Science.gov

Sample records for laser thermal thruster

  1. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  2. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  3. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  4. Stabilization and steering of a parabolic laser thermal thruster with an ignition device

    NASA Astrophysics Data System (ADS)

    Scharring, Stefan; Hoffmann, Daniela; Eckel, Hans-Albert; Röser, Hans-Peter

    2009-12-01

    High energy pulses of a CO 2 laser are focused in a parabolic mirror yielding to a laser-supported detonation. The generated thrust acting on the reflector as a bell nozzle is studied in multiple pulse free flight experiments with respect to axial, lateral and angular momentum coupling. The employment of an ignition pin on the reflector's axis of symmetry lowering the ignition threshold by several orders of magnitude is found to provide for a reproducible detonation process. The axial momentum coupling of each pulse is analyzed with respect to initial lateral offset and tilt during the flight. High speed analyses of recorded flights indicate that lateral momentum components occur re-centering the thruster on the beam. Thrust vector steering can be realized by tilt of the ignition pin inside the thruster, thus shifting the detonation. A design model of a laser-driven rocket including a remotely accessible steering gear was developed and tested successfully.

  5. NEXT Ion Thruster Thermal Model

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.

  6. Laser-heated rocket thruster

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1977-01-01

    A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.

  7. Laser-Heated Rocket Thruster.

    DTIC Science & Technology

    1977-05-01

    chamber assembly , thrust stand, and plasma initiation system). A space vehicle application using 5000kw input laser power was conceptually evaluated...State Temperature Distribution 137 89. 10-KW Optical Train Assembly (M = 2.0) 139/140 90. 10-KW Optical Train Assembly (M = 1.523) 141/142 91...10-KW Water-Cooled Chamber Assembly and Detail . . . 149/150 95. 10-KW Thruster Assembly . . 153/154 96. Uncooled Chamber Assembly . 155/156 97

  8. Beam-Riding Analysis of a Parabolic Laser-thermal Thruster

    NASA Astrophysics Data System (ADS)

    Scharring, Stefan; Eckel, Hans-Albert; Röser, Hans-Peter

    2011-11-01

    Flight experiments with laser-propelled vehicles (lightcrafts) are often performed by wire-guidance or with spin-stabilization. Nevertheless, the specific geometry of the lightcraft's optics and nozzle may provide for inherent beam-riding properties. These features are experimentally investigated in a hovering experiment at a small free flight test range with an electron-beam sustained pulsed CO2 high energy laser. Laser bursts are adapted with a real-time control to lightcraft mass and impulse coupling for ascent and hovering in a quasi equilibrium of forces. The flight dynamics is analyzed with respect to the impulse coupling field vs. attitude, given by the lightcraft's offset and its inclination angle against the beam propagation axis, which are derived from the 3D-reconstruction of the flight trajectory from highspeed recordings. The limitations of the experimental parameters' reproducibility and its impact on flight stability are explored in terms of Julia sets. Solution statements for dynamic stabilization loops are presented and discussed.

  9. Beam-Riding Analysis of a Parabolic Laser-thermal Thruster

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter

    2011-11-10

    Flight experiments with laser-propelled vehicles (lightcrafts) are often performed by wire-guidance or with spin-stabilization. Nevertheless, the specific geometry of the lightcraft's optics and nozzle may provide for inherent beam-riding properties. These features are experimentally investigated in a hovering experiment at a small free flight test range with an electron-beam sustained pulsed CO{sub 2} high energy laser. Laser bursts are adapted with a real-time control to lightcraft mass and impulse coupling for ascent and hovering in a quasi equilibrium of forces. The flight dynamics is analyzed with respect to the impulse coupling field vs. attitude, given by the lightcraft's offset and its inclination angle against the beam propagation axis, which are derived from the 3D-reconstruction of the flight trajectory from highspeed recordings. The limitations of the experimental parameters' reproducibility and its impact on flight stability are explored in terms of Julia sets. Solution statements for dynamic stabilization loops are presented and discussed.

  10. A bibliography of electrothermal thruster technology, 1984

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; Hardy, T. L.; Englehart, M.

    1986-01-01

    Electrothermal propulsion concepts are briefly discussed as an introduction to a bibliography and author index. Nearly 700 citations are given for resistojets, thermal arcjets, pulsed electrothermal thrusters, microwave heated devices, solar thermal thrusters, and laser thermal thrusters.

  11. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  12. Hall Thruster Thermal Modeling and Test Data Correlation

    NASA Technical Reports Server (NTRS)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  13. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  14. Dual-throat thruster thermal model

    NASA Technical Reports Server (NTRS)

    Ewen, R. L.; Obrien, C. J.; Matthews, L. W.

    1986-01-01

    The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.

  15. Computational design of an experimental laser-powered thruster

    NASA Technical Reports Server (NTRS)

    Jeng, San-Mou; Litchford, Ronald; Keefer, Dennis

    1988-01-01

    An extensive numerical experiment, using the developed computer code, was conducted to design an optimized laser-sustained hydrogen plasma thruster. The plasma was sustained using a 30 kW CO2 laser beam operated at 10.6 micrometers focused inside the thruster. The adopted physical model considers two-dimensional compressible Navier-Stokes equations coupled with the laser power absorption process, geometric ray tracing for the laser beam, and the thermodynamically equilibrium (LTE) assumption for the plasma thermophysical and optical properties. A pressure based Navier-Stokes solver using body-fitted coordinate was used to calculate the laser-supported rocket flow which consists of both recirculating and transonic flow regions. The computer code was used to study the behavior of laser-sustained plasmas within a pipe over a wide range of forced convection and optical arrangements before it was applied to the thruster design, and these theoretical calculations agree well with existing experimental results. Several different throat size thrusters operated at 150 and 300 kPa chamber pressure were evaluated in the numerical experiment. It is found that the thruster performance (vacuum specific impulse) is highly dependent on the operating conditions, and that an adequately designed laser-supported thruster can have a specific impulse around 1500 sec. The heat loading on the wall of the calculated thrusters were also estimated, and it is comparable to heat loading on the conventional chemical rocket. It was also found that the specific impulse of the calculated thrusters can be reduced by 200 secs due to the finite chemical reaction rate.

