used in the treatment of coronary heart disease. However, complications have hampered the long-term success of the device. Bare-metal stents (BMS) have a high rate of restenosis and poor endothelialisation. The drug-eluting stents (DES), although dramatically reduce restenosis, significantly prevent endothelialisation leading to late thrombosis and behave the same way as BMS after drug releasing. Rapid adhesion and growth of endothelial cells on the stent surface is a key process for early vascular healing after coronary stenting which contributes to the reduction of major complications. Surface properties manipulate cell growth and directly determine the success and life-span of the implants. However, the ideal surface properties of coronary stents are not yet fully understood. The objective of this research is to understand how surface micro/nano textures and associated material chemistry changes generated by a laser beam affect the behavior of endothelial cells on bare metal 316L stents. A high power laser beam was applied to modifying the surface properties of 316L coronary stent material and the commercial coronary stents, followed by examination of the adhesion and proliferation of human coronary endothelial cells that were growing on the surfaces. Surface properties were examined by scanning electron microscopy, contact angle measurement, and X-ray photoelectron spectroscopy. A novel surface with combined micro/nano features was created on stent material 316L and coronary stent with a specific surface chemistry. This surface gives rise to a threefold increase in the adhesion and eightfold increase in the proliferation of endothelial cells. Interestingly, such effects were only observed when the surface texture was produced in the nitrogen atmosphere suggesting the importance of the surface chemistry, including the dramatic increase of chromium nitride, for the interaction of endothelial cells with the material surface. This novel surface is also super-hydrophilic with close to zero water/cell culture fluid contact angles and low cytotoxicity. A novel surface created by laser surface-engineering with a combination of defined surface texture and surface chemistry was found beneficial for the improvement of coronary stent endothelialisation. The technology presented here could work with both DES and BMS with added benefit for the improvement of the biocompatibility of current coronary stents. © 2013 Wiley Periodicals, Inc.
Laser surface texturing of polymers for biomedical applications
NASA Astrophysics Data System (ADS)
Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan
2018-02-01
Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.
Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V
NASA Astrophysics Data System (ADS)
Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu
2018-02-01
Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.
SERS Engineering Collaboration
2012-06-01
laser beam. In the second approach, a pulsed laser was used to texture a silicon wafer to form sharp features. Silver was evaporated onto the wafer...orders of magnitude larger than that measured on a gold nanoparticle array on a glass substrate. The largest SERS enhancement for a silver device was...surface plasmons," Yizhuo Chu and Kenneth B. Crozier, Optics Letters vol. 34, 244 (2009) K3. "Gold nanorings as substrates for surface-enhanced Raman
DOT National Transportation Integrated Search
2017-07-01
Practitioners have often wondered whether, during ride measurement with inertial devices, the motion of the laser through pavement texture introduces non representative values of international roughness index (IRI), particularly in certain textures. ...
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-03-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy
NASA Astrophysics Data System (ADS)
Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania
2018-07-01
In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.
NASA Astrophysics Data System (ADS)
Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile
2017-02-01
Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Levchenko, A. O.; Nguyen, L. V.; Saraeva, I. N.; Rudenko, A. A.; Ageev, E. I.; Potorochin, D. V.; Veiko, V. P.; Borisov, E. V.; Pankin, D. V.; Kirilenko, D. A.; Brunkov, P. N.
2017-09-01
High-pressure Si-XII and Si-III nanocrystalline polymorphs, as well as amorphous Si phase, appear consequently during multi-shot femtosecond-laser exposure of crystalline Si wafer surface above its spallation threshold along with permanently developing quasi-regular surface texture (ripples, microcones), residual hydrostatic stresses and subsurface damage, which are characterized by scanning and transmission electron microscopy, as well as by Raman micro-spectroscopy. The consequent yields of these structural Si phases indicate not only their spatially different appearance, but also potentially enable to track nanoscale, transient laser-induced high-pressure, high-temperature physical processes - local variation of ablation mechanism and rate, pressurization/pressure release, melting/resolidification, amorphization, annealing - versus cumulative laser exposure and the related development of the surface topography.
Modelling of micromachining of human tooth enamel by erbium laser radiation
NASA Astrophysics Data System (ADS)
Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.
2014-08-01
We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.
Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol
NASA Astrophysics Data System (ADS)
Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.
2018-05-01
Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.
Fabrication of multi-functional silicon surface by direct laser writing
NASA Astrophysics Data System (ADS)
Verma, Ashwani Kumar; Soni, R. K.
2018-05-01
We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.
Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs
NASA Astrophysics Data System (ADS)
Kumar, Kitty; Lee, Kenneth K. C.; Nogami, Jun; Herman, Peter R.; Kherani, Nazir P.
2013-03-01
This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si) into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.
Modelling of micromachining of human tooth enamel by erbium laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belikov, A V; Skrypnik, A V; Shatilova, K V
We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less
Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A
2015-09-02
We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.
NASA Astrophysics Data System (ADS)
Vera, D.; Mass, J.; Manotas, M.; Cabanzo, R.; Mejia, E.
2016-02-01
In this work we carried out the texturization of surfaces of multicrystalline silicon type-p in order to decrease the reflection of light on the surface, using the chemical etching method and then a treatment with laser. In the first method, it was immersed in solutions of HF:HNO3:H2O, HF:HNO3:CH3COOH, HF:HNO3:H3PO4, in the proportion 14:01:05, during 30 seconds, 1, 2 and 3 minutes. Subsequently with a laser (ND:YAG) grids were generated beginning with parallel lines separated 50μm. The samples were analyzed by means of diffuse spectroscopy (UV-VIS) and scanning electron micrograph (SEM) before and after the laser treatment. The lowest result of reflectance obtained by HF:HNO3:H2O during 30 seconds, was of 15.5%. However, after applying the treatment with laser the reflectance increased to 17.27%. On the other hand, the samples treated (30 seconds) with acetic acid and phosphoric acid as diluents gives as a result a decrease in the reflectance values after applying the laser treatment from 21.97% to 17.79% and from 27.73% to 20.03% respectively. The above indicates that in some cases it is possible to decrease the reflectance using jointly the method of chemical etching and then a laser treatment.
Experimental study of micro dimple fabrication based on laser shock processing
NASA Astrophysics Data System (ADS)
Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang
2013-06-01
Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.
Continuous and pulsed laser high power beam combiner for additive manufacturing applications
NASA Astrophysics Data System (ADS)
Bassignana, Marta; Califano, Alessio; Pescarmona, Francesco; Braglia, Andrea; Perrone, Guido
2018-02-01
Laser-based additive manufacturing (AM) from metal powders is emerging as the new industrial revolution, although current fabrication approaches still require long mechanical post-processing to improve the final surface quality and meet the design tolerances. To overcome this limitation, the next generation machines are expected to complement laser AM with laser ablation (LA) to implement surface finishing and micro texturing already during the device growth process. With this aim, a new beam combiner to allow the real-time interchange of additive and subtractive processes using the same scanner head has been designed. Extensive tests have been carried out using a 6 kW continuous-wave laser similar to that used for the metal powder fusion and a nanosecond 100W pulsed source similar to that used for laser ablation.
NASA Astrophysics Data System (ADS)
Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.
2013-12-01
The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a first insight and discussion into how to interpret statistically-inverted radar data from an icy planetary surface.
Surface texture and hardness of dental alloys processed by alternative technologies
NASA Astrophysics Data System (ADS)
Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.
2017-08-01
Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, C.; Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires; Guller, F.
The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO{sub 3} appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO{sub 3} thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We findmore » significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.« less
Laser microprocessing technologies for automotive, flexible electronics, and solar energy sectors
NASA Astrophysics Data System (ADS)
Nikumb, Suwas; Bathe, Ravi; Knopf, George K.
2014-10-01
Laser microprocessing technologies offer an important tool to fulfill the needs of many industrial sectors. In particular, there is growing interest in applications of these processes in the manufacturing areas such as automotive parts fabrication, printable electronics and solar energy panels. The technology is primarily driven by our understanding of the fundamental laser-material interaction, process control strategies and the advancement of significant fabrication experience over the past few years. The wide-ranging operating parameters available with respect to power, pulse width variation, beam quality, higher repetition rates as well as precise control of the energy deposition through programmable pulse shaping technologies, enables pre-defined material removal, selective scribing of individual layer within a stacked multi-layer thin film structure, texturing of material surfaces as well as precise introduction of heat into the material to monitor its characteristic properties are a few examples. In this research, results in the area of laser surface texturing of metals for added hydrodynamic lubricity to reduce friction, processing of ink-jet printed graphene oxide for flexible printed electronic circuit fabrication and scribing of multi-layer thin films for the development of photovoltaic CuInGaSe2 (CIGS) interconnects for solar panel devices will be discussed.
NASA Astrophysics Data System (ADS)
Costil, S.; Lamraoui, A.; Langlade, C.; Heintz, O.; Oltra, R.
2014-01-01
Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.
NASA Astrophysics Data System (ADS)
Xing, Youqiang; Deng, Jianxin; Gao, Peng; Gao, Juntao; Wu, Ze
2018-04-01
Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.
The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies.
El Gamal, Ahmed; Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie
2016-03-31
The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications.
Laser annealing of ion implanted CZ silicon for solar cell junction formation
NASA Technical Reports Server (NTRS)
Katzeff, J. S.
1981-01-01
The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.
Chen, Jiun-Ting; Lai, Wei-Chih; Kao, Yu-Jui; Yang, Ya-Yu; Sheu, Jinn-Kong
2012-02-27
The laser-induced periodic surface structure technique was used to form simultaneously dual-scale rough structures (DSRS) with spiral-shaped nanoscale structure inside semi-spherical microscale holes on p-GaN surface to improve the light-extraction efficiency of light-emitting diodes (LEDs). The light output power of DSRS-LEDs was 30% higher than that of conventional LEDs at an injection current of 20 mA. The enhancement in the light output power could be attributed to the increase in the probability of photons to escape from the increased surface area of textured p-GaN surface.
Surface patterning of CRFP composites using femtosecond laser interferometry
NASA Astrophysics Data System (ADS)
Oliveira, V.; Moreira, R. D. F.; de Moura, M. F. S. F.; Vilar, R.
2018-03-01
We report on the surface patterning of carbon fiber-reinforced polymer (CFRP) composites using femtosecond laser interferometry. The effect of experimental processing parameters, such as the pulse energy and scanning speed, on the quality of the patterns is studied. Using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed and textured with the desired pattern. The period of the patterns can be controlled by changing the distance between the two interfering beams. On the other hand, the amplitude of the patterns can be controlled by changing the pulse energy or the number of laser pulses applied. In addition, sub-micron ripples are created on the carbon fibers surface allowing multiscale surface modification which may contribute to improve bonding between CFRP parts.
NASA Astrophysics Data System (ADS)
Oniga, E.
2012-07-01
The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue) values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.
Bio-inspired scale-like surface textures and their tribological properties.
Greiner, Christian; Schäfer, Michael
2015-06-30
Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.
Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes
NASA Astrophysics Data System (ADS)
Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho
2018-01-01
Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.
Viscous entrainment on hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij
2018-01-01
To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.
The effect of CO2 and Nd:YAP lasers on CAD/CAM Ceramics: SEM, EDS and thermal studies
Fornaini, Carlo; Rocca, Jean Paul; Muhammad, Omid H; Medioni, Etienne; Cucinotta, Annamaria; Brulat-Bouchard, Nathalie
2016-01-01
Background and aims: The objective of this study was to investigate the interaction of infrared laser light on Computer Aided Design and Computer Aided Manufacturing (CAD/CAM) ceramic surfaces. Material and Methods: Sixty CAD/CAM ceramic discs were prepared and divided into two different groups: lithiumdisilicate ceramic (IPSe.maxCADs) and Zirconia ceramic (IPSe.maxZirCADs). The laser irradiation was performed on graphite and non-graphite surfaces with a Carbon Dioxide laser at 5W and 10W power in continuous mode (CW mode) and with Neodymium Yttrium Aluminum Perovskite (Nd:YAP) laser at 10W. Surface textures and compositions were examined using Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). Thermal elevation was measured by thermocouple during laser irradiation. Results: The SEM observation showed a rough surface plus cracks and fissures on CO2 10W samples and melting areas in Nd:YAP samples; moreover, with CO2 5W smooth and shallow surfaces were observed. EDS analysis revealed that laser irradiation does not result in modifications of the chemical composition even if minor changes in the atomic mass percentage of the components were registered. Thermocouple showed several thermal changes during laser irradiation. Conclusion: CO2 and Nd:YAP lasers modify CAD/CAM ceramic surface without chemical composition modifications. PMID:27141152
Marini, L
2018-01-01
Aesthetically pleasing results and fast, uneventful recovery are highly desirable after rejuvenating ablative laser procedures. Wound dressings following ablative laser procedures should ideally improve and optimize the wound healing environment. The purpose of this comparative split-face, single-blinded, prospective observational study was to assess the efficacy and acceptability of two primary wound dressings immediately after a full-face fractional CO 2 laser resurfacing procedure. The assessments of an innovative film-forming dressing called Stratacel (SC) vs spring thermal water + Vaseline (V+) were conducted after a standardized, single-pass, full-face ablative fractional CO 2 laser skin resurfacing procedure. Clinical parameters, such as haemoglobin - HB; surface temperature - ST; micro-textural modifications - MT; superficial melanin - M; intrafollicular porphyrins - P, were assessed at different phases of the healing process using standardized, non-invasive technologies. Five female volunteers were enrolled in this inpatient, controlled pilot study. Most of the clinical parameters considered, including 3D surface texture analysis, revealed a better performance of SC vs. V+ during the early, more delicate phases of the healing process. This preliminary study, even if performed on a small number of volunteers, confirmed a definite advantage of the tested semipermeable film-forming formula (SC) over a more conventional postoperative skin care regime (V+). Clinical results could be explained by a better uniformity of distribution of SC over the micro-irregularities induced by ablative fractional CO 2 laser resurfacing. Its thin, semipermeable film might, in fact, act as an efficient, perfectly biocompatible, full contact, temporary skin barrier, able to protect extremely delicate healing surfaces from potential environmental irritations. © 2017 European Academy of Dermatology and Venereology.
Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J
2016-11-02
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.
Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.
2016-01-01
The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063
Surface texture measurement for additive manufacturing
NASA Astrophysics Data System (ADS)
Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.
2015-06-01
The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.
NASA Astrophysics Data System (ADS)
Daskalova, A.; Bliznakova, I.; Zhelyazkova, A.; Ostrowska, B.; Trifonov, A.; Buchvarov, I.; Avramov, L.; Husinsky, W.
2018-03-01
Fibrous 3D matrices were fabricated from poly-ɛ-caprolactone (PCL) by fused deposition modeling. Femtosecond laser irradiation was then used to demonstrate the possibility to affect the porosity of the 3D PCL fiber meshes. The surface characteristics were analyzed by scanning electron microscopy (SEM) and confocal microscopy. The interrelationship was examined between the laser processing parameters (number of pulses, pulse energy applied) and the response of the biomaterial. The formation was demonstrated of well-defined micropores, while the original fiber structure was retained. The study of cells cultivation on the laser-modified scaffolds showed good adhesion compared to a non-modified scaffold. The results obtained showed that femtosecond laser processing can be used as an alternative non-contact tool in enhancing the porosity of artificial constructs, thus influencing the cell adhesion into fibrous meshes.
Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...
2016-10-27
Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi 2Te 3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of themore » topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k z dispersion and the presence of delicate gaps in the final state electronic spectrum.« less
Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.
Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé
2007-01-01
This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.
Surface transmission enhancement of ZnS via continuous-wave laser microstructuring
NASA Astrophysics Data System (ADS)
Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.
2014-03-01
Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.
Laser microprocessing and nanoengineering of large-area functional micro/nanostructures
NASA Astrophysics Data System (ADS)
Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.
2011-12-01
Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.
Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings
Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.
2008-01-01
The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207
Cortical Surface Registration for Image-Guided Neurosurgery Using Laser-Range Scanning
Sinha, Tuhin K.; Cash, David M.; Galloway, Robert L.; Weil, Robert J.
2013-01-01
In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is presented within the context of model-updated image-guided surgery. Registering textured point clouds generated by the LRS to tomographic data is explored using established point-based and surface techniques as well as a novel method that incorporates geometry and intensity information via mutual information (SurfaceMI). Phantom registration studies were performed to examine accuracy and robustness for each framework. In addition, an in vivo registration is performed to demonstrate feasibility of the data acquisition system in the operating room. Results indicate that SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point (ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for simulated deep tissue targets in a phantom were 1.0 ± 0.2, 2.0 ± 0.3, and 1.2 ± 0.3 mm for PBR, ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel contour points for each framework was 1.9 ± 1.0, 0 9 ± 0.6, and 1.3 ± 0.5 for PBR, ICP, and SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative data provide impetus for using LRS technology within the model-updated image-guided surgery framework. PMID:12906252
Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon
2016-01-01
Summary Background/Objectives: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Material and Methods: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200g nickel–titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. Results: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. Limitation: animal study Conclusions/Implications: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs. PMID:25908868
NASA Astrophysics Data System (ADS)
Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat
2017-03-01
The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olofinjana, Bolutife; Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.
Surface texturing or topographical design is one of the primary techniques to control friction and wear performance of surfaces in tribological contact. Laser surface texturing (LST), whereby a laser beam is used to produce regular arrays of dimples on a surface, has been demonstrated to reduce friction in conformal lubricated contacts. Friction and wear behavior under boundary lubrication is also known to be dependent on the formation and durability of the tribochemical film formed from lubricant additives. In this paper, the effects of LST on the formation and durability of tribochemical films and its consequent impacts on friction and wearmore » behavior in various lubrication regimes were evaluated. Friction and wear tests that cycled through different lubrication regimes were conducted with both polished and LST treated surfaces using a synthetic lubricant with and without model additives of ZDDP and MoDTC mixture. In the base oil without additives, LST produced noticeable reduction in friction in all lubrication regimes. However, with low-friction model additives, friction was higher in tests with LST due to significant differences in the tribochemical film formation in the polished and LST surfaces, as well as the sliding counterface. Continuous tribo-films were formed on ball conterface rubbed against polished surfaces while the films were streaky and discontinuous in ball rubbed against LST surfaces. LST produced more wear on the ball counterface in both base and additized oils. Lastly, no measurable wear was observed in both the polished and LST flat specimens.« less
Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette
2016-11-01
Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
Fatigue Crack Growth in Peened Friction Stir Welds
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Hatamleh, Omar
2008-01-01
Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses.
Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range Data
2009-05-19
Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation . IEEE Trans. on Visualization and Computer Graphics, 5(4), pp...Jain, and A. Zakhor. Data Processing Algorithms for Generating Textured 3D Building Facade Meshes from Laser Scans and Camera Images. International...acquired set of overlapping range images into a single mesh [2,9,10]. However, due to the volume of data involved in large scale urban modeling, data
Roughness of biopores and cracks in Bt-horizons by confocal laser scanning microscopy
NASA Astrophysics Data System (ADS)
Leue, Martin; Gerke, Horst H.
2016-04-01
During preferential flow events in structured soils, the movement of water and reactive solutes is mostly restricted to larger inter-aggregate pores, cracks, and biopores. The micro-topography of such macropores in terms of pore shapes, geometry, and roughness is crucial for describing the exchange of water and solutes between macropores and the soil matrix. The objective of this study was to determine the surface roughness of intact structural surfaces from the Bt-horizon of Luvisols by confocal laser scanning microscopy. For this purpose, samples with the structural surface types including cracks with and without clay-organic coatings from Bt-horizons developed on loess and glacial till were compared. The surface roughness of these structures was calculated in terms of three parameters from selected surface regions of 0.36 mm² determined with a confocal laser scanning microscope of the type Keyence VK-X100K. These data were evaluated in terms of the root-mean-squared roughness, Rq, the curvature, Rku, and the ratio between surface area and base area, RA. Values of Rq and RA were smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt-horizons from both parent materials. The results indicated that the illuviation of clayey material led to a "smoothing" of the crack surfaces, which was similar for the coarser textured till-Bt and the finer-textured loess-Bt surfaces. The roughness indicated by Rq and RA values was only slightly smaller and that indicated by Rku slightly higher for the structural surfaces from the loess as compared to those from the glacial till. These results suggest a minor importance of the parent material on the roughness of structural surfaces in the Bt-horizon. The similarity of Rq, RA, and Rku values between surfaces of earthworm burrows and uncoated cracks did not confirm an expected smoothing effect of the burrow walls by the earthworm. In contrast to burrow walls, root channels from the loess-Bt were smoother than the surfaces of the other structure types, suggesting that the two types of biopores have to be distinguished when describing preferential flow and macropore-matrix exchange. Nevertheless, the confocal laser microscopy technique proved useful for characterizing the roughness of intact structural surfaces.
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
Cohen, D. J.; Cheng, A.; Kahn, A.; Aviram, M.; Whitehead, A. J.; Hyzy, S. L.; Clohessy, R. M.; Boyan, B. D.; Schwartz, Z.
2016-01-01
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants. PMID:26854193
Cohen, D J; Cheng, A; Kahn, A; Aviram, M; Whitehead, A J; Hyzy, S L; Clohessy, R M; Boyan, B D; Schwartz, Z
2016-02-08
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.