  16. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    NASA Astrophysics Data System (ADS)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  17. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  18. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  19. Thermal Characterization of a Hall Effect Thruster

    DTIC Science & Technology

    2008-03-01

    Material Curie Temperature Iron 770 °C Nickel 358 °C Cobalt 1130 °C Gadolinium 20 °C Terfenol 380-430 °C Alnico 850 °C Hard Ferrites 400-700...C Barium Ferrite 450 °C Hall Effect thrusters generally use iron magnets with a Curie temperature of 770 °C. Decreasing the magnetic strength

  20. Solar thermal thruster made of single crystal molybdenum

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Igarashi, Tadashi; Okamoto, Ken-ichi

    1997-07-01

    The heart element of solar thermal propulsion (STP) system is a thruster made of refractory metals such as tungsten, tantalum and molybdenum or advance high temperature ceramics because of the high operating temperature (1000-2500 K) involved. In this paper, design, fabrication and preliminary experimental results in the JSUS Research Plan are presented, using 20 mm diameter of thrusters made of single crystal molybdenum which NRIM has patented and is a perfect (non-defect) material, namely no brittleness due to recrystallization under high operating temperature conditions. The working gas temperature within the thruster chamber reached higher than 1850 K (namely, the Isp is approximately 700 s for hydrogen gas propellant) at 0.2 MPa of the plenum chamber pressure, using the small solar concentrator (1.6 m diameter of half paraboloid and 0.65 m of the focal length).

  1. Update on Modular Laser Launch System and Heat Exchanger Thruster

    NASA Astrophysics Data System (ADS)

    Kare, Jordin T.

    2011-11-01

    The heat-exchanger (HX) thruster and modular laser array provide a comparatively low-risk route to a ground-to-orbit laser launch system. Recently, the reference designs for the propulsion system, laser array, and overall launch system have evolved significantly. By combining a variable flow of dense propellant with the primary hydrogen propellant, the heat exchanger thruster can trade reduced Isp for increased thrust at liftoff, with minimal increase in tank mass. Single-mode CW fiber lasers up to 10 kW power allow a beam module to be built with off-the-shelf commercial lasers. Low-cost high-radiance laser diode arrays can deliver launch-level fluxes of 5-10 MW/m2 over tens of kilometers, sufficient to power a vehicle through the atmosphere, and high enough to hand off propulsion to a main laser array several hundred kilometers downrange. These and other enhancements enable a system design with a true single-stage vehicle in which the only component not yet demonstrated is the silicon-carbide heat exchanger itself.

  2. A novel laser ablation plasma thruster with electromagnetic acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; He, Zhen; Zhang, Hua

    2016-10-01

    A novel laser ablation plasma thruster accelerated by electromagnetic means was proposed and investigated. The discharge characteristics and thrust performance were tested with different charged energy, structural parameters and propellants. The thrust performance was proven to be improved by electromagnetic acceleration. In contrast with the pure laser propulsion mode, the thrust performance in electromagnetic acceleration modes was much better. The effects of electrodes distance and the off-axis distance between ceramic tube and cathode were tested, and it's found that there were optimal structural parameters for achieving optimal thrust performance. It's indicated that the impulse bit and specific impulse increased with increasing charged energy. In our experiments, the thrust performance of the thruster was optimal in large charged energy modes. With the charged energy 25 J and the use of metal aluminum, a maximal impulse bit of 600 μNs, a specific impulse of approximate 8000 s and thrust efficiency of about 90% were obtained. For the PTFE propellant, a maximal impulse bit of about 350 μNs, a specific impulse of about 2400 s, and thrust efficiency of about 16% were obtained. Besides, the metal aluminum was proven to be the better propellant than PTFE for the thruster.

  3. Convective heat flux in a laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Wu, P. K. S.

    1978-01-01

    An analysis is performed to estimate the convective heating to the wall in a laser-heated thruster on the basis of a solution of the laminar boundary-layer equations with variable transport properties. A local similiarity approximation is used, and it is assumed that the gas phase is in equilibrium. For the thruster described by Wu (1976), the temperature and pressure distributions along the nozzle are obtained from the core calculation. The similarity solutions and heat flux are obtained from the freestream conditions of the boundary layer, in order to determine if it is necessary to couple the boundary losses directly to the core calculation. In addition, the effects of mass injection on the convective heat transfer across the boundary layer with large density-viscosity product gradient are examined.

  4. Thermal-environmental testing of a 30-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  5. Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser.

    PubMed

    Manfletti, Chiara; Kroupa, Gerhard

    2013-11-04

    An experimental study has been conducted to assess the feasibility of implementing laser ignition in cryogenic reaction and control and orbital manouvering thrusters. A experimental thruster with a single-coaxial injector element combustion chamber for testing with liquid oxygen/gaseous hydrogen and liquid oxygen/gaseous methane was designed for this purpose. Mapping tests conducted using a standard table top laser revealed that the minimum incident energies required for 100% reliable laser plasma and laser ablation ignition of liquid oxygen/gaseous hydrogen are 72 mJ and 14.5 mJ respectively. In addition, the miniaturised HIPoLas® laser was mounted directly on the thruster and used as ignition system. This paper reports locations of energy deposition, levels of delivered energy and associated ignition probabilities obtained. The results indicate the feasibility of using a laser system for the direct ignition of reaction and control and orbital manouvering thrusters and highlight further investigations and developments necessary for the implementation of miniaturised laser systems for vacuum igntion of cryogenic propellants.

  6. Laser-Induced Fluorescence Velocity Measurements of a Diverging Cusped Field Thruster

    DTIC Science & Technology

    2010-11-15

    being studied. These include the High Efficiency Multi-stage Plasma ( HEMP ) thruster developed by the THALES Research Institute,4, 5 the Princeton...Hall thrusters, the strong magnetic fields seen in cusped field designs using permanent magnets (≈ 0.5 Tesla)19 do not rule out the possibility that...understand the operation of cusped field thrusters, this study seeks to characterize one par- ticular variant, the MIT DCFT, using laser-induced

  7. Thermal analytic model of 30 cm engineering model mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Oglebay, J. C.

    1975-01-01

    A lumped parameter thermal nodal network was developed for a 30 cm Engineering Model Mercury Ion Thruster. The network consists of approximately 100 nodes coded in SINDA format for use on the Univac 1106/1108 computer. This model takes into account internal dissipation, radiation, and conduction as well as environmental heating. A series of tests were performed to simulate a wide range of thermal environments on an operating 30 cm thruster, instrumented to measure the temperature distribution within the thruster. The results of these tests were used to calibrate the analytical model. The analytical model along with comparisons between analytical and experimental results for the various operating conditions are presented.

  8. Single crystal Mo solar thermal thruster for microsatellites

    NASA Astrophysics Data System (ADS)

    Shimizu, Mono; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-ichi; Takaoka, Shigehiko; Shiina, Kotaro; Nakamura, Yoshihiro

    1999-09-01

    One potentially attractive propulsion concept offering significant payload gains for orbit transfer from LEO to higher orbits, station keeping and attitude control of spacecraft is thermal propulsion using light gas (typically hydrogen) as propellant and various kinds of heat energy. Solar Thermal Propulsion (STP) is a typical thermal propulsion with high Isp (500 - 1,000 s) in an appropriate thrust magnitude range and provides possibly much less space pollution than conventional chemical propulsion. This paper presents the test results of a 30 mm dia. (medium-sized) windowless type of single crystal Mo thruster for orbit transfer of 50 kg class microsatellites. The cavity dia. is 20 mm, double the size of the previous model, and can apply to a primary solar reflector of up to 3.5 m dia., which is the maximum size containable in the H-II rocket fairing without segmentation. The performed mission analyses indicate that this size of STP is suitable to orbit transfer of 50 kg class microsatellites, such as LEO to GEO, or only multiple apogee kicks from GTO to GEO or deep space missions.

  9. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Meyers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The Thermal Characterization Test of NASAs 12.5-kW Hall thruster is being completed. This thruster is being developed to support of a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of this test, an infrared-based, non-contact thermal imaging system was developed to measure Hall thruster surfaces that are exposed to high voltage or harsh environment. To increase the accuracy of the measurement, a calibration array was implemented, and a pilot test was performed to determine key design parameters for the calibration array. The raw data is analyzed in conjunction with a simplified thermal model of the channel to account for reflection. The reduced data will be used to refine the thruster thermal model, which is critical to the verification of the thruster thermal specifications. The present paper will give an overview of the decision process that led to identification of the need for a non-contact temperature diagnostic, the development of said diagnostic, the measurement results, and the simplified thermal model of the channel.

  10. Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW

    NASA Technical Reports Server (NTRS)

    SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.

    2001-01-01

    A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.

  11. Performance and Thermal Characterization of the NASA-300MS 20 kW Hall Effect Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Soulas, George; Smith, Timothy; Mikellides, Ioannis; Hofer, Richard

    2013-01-01

    NASA's Space Technology Mission Directorate is sponsoring the development of a high fidelity 15 kW-class long-life high performance Hall thruster for candidate NASA technology demonstration missions. An essential element of the development process is demonstration that incorporation of magnetic shielding on a 20 kW-class Hall thruster will yield significant improvements in the throughput capability of the thruster without any significant reduction in thruster performance. As such, NASA Glenn Research Center and the Jet Propulsion Laboratory collaborated on modifying the NASA-300M 20 kW Hall thruster to improve its propellant throughput capability. JPL and NASA Glenn researchers performed plasma numerical simulations with JPL's Hall2De and a commercially available magnetic modeling code that indicated significant enhancement in the throughput capability of the NASA-300M can be attained by modifying the thruster's magnetic circuit. This led to modifying the NASA-300M magnetic topology to a magnetically shielded topology. This paper presents performance evaluation results of the two NASA-300M magnetically shielded thruster configurations, designated 300MS and 300MS-2. The 300MS and 300MS-2 were operated at power levels between 2.5 and 20 kW at discharge voltages between 200 and 700 V. Discharge channel deposition from back-sputtered facility wall flux, and plasma potential and electron temperature measurements made on the inner and outer discharge channel surfaces confirmed that magnetic shielding was achieved. Peak total thrust efficiency of 64% and total specific impulse of 3,050 sec were demonstrated with the 300MS-2 at 20 kW. Thermal characterization results indicate that the boron nitride discharge chamber walls temperatures are approximately 100 C lower for the 300MS when compared to the NASA- 300M at the same thruster operating discharge power.

  12. A coupled performance and thermal model for radio-frequency gridded ion thrusters*

    NASA Astrophysics Data System (ADS)

    Dobkevicius, Mantas; Feili, Davar

    2016-10-01

    Recently proposed space missions such as Darwin, eLISA and NGGM have encouraged the development of electric propulsion thrusters capable of operating in the micro-Newton (μN) thrust range. To meet these requirements, radio frequency (RF) gridded-ion thrusters need to be scaled down to a few centimeters in size. Due to the small size of these thrusters, it is important to accurately determine the thermal and performance parameters. To achieve this, a multi-physics performance model has been developed, composed of plasma discharge, 2D axisymmetric ion extraction, 3D electromagnetic and RF circuit models. The plasma discharge model itself is represented using 0D global, 2D axisymmetric and 3D molecular neutral gas, and Boltzmann electron transport sub-models. A 3D thermal model is introduced to determine the temperature distribution for various throttle points, using as inputs the plasma and electromagnetic field heating values obtained from the performance model. This also allows the validation of the performance model itself. Additionally, we analyze the effect the thruster's temperatures play on the plasma properties/performance and vice versa. The model is based on the RIT 3.5 thruster developed for the NGGM mission geometry and predicts the RIT 3.5 experimental data within approximately 10%. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  13. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  14. Comparison of thermal analytic model with experimental test results for 30-sentimeter-diameter engineering model mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Oglebay, J. C.

    1977-01-01

    A thermal analytic model for a 30-cm engineering model mercury-ion thruster was developed and calibrated using the experimental test results of tests of a pre-engineering model 30-cm thruster. A series of tests, performed later, simulated a wide range of thermal environments on an operating 30-cm engineering model thruster, which was instrumented to measure the temperature distribution within it. The modified analytic model is described and analytic and experimental results compared for various operating conditions. Based on the comparisons, it is concluded that the analytic model can be used as a preliminary design tool to predict thruster steady-state temperature distributions for stage and mission studies and to define the thermal interface bewteen the thruster and other elements of a spacecraft.

  15. A structural and thermal packaging approach for power processing units for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Sharp, G. R.

    1975-01-01

    Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.

  16. Laser-Induced Fluorescence Velocity Measurements of a Low Power Cylindrical Hall Thruster

    DTIC Science & Technology

    2009-08-25

    Y., S. A. and Fisch , N. J., “Enhanced perfor- mance of cylindrical Hall thrusters,” Applied Physics Letters, Vol. 90, No. 221502, 2007. 3Hargus Jr., W...12Raitses, Y., S. A. and Fisch , N. J., “Cylindrical Hall Thrusters,” Proceedings of the 37th AIAA Plasmadynamics and Lasers Conference, No. AIAA-2006-3245...American Insti- tute of Aeronautics and Astronautics, June 2006. 13Smirnov, A., R. Y. and Fisch , N. J., “Enhanced Ion- ization in the Cylindrical Hall

  17. Characterization of electric thruster plumes using multiplexed laser induced fluorescence measurements

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Keefer, D.

    1992-01-01

    The use of laser-induced fluorescence to obtain spatially resolved measurements of propellant velocities and temperatures in electric thruster plumes is discussed, with emphasis on two innovations of the technique, namely simultaneous recording of the optogalvanic signal in a hollow cathode lamp for the purpose of calibrating Doppler shifts, and two-beam multiplexing to allow the measurement of two velocity components at once. It is also shown how information on plume fluctuations can be obtained from the multiplxed LIF data. The techniques are demonstrated on the plume from a low power arcjet, operated on argon, and its extension to the measurement of ion velocities in electrostatic ion thrusters and stationary plasma thrusters is discussed.