3D Reconstruction of Irregular Buildings and Buddha Statues
NASA Astrophysics Data System (ADS)
Zhang, K.; Li, M.-j.
2014-04-01
Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.
DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser
NASA Astrophysics Data System (ADS)
de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson
2015-03-01
Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.
Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B
2018-10-01
In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pimenov, S. M.; Zavedeev, E. V.; Arutyunyan, N. R.; Zilova, O. S.; Shupegin, M. L.; Jaeggi, B.; Neuenschwander, B.
2017-10-01
Laser surface micropatterning (texturing) of hard materials and coatings is an effective technique to improve tribological systems. In the paper, we have investigated the laser-induced surface modifications and micropatterning of diamond-like nanocomposite (DLN) films (a-C:H,Si:O) using IR and visible femtosecond (fs) lasers, focusing on the improvement of frictional properties of laser-patterned films on the micro and macroscale. The IR and visible fs-lasers, operating at λ = 1030 nm and λ = 515 nm wavelengths (pulse duration 320 fs and pulse repetition rate 101 kHz), are used to fabricate different patterns for subsequent friction tests. The IR fs-laser is applied to produce hill-like micropatterns under conditions of surface graphitization and incipient ablation, and the visible fs-laser is used for making microgroove patterns in DLN films under ablation conditions. Regimes of irradiation with low-energy IR laser pulses are chosen to produce graphitized micropatterns. For these regimes, results of numerical calculations of the temperature and graphitized layer growth are presented to show good correlation with surface relief modifications, and the features of fs-laser graphitization are discussed based on Raman spectroscopy analysis. Using lateral force microscopy, the role of surface modifications (graphitization, nanostructuring) in the improved microfriction properties is investigated. New data of the influence of capillary forces on friction forces, which strongly changes the microscale friction behaviour, are presented for a wide range of loads (from nN to μN) applied to Si tips. In macroscopic ball-on-disk tests, a pair-dependent friction behaviour of laser-patterned films is observed. The first experimental data of the improved friction properties of laser-micropatterned DLN films under boundary lubricated sliding conditions are presented. The obtained results show the DLN films as an interesting coating material suitable for laser patterning applications in tribology.
Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures
Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie
2016-01-01
We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143
Iavecchia, J H; Iavecchia, H P; Roscoe, S N
1983-01-01
In two experiments, the apparent size of a simulated horizon moon was measured as a function of the location of visible texture in the natural vistas against which it appeared. Size was found to increase as the visible scene extended farther into the distance and to decrease as the moon rose above the vista of surface texture. In the second experiment, the observers' eye accommodation distances to various scenes were also measured with a laser optometer, and after appropriate transformations, size judgments were found to correlate 0.89 with measured accommodation values, thereby suggesting the hypothesis that the fabled moon illusion is mediated by the oculomotor adjustments of visual accommodation.
Rajab, Fatema H; Liauw, Christopher M; Benson, Paul S; Li, Lin; Whitehead, Kathryn A
2017-12-01
The development of surfaces which reduce biofouling has attracted much interest in practical applications. Three picosecond laser generated surface topographies (Ti1, Ti2, Ti3) on titanium were produced, treated with fluoroalkylsilane (FAS), then characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy, Fourier Transform Infra-Red (FTIR) spectroscopy, contact angle measurements and white light interference microscopy. The surfaces had a range of different macro/micro/nano topographies. Ti2 had a unique, surface topography with large blunt conical peaks and was predominantly a rutile surface with closely packed, self-assembled FAS; this was the most hydrophobic sample (water contact angle 160°; ΔG iwi was -135.29mJm -2 ). Bacterial attachment, adhesion and retention to the surfaces demonstrated that all the laser generated surfaces retained less bacteria than the control surface. This also occurred following the adhesion and retention assays when the bacteria were either not rinsed from the surfaces or were retained in static conditions for one hour. This work demonstrated that picosecond laser generated surfaces may be used to produce antiadhesive surfaces that significantly reduced surface fouling. It was determined that a tri-modally dimensioned surface roughness, with a blunt conical macro-topography, combined with a close-packed fluoroalkyl monolayer was required for an optimised superhydrophobic surface. These surfaces were effective even following surface immersion and static conditions for one hour, and thus may have applications in a number of food or medical industries. Copyright © 2017 Elsevier B.V. All rights reserved.
Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter
2016-01-01
Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding which may be of benefit in situations where large demands are imposed on biomechanically stable interfaces, such as in early loading and in compromised conditions. PMID:27299883
NASA Astrophysics Data System (ADS)
Furlan, Valentina; Biondi, Marco; Demir, Ali Gökhan; Pariani, Giorgio; Previtali, Barbara; Bianco, Andrea
2017-11-01
Two-beam direct laser interference patterning (DLIP) is the method that employs two beams and provides control over the pattern geometry by regulating the angle between the beams and the wavelength of the beam. Despite the simplistic optical arrangement required for the method, the feasibility of sub-micrometric patterning of a surface depends on the correct manipulation of the process parameters, especially in the case of metallic materials. Magnesium alloys, from this point of view, exhibit further difficulty in processability due to low melting point and high reactivity. With biocompatibility and biodegradability features, Mg-alloy implants can take further advantage of surface structuring for tailoring the biological behaviour. In this work, a two-beam DLIP setup has been developed employing an industrial grade nanosecond-pulsed fiber laser emitting at 532 nm. The high repetition rate and ramped pulse profile provided by the laser were exploited for a more flexible control over the energy content deposited over the heat-sensitive Mg-alloy. The paper describes the strategies developed for controlling ramped laser emission at 20 kHz repetition rate. The process feasibility window was assessed within a large range of parameters. Within the feasibility window, a complete experimental plan was applied to investigate the effect of main laser process parameters on the pattern dimensions. Periodic surface structures with good definition down to 580 nm ± 20 nm spacing were successfully produced.
NASA Astrophysics Data System (ADS)
Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo
2009-02-01
Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.
Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V.
Paital, Sameer R; Dahotre, Narendra B
2007-12-01
In the present paper the feasibility of depositing a porous calcium phosphate (CaP) bio-ceramic coating using a continuous wave Nd:YAG laser on a Ti-6Al-4V substrate has been demonstrated. The advantages offered by such porous bio-ceramic coating are its inertness combined with the mechanical stability of the highly convoluted interface that develops when bone grows into the pores of ceramic. The formation of different phases with varying laser fluences is studied using x-ray diffraction (XRD). A quantitative estimation of the crystallite size and relative amounts of Ti and other predominant phases such as TiO(2) and alpha-tricalcium phosphate (alpha-TCP) were obtained. An increase in the crystallite size with increasing laser fluence is observed for all the above three phases. It is observed that TiO(2) is the predominant phase for all laser fluences and there is an increase in the alpha-TCP phase with increasing laser fluence. Surface porosity measurements indicated a decreasing trend with increasing laser fluence. Microhardness measurements in the cross section of samples showed a maximum hardness within the coating. The bioactivity of the coatings was further demonstrated by the formation of an apatite-like layer on the surface of the sample after being immersed in a simulated biofluid.
Mullan, F; Mylonas, P; Parkinson, C; Bartlett, D; Austin, R S
2018-03-01
To assess the precision of optical profilometry for characterising the 3D surface roughness of natural and polished human enamel in order to reliably quantify acid mediated surface roughness changes in human enamel. Forty-two enamel samples were prepared from extracted human molars and either polished flat or left unmodified. To investigate precision, the variability of thirty repeated measurements of five areas of one polished and one natural enamel sample was assessed using 655nm Confocal Laser Profilometry. Remaining samples were subjected to forty-five minutes orange juice erosion and microstructural changes were analysed using Sa roughness change (μm) and qualitatively using surface/subsurface confocal microscopy. Enamel surface profilometry from the selected areas revealed maximal precision of 5nm for polished enamel and 23nm for natural enamel. After erosion, the polished enamel revealed a 48% increase in mean (SD) Sa roughness of 0.10 (0.07)μm (P<0.05), whereas in contrast the natural enamel revealed a 45% decrease in mean (SD) roughness of -0.32 (0.42)μm (P<0.05). These data were supported by qualitative confocal images of the surface/subsurface enamel. This study demonstrates a method for precise surface texture measurement of natural human enamel. Measurement precision was superior for polished flat enamel in contrast to natural enamel however, natural enamel responds very differently to polished enamel when exposed to erosion challenges. Therefore, thus future studies characterising enamel surface changes following erosion on natural enamel may provide more clinically relevant responses in comparison to polished enamel. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei
2015-11-01
The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.
Mars Global Surveyor observations of Martian fretted terrain
Carr, M.H.
2001-01-01
The Martian fretted terrain between latitudes 30?? and 50?? N and between 315?? and 360?? W has been reexamined in light of new Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data from Mars Global Surveyor. Much of the terrain in the 30??-50?? latitude belt in both hemispheres has a characteristic stippled or pitted texture at MOC (1.5 m) scale. The texture appears to result from partial removal of a formerly smooth, thin deposit as a result of sublimation and deflation. A complex history of deposition and exhumation is indicated by remnants of a former, thicker cover of layered deposits. In some hollows and on some slopes, particularly those facing the pole, are smooth textured deposits outlined by an outward facing escarpment. Throughout the study area are numerous escarpments with debris flows at their base. The escarpments typically have slopes in the 20??-30?? range. At the base of the escarpment is commonly a deposit with striae oriented at right angles to the escarpment. Outside this deposit is the main debris apron with a surface that typically slopes 2??-3?? and complex surface textures suggestive of compression, sublimation, and deflation. The presence of undeformed impact craters indicates that the debris flows are no longer forming. Fretted valleys contain lineated fill and are poorly graded. They likely form from fluvial valleys that were initially like those elsewhere on the planet but were subsequently widened and filled by the same mass-wasting processes that formed the debris aprons. Slope reversals indicate that downvalley flow of the lineated fill is minor. The ubiquitous presence of breaks in slope formed by mass wasting and the complex surface textures that result from mass wasting, deflation, and sublimation decreases the recognizability of the shorelines formerly proposed for this area.
RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.
2015-12-01
High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science Experiment DTMs. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial geohazards.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
Analyzing and improving surface texture by dual-rotation magnetorheological finishing
NASA Astrophysics Data System (ADS)
Wang, Yuyue; Zhang, Yun; Feng, Zhijing
2016-01-01
The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.
NASA Astrophysics Data System (ADS)
Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.
2017-12-01
Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.
Stemp, W James; Chung, Steven
2011-01-01
This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh
2016-08-01
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.
NASA Astrophysics Data System (ADS)
Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo
2018-07-01
Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.
Evolution of solidification texture during additive manufacturing.
Wei, H L; Mazumder, J; DebRoy, T
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.
In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinbine, A., E-mail: alyssa.shinbine@gmail.com; Garcin, T.; Sinclair, C.
2016-07-15
Using a novel in-situ laser ultrasonic technique, the evolution of longitudinal velocity was used to measure the α − β transformation during cyclic heating and cooling in commercially pure titanium. In order to quantify the transformation kinetics, it is shown that changes in texture can not be ignored. This is particularly important in the case of titanium where significant grain growth occurs in the β-phase leading to the ultrasonic wave sampling a decreasing number of grains on each thermal treatment cycle. Electron backscatter diffraction measurements made postmortem in the region where the ultrasonic pulse traveled were used to obtain anmore » estimate of such local texture and grain size changes. An analysis technique for including the anisotropy of wave velocity depending on local texture is presented and shown to give self consistent results for the transformation kinetics. - Highlights: • Laser ultrasound and EBSD interpret the hcp/bcc phase transformation in cp-Ti. • Grain growth and texture produced variation in velocity during similar treatments. • Texture was deconvoluted from phase addition to obtain transformation kinetics.« less
Laser Texturing of Magnetic Recording Media Final Report CRADA No. TSV-1298-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackel, L.; Marshall, A.
The Commercial Laser Systems Group at LLNL developed a concept for patterning of computer magnetic recording discs. Magnetic recording media require texturing over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate was polished to a specular finish then a mechanical means was used to roughen an annular area intended to be the head contact band. In a previous patent (US Patent 5,062,021) it was proposed that the focused output of a low power laser with short pulse length could be used to generate the textured pattern.more » However, the patterned area typically required 75,000 textured spots that needed to be rapidly (less than 10 seconds) printed with good uniformity. A means to achieve the accurate placement and uniform profile, as well as a meaningfully rapid process time, was not discussed in the referenced patent. The LLNL team devised a system that could rapidly and inexpensively accomplish the texturing.« less
NASA Astrophysics Data System (ADS)
Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.
2015-01-01
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces
NASA Astrophysics Data System (ADS)
Credi, Caterina; Levi, Marinella; Turri, Stefano; Simeone, Giovanni
2017-05-01
In this work, we provide a simple and straightforward method for the fabrication of stable highly hydrophobic and oleophobic surfaces by applying stereolithography (SL) to perfluoropolyethers (PFPEs). Inspired by the liquid repellency widely shown in nature, our approach enables to easily mimic the interplay between the chemistry and physics by microtexturing low surface tension PFPEs. To this end, UV-curable resins suitable for SL-processing were formulated by blending multifunctional (meth-)acrylates PFPEs oligomers with photoinitiator and visible dyes whose content was tuned to tailor resin SL sensitivities. Photocalorimetric studies were also performed to investigate the curing behavior of the different formulations upon SL light exposure. Being the first example of stereolithography applied to PFPEs, stereolithographic processability of new developed PFPEs photopolymer was compared with a standard photoresist taken as benchmark (DL260®). Optimized formulations were characterized by reduced laser penetration depth (<75 μm) and small critical energies thus enabling for fast printing of micrometric structures. Arrays of cylindrical pillars (85 μm diameter, 400 μm height) characterized by varied pillars spacing (200 ÷ 350 μm) were rapidly printed with high fidelity as attested by SEM examination. Contact angle measurements in static and dynamic conditions were performed to investigate the surface properties of textured samples using water and oil as the probing liquids. PFPEs liquid repellent performances were compared with those from DL260® textured surfaces arrayed by SL. High water contact angles coupled with low hysteresis asserted that high hydrophobic surfaces were successfully obtained and best-performing textured surfaces were also characterized by high oil repellency. Finally, this study demonstrated that omniphobic surfaces can be easily realized via a single-step, cost-effective, and time-saving process.
Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface
NASA Astrophysics Data System (ADS)
Wang, W.; Y Wei, X.; Meng, K.; Zhong, L. H.; Wang, Y.; Yu, X. H.
2017-12-01
In order to improve the bio-tribology properties of Ti6A14V surface, the bionic carp scale appearance pattern on Ti6A14V surface was prepared by laser surface texturing technology. The ball-disc reciprocating linear tribological experiment under different lubricants with dry friction was carried out by MRTR multifunction friction and wear testing machine using ZrO2/Ti6A14V as friction pair. The wear scar morphology of the sample surface was observed by SEM. The results show that for dry friction, the friction factor of the bionic carp scale morphology Ti6A14V reduces by 0.23 than those without bionic carp scale morphology, a decline of 45%. Under different lubrication conditions, the friction factors of samples with the bionic carp scale are increased in varying degrees with the increase of size of bionic texturing. The friction factor with same specimen under different lubrication conditions according to the ascending order are 0.5g/dl of sodium hyaluronate +0.5g/dl-γglobulin and 0.5g/dl mixed aqueous solution of sodium hyaluronate solution and artificial saliva. The wear volume also showed a similar variation.
Mangano, Carlo; Raspanti, Mario; Traini, Tonino; Piattelli, Adriano; Sammons, Rachel
2009-03-01
Direct laser fabrication (DLF) allows solids with complex geometry to be produced by sintering metal powder particles in a focused laser beam. In this study, 10 Ti6Al4V alloy model dental root implants were obtained by DLF, and surface characterization was carried out using stereo scanning electron microscopy to produce 3D reconstructions. The surfaces were extremely irregular, with approximately 100 microm deep, narrow intercommunicating crevices, shallow depressions and deep, rounded pits of widely variable shape and size, showing ample scope for interlocking with the host bone. Roughness parameters were as follows: R(t), 360.8 microm; R(z), 358.4 microm; R(a), 67.4 microm; and R(q), 78.0 microm. Disc specimens produced by DLF with an identically prepared surface were used for biocompatibility studies with rat calvarial osteoblasts: After 9 days, cells had attached and spread on the DLF surface, spanning across the crevices, and voids. Cell density was similar to that on a commercial rough microtextured surface but lower than on commercial smooth machined and smooth-textured grit-blasted, acid-etched surfaces. Human fibrin clot extension on the DLF surface was slightly improved by inorganic acid etching to increase the microroughness. With further refinements, DLF could be an economical means of manufacturing implants from titanium alloys. (c) 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, Zhongji; Tan, Xipeng; Tor, Shu Beng; Chua, Chee Kai
2018-04-01
Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a <011> crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by 16% and 40% respectively, with the engineered <011> textured microstructure compared to the common <001> textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the <011> textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility.
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-01-01
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246
Evolution of solidification texture during additive manufacturing
Wei, H. L.; Mazumder, J.; DebRoy, T.
2015-11-10
Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numericalmore » modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.« less
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System.
Rhie, Jong Won; Shim, Jeong Su; Choi, Won Seok
2015-01-01
The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System
Rhie, Jong Won; Choi, Won Seok
2015-01-01
Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color. PMID:25606490
Laser shock peening studies on SS316LN plate with various sacrificial layers
NASA Astrophysics Data System (ADS)
Yella, Pardhu; Venkateswarlu, P.; Buddu, Ramesh K.; Vidyasagar, D. V.; Sankara Rao, K. Bhanu; Kiran, P. Prem; Rajulapati, Koteswararao V.
2018-03-01
Laser shock peening (LSP) has been utilized to modify the surface characteristics of SS316LN plates of 6 mm thickness. Laser pulse widths employed are 30 ps and 7 ns and the laser energy was varied in the range 5-90 mJ. Peening was performed in direct ablation mode as well as with various sacrificial layers such as black paint, transparent adhesive tape and absorbing adhesive tape. The surface characteristics were greatly influenced by the type of sacrificial layer employed. The average surface roughness values are about 0.4 μm when the black paint and transparent adhesive tape were used as sacrificial layers. In contrast to this, using absorbent adhesive tape as a sacrificial layer has resulted in an average surface roughness of about 0.04 μm. Irrespective of pulse durations (30 ps or 7 ns), absorbent adhesive tape has always resulted in compressive residual stresses whereas other layers appear to be not that effective. In case of 30 ps pulse, as the laser energy was increased from 5 mJ to 25 mJ, there was a texture observed in (111) reflection of X-ray diffractograms and the center of the peak has also gradually shifted to left. X-ray line profile analysis suggests that with the increase in laser energy, lattice microstrain also has increased. This lattice microstrain appears to be resulting from the increased dislocation density in the peened sample as evidenced during transmission electron microscopic investigations. Cross-sectional scanning electron microscopy performed on peened samples suggests that absorbing adhesive tape brings no surface damage to the samples whereas other sacrificial layers have resulted in some surface damage. Based on all these structural and microstructural details, it is recommended that absorbent tape could be used as a sacrificial layer during LSP process which induces surface residual stresses with no damage to the sample surface.
Orun, A B; Seker, H; Uslan, V; Goodyer, E; Smith, G
2017-06-01
The textural structure of 'skin age'-related subskin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. This is achieved by a two-stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ = 650 nm spectral band region. In the second stage, a Bayesian inference method is used to select attributes from which a predictive model is built. This technique enables us to contrast different skin age models, such as the laser speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle-based technique yields better results. The method introduced here is non-invasive, low cost and capable of operating in real time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
The comparison of laser surface designing and pigment printing methods for the product quality
NASA Astrophysics Data System (ADS)
Ozguney, Arif Taner
2007-07-01
Developing new designs by using the computer and transferring the designs that are obtained to textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you create identical designs. This means serial manufacturing of the products at standard quality and increasing their added values. Moreover, creating textile designs using the laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the other methods. In the system that has been designed, the laser beam at selected wavelength and intensity was directed onto a selected textile surface and a computer-controlled laser beam source was used to change the colour substances on the textile surface. Pigment printing is also used for designing in textile and apparel sector. In this method, designs are transferred to the fabric manually by using dyestuff. In this study, the denim fabric used for the surfacing trial was 100% cotton, with a weft count per centimeter of 20 and a warp count per centimeter of 27, with fabric weight of 458 g/m 2. The first step was to prepare 40 pieces of denim samples, half of which were prepared manually pigment printing and the other half by using the laser beam. After this, some test applications were done. The tensile strength, tensile extension and some fastness values of designed pieces with two methods were compared according to the international standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples withmore » nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.« less
NASA Technical Reports Server (NTRS)
Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep
2001-01-01
The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.
Development of low friction snake-inspired deterministic textured surfaces
NASA Astrophysics Data System (ADS)
Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.
2016-06-01
The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.
NASA Astrophysics Data System (ADS)
Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun
2015-09-01
In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/ D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/ D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/ D ratio of 3.75. The simulation results showed that the reflectance value for the h/ D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.