  18. Analysis of Pulsed Laser-Generated Impulse in AN Advanced Airbreathing Thruster.

    NASA Astrophysics Data System (ADS)

    Richard, Jacques Constant

    This thesis describes the study of an advanced beam-powered propulsion system, called an External Radiation -Heated (ERH) thruster. The repetitively-pulsed, airbreathing engine develops thrust by expanding high pressure, radiation -heated gas over an annular shroud surface. The blast waves are generated by laser radiation heating of air using Laser Supported Detonation (LSD) waves. The phenomenology of LSD waves will be described in detail, as will the blast waves and resultant impulse they produce. Analytical simulation of the ERH thruster is accomplished with a one-dimensional model of blast waves propagating uniformly and radially outward from a laser -generated "line source" of high pressure, high temperature gas. Cylindrical blast wave scaling relationships developed by Sedov are employed in this model. The possibility of including other physical phenomena (e.g., viscosity, radiation, conduction or real gas effects) in the analysis will be reviewed. The analyses for the ERH thruster model are performed for a sample vehicle point design. This vehicle, known as the "Lightcraft Technology Demonstrator" (LTD), may be constructed within the next five years to illustrate the potential of Earth-to-Orbit laser propulsion. The external flow over the LTD vehicle was analyzed to determine basic drag characteristics, inlet total pressure recovery and captured air mass flow rate--all projected as functions of flight Mach number and altitude. The ERH thruster performance analysis indicates that the optimum LTD inlet air gap is about 3 cm around the 100 cm diameter centerbody, for transonic "refresh" air flow over the impulse surface. In this analysis, the principal indicator used to predict engine performance was the "impulse coupling coefficient (CC)"; i.e., the thrust developed per unit laser power input. Coupling coefficients up to 600-700 Newtons/Megawatt were found to be feasible, which are an order of magnitude larger than those for laser-heated rockets. For maximum

  19. The microwave thermal thruster and its application to the launch problem

    NASA Astrophysics Data System (ADS)

    Parkin, Kevin L. G.

    Nuclear thermal thrusters long ago bypassed the 50-year-old specific impulse (Isp) limitation of conventional thrusters, using nuclear powered heat exchangers in place of conventional combustion to heat a hydrogen propellant. These heat exchanger thrusters experimentally achieved an Isp of 825 seconds, but with a thrust-to-weight ratio (T/W) of less than ten they have thus far been too heavy to propel rockets into orbit. This thesis proposes a new idea to achieve both high Isp and high T/W The Microwave Thermal Thruster. This thruster covers the underside of a rocket aeroshell with a lightweight microwave absorbent heat exchange layer that may double as a re-entry heat shield. By illuminating the layer with microwaves directed from a ground-based phased array, an Isp of 700--900 seconds and T/W of 50--150 is possible using a hydrogen propellant. The single propellant simplifies vehicle design, and the high Isp increases payload fraction and structural margins. These factors combined could have a profound effect on the economics of building and reusing rockets. A laboratory-scale microwave thermal heat exchanger is constructed using a single channel in a cylindrical microwave resonant cavity, and new type of coupled electromagnetic-conduction-convection model is developed to simulate it. The resonant cavity approach to small-scale testing reveals several drawbacks, including an unexpected oscillatory behavior. Stable operation of the laboratory-scale thruster is nevertheless successful, and the simulations are consistent with the experimental results. In addition to proposing a new type of propulsion and demonstrating it, this thesis provides three other principal contributions: The first is a new perspective on the launch problem, placing it in a wider economic context. The second is a new type of ascent trajectory that significantly reduces the diameter, and hence cost, of the ground-based phased array. The third is an eclectic collection of data, techniques, and

  20. Scaling and applied field studies of MPD thrusters with laser diagnostics

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1992-01-01

    The topics are presented in viewgraph form and include the following: self-field magnetoplasmadynamics; 1/4-scale applied-field MPD; scaling of arcs and MPD-arcs; magnetic nozzle studies; advanced diagnostic techniques needed for obtaining particle velocity, temperature, and current distributions in plasma thrusters; nonintrusive laser diagnostics for arcs and MPD-arcs; and schematic of multi-beam interferometer for electron density profile determination.

  1. Demonstration of Laser-Induced Fluorescence on Krypton Hall Effect Thruster

    DTIC Science & Technology

    2011-08-10

    Conference Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Demonstration of Laser-Induced Fluorescence on Krypton Hall Effect...Sep 2011. 14. ABSTRACT There is growing interest within the electrostatic propulsion community for the use of krypton as a propellant. It is a...probe thruster krypton propellant acceleration with the minimum disturbance to the overall propellant stream similar to those already developed for

  2. Non-Contact Thermal Characterization of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Myers, James L.; Yim, John T.; Neff, Gregory

    2015-01-01

    The thermal characterization test of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding has been completed. This thruster was developed to support a number of potential Solar Electric Propulsion Technology Demonstration Mission concepts, including the Asteroid Redirect Robotic Mission concept. As a part of the preparation for this characterization test, an infrared-based, non-contact thermal imaging system was developed to measure the temperature of various thruster surfaces that are exposed to high voltage or plasma. An in-situ calibration array was incorporated into the setup to improve the accuracy of the temperature measurement. The key design parameters for the calibration array were determined in a separate pilot test. The raw data from the characterization test was analyzed though further work is needed to obtain accurate anode temperatures. Examination of the front pole and discharge channel temperatures showed that the thruster temperature was driven more by discharge voltage than by discharge power. Operation at lower discharge voltages also yielded more uniform temperature distributions than at higher discharge voltages. When operating at high discharge voltage, increasing the magnetic field strength appeared to have made the thermal loading azimuthally more uniform.

  3. Laser Fine-Adjustment Thruster For Space Vehicles

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.; Egorov, M. S.; Rebrov, S. G.; Repina, E. V.; Safronov, A. L.

    2010-05-01

    To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

  4. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  5. JSUS solar thermal thruster and its integration with thermionic power converter

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi

    1998-01-01

    This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.

  6. A Coupled MHD and Thermal Model Including Electrostatic Sheath for Magnetoplasmadynamic Thruster Simulation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro

    2016-09-01

    Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.

  7. A mercury flow meter for ion thruster testing. [response time, thermal sensitivity

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The theory of operation of the thermal flow meter is presented, and a theoretical model is used to determine design parameters for a device capable of measuring mercury flows in the range of 0 to 5 gm/hr. Flow meter construction is described. Tests performed using a positive displacement mercury pump as well as those performed with the device in the feed line of an operating thruster are discussed. A flow meter response time of about a minute and a sensitivity of about 10 mv/gm/hr are demonstrated. Additional work to relieve a sensitivity of the device to variations in ambient temperature is indicated to improve its quantitative performance.

  8. Propellantless precision formation flying with photonic laser thrusters for large space telescopes

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2009-08-01

    One economically and technologically feasible bedrock structure for constructing large (diameter > 10 m) space telescopes is a segmented or sparse aperture system with subcomponents in precision formation flight. For UV/Visible/IR systems, initial targeting and targeting new objects to establish initial fringes requires the positioning precision to nm - μm accuracy, thus the control system should be capable of the required precision positioning and attitude controls without producing contaminations from thruster exhaust plumes. A nanometer accuracy contaminationfree formation architecture, Photon Tether Formation Flight (PTFF), based on Photonic Laser Thrusters (PLTs) and tethers has been proposed to exploit a force equilibrium formed by PLT thrust and tether tension for forming precision persistent 3-D formation structures ideal for the large UV/Visible/IR space telescopes. The range of the PLT force can theoretically extend over several kms. Under previous NASA sponsorship, we have successfully demonstrated a proofof- concept PLT. In addition, the demonstrations of required laser components, optics and tracking technologies developed under military laser applications now support that implementation of PLTs for large space telescopes is one step closer to reality.

  9. Conceptual study of manned space transportation vehicle using laser thruster in combination with the H-II rocket

    NASA Astrophysics Data System (ADS)

    Minami, Yoshinari; Uchida, Shigeaki

    2013-02-01

    This paper describes the conceptual study of a Manned Space Transportation Vehicle (MSTV) using a laser thruster in combination with the H-II Rocket. By combining the use of a laser thruster and H-II Rocket, space trip to the International Space Station (ISS) or a round trip mission around the moon can be performed. Once MSTV with one crew achieves a circular orbit at an altitude of 200 km around the earth (parking orbit) by use of H-II Rocket, MSTV will then put into a circular orbit into an altitude of 400 km (ISS orbit) from 200 km circular orbit by use of the laser thruster. H-II Rocket has the following launch capability with payloads for LEO (300 km): 10 t (H-II A Rocket), 16.5 t (H-II B Rocket). Laser thruster using water propellant, power source for the laser, orbital transfer calculations (to ISS or the Moon) and other practical aspects are examined.

  10. Pulsed Laser Propulsion Studies. Volume 1. Thruster Physics and Performance

    DTIC Science & Technology

    1982-10-01

    laboratory experiment to demon - 253 strate 1000 s Is in argon, X - 0.35 um. 4.34 XeF laser to blast wave energy conversion efficiency 254 vs...of the speed of sound for equilibrium is i2 a 2= (p/ap) entropy By the use of standard thermodynamic derivatives this can be expressed as -1 2 [nT|1...numerical method. A general thermodynamic expression for the speed of sound is 2 .(h/ap) a -aP entropy p-l_ (ah/ap) -136- 3 iwhere h is the gas enthalpy

  11. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    SciTech Connect

    Yamamoto, N.; Tomita, K.; Sugita, K.; Kurita, T.; Nakashima, H.; Uchino, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe laser energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.

  12. Laser characterization of electric field oscillations in the Hall thruster breathing mode

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Lucca Fabris, Andrea; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature technology for space propulsion applications that exhibit a wide array of dynamic behavior, including plasma waves, instabilities and turbulence. One common low frequency (10-50 kHz) discharge current oscillation is the breathing mode, a cycle of neutral propellant injection, strong ionization, and ion acceleration by a steep potential gradient. A time-resolved laser-induced fluorescence diagnostic non-intrusively captures this propagating ionization front in the channel of a commercial BHT-600 Hall thruster manufactured by Busek Co. Measurements of ion velocity and relative ion density (using the 5 d[ 4 ] 7 / 2 - 6 p[ 3 ] 5 / 2 Xe II transition at 834.95 nm, vacuum) reveal a dynamic electric field structure traversing the channel throughout the breathing mode cycle. This work is sponsored by the U.S. Air Force Office of Scientific Research, with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  13. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    NASA Technical Reports Server (NTRS)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  14. A multiple thruster array for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1975-01-01

    The 3.0-m diameter chamber of the 7.6-m diameter by 21.4-m long vacuum tank at NASA LeRC was modified to permit testing of an array of up to six 30-cm thrusters with a variety of laboratory and thermal vacuum bread-board power systems. A primary objective of the Multiple Thruster Array (MTA) program is to assess the impact of multiple thruster operation on individual thruster and power processor requirements. The areas of thruster startup, steady-state operation, throttling, high voltage recycle, thrust vectoring, and shutdown are of special concern. The results of initial tests are reported.

  15. Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Mazouffre, Stéphane

    2013-02-01

    This article presents a review of work performed over the past ten years in France, centered on the utilization of laser-induced fluorescence (LIF) spectroscopy to diagnose the low-pressure magnetized dc discharge of a Hall thruster (HT). The latter is a gridless electric propulsion device in a crossed electric and magnetic field configuration, which is used onboard satellites and space probes for various types of maneuvers. Although the design of a HT is relatively simple, the physical mechanisms that govern thrust generation and efficiency are not yet fully understood. Characterization of the ion and atom velocity distribution function (VDF) appears to be a powerful way to obtain insights into the underlying physics. The VDF of xenon and krypton—the most common propellants—is therefore locally interrogated by means of LIF on excited levels. In this review emphasis is placed on time-averaged and time-resolved continuous-wave LIF measurements, associated quantities and recent outcomes. Results will be presented concerning a variety of phenomena: velocity vector field structuring, ion population interaction, electric field generation, ion magnetic drift, apparent atom acceleration, interaction of the plasma plume with background gas and low-frequency electric field oscillations, to name only a few.

  16. The MPD thruster program at JPL

    NASA Technical Reports Server (NTRS)

    Barnett, John; Goodfellow, Keith; Polk, James; Pivirotto, Thomas

    1991-01-01

    The main topics covered include: (1) the Space Exploration Initiative (SEI) context; (2) critical issues of MPD Thruster design; and (3) the Magnetoplasmadynamic (MPD) Thruster Program at JPL. Under the section on the SEI context the nuclear electric propulsion system and some electric thruster options are addressed. The critical issues of MPD Thruster development deal with the requirements, status, and approach taken. The following areas are covered with respect to the MPD Thruster Program at JPL: (1) the radiation-cooled MPD thruster; (2) the High-Current Cathode Test Facility; (3) thruster component thermal modeling; and (4) alkali metal propellant studies.

  17. Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster

    NASA Astrophysics Data System (ADS)

    Wysong, I. J.; Pobst, J. A.

    1998-08-01

    Quantitative measurements of atomic hydrogen are reported for an arcjet thruster using two-photon laser-induced fluorescence. Number density, axial and radial velocity, and temperature of ground state atomic hydrogen are obtained at the nozzle exit plane and in the downstream plume of a 1 kW arcjet operating on hydrogen propellant. Details of the technique and data analysis are provided. Comparisons with other related available data are made, as well as with several computational models. The observed dissociation fraction of 31ᆢ %is significantly higher than predicted by the models.