NASA Astrophysics Data System (ADS)
Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif
2005-11-01
Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a computer interface; reflecting mirrors that can direct this beam at two axes; a galvanometer which comprised of an optical aperture; and a computer program that can transfer images obtained in standard formats to the galvanometer control card were used. Developing new designs by using the computer and transferring the designs that are obtained on textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you to create identical designs. This means serial manufacturing of the products at a standard quality and increasing their added values. Moreover, creating textile designs using laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the sanding and stoning processes. Another advantage of this system is that it gives a richer look to the product by causing the textile surfaces to get wrinkled and become three-dimensional by deformation as well as enabling you to create pictures and patterns on leather and synthetic fabrics by means of heat. As for the results of the study, the first step was to prepare 40 pairs of denim trousers, half of which were prepared manually and the other half by using laser beam. Time studies were made at every step of the production. So as to determine the abrasion degrees of the trousers in design applications, tensile strength as well as tensile extension tests were conducted for all the trousers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanan, Senthilnathan; Diebolder, Rolf; Hibst, Raimund
2008-04-01
We report about the influence of pulsed laser irradiation on the structural and magnetic properties of NiMn/Co thin films. Rocking curve measurements showed a significant improvement of the (111) texture of NiMn after laser irradiation which was accompanied by grain growth. We have studied the ordering transition in as-prepared and irradiated (laser fluence of 0.15 J/cm{sup 2}) samples during subsequent annealing. The onset of the fcc to fct phase transformation occurs at 325 deg. C irrespective of laser irradiation. Exchange bias fields for the laser irradiated samples are higher than those of the as-prepared samples. The observed increase in themore » exchange bias field for laser irradiated samples has been attributed to the increased grain size and the improved (111) texture of the NiMn layer after laser irradiation.« less
Excimer laser irradiation of metal surfaces
NASA Astrophysics Data System (ADS)
Kinsman, Grant
In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The increased absorption at 10.6 microns enables enhanced CO2 laser drilling and cutting rates in electrolytic Cu at incident intensities, I(0) of approximately 10(exp 6) W cm(exp -2). Data showing enhanced drilling rates in Al 1100-H14 is also presented. In these regimes the majority of material is removed in the liquid state. The amount of molten material formed can be directly attributed to the enhanced initial coupling of the excimer laser irradiated surface. Previously, to process Cu and Al it has been required to increase I(0) until material removal occurs through vaporization. This fundamental data and analysis provides a basic framework for further work in this new field of study.
Triangulation Based 3D Laser Imaging for Fracture Orientation Analysis
NASA Astrophysics Data System (ADS)
Mah, J.; Claire, S.; Steve, M.
2009-05-01
Laser imaging has recently been identified as a potential tool for rock mass characterization. This contribution focuses on the application of triangulation based, short-range laser imaging to determine fracture orientation and surface texture. This technology measures the distance to the target by triangulating the projected and reflected laser beams, and also records the reflection intensity. In this study, we acquired 3D laser images of rock faces using the Laser Camera System (LCS), a portable instrument developed by Neptec Design Group (Ottawa, Canada). The LCS uses an infrared laser beam and is immune to the lighting conditions. The maximum image resolution is 1024 x 1024 volumetric image elements. Depth resolution is 0.5 mm at 5 m. An above ground field trial was conducted at a blocky road cut with well defined joint sets (Kingston, Ontario). An underground field trial was conducted at the Inco 175 Ore body (Sudbury, Ontario) where images were acquired in the dark and the joint set features were more subtle. At each site, from a distance of 3 m away from the rock face, a grid of six images (approximately 1.6 m by 1.6 m) was acquired at maximum resolution with 20% overlap between adjacent images. This corresponds to a density of 40 image elements per square centimeter. Polyworks, a high density 3D visualization software tool, was used to align and merge the images into a single digital triangular mesh. The conventional method of determining fracture orientations is by manual measurement using a compass. In order to be accepted as a substitute for this method, the LCS should be capable of performing at least to the capabilities of manual measurements. To compare fracture orientation estimates derived from the 3D laser images to manual measurements, 160 inclinometer readings were taken at the above ground site. Three prominent joint sets (strike/dip: 236/09, 321/89, 325/01) were identified by plotting the joint poles on a stereonet. Underground, two main joint sets (strike/dip: 060/00, 114/86) were identified from 49 manual inclinometer measurements A stereonet of joint poles from the 3D laser data was generated using the commercial software Split-FX. Joint sets were identified successfully and their orientations correlated well with the hand measurements. However, Split-Fx overlays a simply 2D grid of equal-sized triangles onto the 3D surface and requires significant user input. In a more automated approach, we have developed a MATLAB script which directly imports the Polyworks 3D triangular mesh. A typical mesh is composed of over 1 million triangles of variable sizes: smooth regions are represented by large triangles, whereas rough surfaces are captured by several smaller triangles. Using the triangle vertices, the script computes the strike and dip of each triangle. This approach opens possibilities for statistical analysis of a large population of fracture orientation estimates, including surface texture. The methodology will be used to evaluate both synthetic and field data.
NASA Astrophysics Data System (ADS)
Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.
2017-12-01
The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.
NASA Technical Reports Server (NTRS)
Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.
2008-01-01
Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.
NASA Technical Reports Server (NTRS)
Hudson, W. R.
1976-01-01
A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.
Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca
2018-01-01
Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel
NASA Astrophysics Data System (ADS)
Sun, Ke; Yang, Huan; Xue, Wei; He, An; Zhu, Dehua; Liu, Wenwen; Adeyemi, Kenneth; Cao, Yu
2018-04-01
Anti-biofouling technology is based on specifically designed materials and coatings. This is an enduring goal in the maritime industries, such as shipping, offshore oil exploration, and aquaculture. Recently, research of the relationship between wettability and antifouling effectiveness has attracted considerable attention, due to the anti-biofouling properties of the lotus leaf and shark skin. In this study, super-hydrophobic surfaces (SHSs) with controllable periodic structures were fabricated on AISI304 stainless steel by a picosecond laser, and their anti-biofouling performance were investigated by seawater immersion for five weeks in summertime. The results showed that the specimens with SHS demonstrate significant anti-biofouling effect as compared with the bare stainless steel plate. We observed that nearly 50% decrease of the average microbe attachment area ratio (Avg. MAAR) could be obtained. The micro-groove SHS with more abundant hierarchical micro-nano structures showed better anti-biofouling performance than the micro-pit SHS.
Feature-based characterisation of signature topography in laser powder bed fusion of metals
NASA Astrophysics Data System (ADS)
Senin, Nicola; Thompson, Adam; Leach, Richard
2018-04-01
The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.
Automatic grading of appearance retention of carpets using intensity and range images
NASA Astrophysics Data System (ADS)
Orjuela Vargas, Sergio Alejandro; Ortiz-Jaramillo, Benhur; Vansteenkiste, Ewout; Rooms, Filip; De Meulemeester, Simon; de Keyser, Robain; Van Langenhove, Lieva; Philips, Wilfried
2012-04-01
Textiles are mainly used for decoration and protection. In both cases, their original appearance and its retention are important factors for customers. Therefore, evaluation of appearance parameters are critical for quality assurance purposes, during and after manufacturing, to determine the lifetime and/or beauty of textile products. In particular, appearance retention of textile products is commonly certified with grades, which are currently assigned by human experts. However, manufacturers would prefer a more objective system. We present an objective system for grading appearance retention, particularly, for textile floor coverings. Changes in appearance are quantified by using linear regression models on texture features extracted from intensity and range images. Range images are obtained by our own laser scanner, reconstructing the carpet surface using two methods that have been previously presented. We extract texture features using a variant of the local binary pattern technique based on detecting those patterns whose frequencies are related to the appearance retention grades. We test models for eight types of carpets. Results show that the proposed approach describes the degree of wear with a precision within the range allowed to human inspectors by international standards. The methodology followed in this experiment has been designed to be general for evaluating global deviation of texture in other types of textiles, as well as other surface materials.
Plastic strain and grain size effects in the surface roughening of a model aluminum alloy
NASA Astrophysics Data System (ADS)
Moore, Eric Joseph
To address issues surrounding improved automotive fuel economy, an experiment was designed to study the effect of uniaxial plastic tensile deformation on surface roughness and on slip and grain rotation. Electron backscatter diffraction (EBSD) and scanning laser confocal microscopy (SLCM) were used to track grain size, crystallographic texture, and surface topography as a function of incremental true strain for a coarse-grained binary alloy that is a model for AA5xxx series aluminum alloys. One-millimeter thick sheets were heat treated at 425°C to remove previous rolling texture and to grow grains to sizes in the range ˜10-8000 mum. At five different strain levels, 13 sample regions, containing 43 grains, were identified in both EBSD and SLCM micrographs, and crystallographic texture and surface roughness were measured. After heat treatment, a strong cube texture matrix emerged, with bands of generally non-cube grains embedded parallel to the rolling direction (RD). To characterize roughness, height profiles from SLCM micrographs were extracted and a filtered Fourier transform approach was used to separate the profiles into intergranular (long wavelength) and intragranular (short wavelength) signatures. The commonly-used rms roughness parameter (Rq) characterized intragranular results. Two important parameters assess intergranular results in two grain size regimes: surface tilt angle (Deltatheta) and surface height discontinuity (DeltazH) between neighboring grains at a boundary. In general, the magnitude of Rq and Deltatheta increase monotonically with strain and indicate that intergranular roughness is the major contributor to overall surface roughness for true strains up to epsilon = 0.12. Surface height discontinuity DeltazH is defined due to exceptions in surface tilt angle analyses. The range of observed Deltatheta= 1-10° are consistent with the observed 3-12° rotation of individual grains as measured with EBSD. For some grain boundaries with Deltatheta< 4°, the surface height discontinuity DeltazH characterizes the response of adjacent grains in which one or more are large (˜1000-2000 mum), making a 3-12° rotation of the grain highly unlikely. This can be understood by postulating that the energy associated with rotating large grains would exceed the energy to shear along the boundary. Slip and grain boundary shearing are the active mechanisms in these instances.
Laser cleaning treatment of burnt paintings
NASA Astrophysics Data System (ADS)
Antonopoulou-Athera, N.; Chatzitheodoridis, E.; Doulgerides, M.; Evangelatos, Ch.; Serafetinides, A. A.; Terlixi, A.
2015-01-01
Three samples taken from two paintings partly burned by fire are investigated for cleaning with lasers. The paintings belong to the collection of the National Gallery of Athens and were made by the great Greek artist Konstantinos Parthenis. To remove the damaged surface and achieve an acceptable restoration result, the optimum combination of fluence and wavelength are sought. Seven different wavelengths with a set of fluences where used, i.e., the five harmonics of a Nd:YAG laser (1064, 532, 355, 266, and 213 nm), a TEA 10.6 μm CO2 and a free running laser Er:YAG 2.94 μm. Characterization was performed prior and after the cleaning process by optical and electron microscopy and analysis (SEM/BSE EDS), as well as X-Ray Diffraction (XRD). The results of this work indicate that the wavelength in the visible spectrum (532 nm) with fluences between 0.1-0.4J/cm2 show the optimum cleaning. The optical microscopy observation shows that with these laser parameters the burnt layer was preferentially removed, exposing the original colors that Parthenis had used in these paintings. Electron microscopy imaging and chemical analysis revealed that the original texture and materials of these samples are preserved after irradiation. Since the damage varies along the surface of the painting, more experiments should be performed in order to find and optimize the full cleaning and characterization process for the homogeneous cleaning of the whole surface of the painting.
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo
2005-05-01
Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of 500-microm-wide grooves. In pushout testing, the tartan check shape made of 500-microm-wide grooves had significantly higher bone-metal interface shear strength than the dot shape or commercial porous coating. These results indicate that the tartan check shape made of 500-microm-wide grooves on metal surfaces has potential for clinical application in artificial prosthesis design.
Precision Timing and Measurement for Inference with Laser and Vision
2010-01-01
Robotics 24, 8-9 (2007), 699–722. [84] Nüchter, A., Surmann, H., Lingemann, K., and Hertzberg, J. Semantic scene analysis of scanned 3D indoor...Delaunay based triangulation can be ob- tained. Popping the points back to their 3D locations yields a feature sensitive surface mesh . Sequeira et al... texture maps acquired from cameras, the eye can be fooled into believing that the mesh quality is better than it really is. Range images are used to
2015-08-24
modulus, yield strength, strain hardening exponent, and hardness can be estimated by this technique (Pethica 1982, Newey, Wilkins & Pollock 1982, Stone et...properties of metal alloys: a review", International Journal of Fatigue, vol. 24, no. 10, pp. 1021-1036. Newey, D., Wilkins , M.A. & Pollock, H.M. 1982...Zhang, Y., Zhang, S., Yu, C., Tang , Y., Zhang, H., Wu, H., Guo, D., Wang, S., Xia, X., Chen, M. & Dai, Y. 1997, "Laser shock-processing for
NASA Astrophysics Data System (ADS)
Belforte, David A.
1990-05-01
Introduction: Gary Forrest As with medical, we have a specific individual, Dave Belforte, who, in addition to writing for Laser Focus, publishes with Laser Focus the Industrial Laser Review. Again, this is an area that has some really unique aspects to it which is why we have a specialist at the magazine who tracks this as well as having his own business interests. I just have one quick example. One of the things that I've noticed and I've put this in your handout is it's always interesting to me to see why how the lasers actually impact on finished goods that people buy. So I just clipped out one recent article that mentions some of the different areas when lasers are used in automotive production. There's an ad for the Infinity car of course they've had a strange ad program anyway, but the latest version is "Look at the paint." It's a super high gloss paint. I know in Japan, what I would call laser priming, the use of laser in surface preparation of the metal to obtain a super high gloss is something that's become popular. Now I don't know whether the Infinity is using that or not but it's another example as Moe Levitt indicated earlier lasers have moved into the industrial segment maybe not in the volume that people would like but in a quality sense that is definitely starting to have an impact on the people who are buying those finished products. So I'll give you Dave for the details. David Belforte: The answer is yes, the Infinity has a body which has been processed in what is called laser texturizing process. In Japan, it's known as a mirror finish, and it's not actually applied to the steel of the car. It's a texturizing process on the rolls that reduce the steel down to body thickness. They emboss on that steel a regular pattern which tends to trap radiated light and reflect it back to your eye in a much more intense pattern to give you what appears to be brighter paint. But that was not developed in Japan. It was developed in Belgium actually.
Directional motion of impacting drops on dual-textured surfaces.
Vaikuntanathan, V; Sivakumar, D
2012-09-01
In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.
Yuan, Jiandong; Liang, Liang; Jiang, Lelun; Liu, Xin
2018-04-01
The degree of laser pulse overlapping in a laser scanning path has a significant impact on the ablation regime in the laser machining of a micro-texture. In this Letter, a nanosecond pulsed laser is used to prepare the micro-scaled groove on WC-8Co cermet under different scanning speeds. It is observed that as the scanning speed increases, the ablated trace morphology in the first scanning pass transits from a succession of intermittent deep dimples to the consecutive overlapped shallow pits. The test result also indicates that ablated trace morphology with respect to the low scanning speed stems from a plume shielding effect. Moreover, the ablation regime considering the shielding effect in micro-groove formation process is clarified. The critical scanning speed that can circumvent the shielding effect is also summarized with respect to different laser powers.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Goyal, Amit; Kroeger, Donald M.
2003-11-11
A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.
Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting
NASA Astrophysics Data System (ADS)
Migliaccio, Christopher P.; Lazarus, Nathan
2015-10-01
Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.
On a Fundamental Evaluation of a Uav Equipped with a Multichannel Laser Scanner
NASA Astrophysics Data System (ADS)
Nakano, K.; Suzuki, H.; Omori, K.; Hayakawa, K.; Kurodai, M.
2018-05-01
Unmanned aerial vehicles (UAVs), which have been widely used in various fields such as archaeology, agriculture, mining, and construction, can acquire high-resolution images at the millimetre scale. It is possible to obtain realistic 3D models using high-overlap images and 3D reconstruction software based on computer vision technologies such as Structure from Motion and Multi-view Stereo. However, it remains difficult to obtain key points from surfaces with limited texture such as new asphalt or concrete, or from areas like forests that may be concealed by vegetation. A promising method for conducting aerial surveys is through the use of UAVs equipped with laser scanners. We conducted a fundamental performance evaluation of the Velodyne VLP-16 multi-channel laser scanner equipped to a DJI Matrice 600 Pro UAV at a construction site. Here, we present our findings with respect to both the geometric and radiometric aspects of the acquired data.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.
Laser induced hierarchical calcium phosphate structures.
Kurella, Anil; Dahotre, Narendra B
2006-11-01
The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.
Surface texturing of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Mirtich, M. J.; Sovey, J. S. (Inventor)
1982-01-01
A method is disclosed for improving surface texture for adhesive bonding, metal bonding, substrate plating, decal substrate preparation, and biomedical implant applications. The surface to be bonded is dusted in a controlled fashion to produce a disbursed layer of fine mesh particles which serve as masks. The surface texture is produced by impinging gas ions on the masked surface. The textured surface takes the form of pillars or cones. The bonding material, such as a liquid epoxy, flows between the pillars which results in a bond having increased strength. For bonding metals a thin film of metal is vapor or sputter deposited onto the textured surface. Electroplating or electroless plating is then used to increase the metal thickness in the desired amount.
NASA Astrophysics Data System (ADS)
Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.
2015-03-01
The periodical removal of biodeteriogens is a fundamental need for the preservation of outdoor stone cultural heritage, which is stimulating significant efforts toward the development of low-impact conservation strategies. In the present work, the potential of laser removal of Verrucaria nigrescens Pers. from Carrara marble and the evaluation of the associated biocide effect on the organism residues embedded in the surface texture and through the outer porosities of the stone substrate were investigated. The fundamental wavelength of Nd:YAG laser (1,064 nm), commonly used in stone cleaning, and its second harmonic (532 nm) were comparatively tested. The phenomenology of laser treatments carried out in different irradiation conditions was characterized using optical, epifluorescence, and electron microscopes along with chlorophyll fluorescence with pulsed amplitude-modulated imaging. The results achieved show that 532 nm can provide significant advantages with respect to 1,064 nm. The potential of the latter against the biodeteriogens appears rather limited because of the low optical absorption, whereas the former can allow effective and practicable laser treatments, which disclose a significant application perspective.
Characterization of nuclear graphite elastic properties using laser ultrasonic methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W; Han, Karen; Olasov, Lauren R
2015-01-01
Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less
Rizvi, Reza; Anwer, Ali; Fernie, Geoff; Dutta, Tilak; Naguib, Hani
2016-11-02
Fiber debonding and pullout are well-understood processes that occur during damage and failure events in composite materials. In this study, we show how these mechanisms, under controlled conditions, can be used to produce multifunctional textured surfaces. A two-step process consisting of (1) achieving longitudinal fiber alignment followed by (2) cutting, rearranging, and joining is used to produce the textured surfaces. This process employs common composite manufacturing techniques and uses no reactive chemicals or wet handling, making it suitable for scalability. This uniform textured surface is due to the fiber debonding and pullout occurring during the cutting process. Using well-established fracture mechanics principles for composite materials, we demonstrate how different material parameters such as fiber geometry, fiber and matrix stiffness and strength, and interface behavior can be used to achieve multifunctional textured surfaces. The resulting textured surfaces show very high friction coefficients on wet ice (9× improvement), indicating their promising potential as materials for ice traction/tribology. Furthermore, the texturing enhances the surface's hydrophobicity as indicated by an increase in the contact angle of water by 30%. The substantial improvements to surface tribology and hydrophobicity make fiber debonding and pullout an effective, simple, and scalable method of producing multifunctional textured surfaces.
Joe, Paula S; Ito, Yasushi; Shih, Alan M; Oestenstad, Riedar K; Lungu, Claudiu T
2012-01-01
This study was designed to determine if three-dimensional (3D) laser scanning techniques could be used to collect accurate anthropometric measurements, compared with traditional methods. The use of an alternative 3D method would allow for quick collection of data that could be used to change the parameters used for facepiece design, improving fit and protection for a wider variety of faces. In our study, 10 facial dimensions were collected using both the traditional calipers and tape method and a Konica-Minolta Vivid9i laser scanner. Scans were combined using RapidForm XOR software to create a single complete facial geometry of the subject as a triangulated surface with an associated texture image from which to obtain measurements. A paired t-test was performed on subject means in each measurement by method. Nine subjects were used in this study: five males (one African-American and four Caucasian females) and four females displaying a range of facial dimensions. Five measurements showed significant differences (p<0.05), with most accounted for by subject movements or amended by scanning technique modifications. Laser scanning measurements showed high precision and accuracy when compared with traditional methods. Significant differences found can be very small changes in measurements and are unlikely to present a practical difference. The laser scanning technique demonstrated reliable and quick anthropometric data collection for use in future projects in redesigning respirators.
Electric Arc and Electrochemical Surface Texturing Technologies
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.
1997-01-01
Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.
Gérard, Emmanuelle; De Goeyse, Siham; Hugoni, Mylène; Agogué, Hélène; Richard, Laurent; Milesi, Vincent; Guyot, François; Lecourt, Léna; Borensztajn, Stephan; Joseph, Marie-Béatrice; Leclerc, Thomas; Sarazin, Gérard; Jézéquel, Didier; Leboulanger, Christophe; Ader, Magali
2018-01-01
Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the "Petite Terre" Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM) analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira -dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM) and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA), is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite, respectively. These results point out the role of phototrophic Alphaproteobacteria in the formation of stromatolites, which may open new perspective for the analysis of the fossil record.
Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images
Pu, Shi; Vosselman, George
2009-01-01
Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539
3D displacement field measurement with correlation based on the micro-geometrical surface texture
NASA Astrophysics Data System (ADS)
Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François
2011-07-01
Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.
Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining
NASA Astrophysics Data System (ADS)
Qu, N. S.; Zhang, T.; Chen, X. L.
2018-03-01
In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.
Mechanisms of the formation of low spatial frequency LIPSS on Ni/ Ti reactive multilayers
NASA Astrophysics Data System (ADS)
Cangueiro, Liliana T.; Cavaleiro, André J.; Morgiel, Jerzy; Vilar, Rui
2016-09-01
The present paper aims at investigating the mechanisms of imprinting LIPSS (laser-induced periodic surface structures), arrangements of parallel ripples with a periodicity slightly smaller than the radiation wavelength, on metallic surfaces. To this end, Ni/Ti multi-layered samples produced by magnetron sputtering were textured with LIPSS using a 1030 nm, 560 fs pulse duration laser and pulse frequency of 1 kHz, and the resulting surfaces were investigated by scanning and transmission electron microscopies. The results obtained show that the core of the ripples remains in the solid state during the laser treatment, except for a layer of material about 30 nm thick at the valleys and 65-130 nm thick at the top of the crests, which melts and solidifies forming NiTi with an amorphous structure. A layer of ablation debris composed of amorphous NiTi nanoparticles was redeposited on the LIPSS crests. The results achieved indicate that the periodic variation of the absorbed radiation intensity leads to a variation of the predominant ablation mechanisms and, consequently, of the ablation rate, thus explaining the rippled surface topography. The comparison with theoretical predictions suggests that in the intensity maxima (corresponding to the valleys) the material is removed by liquid spallation, while at its minima (the crests) the predominant material removal mechanism is melting and vaporization. These results support Sipe et al LIPSS formation theory and are in contradiction with the theories that explain the formation of LIPSS by convective fluid flow or self-organized mass transport of a laser-induced instability.
Li, Dali; Zou, Jiaojuan; Xie, Ruizhen; Wang, Zhihua; Tang, Bin
2018-01-01
Surface texture (ST) has been confirmed as an effective and economical surface treatment technique that can be applied to a great range of materials and presents growing interests in various engineering fields. Ti6Al4V which is the most frequently and successfully used titanium alloy has long been restricted in tribological-related operations due to the shortcomings of low surface hardness, high friction coefficient, and poor abrasive wear resistance. Ti6Al4V has benefited from surface texture-based surface treatments over the last decade. This review begins with a brief introduction, analysis approaches, and processing methods of surface texture. The specific applications of the surface texture-based surface treatments for improving surface performance of Ti6Al4V are thoroughly reviewed from the point of view of tribology and biology. PMID:29587358
Effect of Macrogeometry on the Surface Topography of Dental Implants.
Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian
2015-01-01
Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.
Wettability modification of porous PET by atmospheric femtosecond PLD
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie
2018-04-01
In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.
Orbital selective spin-texture in a topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.
Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less
Surface texture can bias tactile form perception.
Nakatani, Masashi; Howe, Robert D; Tachi, Susumu
2011-01-01
The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.
Conveying 3D shape with texture: recent advances and experimental findings
NASA Astrophysics Data System (ADS)
Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh
2002-06-01
If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
NASA Astrophysics Data System (ADS)
Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming
2018-01-01
The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.
NASA Technical Reports Server (NTRS)
Gibbons, D. F.
1977-01-01
The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.; ...
2017-05-25
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
Effect of SiC particle impact nano-texturing on tribological performance of 304L stainless steel
NASA Astrophysics Data System (ADS)
Lorenzo-Martin, C.; Ajayi, O. O.
2014-10-01
Topographical features on sliding contact surfaces are known to have a significant impact on friction and wear. Indeed, various forms of surface texturing are being used to improve and/or control the tribological performance of sliding surfaces. In this paper, the effect of random surface texturing produced by a mechanical impact process is studied for friction and wear behavior of 304L stainless steel (SS) under dry and marginal oil lubrication. The surface processing was applied to 304L SS flat specimens and tested under reciprocating ball-on-flat sliding contact, with a 440C stainless steel ball. Under dry contact, the impact textured surface exhibited two order of magnitude lower wear than the isotropically ground surface of the same material. After 1500 s of sliding and wearing through of the processed surface layer following occurring of scuffing, the impact textured surface underwent a transition in wear and friction behavior. Under marginal oil lubrication, however, no such transition occurred, and the wear for the impact textured surface was consistently two orders of magnitude lower than that for the ground material. Mechanisms for the tribological performance enhancement are proposed.
The use of an ion-beam source to alter the surface morphology of biological implant materials
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1978-01-01
An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir
Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less
Three-dimensional biofilm structure quantification.
Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary
2004-12-01
Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Meyer, M. L.; Ling, J. S.
1977-01-01
An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-12-09
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.
Alternative to classic annealing treatments for fractally patterned TiO{sub 2} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overschelde, O. van; Wautelet, M.; Guisbiers, G.
2008-11-15
Titanium dioxide thin films have been deposited by reactive magnetron sputtering on glass and subsequently irradiated by UV radiation using a KrF excimer laser. The influence of the laser fluence (F) on the constitution and microstructure of the deposited films is studied for 0.05
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-01-01
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705
a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects
NASA Astrophysics Data System (ADS)
Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.
2015-12-01
The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.
NASA Astrophysics Data System (ADS)
Rasztovits, S.; Dorninger, P.
2013-07-01
Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.
Doped LZO buffer layers for laminated conductors
Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA
2010-03-23
A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.
Cooling of hot bubbles by surface texture during the boiling crisis
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa
2015-11-01
We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Excimer laser annealing to fabricate low cost solar cells
NASA Technical Reports Server (NTRS)
1984-01-01
The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.
NASA Astrophysics Data System (ADS)
Verhoeven, G. J.
2017-08-01
Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.
The effect of texture on the shaft surface on the sealing performance of radial lip seals
NASA Astrophysics Data System (ADS)
Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing
2014-07-01
On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.
NASA Technical Reports Server (NTRS)
Nelson, L. S.; Blander, M.; Keil, K.; Skaggs, S. R.
1972-01-01
Chondrule-like spherules were formed from individual freely falling subcooled droplets of alumina, enstatite, forsterite, enstatite-albite and forsterite-albite mixtures that had been melted with a focused continuous CO2 laser beam. Their textures (rimmed, excentro-radial, barred, glassy) are strikingly similar to those of many meteoritic chondrules. It is suggested that the phenomena associated with rapid crystallization from the supercooled melt are responsible for the various textures observed in the artificial spherules as well as in similar meteoritic chondrules. It is suggested that the textures observed would also result from rapid crystallization of relatively slowly cooling molten droplets that may have been produced in larger scale events, including condensation from a nebula of solar composition and solidification in an ambient medium of high temperature.
NASA Astrophysics Data System (ADS)
Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan
2018-01-01
In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
The Wear Behavior of Textured Steel Sliding against Polymers
Wang, Meiling; Zhang, Changtao; Wang, Xiaolei
2017-01-01
Artificially fabricated surface textures can significantly improve the friction and wear resistance of a tribological contact. Recently, this surface texturing technique has been applied to polymer materials to improve their tribological performance. However, the wear behavior of textured tribo-pairs made of steel and polymer materials has been less thoroughly investigated and is not well understood; thus, it needs further research. The aim of this study is to investigate the wear properties of tribological contacts made of textured stainless steel against polymer surfaces. Three polymer materials were selected in this study, namely, ultrahigh molecular weight polyethylene (UHMWPE), polyoxymethylene (POM) and (polyetheretherketone) PEEK. Wear tests were operated through a ring-on-plane mode. The results revealed that the texture features and material properties affected the wear rates and friction coefficients of the textured tribo-pairs. In general, PEEK/textured steel achieved the lowest wear rate among the three types of tribo-pairs investigated. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that the elements of C and O on the contacting counterfaces varied with texture features and indicated different wear behavior. Experimental and simulated results showed differences in the stress distribution around the dimple edge, which may influence wear performance. Wear debris with different surface morphologies were found for tribo-pairs with varying texture features. This study has increased the understanding of the wear behavior of tribo-pairs between textured stainless steel and polymer materials. PMID:28772688
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
NASA Astrophysics Data System (ADS)
Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald
2014-06-01
To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
Pulsed-Laser-Induced Melting and Solidification of Thin Metallic Films
NASA Astrophysics Data System (ADS)
Choi, Min Hwan
This thesis focused on investigating excimer-laser induced melting and solidification of thin metallic films on SiO2. Two distinct topics were pursued: (1) microstructural manipulation and optimization of Cu films via SLS of as-deposited Cu films on SiO2, and (2) investigation of oriented heterogeneous nucleation via complete melting and subsequent nucleation-initated solidification of Ni films on SiO2. Close examination of laterally grown grains, which quickly develop rolling direction crystallographic orientation texture due to occlusion of differently oriented grains, reveal, furthermore, that low-angle grain boundaries as well as twins can be generated during the growth. These intra-grain defects are found to appear in a systematic manner (as they are located at specific regions and observed under specific incident energy densities). Significantly longer lateral growth distances observed in Cu films (compared to that of Si films) was attributed to the fact that substantially higher growth rates are expected with simple metallic films at a given interfacial undercooling. The implementation of SLS using Cu films was accomplished quite effectively, as can be expected from the above lateral-growth-related results involving single-shot expeirments. We were able to achieve a variety of large-grained, grain-boundary location and grain-orientation controlled Cu films via various SLS techniques. When performed optimally in accordance with the findings made in chapter 2, the resulting microstructure exhibits large grains, which are primarily devoid of intra-grain defects. For example, 2-shot SLS processed Cu films led to strong rolling direction orientation, while avoiding the formation of low-angle grain boundaries and twin-boundaries. The highlight of SLS on Cu films correspond to a version of SLS (referred to as "2-Shot plus 2-Shot" SLS) in which the second 2-shot SLS is performed in the direction perpendicular to the first one. Through this approach, we were able to achieve grain-boundary-location controlled microstructure with a strong orientation texture in all three dimensions (forming, effectively, an ultra-large quasi-single crystal material). Nucleation of solids in laser-quenched Ni films was investigated using EBSD analysis. The surface orientation analysis of nucleated grains obtained within the complete melting regime reveal a clear sign of texture. From these and additional findings from previous work involving Al films, we were able to conclude that systematic heterogeneous nucleation has taken place, and, furthermore, that oriented nucleation of the solids must have taken place. Although always suspected to be the case, it is typically extremely challenging to prove with certainty, in conventional nucleation experiments, that the mechanism of nucleation corresponds to that of a heterogeneous one. Furthermore, although it has been suspected theoretically for over 50 years, experimental results that clearly show that oriented nucleation actually transpires have not been obtained until our work involving Al films; the present findings involving Ni films further strengthen this conclusion as the Ni system removes some of the experimental uncertainties that are associated with Al films, and, furthermore, suggests that the process of oriented nucleation is a general and rather pervasive phenomenon. Additionally, it was observed that the selected orientation changed as a function of incident energy density; in the low energy density regime (above the completed melting threshold) {110}-surface texture was observed, while {111}-surface texture became more dominent at higher densities. Motivated by our experimental work involving Al and Ni that clearly indicates that oriented heterogeneous nucleation is a major path through which heterogeneous nucleation of solids occurs, we have also carried out a 2-dimensional Winterbottom-type thermodynamic analysis that can be used to obtain a better understanding of the phenomenon. In contrast to the previous work on the subject, we consider in our modelling the anisotropic nature of both the solid-liquid and solid-substrate interfacial energy; we advocate that this is the only physically consistent combination. The results show that oriented nucleation can be systematically accounted for as stemming from the expected anisotropic nature of the involved interfacial energies. Furthermore, the analysis also suggests possible reasons for observing a transition in surface texture from one orientation to another. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao
2016-01-01
A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762
A validated computational model for the design of surface textures in full-film lubricated sliding
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2016-11-01
Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.
Rolling process for producing biaxially textured substrates
Goyal, Amit
2004-05-25
A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.
In Situ Fringe Projection Profilometry for Laser Power Bed Fusion Process
NASA Astrophysics Data System (ADS)
Zhang, Bin
Additive manufacturing (AM) offers an industrial solution to produce parts with complex geometries and internal structures that conventional manufacturing techniques cannot produce. However, current metal additive process, particularly the laser powder bed fusion (LPBF) process, suffers from poor surface finish and various material defects which hinder its wide applications. One way to solve this problem is by adding in situ metrology sensor onto the machine chamber. Matured manufacturing processes are tightly monitored and controlled, and instrumentation advances are needed to realize this same advantage for metal additive process. This encourages us to develop an in situ fringe projection system for the LPBF process. The development of such a system and the measurement capability are demonstrated in this dissertation. We show that this system can measure various powder bed signatures including powder layer variations, the average height drop between fused metal and unfused powder, and the height variations on the fused surfaces. The ability to measure textured surface is also evaluated through the instrument transfer function (ITF). We analyze the mathematical model of the proposed fringe projection system, and prove the linearity of the system through simulations. A practical ITF measurement technique using a stepped surface is also demonstrated. The measurement results are compared with theoretical predictions generated through the ITF simulations.
Wetting and spreading behaviors of impinging microdroplets on textured surfaces
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Lee, Sang Joon; CenterBiofluid and Biomimic Reseach Team
2012-11-01
Textured surfaces having an array of microscale pillars have been receiving large attention because of their potential uses for robust superhydrophobic and superoleophobic surfaces. In many practical applications, the textured surfaces usually accompany impinging small-scale droplets. To better understand the impinging phenomena on the textured surfaces, the wetting and spreading behaviors of water microdroplets are investigated experimentally. Microdroplets with diameter less than 50 μm are ejected from a piezoelectric printhead with varying Weber number. The final wetting state of an impinging droplet can be estimated by comparing the wetting pressures of the droplet and the capillary pressure of the textured surface. The wetting behaviors obtained experimentally are well agreed with the estimated results. In addition, the transition from bouncing to non-bouncing behaviors in the partially penetrated wetting state is observed. This transition implies the possibility of withdrawal of the penetrated liquid from the inter-pillar space. The maximum spreading factors (ratio of the maximum spreading diameter to the initial diameter) of the impinging droplets have close correlation with the texture area fraction of the surfaces. This work was supported by Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of MEST/KOSEF.
Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Jia, Junhong
2015-08-01
Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.
NASA Astrophysics Data System (ADS)
Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon
2013-07-01
The dynamic behaviors of microdroplets that impact on textured surfaces with various patterns of microscale pillars are experimentally investigated in this study. A piezoelectric inkjet is used to generate the microdroplets that have a diameter of less than 46 μm and a controlled Weber number. The impact and spreading dynamics of an individual droplet are captured by using a high-speed imaging system. The anisotropic and directional wettability and the wetting states on the textured surfaces with anisotropically arranged pillars are revealed for the first time in this study. The impalement transition from the Cassie-Baxter state to the partially impaled state is evaluated by balancing the wetting pressure P wet and the capillary pressure P C even on the anisotropic textured surfaces. The maximum spreading factor is measured and compared with the theoretical prediction to elucidate the wettability of the textured surfaces. For a given Weber number, the maximum spreading factor decreases as the texture area fraction of the textured surface decreases. In addition, the maximum spreading factors along the direction of longer inter-pillar spacing always have smaller values than those along the direction of shorter inter-pillar spacing when a droplet impacts on the anisotropic arrays of pillars.
NASA Astrophysics Data System (ADS)
Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.
2012-08-01
Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30979c
Effects of pavement surface texture on noise and frictional characteristics.
DOT National Transportation Integrated Search
1987-02-01
An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.
Use of structured surfaces for friction and wear control on bearing surfaces
NASA Astrophysics Data System (ADS)
Wang, Ling
2014-10-01
Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195-209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers.
Textured-surface quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-08-25
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Interior car noise created by textured pavement surfaces : final report.
DOT National Transportation Integrated Search
1975-01-01
Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...
Effects of Textured Insoles on Balance in People with Parkinson’s Disease
Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.
2013-01-01
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486
Decorating surfaces with bidirectional texture functions.
Zhou, Kun; Du, Peng; Wang, Lifeng; Matsushita, Yasuyuki; Shi, Jiaoying; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates BTFs in two steps. First, we automatically synthesize a BTF over the target surface from a given BTF sample. Then, we let the user interactively paint BTF patches onto the surface such that the painted patches seamlessly integrate with the background patterns. Our system is based on a patch-based texture synthesis approach known as quilting. We present a graphcut algorithm for BTF synthesis on surfaces and the algorithm works well for a wide variety of BTF samples, including those which present problems for existing algorithms. We also describe a graphcut texture painting algorithm for creating new surface imperfections (e.g., dirt, cracks, scratches) from existing imperfections found in input BTF samples. Using these algorithms, we can decorate surfaces with real-world textures that have spatially-variant reflectance, fine-scale geometry details, and surfaces imperfections. A particularly attractive feature of BTF painting is that it allows us to capture imperfections of real materials and paint them onto geometry models. We demonstrate the effectiveness of our system with examples.
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
Doped Y.sub.2O.sub.3 buffer layers for laminated conductors
Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA
2007-08-21
A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.
Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes
NASA Astrophysics Data System (ADS)
Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Markowitz, A. R.; Erck, R. A.; Baurceanu, R.; Dorris, S. E.; Miller, D. J.; Balachandran, U.
2003-04-01
Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx9° was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55°. In-plane texture in the ISD MgO films developed in the first approx0.5 mum from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the substrate normal have a unique orientation relationship with the ISD MgO films. An orientation relationship of YBCOlangle100rangleparallelMgOlangle111rangle and YBCOlangle010rangleparallelMgOlangle110rangle was measured by x-ray pole figure analyses and confirmed by transmission electron microscopy. A Tc of 91 K with a sharp transition and transport Jc of 5.5 × 105 A cm-2 at 77 K in self-field were measured on a YBCO film that was 0.46 mum thick, 4 mm wide and 10 mm long.
Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.
Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T
2017-10-17
A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.
NASA Astrophysics Data System (ADS)
Álvarez-Serrano, I.; Ruiz de Larramendi, I.; López, M. L.; Veiga, M. L.
2017-03-01
Thin films of SrBiMn2-xTixO6-δ have been fabricated by Pulsed Laser Deposition on SrTiO3 [100] and [111] substrates. Their texture, width, homogeneity and morphology are evaluated by means of XRD, SEM, XPS, whereas complex impedance spectroscopy is employed to analyze their electrical response. The thickness values range between 80 and 900 nm depending on the experimental conditions. The epitaxial growing could be interpreted in terms of two contributions of microstructural origin: a matrix part and some polycrystalline surface formations (hemi-spheres). Texture studies suggest a fiber-type orientated morphology coherently with the Scanning Electron Microscopy images. XPS analyses indicate a segregation regarding A-sublattice cations, which features depend on the substrate orientation. This segregation could be connected to the development of nanopolar regions. Impedance data show the electrical polarization in the samples to be enhanced compared to bulk response of corresponding powdered samples. A relaxor behavior which fits a Vogel-Fulcher law is obtained for x = 0.50 whereas an almost frequency-independent relaxor ferroelectric behavior is registered for the thinnest film of x = 0.25 composition grown on SrTiO3 [111] substrate. The influence of compositional and structural aspects in the obtained dielectric response is analyzed.
Spin texture of the surface state of three-dimensional Dirac material Ca3PbO
NASA Astrophysics Data System (ADS)
Kariyado, Toshikaze
2015-04-01
The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Jamari, J.; Bayuseno, A. P.
2017-04-01
The texture shapes play a key role in the tribological performance of the surface material. This paper presents a study on the use of the 3D finite element method for surface stress analysis on the different texture shape under load and dry sliding contact. The five texture-shaped model was investigated in this work, namely square, circle, ellipse, triangle, and chevron. The result shown that the square shape has the highest value of von Mises resultant stress under static load. In contrast, the dry sliding contact on the triangle shape provided the highest von Mises stress distribution. The lowest value of von Mises stress can be found in the texture pattern of circle, square, and chevron under influence of load for 17 N, 30 N, and 50 N, respectively. Those texture patterns applied to surface of Ultra High Molecular Weight Polyethylene (UHMWPE) may have a strong effect on the reduction of wear rate and enhance tribological performance.