  18. Thermal lensing of laser materials

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.

    2014-10-01

    This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.

  19. Integrated thruster assembly program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program is reported which has provided technology for a long life, high performing, integrated ACPS thruster assembly suitable for use in 100 typical flights of a space shuttle vehicle over a ten year period. The four integrated thruster assemblies (ITA) fabricated consisted of: propellant injector; a capacitive discharge, air gap torch type igniter assembly; fast response igniter and main propellant valves; and a combined regen-dump film cooled chamber. These flightweight 6672 N (1500 lb) thruster assemblies employed GH2/GO2 as propellants at a chamber pressure of 207 N/sq cm (300 psia). Test data were obtained on thrusted performance, thermal and hydraulic characteristics, dynamic response in pulsing, and cycle life. One thruster was fired in excess of 42,000 times.

  20. Laser characterization of the unsteady 2-D ion flow field in a Hall thruster with breathing mode oscillations

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature form of electric propulsion for spacecraft. One commonly observed low frequency (10-50 kHz) discharge current oscillation in these E × B devices is the breathing mode, linked to a propagating ionization front traversing the channel. The complex time histories of ion production and acceleration in the discharge channel and near-field plume lead to interesting dynamics and interactions in the central plasma jet and downstream plume regions. A time-resolved laser-induced fluorescence (LIF) diagnostic non-intrusively measures 2-D ion velocity and relative ion density throughout the plume of a commercial BHT-600 Hall thruster manufactured by Busek Co. Low velocity classes of ions observed in addition to the main accelerated population are linked to propellant ionization outside of the device. Effects of breathing mode dynamics are shown to persist far downstream where modulations in ion velocity and LIF intensity are correlated with discharge current oscillations. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  1. Atmospheric thermal lensing in laser resonators

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Thomas, Milfred E.; Koch, Grady J.; Marsh, Waverly D.

    1995-01-01

    Atmospheric absorption degrades laser performance both by absorbing laser energy within the laser resonator, which increases the loss, and by inducing a thermal lens in the atmosphere. Atmospheric thermal lensing can be quite severe, even when the absorption coefficient is quite modest. A model is developed which describes atmospheric thermal lensing; time constants, which are associated with the establishment and decay of the atmospheric thermal lens, are determined; experiments are performed using an injection seeded Ti:Al2O3 laser tuned to the H2O absorption lines near 0.815 microns to validate the model; dependence of the atmospheric thermal lens on the laser energy and absorption coefficient were measured and found to agree with the model. In addition, the decay of the atmospheric thermal lens with time was measured and also found to agree with the model predictions.

  2. Time-Synchronized CW-Laser Induced Fluorescence Velocity Measurements of a Diverging Cusped Field Thruster

    DTIC Science & Technology

    2013-10-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) August 2013 2. REPORT TYPE...satellite community attempts to reduce spacecraft size and cost, scaling of appropriate propul- sion devices such as Hall thrusters has become of particular...ions born at different times in the current cycle or at different positions within the ionization volume. In the case of point 2, the formation of a

  3. Polymers Used as Fuel for Laser Plasma Thrusters in Small Satellites

    DTIC Science & Technology

    2007-11-02

    chemical reactions (crosslinking), and the stability of the IR dye during these reactions is doubtful. We have also prepared large coated films for Claude...best” performer in the thruster tests (by Claude Phipps). The chemical structures are shown in Scheme 2. The polymers were studied with two different...2 J. Luque and D.R. Crosley, “LIFBASE: Databse and Spectral Simulation Program (Version 1.5)“, SRI International Report MO 99-009 (1999) 3 I. Kovacs

  4. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  5. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  6. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  7. Laser modification of thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.

    1987-08-01

    Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.

  8. NEXT Propellant Management System Integration With Multiple Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Soulas, George C.; Herman, Daniel A.

    2011-01-01

    As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.

  9. Single laser beam measurement of thermal diffusivity.

    PubMed

    Bourgoin, Jean-Philippe; Doiron, Serge; Deveaux, Michel; Haché, Alain

    2008-12-10

    Thermal diffusion properties of interfaces are measured using self-induced surface thermal lensing with a single laser beam. The time evolution of the reflected beam reveals information on heat diffusion away from the interface. Unambiguous correlation between measured signal and thermal diffusivity is shown, theoretically and experimentally, from which calibration curves are obtained. Being simpler and less sensitive to vibrations and misalignments, the technique offers definite advantages over standard two-beam (pump-probe) methods.

  10. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  11. A multiple thruster array for 30-cm thrusters. [propulsion system performance

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Matenieks, M. A.

    1975-01-01

    A 3.0 m diameter chamber of the 7.6 m diameter by 21.4 m long vacuum tank was modified to permit testing of an array of up to six 30-cm thrusters with a variety of laboratory and thermal vacuum breadboard power systems. A primary objective of the Multiple Thruster Array (MTA) program is to assess the impact of multiple thruster operation on individual thruster and power processor requirements. The areas of thruster startup, steady-state operation, throttling, high voltage recycle, thrust vectoring, and shutdown are of special concern. The results of initial tests are reported.

  12. Proposal of Liquid Cannon Target Driven by Fiber Laser for Micro-Thruster in Satellite

    SciTech Connect

    Yabe, Takashi; Ohzono, Hirokazu; Ohkubo, Tomomasa; Baasandash, Choijil; Yamaguchi, Masashi; Oku, Takehiro; Taniguchi, Kazumoto; Miyazaki, Sho; Akoh, Ryosuke; Ogata, Yoichi; Rosenberg, Benjamin; Yoshida, Minoru

    2004-03-30

    We propose a new concept controlling a satellite by a fiber laser loaded in it and demonstrated the acceleration of pendulum with 7kW/2n and 2kHz fiber laser, and measured the Cm of 16Ns/MJ corresponding to the scaling of YAG laser. This laser can be easily bundled to generate much larger power. For more efficient acceleration, we propose 'metal-free water cannon target', the new concept of propulsion using only water. The momentum coupling coefficient of 2500[Ns/MJ] was achieved with vacuum pump oil instead of water, and we succeeded in controlling the driving direction by the system based on the new concept. This can be used for thrusting a satellite and controlling its posture in combination with fiber lasers.

  13. Effect of High Z material on the performance of an air-breathing laser ablation thruster

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Kiyono, Inoru; Yokota, Ippei; Ozaki, Naoto; Yokota, Shigeru

    2016-09-01

    A Laser propulsion, such as a Lightcraft, is a candidate for the low cost transportation system between the ground to space instead of the chemical rocket. Using the shock wave induced by focusing laser beam on the ablator in air, the huge fuel is unnecessary to generate the thrust. In this study, the high-Z material was doped into the polystyrene to emphasize the ionization effect in air. We evaluate the intensity of the bremsstrahlung radiation, the plasma parameter, and the thrust performance.