Vibratory tactile display for textures
NASA Technical Reports Server (NTRS)
Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi
1994-01-01
We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
Effects of anisotropic surface texture on the performance of ionic polymer-metal composite (IPMC)
NASA Astrophysics Data System (ADS)
He, Qingsong; Yu, Min; Ding, Haitao; Guo, Dongjie; Dai, Zhendong
2010-04-01
Ionic polymer metal composite (IPMC), an electrically activated polymer (EAP), has attracted great attention for the excellent properties such as large deformation, light weight, low noise, flexibility and low driving voltages, which makes the material a possible application as artificial muscle if the output force can be increased. To improve the property, we manufactured the Nafion membrane by casting from liquid solution, modified the surface by sandblasting or polishing, and obtained the isotropic and anisotropic surface texture respectively. The microstructure of the Nafion surface and metal electrode, effects of surface texture on the output force and displacement of IPMC were studied. Results show that the output force of IPMC with the anisotropic surface texture is 2~4 times higher than that with the isotropic surface texture without enormous sacrifice of the displacement. The output force may reach to 6.63gf (Sinusoidal 3.5V and 0.1Hz, length 20mm, width 5mm and thickness 0.66mm), which suggest an effective way to improve the mechanical properties of IPMC.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
Localization of puroindoline-a and lipids in bread dough using confocal scanning laser microscopy.
Dubreil, Laurence; Biswas, Samares C; Marion, Didier
2002-10-09
Puroindolines are lipid-binding proteins from wheat flour that play a significant role in bread crumb texture. The localization of wheat flour lipids and puroindoline-a (PIN-a) in bread dough was studied by confocal scanning laser microscopy (CSLM). Wheat lipids were located around gas cells (GC) and embedded within the protein-starch matrix (SPM) of the dough. PIN-a was mainly located in the matrix of dough, where it was associated with lipids. In contrast, in defatted dough, PIN-a was found around GC. Addition of puroindolines in bread dough induced a defatting of the gas bubble surface and a decrease of the lipid vesicles and/or droplet size embedded within the SPM. Therefore, puroindolines control the lipid partitioning within the different phases of dough, a phenomenon that should have important consequence on the gas bubble expansion and GC formation in the further stages (fermentation, baking) of the bread-making process.
Three-Dimensional Integrated Survey for Building Investigations.
Costantino, Domenica; Angelini, Maria Giuseppa
2015-11-01
The study shows the results of a survey aimed to represent a building collapse and the feasibility of the modellation as a support of structure analysis. An integrated survey using topographic, photogrammetric, and terrestrial laser techniques was carried out to obtain a three-dimensional (3D) model of the building, plans and prospects, and the particulars of the collapsed area. Authors acquired, by a photogrammetric survey, information about regular parties of the structure; while using laser scanner data they reconstructed a set of more interesting architectural details and areas with higher surface curvature. Specifically, the process of texture provided a detailed 3D structure of the areas under investigation. The analysis of the data acquired resulted to be very useful both in identifying the causes of the disaster and also in helping the reconstruction of the collapsed corner showing the contribution that the integrated surveys can give in preserving architectural and historic heritage. © 2015 American Academy of Forensic Sciences.
Optical and electrical properties of ion beam textured Kapton and Teflon
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1977-01-01
Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.
Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface.
Habibpourmoghadam, Atefeh; Lucchetti, Liana; Evans, Dean R; Reshetnyak, Victor Y; Omairat, Faissal; Schafforz, Samuel L; Lorenz, Alexander
2017-10-16
A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.
Thin Film Deposition Using Energetic Ions
Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan
2010-01-01
One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323
Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions
NASA Astrophysics Data System (ADS)
Hashmi, Galib; Hasanuzzaman, Muhammad; Basher, Mohammad Khairul; Hoq, Mahbubul; Rahman, Md. Habibur
2018-06-01
Implementing texturization process on the monocrystalline silicon substrate reduces reflection and enhances light absorption of the substrate. Thus texturization is one of the key elements to increase the efficiency of solar cell. Considering as-cut monocrystalline silicon wafer as base substrate, in this work different concentrations of Na2CO3 and NaHCO3 solution, KOH-IPA (isopropyl alcohol) solution and tetramethylammonium hydroxide solution with different time intervals have been investigated for texturization process. Furthermore, saw damage removal process was conducted with 10% NaOH solution, 20 wt% KOH-13.33 wt% IPA solution and HF/nitric/acetic acid solution. The surface morphology of saw damage, saw damage removed surface and textured wafer were observed using optical microscope and field emission scanning electron microscopy. Texturization causes pyramidal micro structures on the surface of (100) oriented monocrystalline silicon wafer. The height of the pyramid on the silicon surface varies from 1.5 to 3.2 µm and the inclined planes of the pyramids are acute angle. Contact angle value indicates that the textured wafer's surface fall in between near-hydrophobic to hydrophobic range. With respect to base material absolute reflectance 1.049-0.75% within 250-800 nm wavelength region, 0.1-0.026% has been achieved within the same wavelength region when textured with 0.76 wt% KOH-4 wt% IPA solution for 20 min. Furthermore, an alternative route of using 1 wt% Na2CO3-0.2 wt% NaHCO3 solution for 50 min has been exploited in the texturization process.
Sensor data fusion for textured reconstruction and virtual representation of alpine scenes
NASA Astrophysics Data System (ADS)
Häufel, Gisela; Bulatov, Dimitri; Solbrig, Peter
2017-10-01
The concept of remote sensing is to provide information about a wide-range area without making physical contact with this area. If, additionally to satellite imagery, images and videos taken by drones provide a more up-to-date data at a higher resolution, or accurate vector data is downloadable from the Internet, one speaks of sensor data fusion. The concept of sensor data fusion is relevant for many applications, such as virtual tourism, automatic navigation, hazard assessment, etc. In this work, we describe sensor data fusion aiming to create a semantic 3D model of an extremely interesting yet challenging dataset: An alpine region in Southern Germany. A particular challenge of this work is that rock faces including overhangs are present in the input airborne laser point cloud. The proposed procedure for identification and reconstruction of overhangs from point clouds comprises four steps: Point cloud preparation, filtering out vegetation, mesh generation and texturing. Further object types are extracted in several interesting subsections of the dataset: Building models with textures from UAV (Unmanned Aerial Vehicle) videos, hills reconstructed as generic surfaces and textured by the orthophoto, individual trees detected by the watershed algorithm, as well as the vector data for roads retrieved from openly available shapefiles and GPS-device tracks. We pursue geo-specific reconstruction by assigning texture and width to roads of several pre-determined types and modeling isolated trees and rocks using commercial software. For visualization and simulation of the area, we have chosen the simulation system Virtual Battlespace 3 (VBS3). It becomes clear that the proposed concept of sensor data fusion allows a coarse reconstruction of a large scene and, at the same time, an accurate and up-to-date representation of its relevant subsections, in which simulation can take place.
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2018-04-01
Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.
High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Yansheng; Tu, Rong, E-mail: turong@whut.edu.cn; Goto, Takashi
2013-08-01
Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakismore » (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.« less
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Arc-textured high emittance radiator surfaces
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1991-01-01
High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.
The Microstructure Evolution of a Fe₃Al Alloy during the LENS Process.
Karczewski, Krzysztof; Durejko, Tomasz; Czujko, Tomasz
2018-03-07
A Fe₃Al intermetallic alloy has been successfully prepared by the laser-engineered net shaping (LENS) process. The applied process parameters were selected to provide various cooling rates during the solidification of the laser-melted material. The macro- and microstructure and the micro- and macrotexture of Fe₃Al samples were investigated. The influence of the cooling rate on grain morphology and texture is discussed. For the applied cooling rate range of 0.64 × 10⁴ K/s-2.6 × 10⁴ K/s, the structure is characterized by the presence of columnar grains for which the growth is directed upwards from the substrate. The intensity of the microtexture varies with the height of the sample and the cooling rate. The intensity of the texture increases with the decrease in the cooling rate. The samples that were obtained with low and medium cooling rates are characterized by the well-developed <100> and <111> macrotextures. The Fe₃Al alloy that was produced with a high cooling rate did not show a specific texture, which is reflected in the fairly uniform distribution of the normalized density intensity. Only a very weak texture with a <100> type component was observed.
Ion sputter textured graphite electrode plates
NASA Technical Reports Server (NTRS)
Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)
1983-01-01
A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.
Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.
2016-01-01
The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.
Walgrave, Susan; Zelickson, Brian; Childs, James; Altshuler, Gregory; Erofeev, Andrei; Yaroslavsky, Ilya; Kist, David; Counters, Jeff
2008-11-01
Yucatan Black pig skin was treated with a 1,540-nm erbium (Er):glass laser (Lux1540, 15 and 30 mJ) and two 1,550-nm Er-doped fiber lasers (Fraxel SR750 and SR1500, 8, 10, and 12 mJ). Histologic sections were examined to determine the depth of damage and to correlate subjects' clinical response. Concurrently, six subjects with photodamaged skin received three split-face and ipsilateral dorsal hand treatments with the 1,540-nm Er:glass laser on one side and one of the 1,550-nm Er-doped lasers (Fraxel SR750) on the other. The 1,550-nm Er-doped lasers, using lower fluences and higher densities, produced shallower micro-columns than the 1,540-nm Er:glass device at higher fluences and lower densities (mean depths 250-275 microm vs 425-525 microm, respectively). Blinded assessors found greater overall improvement in pigmentation with the 1,550-nm Er-doped laser and better overall improvement in texture with the 1,540-nm Er:glass laser. Greater densities of shallower damage columns at lower energies may better improve pigmentation, whereas deeper injuries, using higher energies and moderate densities, may better improve texture. This pilot study did not compare similar fluences and histologic damage between the two systems, and newer available systems allow for greater depth of penetration.
Critical heat flux maxima during boiling crisis on textured surfaces
Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.
2015-01-01
Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098
Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.
Pan, Jui-Wen; Wang, Chia-Shen
2012-09-10
We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.
Ion beam sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1976-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.
Ion-beam-sputter modification of the surface morphology of biological implants
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Banks, B. A.
1977-01-01
The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion-beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron-bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion-beam-sputtered surfaces.
2014-10-07
While yesterday image showed a texture of oval depressions swiss cheese, this image from NASA 2001 Mars Odyssey spacecraft shows a linear surface texture of the south polar cap. This texture is described as looking like a thumbprint.
A common framework for the analysis of complex motion? Standstill and capture illusions
Dürsteler, Max R.
2014-01-01
A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e., modulation of luminance, color, depth, etc.). When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures) and motion transparency (the ability to perceive motion of both surfaces simultaneously). Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof) of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth transitions between their colors. This suggests that in respect to color motion perception the complex motions' pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual opponent color pathway. PMID:25566023
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
NASA Astrophysics Data System (ADS)
Darwiesh, M.; El-Sherif, Ashraf F.; El-Ghandour, Hatem; Aly, Hussein A.; Mokhtar, A. M.
2011-03-01
Optical imaging systems are widely used in different applications include tracking for portable scanners; input pointing devices for laptop computers, cell phones, and cameras, fingerprint-identification scanners, optical navigation for target tracking, and in optical computer mouse. We presented an experimental work to measure and analyze the laser speckle pattern (LSP) produced from different optical sources (i.e. various color LEDs, 3 mW diode laser, and 10mW He-Ne laser) with different produced operating surfaces (Gabor hologram diffusers), and how they affects the performance of the optical imaging systems; speckle size and signal-to-noise ratio (signal is represented by the patches of the speckles that contain or carry information, and noise is represented by the whole remaining part of the selected image). The theoretical and experimental studies of the colorimetry (color correction is done in the color images captured by the optical imaging system to produce realistic color images which contains most of the information in the image by selecting suitable gray scale which contains most of the informative data in the image, this is done by calculating the accurate Red-Green-Blue (RGB) color components making use of the measured spectrum for light sources, and color matching functions of International Telecommunication Organization (ITU-R709) for CRT phosphorus, Tirinton-SONY Model ) for the used optical sources are investigated and introduced to present the relations between the signal-to-noise ratios with different diffusers for each light source. The source surface coupling has been discussed and concludes that the performance of the optical imaging system for certain source varies from worst to best based on the operating surface. The sensor /surface coupling has been studied and discussed for the case of He-Ne laser and concludes the speckle size is ranged from 4.59 to 4.62 μm, which are slightly different or approximately the same for all produced diffusers (which satisfies the fact that the speckle size is independent on the illuminating surface). But, the calculated value of signal-tonoise ratio takes different values ranged from 0.71 to 0.92 for different diffuser. This means that the surface texture affects the performance of the optical sensor because, all images captured for all diffusers under the same conditions [same source (He-Ne laser), same distances of the experimental set-up, and the same sensor (CCD camera)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanxia
2017-01-15
Precipitate redistribution and texture evolution are usually two concurrent aspects accompanying grain refinement induced by various surface treatment. However, the detailed precipitate redistribution characteristics and process, as well as crystallographic texture in the surface refined grain layer, are still far from full understanding. In this study, we focused on the microstructural and crystallographic features of the sliding friction treatment (SFT) induced surface deformation layer in a 7050 aluminum alloy. With the combination of transmission electron microscopy (TEM) and high angle angular dark field scanning TEM (HAADF-STEM) observations, a surface ultrafine grain (UFG) layer composed of both equiaxed and lamellar ultrafinemore » grains and decorated by high density of coarse grain boundary precipitates (GBPs) were revealed. Further precession electron diffraction (PED) assisted orientation mapping unraveled that high angle grain boundaries rather than low angle grain boundaries are the most favorable nucleation sites for GBPs. The prominent precipitate redistribution can be divided into three successive and interrelated stages, i.e. the mechanically induced precipitate dissolution, solute diffusion and reprecipitation. The quantitative prediction based on pipe diffusion along dislocations and grain boundary diffusion proved the distribution feasibility of GBPs around UFGs. Based on PED and electron backscatter diffraction (EBSD) analyses, the crystallographic texture of the surface UFG layer was identified as a shear texture composed of major rotated cube texture (001) 〈110〉 and minor (111) 〈112〉, while that of the adjoining lamellar coarse grained matrix was pure brass. The SFT induced surface severe shear deformation is responsible for texture evolution. - Highlights: •The surface ultrafine grain layer in a 7050 aluminum alloy was focused. •Precipitate redistribution and texture evolution were discussed. •The quantitative prediction proved the distribution feasibility of GBPs. •Precession electron diffraction orientation mapping showed a shear texture.« less
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1985-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
New laser machining processes for shape memory alloys
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Paschko, Stefan; Goede, Martin
2001-04-01
Due to special material properties, shape memory alloys (SMA) are finding increasing attention in micro system technology. However, only a few processes are available for the machining of miniaturized SMA-components. In this connection, laser material processing offers completely new possibilities. This paper describes the actual status of two projects that are being carried out to qualify new methods to machine SMA components by means of laser radiation. Within one project, the laser material ablation process of miniaturized SMA- components using ultra-short laser pulses (pulse duration: approx. 200 fs) in comparison to conventional laser material ablation is being investigated. Especially for SMA micro- sensors and actuators, it is important to minimize the heat affected zone (HAZ) to maintain the special mechanical properties. Light-microscopic investigations of the grain texture of SMA devices processed with ultra-short laser pulses show that the HAZ can be neglected. Presently, the main goal of the project is to qualify this new processing technique for the micro-structuring of complex SMA micro devices with high precision. Within a second project, investigations are being carried out to realize the induction of the two-way memory effect (TWME) into SMA components using laser radiation. By precisely heating SMA components with laser radiation, local tensions remain near the component surface. In connection with the shape memory effect, these tensions can be used to make the components execute complicated movements. Compared to conventional training methods to induce the TWME, this procedure is faster and easier. Furthermore, higher numbers of thermal cycling are expected because of the low dislocation density in the main part of the component.
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew
2015-08-14
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...
2015-08-11
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
2015-05-01
In this perspective view, NASA MESSENGER spacecraft looked northwest over the Caloris Basin, a depression about 1500 km in diameter formed several billion years ago by the impact of a large projectile into the surface of Mercury. The mountain range at the edge of the basin can be seen as an arc in the background. In the foreground, we see a set of tectonic troughs, known as Pantheon Fossae, radiating from the center of the basin outward toward the edge of the basin interior. A 41-km-diameter impact crater, Apollodorus, is superposed just slightly off from the center of Pantheon Fossae. White and red are high topography, and greens and blues are low topography, with a total height differences of roughly 4 km. The MESSENGER spacecraft was launched in 2004 and ended it's orbital operations yesterday, April 30, 2015, by impacting Mercury's surface. Background image texture is provided by the Mercury Dual Imaging System (MDIS) instrument while color corresponds to surface elevation data obtained from the Mercury Laser Altimeter (MLA) experiment, with both draped over a digital elevation model derived from MLA altimetric data. Instrument: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Approximate Center Latitude: 33.7° N Approximate Center Longitude: 158.7° E Scale: Apollodorus crater is approximately 41 km (25 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19450
Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces
Grewal, H. S.; Nam Kim, Hong; Cho, Il-Joo; Yoon, Eui-Sung
2015-01-01
We investigate the role of viscous forces on the wetting of hydrophobic, semi-hydrophobic, and hydrophilic textured surfaces as second-order effects. We show that during the initial contact, the transition from inertia- to viscous-dominant regime occurs regardless of their surface topography and chemistry. Furthermore, we demonstrate the effect of viscosity on the apparent contact angle under quasi-static conditions by modulating the ratio of a water/glycerol mixture and show the effect of viscosity, especially on the semi-hydrophobic and hydrophobic textured substrates. The reason why the viscous force does not affect the apparent contact angle of the hydrophilic surface is explained based on the relationship between the disjoining pressure and surface chemistry. We further propose a wetting model that can predict the apparent contact angle of a liquid drop on a textured substrate by incorporating a viscous force component in the force balance equation. This model can predict apparent contact angles on semi-hydrophobic and hydrophobic textured surfaces exhibiting Wenzel state more accurately than the Wenzel model, indicating the importance of viscous forces in determining the apparent contact angle. The modified model can be applied for estimating the wetting properties of arbitrary engineered surfaces. PMID:26390958
Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo
2017-10-02
GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.
Point Cloud Analysis for Conservation and Enhancement of Modernist Architecture
NASA Astrophysics Data System (ADS)
Balzani, M.; Maietti, F.; Mugayar Kühl, B.
2017-02-01
Documentation of cultural assets through improved acquisition processes for advanced 3D modelling is one of the main challenges to be faced in order to address, through digital representation, advanced analysis on shape, appearance and conservation condition of cultural heritage. 3D modelling can originate new avenues in the way tangible cultural heritage is studied, visualized, curated, displayed and monitored, improving key features such as analysis and visualization of material degradation and state of conservation. An applied research focused on the analysis of surface specifications and material properties by means of 3D laser scanner survey has been developed within the project of Digital Preservation of FAUUSP building, Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo, Brazil. The integrated 3D survey has been performed by the DIAPReM Center of the Department of Architecture of the University of Ferrara in cooperation with the FAUUSP. The 3D survey has allowed the realization of a point cloud model of the external surfaces, as the basis to investigate in detail the formal characteristics, geometric textures and surface features. The digital geometric model was also the basis for processing the intensity values acquired by laser scanning instrument; this method of analysis was an essential integration to the macroscopic investigations in order to manage additional information related to surface characteristics displayable on the point cloud.
Method for Surface Texturing Titanium Products
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1998-01-01
The present invention teaches a method of producing a textured surface upon an arbitrarily configured titanium or titanium alloy object for the purpose of improving bonding between the object and other materials such as polymer matrix composites and/or human bone for the direct in-growth of orthopaedic implants. The titanium or titanium alloy object is placed in an electrolytic cell having an ultrasonically agitated solution of sodium chloride therein whereby a pattern of uniform "pock mark" like pores or cavities are produced upon the object's surface. The process is very cost effective compared to other methods of producing rough surfaces on titanium and titanium alloy components. The surface textures produced by the present invention are etched directly into the parent metal at discrete sites separated by areas unaffected by the etching process. Bonding materials to such surface textures on titanium or titanium alloy can thus support a shear load even if adhesion of the bonding material is poor.
NASA Astrophysics Data System (ADS)
Liu, Daiming; Wang, Qingkang; Wang, Qing
2018-05-01
Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.
Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces
Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles
2009-01-01
We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918
Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan
2015-01-01
Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.
NASA Astrophysics Data System (ADS)
Khatri, Chandra B.; Sharma, Satish C.
2018-02-01
Textured surface in journal bearings is becoming an important area of investigation during the last few years. Surface textures have the shapes of micro-dimple with a small diameter and depth having order of magnitude of bearing clearance. This paper presents the influence of couple stress lubricant on the circular and non-circular hole-entry hybrid journal bearing system and reports the comparative study between the textured and non-textured circular/non-circular hybrid journal bearing system. The governing Reynolds equation has been modified for the couple stress lubricant flow in the clearance of bearing and journal. The FEM technique has been applied to solve the modified Reynolds equation together with restrictor flow equation. The numerically simulated results indicate that the influence of couple stress lubricant is significantly more in textured journal bearing than that of non-textured journal bearing. Further, it has been observed that the textured two-lobe (δ = 1.1) hybrid journal bearing lubricated with couple stress lubricant provides larger values of fluid film stiffness coefficients and stability threshold speed against other bearings studied in the present paper.
Quantification of texture match of the skin graft: function and morphology of the stratum corneum.
Inoue, K; Matsumoto, K
1986-01-01
In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".
NASA Astrophysics Data System (ADS)
Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.
2015-11-01
Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.
Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia
2016-01-01
The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781
Laser illuminator and optical system for disk patterning
Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John
2000-01-01
Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.
Development of surface friction guidelines for LADOTD.
DOT National Transportation Integrated Search
2012-04-01
The main objective of this study was to develop a Louisiana pavement surface friction guideline that considers polished stone value (PSV) and mixture : type alike in terms of both micro- and macro- surface textures. The polishing and texture properti...
Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D
2010-10-01
Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.
Factors affecting the establishment of direct-seeded pine on surface-mine spoils
William T. Plass
1974-01-01
In a greenhouse study the emergence, survival, and growth of seven species of pine were related to chemical and textural characteristics of 12 Kentucky spoils. The results identify three factors that may affect the establishment of direct-seeded pine on surface-mine spoils. First, fine-textured spoil material may restrict seedling emergence. Coarse-textured sandstones...
Enabling Highly Effective Boiling from Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.
2018-04-01
A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.
NASA Astrophysics Data System (ADS)
Simura, Rayko; Taniuchi, Tetsuo; Sugiyama, Kazumasa; Fukuda, Tsuguo
2018-01-01
Ce-doped YAG/Al2O3 melt-growth composite (MGC) samples were grown by the micro-pulling-down (μ-PD) method, and their physical and chemical properties were investigated. The grown MGC samples exhibit fine-grained granophyric texture at the micron scale. Fluorescence spectra, excited by a blue laser diode, were recorded, and, in particular, the finely textured granophyric MGC sample doped with 0.1 at% Ce and prepared with a growth rate of 3 mm/min shows superior fluorescence properties without high-temperature deterioration of fluorescence intensity. The μ-PD method is demonstrated to be applicable for manufacturing finely textured MGC samples with improved luminous efficiency as phosphors for white LEDs.
NASA Astrophysics Data System (ADS)
Magdi, Sara; Swillam, Mohamed A.
2017-02-01
The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.
Chemical solution deposition method of fabricating highly aligned MgO templates
Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM
2012-01-03
A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.
The effects of phase on the perception of 3D shape from texture: psychophysics and modeling.
Thaler, Lore; Todd, James T; Dijkstra, Tjeerd M H
2007-02-01
Two experiments are reported in which observers judged the apparent shapes of elliptical cylinders with eight different textures that were presented with scrambled and unscrambled phase spectra. The results revealed that the apparent depths of these surfaces varied linearly with the ground truth in all conditions, and that the overall magnitude of surface relief was systematically underestimated. In general, the apparent depth of a surface is significantly attenuated when the phase spectrum of its texture is randomly scrambled, though the magnitude of this effect varies for different types of texture. A new computational model of 3D shape from texture is proposed in which apparent depth is estimated from the relative density of edges in different local regions of an image, and the predictions of this model are highly correlated with the observers' judgments.
Method for forming a nano-textured substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Sangmoo; Hu, Liangbing; Cui, Yi
A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less
Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.
Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting
2018-04-01
Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie
2014-01-01
Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151
Impact of Dental Implant Surface Modifications on Osseointegration
Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max
2016-01-01
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833
Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturing
NASA Astrophysics Data System (ADS)
Karme, Aleksis; Kallonen, Aki; Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti
Laser additive manufacturing is an established and constantly developing technique. Structural assessment should be a key component to ensure directed evolution towards higher level of manufacturing. The macroscopic properties of metallic structures are determined by their internal microscopic features, which are difficult to assess using conventional surface measuring methodologies. X-ray microtomography (CT) is a promising technique for three-dimensional non-destructive probing of internal composition and build of various materials. Aim of this study is to define the possibilities of using CT scanning as quality control method in LAM fabricated parts. Since the parts fabricated with LAM are very often used in high quality and accuracy demanding applications in various industries such as medical and aerospace, it is important to be able to define the accuracy of the build parts. The tubular stainless steel test specimens were 3D modelled, manufactured with a modified research AM equipment and imaged after manufacturing with a high-power, high-resolution CT scanner. 3D properties, such as surface texture and the amount and distribution of internal pores, were also evaluated in this study. Surface roughness was higher on the interior wall of the tube, and deviation from the model was systematically directed towards the central axis. Pore distribution showed clear organization and divided into two populations; one following the polygon model seams along both rims, and the other being associated with the concentric and equidistant movement path of the laser. Assessment of samples can enhance the fabrication by guiding the improvement of both modelling and manufacturing process.
NASA Astrophysics Data System (ADS)
Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.
2013-12-01
Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.
NASA Astrophysics Data System (ADS)
Rundqvist, Pär; Liljenfors, Tomas; Vorobiev, Andrei; Olsson, Eva; Gevorgian, Spartak
2006-12-01
Ba0.25Sr0.75TiO3 (BSTO) and SrTiO3 (STO) ferroelectric thin films were grown on templates of SiO2/Si, Pt /TiO2/SiO2/Si, and Pt /Au/Pt/TiO2/SiO2/Si using pulsed laser deposition. The microstructure and surface morphology of the multilayer stacks were studied using x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The microstructural analysis shows that the ferroelectric films are polycrystalline textured with a columnar structure where the grain size is 50-100nm. The BSTO films deposited at 800°C on an amorphous SiO2/Si template reveal a textured structure with a dominant (110) orientation, which is explained by a dominant growth of BSTO (110) grains due to the lower surface energy of the (110) phase. The STO and BSTO films deposited at 650°C on the Pt /TiO2/SiO2/Si and Pt /Au/Pt/TiO2/SiO2/Si templates, respectively, reveal a structure with a dominant (111) orientation, which is explained by the dominant growth of BSTO (STO) (111) grains imposed by the underlying Pt (111) texture. In all cases the ferroelectric films are subject to compressive in-plane strain which is different for different grain orientations. Strain modified permittivities of ferroelectric films grown on different templates are calculated from first principles for different orientations and compared with measured results. The correlations between grain orientations, grain sizes, grain boundaries, strain, and dielectric permittivity of ferroelectric films on different templates are discussed.
Structure, biomimetics, and fluid dynamics of fish skin surfaces*
NASA Astrophysics Data System (ADS)
Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia
2016-10-01
The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer develops over the denticle surface and we propose that there is limited flow under the expanded surfaces of shark denticles. The diversity of fish scale types and textures and the effect of these surfaces on boundary layer flows and fish locomotor energetics is a rich area for future investigation.
Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces
Li, Qiming; Wang, George T
2015-01-13
A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.
Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.
1979-01-01
A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.
NASA Astrophysics Data System (ADS)
Kuo, Chung-Feng Jeffrey; Quang Vu, Huy; Gunawan, Dewantoro; Lan, Wei-Luen
2012-09-01
Laser scribing process has been considered as an effective approach for surface texturization on thin film solar cell. In this study, a systematic method for optimizing multi-objective process parameters of fiber laser system was proposed to achieve excellent quality characteristics, such as the minimum scribing line width, the flattest trough bottom, and the least processing edge surface bumps for increasing incident light absorption of thin film solar cell. First, the Taguchi method (TM) obtained useful statistical information through the orthogonal array with relatively fewer experiments. However, TM is only appropriate to optimize single-objective problems and has to rely on engineering judgment for solving multi-objective problems that can cause uncertainty to some degree. The back-propagation neural network (BPNN) and data envelopment analysis (DEA) were utilized to estimate the incomplete data and derive the optimal process parameters of laser scribing system. In addition, analysis of variance (ANOVA) method was also applied to identify the significant factors which have the greatest effects on the quality of scribing process; in other words, by putting more emphasis on these controllable and profound factors, the quality characteristics of the scribed thin film could be effectively enhanced. The experiments were carried out on ZnO:Al (AZO) transparent conductive thin film with a thickness of 500 nm and the results proved that the proposed approach yields better anticipated improvements than that of the TM which is only superior in improving one quality while sacrificing the other qualities. The results of confirmation experiments have showed the reliability of the proposed method.
Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Spadoni, A.; Antonaia, A.
2013-12-01
Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin
2016-01-01
Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996
Growth of biaxially textured template layers using ion beam assisted deposition
NASA Astrophysics Data System (ADS)
Park, Seh-Jin
A two-step IBAD (ion beam assisted deposition) method is investigated, and compared to the conventional IBAD methods. The two step method uses surface energy anisotropy to achieve uniaxial texture and ion beam irradiation for biaxial texture. The biaxial texture was achieved by selective surface etching and enhanced by grain overgrowth. In this method, biaxial texture alignment is performed on a (001) uniaxially textured buffer layer. The material selected for achieving uniaxial texture, YBCO (YBa2Cu3O7-x), has strong surface energy anisotropy. YBCO is chemically susceptible to the reaction with the adjacent layer. Yttria stabilized zirconia (YSZ) was used to prevent the reaction between YBCO and the substrates (polycrystalline Ni alloy [Hastelloy] and amorphous SiNx/Si). A SrTiO3 layer was deposited on the uniaxially textured YBCO layer to retard stoichiometry change with subsequent processing. STO is well lattice matched with YBCO. A top layer of Ni was then deposited. The Ni layer was used for studying the effect of grain overgrowth. The obtained uniaxial Ni films were used for subsequent ion beam processing. Ar ion beam irradiation onto the uniaxially textured Ni film was used to study the effect of selective grain etching in achieving in-plane aligned Ni grains. Additional Ni deposition induces the overgrowth of the in-plane aligned Ni grains and, finally, the overall in-plane alignment. The in-plane alignment is examined with XRD phi scan. The effect of surface polarity of insulating oxide substrates on the epitaxial growth behavior was investigated. The lattice strain energy was the most important factor for determining the orientation of Ni films on a non-polar surface. However, for a polar surface, the surface energy plays an important role in determining the final orientation of the Ni films based on the experimental and theoretical results. Y2O3 growth behavior was also studied. The lattice strain energy is the most important factor for Y2O3 growth on single crystalline substrates. The surface energy anisotropy is the most important factor for the growth on amorphous substrates. The XRD phi scan study shows that Ar ion beam irradiation with favorable angle of incidence enhances the in-plane alignment of Y2O3 films grown on randomly oriented substrates due to the ion channeling.
Loch-Wilkinson, Anna; Beath, Kenneth J; Knight, Robert John William; Wessels, William Louis Fick; Magnusson, Mark; Papadopoulos, Tim; Connell, Tony; Lofts, Julian; Locke, Michelle; Hopper, Ingrid; Cooter, Rodney; Vickery, Karen; Joshi, Preeti Avinash; Prince, H Miles; Deva, Anand K
2017-10-01
The association between breast implants and breast implant-associated anaplastic large cell lymphoma (ALCL) has been confirmed. Implant-related risk has been difficult to estimate to date due to incomplete datasets. All cases in Australia and New Zealand were identified and analyzed. Textured implants reported in this group were subjected to surface area analysis. Sales data from three leading breast implant manufacturers (i.e., Mentor, Allergan, and Silimed) dating back to 1999 were secured to estimate implant-specific risk. Fifty-five cases of breast implant-associated ALCL were diagnosed in Australia and New Zealand between 2007 and 2016. The mean age of patients was 47.1 years and the mean time of implant exposure was 7.46 years. There were four deaths in the series related to mass and/or metastatic presentation. All patients were exposed to textured implants. Surface area analysis confirmed that higher surface area was associated with 64 of the 75 implants used (85.3 percent). Biocell salt loss textured (Allergan, Inamed, and McGhan) implants accounted for 58.7 percent of the implants used in this series. Comparative analysis showed the risk of developing breast implant-associated ALCL to be 14.11 times higher with Biocell textured implants and 10.84 higher with polyurethane (Silimed) textured implants compared with Siltex textured implants. This study has calculated implant-specific risk of breast implant-associated ALCL. Higher-surface-area textured implants have been shown to significantly increase the risk of breast implant-associated ALCL in Australia and New Zealand. The authors present a unifying hypothesis to explain these observations.
Control and characterization of textured, hydrophobic ionomer surfaces
NASA Astrophysics Data System (ADS)
Wang, Xueyuan
Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The surfaces after CVD of silane exhibited water contact angle of 152° and the water droplet stuck to the surfaces without falling even when tilted upside down. This kind of sticky superhydrophobic surface would have potential applications in no-loss transport of liquid, and cleaning robots.
NASA Astrophysics Data System (ADS)
Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan
2017-08-01
The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.
NASA Astrophysics Data System (ADS)
Tejada, A.; Braunger, S.; Korte, L.; Albrecht, S.; Rech, B.; Guerra, J. A.
2018-05-01
The complex refractive indices of formamidinium cesium lead mixed-halide [FA0.83Cs0.17Pb(I1- xBrx)3] perovskite thin films of compositions ranging from x = 0 to 0.4, with both flat and wrinkle-textured surface topographies, are reported. The films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuation model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.
Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.
Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong
2013-01-01
We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1977-01-01
It was found that ion beam texturing of silicon surfaces can be used to increase the effective surface area of MOS capacitors. There is, however, a problem with low dielectric breakdown. Preliminary work was begun on the fabrication of ion implanted resistors on textured surfaces and the potential improvement of wire bond strength by bonding to a textured surface. In the area of ion beam sputtering, the techniques for sputtering PVC were developed. A PVC target containing valinomycin was used to sputter an ion selective membrane on a field effect transistor to form a potassium ion sensor.
Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire
NASA Astrophysics Data System (ADS)
Zorina, M. A.; Karabanalov, M. S.; Stepanov, S. I.; Demakov, S. L.; Loginov, Yu. N.; Lobanov, M. L.
2018-02-01
The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.
Details on Silica-Rich Elk Target near Marias Pass
2015-12-17
This image from the Chemistry and Camera (ChemCam) instrument on NASA's Curiosity Mars rover shows detailed texture of a rock target called "Elk" on Mars' Mount Sharp, revealing laminations that are present in much of the Murray Formation geological unit of lower Mount Sharp. Researchers also used ChemCam's laser and spectrometers to assess Elk's composition and found it to be rich in silica. The image covers a patch of rock surface about 2.8 inches (7 centimeters) across. It was taken on May 22, 2015, during the mission's 992nd Martian day, or sol. ChemCam's Remote Micro-Imager camera, on top of Curiosity's mast, captured the image from a distance of about 9 feet (2.75 meters). Annotations in red identify five points on Elk that were hit with ChemCam's laser. Each of the highlighted points is a location where ChemCam fired its laser 30 times to ablate a tiny amount of target material. By analyzing the light emitted from this laser-ablation, researchers can deduce the composition of that point. For some purposes, composition is presented as a combination of the information from multiple points on the same rock. However, using the points individually can track fine-scale variations in targets. http://photojournal.jpl.nasa.gov/catalog/PIA20267
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
Spontaneous recovery of superhydrophobicity on nanotextured surfaces
Prakash, Suruchi; Xi, Erte; Patel, Amish J.
2016-01-01
Rough or textured hydrophobic surfaces are dubbed “superhydrophobic” due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic “Cassie state” contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the “Wenzel state” under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications. PMID:27140619
Neiva, Rodrigo F.; Gil, Luiz Fernando; Tovar, Nick; Janal, Malvin N.; Marao, Heloisa Fonseca; Pinto, Nelson; Coelho, Paulo G.
2016-01-01
Aims. This study evaluated the effects of L-PRF presence and implant surface texture on bone healing around immediately placed implants. Methods. The first mandibular molars of 8 beagle dogs were bilaterally extracted, and implants (Blossom™, Intra-Lock International, Boca Raton, FL) were placed in the mesial or distal extraction sockets in an interpolated fashion per animal. Two implant surfaces were distributed per sockets: (1) dual acid-etched (DAE, micrometer scale textured) and (2) micrometer/nanometer scale textured (Ossean™ surface). L-PRF (Intraspin system, Intra-Lock International) was placed in a split-mouth design to fill the macrogap between implant and socket walls on one side of the mandible. The contralateral side received implants without L-PRF. A mixed-model ANOVA (at α = 0.05) evaluated the effect of implant surface, presence of L-PRF, and socket position (mesial or distal), individually or in combination on bone area fraction occupancy (BAFO). Results. BAFO values were significantly higher for the Ossean relative to the DAE surface on the larger mesial socket. The presence of L-PRF resulted in higher BAFO. The Ossean surface and L-PRF presence resulted in significantly higher BAFO. Conclusion. L-PRF and the micro-/nanometer scale textured surface resulted in increased bone formation around immediately placed implants. PMID:28042577
NASA Astrophysics Data System (ADS)
Xu, Zhongtang; Yuan, Pusheng; Ma, Yanwei; Cai, Chuanbing
2017-03-01
We report on the transport properties of FeSe0.5Te0.5 (FST) thin films fabricated on less-well-textured flexible coated conductor templates with LaMnO3 (LMO) as buffer layers using pulsed laser deposition. The LMO buffer layers exhibit large in-plane misalignment of ˜7.72°, which is unfavorable for cuprate-coated conductors due to the high grain boundaries. The FST thin films show a superconducting transition temperature of 16.8 K, higher than that of bulk materials due to the compressive strain between LMO and FST. Atomic force microscopy observations reveal that island-like features appear at the surfaces of both LMO and FST, confirming the island growth mode. A self-field transport critical-current density of up to 0.43 MA cm-2 at 4.2 K has been observed in FST thin films, which is much higher than that in powder-in-tube processed FST tapes. The films are capable of carrying current densities of over 105 A cm-2 in the whole applied magnetic field up to 9 T, showing great potential for high-field applications. The results indicate that, for FST, highly textured metal tapes are not needed to produce coated conductors with high performance, which is of great advantage over cuprate-coated conductors.
Lu, Hailin; Ren, Shanshan; Guo, Junde; Li, Yue; Li, Jianhui; Dong, Guangneng
2017-09-01
Arthroplasty brings the wear problems because of body fluid has poor performance as lubricant. Lubricant which is used in artificial joints will rapidly degrade and be absorbed by human body after injecting. To prolong the lubricant's effectiveness, this study prepared chitosan/poly(ethylene glycol) (CS/PEG) and textures to play a role in joint lubrication and wear protection. Chitosan (CS) and poly(ethylene glycol) which have biocompatibility and biodegradability properties can be used in human body. The tribological results shown that CS/PEG sol has excellent performance when this sol was composed by 2wt% CS and 30wt% PEG, the average friction coefficient below 0.016 under the condition of 30-90N load (pressure 4.2-12.6MPa). In this study, CS/PEG was added in the texture of artificial joints, then the surfaces of the CS/PEG formed gel via NaOH solidification effect. The CS/PEG gel film could prevent the CS/PEG sol from diluting in body fluid. Meanwhile, FT-IR, XRD, UV/vis and Raman spectra revealed that CS associated with PEG via hydrogen bond effect may form a particular structure, which leaded the good tribological performance. This study provides a new, simple and green approach to enhance tribological performances of artificial joints. Copyright © 2017. Published by Elsevier B.V.
Simulation study on improving efficiencies of perovskite solar cell: Introducing nano textures on it
NASA Astrophysics Data System (ADS)
Xie, Ziang; Sun, Shuren; Wang, Wei; Qin, Laixiang; Yan, Yu; Hou, Ruixiang; Qin, G. G.
2018-03-01
We report that the power conversion efficiencies (PCEs) of the planar CH3NH3PbI3 solar cells (SCs) can be largely improved by fabricating nano textures on the SC surface. With the finite difference time domain (FDTD) method, the ultimate efficiencies of the planar CH3NH3PbI3 SCs with two types of nano textures are investigated: the column-shaped nano hollow (CLNH) array and the cone-shaped nano hollow (CNNH) array. For the nano textured CH3NH3PbI3 SCs with photovoltaic layer depth in the range of 125 nm ∼ 500 nm, when the array period and filling fraction of the nano textures are optimized, in comparison with the planar ones, their PCE increased 42% ∼ 84% for the CLNH textured ones, and 52% ∼ 63% for the CNNH textured ones. As a conclusion, introduction of nano textures on the SC surface is a promising route for improving the PCEs of the perovskite SCs.
Texture etching of (100) silicon for solar cells
NASA Technical Reports Server (NTRS)
Dyer, L. D.
1985-01-01
A chemical means of creating the proper kind of light collection texture on (100) silicon slices is discussed. Texturing of (100) silicon surfaces in sodium or potassium hydroxides occurs by the growth of a reaction product in a random array of surface sites, which leads to pyramids remaining at the sites after other parts of the surface dissolve away. A new texture-promoting influence, a proximity effect, was discovered in this work. An attempt was made to quantify the various promotional effects. The purpose of the present paper is to: (1) explain in detail the attempt at understanding and quantifying texturing; (2) give an experimental description with observations on the proximity effect and the effect of additions of water glass that were discovered during this work; and (3) show that the precipitate or growth models account for almost all of the known promotional effects.
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.
Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1997-01-01
This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.