  14. Laser Thermal Ablation of Thyroid Benign Nodules

    PubMed Central

    Shahrzad, Mohammad Karim

    2015-01-01

    Thermal ablation therapies for benign thyroid nodules have been introduced in recent years to avoid the complications of traditional methods such as surgery. Despite the little complications and the reportedly acceptable efficacy of thermal ablation methods, quite few medical centers have sought the potential benefits of employing them. This paper provides an introduction to the literature, principles and advances of Percutaneous Laser Ablation therapy of thyroid benign nodules, as well as a discussion on its efficacy, complications and future. Several clinical research papers evaluating the thermal effect of laser on the alleviation of thyroid nodules have been reviewed to illuminate the important points. The results of this research can help researchers to advance the approach and medical centers to decide on investing in these novel therapies. PMID:26705459

  15. Green Liquid Monopropellant Thruster

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.

    2015-01-01

    Physical Sciences, Inc. (PSI), and Orbital Technologies Corporation (ORBITEC) are developing a unique chemical propulsion system for next-generation NASA science spacecraft and missions. The system is compact, lightweight, and can operate with high reliability over extended periods of time and under a wide range of thermal environments. The system uses a new storable, low-toxicity liquid monopropellant as its working fluid. In Phase I, the team demonstrated experimentally the critical ignition and combustion processes for the propellant and used the data to develop thruster design concepts. In Phase II, the team developed and demonstrated in the laboratory a proof-of-concept prototype thruster. A Phase III project is envisioned to develop a full-scale protoflight propulsion system applicable to a class of NASA missions.

  16. Renaissance of laser interstitial thermal ablation.

    PubMed

    Missios, Symeon; Bekelis, Kimon; Barnett, Gene H

    2015-03-01

    Laser interstitial thermal therapy (LITT) is a minimally invasive technique for treating intracranial tumors, originally introduced in 1983. Its use in neurosurgical procedures was historically limited by early technical difficulties related to the monitoring and control of the extent of thermal damage. The development of magnetic resonance thermography and its application to LITT have allowed for real-time thermal imaging and feedback control during laser energy delivery, allowing for precise and accurate provision of tissue hyperthermia. Improvements in laser probe design, surgical stereotactic targeting hardware, and computer monitoring software have accelerated acceptance and clinical utilization of LITT as a neurosurgical treatment alternative. Current commercially available LITT systems have been used for the treatment of neurosurgical soft-tissue lesions, including difficult to access brain tumors, malignant gliomas, and radiosurgery-resistant metastases, as well as for the ablation of such lesions as epileptogenic foci and radiation necrosis. In this review, the authors aim to critically analyze the literature to describe the advent of LITT as a neurosurgical, laser excision tool, including its development, use, indications, and efficacy as it relates to neurosurgical applications.

  17. Investigation of beamed-energy ERH thruster performance

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.

    1986-01-01

    The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.

  18. Improving thermal barrier coatings by laser remelting.

    PubMed

    Múnez, C J; Gómez-García, J; Sevillano, F; Poza, P; Utrilla, M V

    2011-10-01

    Thermal barrier coatings are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. These coatings are usually processed by thermal spraying techniques and the resulting microstructure includes thin and large splats, associated with the deposition of individual droplets, with porosity between splats. This porosity reduces the oxidation and corrosion resistance favouring the entrance of aggressive species during service. To overcome this limitation, the top coat could be modified by laser glazing reducing surface roughness and sealing open porosity. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. This layer inhibited the ingress of aggressive species and delayed bond coat oxidation.

  19. Ion Beam Characterization of a NEXT Multi-Thruster Array Plume

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.

    2006-01-01

    Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.

  20. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  1. Histopathology of human laser thermal angioplasty recanalization.

    PubMed

    White, R A; White, G H; Vlasak, J; Fujitani, R; Kopchok, G E

    1988-01-01

    Laserprobe thermal-assisted balloon, angioplasty (LTBA) has demonstrated promising initial clinical results in recanalizing stenotic or occluded superficial femoral and popliteal arteries. Over the past year we have obtained six specimens of laserprobe thermal (LT) and LTBA treated total occlusions (avg. length 12 cm) for histopathologic examination from patients who were treated for limb salvage. Three tissue specimens were obtained acutely, and one was obtained at 6, 8, and 13 days, respectively, after laser angioplasty at the time of revision for complications or failed procedures. Serial histologic sections of the treated LT segments demonstrated recanalization of atherosclerotic lesions to approximately 60-70% of the probe diameter. The LT channels were lined by a thin layer of carbonized or coagulated tissue and several layers of cell necrosis. The histology of the thermal injury was similar regardless of whether it was produced by the heated metal cap or by free argon laser energy. Stellate balloon angioplasty fractures were frequently filled with thrombus. Analysis of these human LT and LTBA specimens revealed that the thermal device produces a confined injury through the path of least resistance. Balloon dilatation produces fragmented cracks in the vessel wall, which appear to be more thrombogenic than the carbonized LT surface. With improved guidance methods, LTBA shows potential for continuing development.

  2. Propulsion Instruments for Small Hall Thruster Integration

    NASA Technical Reports Server (NTRS)

    Johnson, Lee K.; Conroy, David G.; Spanjers, Greg G.; Bromaghim, Daron R.

    2001-01-01

    Planning and development are underway for the propulsion instrumentation necessary for the next AFRL electric propulsion flight project, which includes both a small Hall thruster and a micro-PPT. These instruments characterize the environment induced by the thruster and the associated data constitute part of a 'user's manual' for these thrusters. Several instruments probe the back-flow region of the thruster plume, and the data are intended for comparison with detailed numerical models in this region. Specifically, an ion probe is under development to determine the energy and species distributions, and a Langmuir probe will be employed to characterize the electron density and temperature. Other instruments directly measure the effects of thruster operation on spacecraft thermal control surfaces, optical surfaces, and solar arrays. Specifically, radiometric, photometric, and solar-cell-based sensors are under development. Prototype test data for most sensors should be available, together with details of the instrumentation subsystem and spacecraft interface.

  3. Stationary plasma thruster evaluation in Russia

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    A team of electric propulsion specialists from U.S. government laboratories experimentally evaluated the performance of a 1.35-kW Stationary Plasma Thruster (SPT) at the Scientific Research Institute of Thermal Processes in Moscow and at 'Fakel' Enterprise in Kaliningrad, Russia. The evaluation was performed using a combination of U.S. and Russian instrumentation and indicated that the actual performance of the thruster appears to be close to the claimed performance. The claimed performance was a specific impulse of 16,000 m/s, an overall efficiency of 50 percent, and an input power of 1.35 kW, and is superior to the performance of western electric thrusters at this specific impulse. The unique performance capabilities of the stationary plasma thruster, along with claims that more than fifty of the 660-W thrusters have been flown in space on Russian spacecraft, attracted the interest of western spacecraft propulsion specialists. A two-phase program was initiated to evaluate the stationary plasma thruster performance and technology. The first phase of this program, to experimentally evaluate the performance of the thruster with U.S. instrumentation in Russia, is described in this report. The second phase objective is to determine the suitability of the stationary plasma thruster technology for use on western spacecraft. This will be accomplished by bringing stationary plasma thrusters to the U.S. for quantification of thruster erosion rates, measurements of the performance variation as a function of long-duration operation, quantification of the exhaust beam divergence angle, and determination of the non-propellant efflux from the thruster. These issues require quantification in order to maximize the probability for user application of the SPT technology and significantly increase the propulsion capabilities of U.S. spacecraft.