NASA Astrophysics Data System (ADS)
Zheng, Chenju; Lv, Jiajiang; Zhou, Shengjun; Liu, Sheng
2017-04-01
For improvement of the light extraction efficiency of GaN-based lateral light-emitting diodes (LEDs), a p-GaN surface was textured through a low-temperature (850 °C) p-GaN growth process. However, the p-GaN texturing process caused luster inconsistency between the n-pad and the p-pad due to the roughness difference between the indium-tin oxide (ITO) and the n-GaN beneath the pads, which decreased the image recognition rate and accuracy during the wire bonding process for LED packaging. Therefore, an under-etching process was proposed to improve the luster consistency between the p-pad and the n-pad of GaN-based LEDs with a naturally textured p-GaN surface. The under-etching process decreased the roughness of the exposed n-GaN surface from 109 nm to 73.1 nm, which was similar to the roughness (74.8 nm) of the ITO surface. Optical microscopy showed that LEDs with a naturally textured p-GaN surface exhibited excellent luster consistency between the n-pad and the p-pad after the proposed under-etching process had been applied. Further analysis indicated that the LEDs with a naturally textured p-GaN surface showed no degradation of optical or the electrical performance after the proposed under-etching process had been applied. At a 20-mA injection current, the light output power of a LED with naturally a textured p-GaN surface was 8.7% higher than that of a LED with a smooth p-GaN surface.
Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour
Wang, Yen-Jen; Lo, Teng-Yuan; Wu, Chieh-Hsi; Liu, Dean-Mo
2013-01-01
In this communication, we report a facile nanotopographical control over a stainless steel surface via an electrophoretic deposition of colloidal amphiphilic chitosan for preferential growth, proliferation or migration of vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). Atomic force microscopy revealed that the colloidal surface exhibited a deposition time-dependent nanotopographical evolution, wherein two different nanotopographic textures indexed by ‘kurtosis’ (Rkur) value were easily designed, which were termed as ‘sharp’ (i.e. high peak-to-valley texture) surface and ‘flat’ (i.e. low peak-to-valley texture) surface. Cellular behaviour of VSMCs and HUVECs on both surfaces demonstrated topographically dependent morphogenesis, adherent responses and biochemical properties in comparison with bare stainless steel. The formation of a biofunctionalized surface upon a facile colloidal chitosan deposition envisions the potential application towards numerous biomedical devices, and this is especially promising for cardiovascular stents wherein a new surface with optimized texture can be designed and is expected to create an advantageous environment to stimulate HUVEC growth for improved healing performance. PMID:23804439
Scatter metrology of photovoltaic textured surfaces
NASA Astrophysics Data System (ADS)
Stover, John C.; Hegstrom, Eric L.
2010-09-01
In recent years it has become common practice to texture many of the layered surfaces making up photovoltaic cells in order to increase light absorption and efficiency. Profilometry has been used to characterize the texture, but this is not satisfactory for in-line production systems which move surfaces too fast for that measurement. Scatterometry has been used successfully to measure roughness for many years. Its advantages include low cost, non-contact measurement and insensitivity to vibration; however, it also has some limitations. This paper presents scatter measurements made on a number of photovoltaic samples using two different scatterometers. It becomes clear that in many cases the surface roughness exceeds the optical smoothness limit (required to calculate surface statistics from scatter), but it is also clear that scatter measurement is a fast, sensitive indicator of texture and can be used to monitor whether design specifications are being met. A third key point is that there is a lot of surface dependent information available in the angular variations of the measured scatter. When the surface is inspected by integrating the scatter signal (often called a "Haze" measurement) this information is lost.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
Impact of laser anneal on NiPt silicide texture and chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feautrier, C.; Ozcan, A. S.; Lavoie, C.
We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. Themore » laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.« less
Impact of laser anneal on NiPt silicide texture and chemical composition
NASA Astrophysics Data System (ADS)
Feautrier, C.; Ozcan, A. S.; Lavoie, C.; Valery, A.; Beneyton, R.; Borowiak, C.; Clément, L.; Pofelski, A.; Salem, B.
2017-06-01
We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. The laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2016-01-01
Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard
2012-02-15
The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less
Seals Having Textured Portions for Protection in Space Environments
NASA Technical Reports Server (NTRS)
Daniels, Christopher (Inventor); Garafolo, Nicholas (Inventor)
2016-01-01
A sealing construct for a space environment includes a seal-bearing object, a seal on the seal-bearing object, and a seal-engaging object. The seal includes a seal body having a sealing surface, and a textured pattern at the sealing surface, the textured pattern defining at least one shaded channel surface. The seal-engaging object is selectively engaged with the seal-bearing object through the seal. The seal-engaging object has a sealing surface, wherein, when the seal-engaging object is selectively engaged with the seal-bearing object, the sealing surface of the seal-engaging object engages the sealing surface of the seal, and the seal is compressed between the seal-bearing object and the seal-engaging object such that at least one shaded channel surface engages the sealing surface of the seal-engaging object.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.
Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D
2010-02-01
Real-life visual object recognition requires the processing of more than just geometric (shape, size, and orientation) properties. Surface properties such as color and texture are equally important, particularly for providing information about the material properties of objects. Recent neuroimaging research suggests that geometric and surface properties are dealt with separately within the lateral occipital cortex (LOC) and the collateral sulcus (CoS), respectively. Here we compared objects that differed either in aspect ratio or in surface texture only, keeping all other visual properties constant. Results on brain-intact participants confirmed that surface texture activates an area in the posterior CoS, quite distinct from the area activated by shape within LOC. We also tested 2 patients with visual object agnosia, one of whom (DF) performed well on the texture task but at chance on the shape task, whereas the other (MS) showed the converse pattern. This behavioral double dissociation was matched by a parallel neuroimaging dissociation, with activation in CoS but not LOC in patient DF and activation in LOC but not CoS in patient MS. These data provide presumptive evidence that the areas respectively activated by shape and texture play a causally necessary role in the perceptual discrimination of these features.
Method for adhering a coating to a substrate structure
Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey
2015-02-17
A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.
NASA Astrophysics Data System (ADS)
Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan
2017-12-01
In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.
Imbibition of a textured surface decorated by short pillars with rounded edges.
Obara, Noriko; Okumura, Ko
2012-08-01
Imbibition of micropatterned surfaces can have broad technological and fundamental implications for areas ranging from biomedical devices and fuel transport to writing with ink. Despite rapidly growing interests aimed at various applications, a fundamental physical understanding of the imbibition dynamics is still in its infancy. Recently, two simple scaling regimes for the dynamics have been established for a textured surface decorated with long pillars whose top and bottom edges are sharp. Here, we study the imbibition dynamics of textured surfaces decorated by short pillars with rounded edges, to find a different scaling regime. Interestingly, this regime originates not from the balance of two effects but from the hybrid balance of three effects. Furthermore, this scaling law can be universal or independent of the details of the texture geometry. We envision that this potentially universal scaling regime might be ubiquitous and will be useful in the handling and transportation of a small amount of liquid.
Forward impact extrusion of surface textured steel blanks using coated tooling
NASA Astrophysics Data System (ADS)
Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz
2017-10-01
A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.
Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E
2016-10-01
We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.
Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept
NASA Astrophysics Data System (ADS)
Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles
2016-09-01
3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.
Marini, Leonardo
2009-12-01
Many different lasers, polychromatic high-intensity light sources (PCLs), and RF devices have claimed clinical efficacy in rejuvenating the skin. In this study, the sequential combination of two different laser wavelengths was evaluated to produce reliably significant clinical improvements optimizing treatment parameters. The left volar aspects of the forearms of four volunteers were treated with nine different parameter settings using a variable pulsewidth fractional Er:YAG 2940-nm laser with and without air cooling. The pain perception level was recorded on a 0-10 point scale (0=No pain; 10=Most severe pain). Three evaluations were made: during treatment, immediately after treatment, and 5 minutes after treatment. The same investigation was made on the right volar aspects of the same four volunteers using a short-pulse, random pattern, 3-mm spot, scanner-assisted Nd-YAG 1064-nm laser at 0.3 ms pulsewidth at seven different parameter settings. Clinical evaluations were made concerning erythema and edema 3 days after treatment, as well as pre-operative and 60 days postoperative skin texture plus color uniformity. Considering that the majority of cosmetic patients are willing to accept a relatively short and uneventful downtime (2-4 days according to a study we are presently conducting) and do prefer to limit their intra- and postoperative pain to a minimum, the best combination of clinical improvement matching these two important parameters were selected for our study. A treatment strategy combining two sequential passes of long-pulse Nd:YAG laser (Nd:YAG-LP) at 0.3 and 35 ms followed by two passes of long-pulse fractional Er:YAG laser (Er:YAG-FT) at 600 micros was designed to treat the facial regions of 10 volunteers affected by a combination of intrinsic (chrono-) and extrinsic (mostly photo-) aging. The pain perception level was recorded on a 0-10 scale (0=No pain; 10=Most severe pain). Three evaluations were made: during, immediately after, and 5 minutes after treatment. Erythema and edema were evaluated on a 0-3 point scale (0=No clinical signs; 3=Severe Clinical signs) at 7, 15 and 30 days. Improvements were determined by blind evaluation of photographs before, at 4 weeks, and at 8 weeks following treatments. Patient satisfaction was also evaluated on a 0-4 point scale (0=No satisfaction; 4=Excellent perceived improvement, 76-100%). At the 30-day follow-up, participants had clinically detectable improvements of facial telangiectasias (1-25%), lentigines (25-50%), diffuse dyspigmentation (25-75%), fine lines (25-75%), and skin texture (25-75%). Clinical improvements were maintained at the 60-day follow-up, demonstrating the prolonged photothermally induced biological effect on skin function and texture. All volunteers confirmed their willingness to undergo the same procedure again to maintain and possibly improve their clinical results. Further clinical evaluations at 4 and 6 months will therefore be needed to identify a suitably convenient interval between two consecutive procedures. The present study demonstrates objective and subjective improvements in fine lines, skin texture and dyspigmentation of facial skin after one sequential non-ablative and ablative laser treatment combining two different laser sources (Nd:YAG laser + Er:YAG laser).
High-Resolution Surface Reconstruction from Imagery for Close Range Cultural Heritage Applications
NASA Astrophysics Data System (ADS)
Wenzel, K.; Abdel-Wahab, M.; Cefalu, A.; Fritsch, D.
2012-07-01
The recording of high resolution point clouds with sub-mm resolution is a demanding and cost intensive task, especially with current equipment like handheld laser scanners. We present an image based approached, where techniques of image matching and dense surface reconstruction are combined with a compact and affordable rig of off-the-shelf industry cameras. Such cameras provide high spatial resolution with low radiometric noise, which enables a one-shot solution and thus an efficient data acquisition while satisfying high accuracy requirements. However, the largest drawback of image based solutions is often the acquisition of surfaces with low texture where the image matching process might fail. Thus, an additional structured light projector is employed, represented here by the pseudo-random pattern projector of the Microsoft Kinect. Its strong infrared-laser projects speckles of different sizes. By using dense image matching techniques on the acquired images, a 3D point can be derived for almost each pixel. The use of multiple cameras enables the acquisition of a high resolution point cloud with high accuracy for each shot. For the proposed system up to 3.5 Mio. 3D points with sub-mm accuracy can be derived per shot. The registration of multiple shots is performed by Structure and Motion reconstruction techniques, where feature points are used to derive the camera positions and rotations automatically without initial information.
Use of biomimetic hexagonal surface texture in friction against lubricated skin.
Tsipenyuk, Alexey; Varenberg, Michael
2014-05-06
Smooth contact pads that evolved in insects, amphibians and mammals to enhance the attachment abilities of the animals' feet are often dressed with surface micropatterns of different shapes that act in the presence of a fluid secretion. One of the most striking surface patterns observed in contact pads of these animals is based on a hexagonal texture, which is recognized as a friction-oriented feature capable of suppressing both stick-slip and hydroplaning while enabling friction tuning. Here, we compare this design of natural friction surfaces to textures developed for working in similar conditions in disposable safety razors. When slid against lubricated human skin, the hexagonal surface texture is capable of generating about twice the friction of its technical competitors, which is related to it being much more effective at channelling of the lubricant fluid out of the contact zone. The draining channel shape and contact area fraction are found to be the most important geometrical parameters governing the fluid drainage rate.
NASA Technical Reports Server (NTRS)
2008-01-01
The center of the red circle on this map shows where NASA's Phoenix Mars Lander eased down to the surface of Mars, at approximately 68 degrees north latitude, 234 degrees east longitude. Before Phoenix landed, engineers had predicted it would land within the blue ellipse. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis. The map shows a color-coded interpretation of geomorphic units categories based on the surface textures and contours. The geomorphic mapping is overlaid on a shaded relief map based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Textural evolution of partially-molten planetary materials in microgravity
NASA Technical Reports Server (NTRS)
Watson, E. B.
1987-01-01
Recent Earth-based experiments examining the textural evolution of partially-molten rocks have revealed two important ways in which surface energy considerations affect magma. An initial experimental program addressing surface-energy effects on partially-molten materials in microgravity would involve simple, isothermal treatment of natural samples (meteorites, perioditic komatiite) at preselected temperatures in the melting range. Textural evolution would be assessed by time studies in which the only experiment variable would be run duration. Textural characterization of each sample would be done by quenching, recover, and sectioning for generally later, computer-aided interpretation of features.
NASA Astrophysics Data System (ADS)
Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping
2017-04-01
With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.
Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D
2015-11-01
Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments. Copyright © 2015 Elsevier B.V. All rights reserved.
Tierney, Emily P
2011-07-01
Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.
Basics of Lasers: History, Physics, and Clinical Applications.
Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O
2016-07-01
Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice). Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Zhenghe; Kumar, Raj; Hunte, Frank; Narayan, Jay; Kim, Ki Wook; North Carolina State University Team
Bi2SexTe3-x topological insulator thin films were grown on Al2O3 (0001) substrate by pulsed laser deposition (PLD). XRD and other structural characterization measurements confirm the growth of the textured Bi2SexTe3-x thin films on Al2O3 substrate. The magneto-transport properties of thick and thin Þlms were investigated to study the effect of thickness on the topological insulator properties of the Bi2SexTe3 - x films. A pronounced semiconducting behavior with a highly insulating ground state was observed in the resistivity vs. temperature data. The presence of the weak anti-localization (WAL) effect with a sharp cusp in the magnetoresistance measurements confirms the 2-D surface transport originating from the TSS in Bi2SexTe3-x TI films. A high fraction of surface transport is observed in the Bi2SexTe3-x TI thin films which decreases in Bi2SexTe3-x TI thick films. The Cosine (θ) dependence of the WAL effect supports the observation of a high proportion of 2-D surface state contribution to overall transport properties of the Bi2SexTe3-x TI thin films. Our results show promise that high quality Bi2SexTe3-x TI thin films with significant surface transport can be grown by PLD method to exploit the exotic properties of the surface transport in future generation spintronic devices. This work was supported, in part, by National Science Foundation ECCS-1306400 and FAME.
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...
2016-01-20
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush
Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less
Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
Stanton, Morgan M; Ducker, Robert E; MacDonald, John C; Lambert, Christopher R; McGimpsey, W Grant
2012-02-01
Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples. Copyright © 2011 Elsevier Inc. All rights reserved.
Influence of citric acid on the surface texture of glass ionomer restorative materials
Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani
2014-01-01
Aim: This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Materials and Methods: Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. Results: The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. Conclusion: The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials. PMID:25298643
Influence of citric acid on the surface texture of glass ionomer restorative materials.
Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani
2014-09-01
This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials.
Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques
Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.
2012-01-01
Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed. PMID:22720050
Stemp, W James; Lerner, Harry J; Kristant, Elaine H
2013-01-01
Although previous use-wear studies involving quartz and quartzite have been undertaken by archaeologists, these are comparatively few in number. Moreover, there has been relatively little effort to quantify use-wear on stone tools made from quartzite. The purpose of this article is to determine the effectiveness of a measurement system, laser scanning confocal microscopy (LSCM), to document the surface roughness or texture of experimental Mistassini quartzite scrapers used on two different contact materials (fresh and dry deer hide). As in previous studies using LSCM on chert, flint, and obsidian, this exploratory study incorporates a mathematical algorithm that permits the discrimination of surface roughness based on comparisons at multiple scales. Specifically, we employ measures of relative area (RelA) coupled with the F-test to discriminate used from unused stone tool surfaces, as well as surfaces of quartzite scrapers used on dry and fresh deer hide. Our results further demonstrate the effect of raw material variation on use-wear formation and its documentation using LSCM and RelA. © Wiley Periodicals, Inc.
Method of sputter etching a surface
Henager, Jr., Charles H.
1984-01-01
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.
Method of sputter etching a surface
Henager, C.H. Jr.
1984-02-14
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Simpson, John T.; Aytug, Tolga
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
Quantification of Shape, Angularity, and Surface texture of Base Course Materials
DOT National Transportation Integrated Search
1998-01-01
A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...
Surface texturing of superconductors by controlled oxygen pressure
Chen, N.; Goretta, K.C.; Dorris, S.E.
1999-01-05
A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.
Large area bulk superconductors
Miller, Dean J.; Field, Michael B.
2002-01-01
A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
Surface texturing of superconductors by controlled oxygen pressure
Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.
1999-01-01
A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
Infrared Radiation Filament And Metnod Of Manufacture
Johnson, Edward A.
1998-11-17
An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.
NASA Astrophysics Data System (ADS)
Jerng, Dong Wook; Kim, Dong Eok
2018-01-01
The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.
Efficacy and Safety of Fractional CO2 Laser Resurfacing in Non-hypertrophic Traumatic and Burn Scars
Majid, Imran; Imran, Saher
2015-01-01
Background: Fractional photothermolysis is one of the most effective treatment options used to resurface scars of different aetiologies. Aim: To assess the efficacy and safety of fractional CO2 laser resurfacing treatment in the management of non-hypertrophic traumatic and burn scars. Materials and Methods: Twenty-five patients affected by non-hypertrophic traumatic and burn scars were treated with four sessions of fractional CO2 laser resurfacing treatment at 6-weekly intervals. Patients were photographed at each visit and finally, 3 months after the end of treatment schedule. Response to treatment was assessed clinically as well as by comparing the initial photograph of the patient with the one taken at the last follow-up visit 3-months after the final treatment session. Changes in skin texture, surface irregularity and pigmentation were assessed on a quartile grading scale and scored individually from 0 to 4. A mean of the three individual scores was calculated and the response was labelled as ‘excellent’ if the mean score achieved was >2. A score of 1-2 was labeled as good response while a score below 1 was labeled as ‘poor’ response. The subjective satisfaction of each patient with the treatment offered was also assessed at the last follow-up visit. Results: The commonest site of scarring treated was the face followed by hands. Response to treatment was rated as excellent in 60% (15/25) patients while 24% (6/25) and 16% (4/25) patients were labeled as good and poor responders, respectively. Skin texture showed better response than other variables with average score of 2.44. Linear post-traumatic scars were seen to respond less than other morphological types. Majority of the patients (19 out of 25) were highly satisfied with the treatment offered. No long-term adverse effects were noted in any patient. Conclusions: Fractional photothermolysis with a fractional CO2 laser gives excellent results in patients with post-burn scars with minimal adverse effects. Limitations: Lack of a control group and small sample size are limitations of this study. PMID:26644740
Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen
NASA Technical Reports Server (NTRS)
Raack, Taylor
2004-01-01
Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-01-01
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775
A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-03-11
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.
High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process
NASA Astrophysics Data System (ADS)
Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu
2016-09-01
Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.
2011-08-15
The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less
Irradiation direction from texture
NASA Astrophysics Data System (ADS)
Koenderink, Jan J.; Pont, Sylvia C.
2003-10-01
We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Texturing of concrete pavements : final report.
DOT National Transportation Integrated Search
1979-08-01
During the month of June, 1973, the plastic concrete surface of a section of Interstate 10 in the Baton Rouge area was textured using several different texturing techniques, such as burlap drag, brooms and metal tines. The purpose of this experimenta...
NASA Astrophysics Data System (ADS)
Borri, Claudia; Paggi, Marco
2015-02-01
The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.
Doping profile measurement on textured silicon surface
NASA Astrophysics Data System (ADS)
Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice
2018-04-01
In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.
NASA Technical Reports Server (NTRS)
Gutmann, Ethan D.; Small, Eric E.
2007-01-01
Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.
Investigation into the Use of Texturing for Real-Time Computer Animation.
1987-12-01
produce a rough polygon surface [7]. Research in the area of real time texturing has also been conducted. Using a specially designed multi-processor system ...Oka, Tsutsui, Ohba, Kurauchi and Tago have introduced real-time manipulation of texture mapped surfaces [8]. Using multi- processors, systems will...a call to the system function defpattern(n,size,mask) short n,size; short *mask, which takes as input an index to a system table of patterns, a
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.
Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition
NASA Astrophysics Data System (ADS)
Wang, Y.; Wang, G.; Li, Y.; Huang, Y.
2016-06-01
Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.
Increase of Breakthrough Pressure of Cotton Fabric by Fluoropolymer/Fluoroposs Treatment
2011-11-29
obtaining superhydrophobic and superolcophobic textured surfaces. Geometrical parameters based on these textures have been developed to model predicted...contact angles with liquids of varying surfaces tensions. One way of determining the robustness of the superhydrophobic state is to study the
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures
NASA Technical Reports Server (NTRS)
Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.
2001-01-01
We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.
Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar
Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measuredmore » dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.« less
Hui, Qiang; Chang, Peng; Guo, Bingyu; Zhang, Yu
2017-01-01
Abstract Ultra-pulsed fractional CO2 laser is an efficient, precise, and safe therapeutic intervention for skin refreshing, although accompanied with prolonged edema and erythema. In recent years, autologous platelet-rich plasma (PRP) has been proven to promote wound and soft tissue healing and collagen regeneration. To investigate whether the combination of PRP and ultra-pulsed fractional CO2 laser had a synergistic effect on therapy for facial rejuvenation. Totally, 13 facial aging females were treated with ultra-pulsed fractional CO2 laser. One side of the face was randomly selected as experimental group and injected with PRP, the other side acted as the control group and was injected with physiological saline at the same dose. Comprehensive assessment of clinical efficacy was performed by satisfaction scores, dermatologists' double-blind evaluation and the VISIA skin analysis system. After treatment for 3 months, subjective scores of facial wrinkles, skin texture, and skin elasticity were higher than that in the control group. Similarly, improvement of skin wrinkles, texture, and tightness in the experimental group was better compared with the control group. Additionally, the total duration of erythema, edema, and crusting was decreased, in the experimental group compared with the control group. PRP combined with ultra-pulsed fractional CO2 laser had a synergistic effect on facial rejuvenation, shortening duration of side effects, and promoting better therapeutic effect. PMID:27222038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl
A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less
Mapping lava flow textures using three-dimensional measures of surface roughness
NASA Astrophysics Data System (ADS)
Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.
2016-12-01
Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on quantitative measures of roughness are a valuable asset for studies of lava flows on Earth and other planetary bodies.
Correlations Between Textures and Infrared Spectra of the Martian Surface in Valles Marineris
NASA Astrophysics Data System (ADS)
Ralston, S. J.; Wray, J. J.
2013-12-01
RALSTON, S. J., School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, sralston3@gatech.edu, WRAY, James, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, jwray@eas.gatech.edu In the past few decades, a wealth of information has become available on the appearance and composition of the Martian surface. While some previous research has examined possible correlations between certain surface features and mineralogy (such as the hypothesized connection between Recurring Slope Lineae and perchlorate salts), little has yet been done to determine possible correlations between mineralogy and texture in less extraordinary circumstances. In this project, one hundred images taken from across the Valles Marineris region were examined both in infrared (obtained from the CRISM instrument aboard the Mars Reconnaissance Orbiter) and in visible-light images from the HiRISE camera. Spectra were obtained from regions of interest, focusing mainly on the identification of monohydrated and polyhydrated sulfates. Other materials were included in the imaging, including phyllosilicate clays, gypsum, and jarosite, although those materials proved less abundant than the sulfates. The areas from which the spectra were taken were then examined in visible-light wavelengths using HiRISE images to determine textural qualities. The focus of this research was on two particular textures, a 'reticulated' texture and a 'stepped texture,' hypothesized to correlate to monohydrated and polyhydrated sulfates, respectively. Results showed that over 55% of areas containing monohydrated sulfates also contained reticulate texture, whereas areas that contained other materials, such as polyhydrated sulfates and clays, had only a 2-8% correlation with reticulate texture. The stepped texture was shown to have no significant correlation to any one material, although other texture/mineral pairs did show some correlation. This presentation will cover the range of textures and mineralogy found throughout Valles Marineris.
An Investigation of Dust Storms Observed with the Mars Color Imager
NASA Technical Reports Server (NTRS)
Guzewich, Scott D.; Toigo, Anthony D.; Wang, Huiqun
2017-01-01
Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (0.43) and topography (0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50 of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180deg and the second EOF mode with flushing dust storms that occur from Ls = 180-210deg and again near Ls = 320deg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit; Shin, Junsoo
A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
Mechanical properties of ion-beam-textured surgical implant alloys
NASA Technical Reports Server (NTRS)
Weigand, A. J.
1977-01-01
An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
Hollins, Mark
2009-01-01
During haptic exploration of surfaces, complex mechanical oscillations—of surface displacement and air pressure—are generated, which are then transduced by receptors in the skin and in the inner ear. Tactile and auditory signals thus convey redundant information about texture, partially carried in the spectral content of these signals. It is no surprise, then, that the representation of temporal frequency is linked in the auditory and somatosensory systems. An emergent hypothesis is that there exists a supramodal representation of temporal frequency, and by extension texture. PMID:19721886
Effects of sediment supply on surface textures of gravel-bed rivers
John M. Buffington; David R. Montgomery
1999-01-01
Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (Dâ50). We find that surface median grain size (...
Substrate texture affects female cricket walking response to male calling song
NASA Astrophysics Data System (ADS)
Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.
2018-03-01
Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.
Incident flux angle induced crystal texture transformation in nanostructured molybdenum films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L.; Lu, T.-M.; Wang, G.-C.
2012-07-15
Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
Integration of Geodata in Documenting Castle Ruins
NASA Astrophysics Data System (ADS)
Delis, P.; Wojtkowska, M.; Nerc, P.; Ewiak, I.; Lada, A.
2016-06-01
Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure's elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.
NASA Astrophysics Data System (ADS)
Brown, C. David; Ih, Charles S.; Arce, Gonzalo R.; Fertell, David A.
1987-01-01
Vision systems for mobile robots or autonomous vehicles navigating in an unknown terrain environment must provide a rapid and accurate method of segmenting the scene ahead into regions of pathway and background. A major distinguishing feature between the pathway and background is the three dimensional texture of these two regions. Typical methods of textural image segmentation are very computationally intensive, often lack the required robustness, and are incapable of sensing the three dimensional texture of various regions of the scene. A method is presented where scanned laser projected lines of structured light, viewed by a stereoscopically located single video camera, resulted in an image in which the three dimensional characteristics of the scene were represented by the discontinuity of the projected lines. This image was conducive to processing with simple regional operators to classify regions as pathway or background. Design of some operators and application methods, and demonstration on sample images are presented. This method provides rapid and robust scene segmentation capability that has been implemented on a microcomputer in near real time, and should result in higher speed and more reliable robotic or autonomous navigation in unstructured environments.
Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.
2015-01-01
The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808
Feng, Xianchao; Chen, Lin; Lei, Na; Wang, Shuangxi; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi
2017-04-05
The dose-dependent effects of (-)-epigallocatechin-3-gallate (EGCG; 0, 100, or 1000 ppm) on the textural properties and stability of a myofibrillar protein (MP) emulsion gel were investigated. Addition of EGCG significantly inhibited formation of carbonyl but promoted the loss of both thiol and free amine groups. Addition of EGCG, particularly at 1000 ppm, initiated irreversible protein modifications, as evidenced by surface hydrophobicity changes, patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. These results indicated that MP was modified by additive reactions between the quinone of EGCG and thiols and free amines of proteins. These adducts increased cooking loss and destabilized the texture, especially with a large EGCG dose. Confocal laser scanning microscopy and scanning electron microscopy images clearly indicated the damage to the emulsifying properties and the collapse of the internal structure when the MP emulsion gel was treated with a large EGCG dose. A high concentration of NaCl (0.6 M) improved modification of MP and increased the rate of deterioration of the internal structure, especially with the large EGCG dose (1000 ppm), resulting in an MP emulsion gel with extremely unstable emulsifying properties.
Buffer layers on metal surfaces having biaxial texture as superconductor substrates
Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2000-01-01
Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /Ni, (RE=Rare Earth), RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, RE.sub.2 O.sub.3 /CeO.sub.2 /Ni, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, RE.sub.2 O.sub.3 /CeO.sub.2 /Cu, and RE.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approaches, which include chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.
Michael A. Velbel; Charles L. Basso; Michael J. Zieg
1996-01-01
Mineral surface-textures on naturally weathered crystals of staurolite [monoclinic, pseudo-orthorhombic; Fe4Al18Si8O46(OH)2] indicate that staurolite weathering is generally interface-limited. Etch pits on naturally weathered staurolites are disk-shaped,...
Human (Homo sapiens) facial attractiveness in relation to skin texture and color.
Fink, B; Grammer, K; Thornhill, R
2001-03-01
The notion that surface texture may provide important information about the geometry of visible surfaces has attracted considerable attention for a long time. The present study shows that skin texture plays a significant role in the judgment of female facial beauty. Following research in clinical dermatology, the authors developed a computer program that implemented an algorithm based on co-occurrence matrices for the analysis of facial skin texture. Homogeneity and contrast features as well as color parameters were extracted out of stimulus faces. Attractiveness ratings of the images made by male participants relate positively to parameters of skin homogeneity. The authors propose that skin texture is a cue to fertility and health. In contrast to some previous studies, the authors found that dark skin, not light skin, was rated as most attractive.
Plastics and beaches: a degrading relationship.
Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem
2009-01-01
Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth.
Textured carbon surfaces on copper by sputtering
NASA Technical Reports Server (NTRS)
Curren, A. N. (Inventor); Jensen, K. A. (Inventor); Roman, R. F. (Inventor)
1986-01-01
A very thin layer of highly textured carbon is applied to a copper surface by a triode sputtering process. A carbon target and a copper substrate are simultaneously exposed to an argon plasma in a vacuum chamber. The resulting carbon surface is characterized by a dense, random array of needle like spires or peaks which extend perpendicularly from the copper surface. The coated copper is especially useful for electrode plates in multistage depressed collectors.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang
2010-10-01
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.
Color image processing and vision system for an automated laser paint-stripping system
NASA Astrophysics Data System (ADS)
Hickey, John M., III; Hise, Lawson
1994-10-01
Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.
Method for Texturing Surfaces of Optical Fiber Sensors Used for Blood Glucose Monitoring
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
2007-01-01
Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.
Energetic Atomic and Ionic Oxygen Textured Optical Surfaces for Blood Glucose Monitoring
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
2007-01-01
Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting of a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.
Energetic atomic and ionic oxygen textured optical surfaces for blood glucose monitoring
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
2007-01-01
Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.
The visible ground surface as a reference frame for scaling binocular depth of a target in midair
WU, JUN; ZHOU, LIU; SHI, PAN; HE, ZIJIANG J; OOI, TENG LENG
2014-01-01
The natural ground surface carries texture information that extends continuously from one’s feet to the horizon, providing a rich depth resource for accurately locating an object resting on it. Here, we showed that the ground surface’s role as a reference frame also aids in locating a target suspended in midair based on relative binocular disparity. Using real world setup in our experiments, we first found that a suspended target is more accurately localized when the ground surface is visible and the observer views the scene binocularly. In addition, the increased accuracy occurs only when the scene is viewed for 5 sec rather than 0.15 sec, suggesting that the binocular depth process takes time. Second, we found that manipulation of the configurations of the texture-gradient and/or linear-perspective cues on the visible ground surface affects the perceived distance of the suspended target in midair. Third, we found that a suspended target is more accurately localized against a ground texture surface than a ceiling texture surface. This suggests that our visual system usesthe ground surface as the preferred reference frame to scale the distance of a suspended target according to its relative binocular disparity. PMID:25384237
NASA Technical Reports Server (NTRS)
Key, J.
1990-01-01
The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
Structures having enhanced biaxial texture
Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.
1999-01-01
A biaxially textured alloy article includes a rolled and annealed biaxially textured base metal substrate characterized by an x-ray diffraction phi scan peak of no more than 20.degree. FWHM; and a biaxially textured layer of an alloy or another material on a surface thereof. The article further includes at least one of an electromagnetic device or an electro-optical device epitaxially joined to the alloy.
Texture segregation, surface representation and figure-ground separation.
Grossberg, S; Pessoa, L
1998-09-01
A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.
Array automated assembly, phase 2
NASA Technical Reports Server (NTRS)
Taylor, W. E.
1978-01-01
An analysis was made of cost tradeoffs for shaping modified square wafers from cylindrical crystals. Tests were conducted of the effectiveness of texture etching for removal of surface damage on sawed wafers. A single step texturing etch appeared adequate for removal of surface damage on wafers cut with multiple blade reciprocating slurry saws.
A set of hypotheses on tribology of mammalian herbivore teeth
NASA Astrophysics Data System (ADS)
Kaiser, Thomas M.; Clauss, Marcus; Schulz-Kornas, Ellen
2016-03-01
Once erupted, mammal cheek teeth molars are continuously worn. Contact of molar surfaces with ingesta and with other teeth contribute to this wear. Microscopic wear features (dental surface texture) change continuously as new wear overprints old texture features. These features have been debated to indicate diet. The general assumption in relating occlusal textures to diet is that they are independent of masticatory movements and forces. If this assumption is not accepted, one needs to propose that occlusal textures comprise signals not only from the ‘last supper’ but also from masticatory events that represent ecological, species- or taxon-specific adaptations, and that occlusal textures therefore give a rather unspecific, somehow diet-related signal that is functionally inadequately understood. In order to test for mechanical mechanisms of wear, we created a hypothesis matrix that related sampled individuals with six tribological variables. Three variables represent mechanically relevant ingesta properties, and three represent animal-specific characteristics of the masticatory system. Three groups of mammal species (free ranging Cetartiodactyla and Perissodactyla, free ranging primates, and artificially fed rabbits) were investigated in terms of their 3D dental surface textures, which were quantified employing ten ISO 25178 surface texture parameters. We first formulated a set of specific predictions based on theoretical reflections on the effects of diet properties and animal characteristics, and subsequently performed discriminant analysis to test which parameters actually followed these predictions. We found that parameters Vvc, Vmc, Sp, Sq allowed the prediction of both, ingesta properties and properties of the masticatory system, if combined with other parameters. Sha, Sda and S5v had little predictive power in our dataset. Spd seemed rather unrelated to ingesta properties and made this parameter a suitable indicator of masticatory system properties.
NASA Astrophysics Data System (ADS)
Ettienne-Modeste, Geriel A.
Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide surfaces (from 873 to 1344 HV).
Biologically Inspired Model for Inference of 3D Shape from Texture
Gomez, Olman; Neumann, Heiko
2016-01-01
A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.
Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei
2017-02-01
Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Simelane, David O
2007-06-01
Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.
NASA Astrophysics Data System (ADS)
Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.
2017-11-01
Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
Role of humidity in reducing the friction of graphene layers on textured surfaces
NASA Astrophysics Data System (ADS)
Li, Zheng-yang; Yang, Wen-jing; Wu, Yan-ping; Wu, Song-bo; Cai, Zhen-bing
2017-05-01
A multiple-layer graphene was prepared on steel surface to reduce friction and wear. A graphene-containing ethanol solution was dripped on the steel surface, and several layers of graphene flakes were deposited on the surface after ethanol evaporated. Tribological performance of graphene-contained surface (GCS) was induced by reciprocating ball against plate contact in different RH (0% (dry nitrogen), 30%, 60%, and 90%). Morphology and wear scar were analyzed by OM, 2D profile, SEM, Raman spectroscopy, and XPS. Results show that GCS can substantially reduce the wear and coefficient of friction (COF) in 60% relative humidity (RH). Low COF occurs due to graphene layer providing a small shear stress on the friction interface. Meanwhile, conditions of high RH and textured surface could make the low COF persist for a longer time. High moisture content can stabilize and protect the graphene C-network from damage due to water dissociative chemisorption with carbon dangling bonds, and the textured surface was attributed to release graphene layer stored in the dimple.
DOT National Transportation Integrated Search
1970-01-01
The purpose of this study was to explore methods of obtaining a rough, durable texture on test slabs fabricated in the laboratory in an attempt to provide high skid resistance. The exploration involved the investigation of types of texture, time of t...
Aeolian removal of dust from radiator surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah
1990-01-01
Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.
Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis
Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.
2015-01-01
Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505
Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.
2015-01-01
Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137
Keeping warm with fur in cold water: entrainment of air in hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette
2015-11-01
Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.
Electron microscopic observations of hydrogen implantation in ilmenites
NASA Technical Reports Server (NTRS)
Blanford, G. E.
1983-01-01
Hydrogen ion beams were found to form submicrometer, bumpy textures on the surface of ilmenite grains. From this effect, it is believed that similar bumpy textures seen on lunar ilmenite, pyroxene, and olivine grains are likely to be caused by solar wind irradiation. As a consequence, the concentration of bumpy textured grains may be a useful index of surface maturity for lunar soils. An attempt was made to search for grains with these bumpy textures in interplanetary dust and lunar and meteoritic regolith breccias in order to obtain information about the duration of their exposure to the solar wind. Solar wind irradiation was simulated on natural, terrestrial ilmenite. Hydrogen ion beams were directed at small grains and polished sections which were then examined by electron microscopy.
Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei
2016-01-01
The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.
Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.
Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo
2010-04-06
In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.
Mechanical interlocking of cotton fibers on slightly textured surfaces of metallic cylinders
Zhang, Youqiang; Tian, Yu; Meng, Yonggang
2016-01-01
Mechanical interlocking is widely applied in industry and general lives of human beings. In this work, we realized the control of locking or sliding states of cotton fibers on the metal surfaces with slightly different textures through traditional machining. Three types of sliding states, i.e., locking, one-way sliding, and two-way sliding have been achieved. It is found that the locking or sliding of the cotton fibers on the metallic cylinder depends on the friction coefficient and the ratio of cotton fiber diameter, 2r, to the height of the rough peaks, h, of metal surfaces. When the critical ratio h/r exceeds 1, the cotton fibers could tightly attach to the metallic surface through mechanical interlocking. This work provided a convenient and universal method for the control of interlocking or sliding of fiber-based materials on textured surfaces. PMID:27156720
A three dimensional scaffold with precise micro-architecture and surface micro-textures
Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo
2013-01-01
A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292
NASA Astrophysics Data System (ADS)
Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen
2011-02-01
In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.
Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.
Aboud, Damon G K; Kietzig, Anne-Marie
2015-09-15
Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.
NASA Astrophysics Data System (ADS)
Fernandez, J. C.; Shrestha, R. L.; Carter, W. E.; Slatton, C. K.; Singhania, A.
2006-12-01
The UF GEM Research Center is working towards developing a Mobile Terrestrial Laser Scanning System (M- TLSS). The core of the M-TLSS is a commercial 2-axis ground based laser scanner, Optech ILRIS-36D, which is capable of generating XYZ with laser intensity or RGB textured point clouds in a range from 3m to 1500m. The laser operates at a wavelength of 1535 nm. The sample separation can be adjusted down to 0.00115°, and the scanning speed is 2,000 points per second. The scanner is integrated to a mobile telescoping, rotating and tilting platform which is essentially a telescopic lift mounted on the back of a pick up truck. This provides up to 6 degrees of freedom for performing scanning operations. A scanner built-in 6 megapixel digital camera and a digital video camera provide the M-TLSS moving and still imagining capability. The applications of the M-TLSS data sets are numerous in both the fields of science and engineering. This paper will focus on the application of M-TLSS as a complement to ALSM in the study of beach morphology in the St. Augustine, Florida area. ALSM data covers a long stretch of beach with a moderate sample density of approximately 1 laser return per square meter, which enables the detection of submeter-scale changes in shoreline position and dune heights over periods of few months. The M-TLSS, on the other hand, can provide high density point clouds (centimeter scale point spacing) of smaller areas known to be highly prone to erosion. From these point clouds centimeter level surface grids are created. These grids will be compared with the ALSM data and with a time series of M-TLSS data over the same area to provide high resolution, short term beach erosion monitoring. Surface morphological parameters that will be compared among the ALSM and M-TLSS data sets include shoreline position and gradients and standard deviations of elevations on cross- shore transects.
Electronic State Distributions of YBa2Cu3O7-x Laser Ablated Plumes
2008-09-01
deposited on buffered metal substrates using gas phase techniques such as pulsed laser deposition (PLD) or metal -oxide chem- ical vapor deposition...along the desired current direction. This grain orientation has been successfully achieved by depositing YBCO on a metal tape substrate coated with a...Reeves, K. Lenseth, and V. Selvamanickam. “Texture Development and Superconducting Properties of YBCO Thick Films Deposited on Buffered Metal Substrates
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...
2017-06-13
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
Laser-based structural sensing and surface damage detection
NASA Astrophysics Data System (ADS)
Guldur, Burcu
Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.
Noviodunum Roman Fortress. a Survey on a City Wall Section
NASA Astrophysics Data System (ADS)
Teodor, A.; Teodor, E. S.; Florea, M. S.; Popescu, M. A.
2011-09-01
The paper presents in detail the method used to acquire 2D and 3D representations for the Large Tower of the Roman fortress from Noviodunum (Isaccea, Tulcea County). The available implements were a total station, a digital camera and some software for handling data. The method is not new by any rate, but well fitted to the aims - recording archaeological data on ruined but massif walls, with rough surfaces - and with a limited budget. Lately considered as a low cost procedure, laser scanning is still costly and rare in some East-European countries. Our method, as simple as it is, provides reliable data as a 3D survey, along texture details, at the lowest price, on unfinished fieldwork, preserving and picturing a stage of knowledge about the site and the architectural bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-30
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less
NASA Astrophysics Data System (ADS)
Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.
2017-10-01
Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Effects of hydraulic roughness on surface textures of gravel‐bed rivers
Buffington, John M.; Montgomery, David R.
1999-01-01
Field studies of forest gravel‐bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed‐surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach‐average median grain size (D50) to that predicted from the total bank‐full boundary shear stress (т0bf), representing a hypothetical reference condition of low hydraulic roughness. For a given т0bf, channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values D50 can be up to 90% smaller than those predicted from т0bf. We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.