  4. Mechanical design of SERT 2 thruster system

    NASA Technical Reports Server (NTRS)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  5. Thermal blooming of different waveform laser propagation in atmosphere

    NASA Astrophysics Data System (ADS)

    Liao, Tian-he; Liu, Wei; Gao, Qiong; Kang, Hua-chao

    2013-09-01

    Based upon the scalar wave equation and the equations of hydrodynamics, the simulation model used to calculate the transient thermal blooming of collimated multi-pulse laser by four-dimensional code. Considering the variety of absorption coefficient along with different altitudes, this paper got the new model of repetitively pulsed laser with thermal blooming in tropic by interpolation .On this basis, thermal blooming of different waveforms, such as triangle, gauss, and rectangle were calculated. The paper analyzes the thermal blooming of three waveform laser beams by changing respectively the value of the transmission power. After propagating the same distance in the same condition, the result shows that the peak irradiance of triangular laser distorts least severely; the PIB of gauss laser is the biggest, that is to say, the focusing ability of gauss laser is the best; the center of rectangle laser moves the furthest.

  6. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more

  7. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  8. Second Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The meeting focused on progress made in establishing performance and lifetime expectations of magnetoplasmadynamic (MPD) thrusters as functions of power, propellant, and design; models for the plasma flow and electrode components; viability and transportability of quasi-steady thruster testing; engineering requirements for high power, long life thrusters; and facilities and their requirements for performance and life testing.

  9. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  10. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  11. Calculation and comparison of thermal effect in laser diode pumped slab lasers with different pumping structures

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Jiang, Nan; Wang, Yuefeng; Dong, Wei; Niu, Yanxiong

    2008-03-01

    Laser diode (LD) pumped slab laser, as an important high average power solid-state laser, is a promising laser source in military and industrial fields. The different laser diode pumping structures lead to different thermal effect in the slab gain medium. The thermal and stress analysis of slab laser with different pumping structure are performed by finite element analysis (FEA) with the software program ANSYS. The calculation results show that the face pumped and cooled laser results in a near one-dimension temperature distribution and eliminates thermal stress induced depolarization. But the structure is low pump efficiency due to the small thickness of slabs and the requirement to cool and pump through the same faces. End-pumped slab laser is high pump efficiency and excellent mode match, but its pumping arrangement is fairly complicated. The edge-pumped face-cooling slab laser's pump efficiency is better than face-pumping, and its pumping structure is simpler than end-pumped laser, but the tensile stress on surfaces may initiate failure of the gain medium so it is important to design so that the stress is well below the stress fracture limit. The comparison of the thermal effects with different pumping structure shows that, the edge-pumped slab laser has engineering advantages in high power slab laser's application. Furthermore, the end-pumped slab laser tends to get the best beam quality, so it is fit for the application which has a special requirement on laser beam quality.

  12. VHITAL-160 Thruster Development Status

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Hofer, Rich; Owens, Al; Swindlehurst, Ray; Fitzgerald, Dennis

    2006-01-01

    A general overview on the status of the Very High Isp Thruster with Anode Layer (VHITAL)-160 program is presented. The topics include: 1) Bi TAL Overview; 2) VHITAL Program Overview; 3) Thruster Fabrication; and 4) Thruster Testing.

  13. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  14. High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Tverdokhlebov, Sergery; Manzella, David

    1999-01-01

    The development of Hall thrusters with powers ranging from tens of kilowatts to in excess of one hundred kilowatts is considered based on renewed interest in high power. high thrust electric propulsion applications. An approach to develop such thrusters based on previous experience is discussed. It is shown that the previous experimental data taken with thrusters of 10 kW input power and less can be used. Potential mass savings due to the design of high power Hall thrusters are discussed. Both xenon and alternate thruster propellant are considered, as are technological issues that will challenge the design of high power Hall thrusters. Finally, the implications of such a development effort with regard to ground testing and spacecraft intecrati'on issues are discussed.

  15. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  16. Evaluation of laser prostatectomy devices by thermal imaging

    NASA Astrophysics Data System (ADS)

    Molenaar, David G.; van Vliet, Remco J.; van Swol, Christiaan F. P.; Boon, Tom A.; Verdaasdonck, Rudolf M.

    1994-12-01

    The treatment of benign prostatic hyperplasia (BPH) using Nd:YAG laser light has become an accepted alternative to TURP. However, there is no consensus to the dosimetry using the various laser devices. In our study, we evaluate the optical and thermal characteristics of 7 commercially available side firing laser probes. For the thermal analysis, an optical method was used based on `Schlieren' techniques producing color images of the temperature distribution around the laser probe in water. Absolute temperatures were obtained after calibration measurements with thermocouples. Laser probes using metal mirrors for beam deflection heated up entirely. The local temperature rose up to 100 degrees centigrade, thus inducing vapor bubble formation that interfered with the emitted beam. Laser devices, using total internal reflection for deflection, showed far less heating primarily at the exit window, though Fresnel reflections and secondary beams indirectly heated up the (metal) housing of the tip. After clinical application, the absorption at the probe surface and hence temperature increased due to probe deterioration. Color Schlieren imaging is a powerful method for the thermal evaluation of laser devices. The thermal behavior of laser probes can be used as a guidance for the method of application and as an indication of the lifetime of the probes.

  17. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Inhouse magnetoplasmadynamic (MPD) thruster technology is discussed. The study focussed on steady state thrusters at powers of less than 1 MW. Performance measurement and diagnostics technologies were developed for high power thrusters. Also developed was a MPD computer code. The stated goals of the program are to establish: performance and life limitation; influence of applied fields; propellant effects; and scaling laws. The presentation is mostly through graphs and charts.

  18. Titanium Optics for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.; Rawlin, Vincent K.

    1999-01-01

    Ion thruster total impulse capability is limited, in part, by accelerator grid sputter erosion. A development effort was initiated to identify a material with a lower accelerator grid volumetric sputter erosion rate than molybdenum, but that could utilize the present NSTAR thruster grid design and fabrication techniques to keep development costs low, and perform as well as molybdenum optics. After comparing the sputter erosion rates of several atomic materials to that of molybdenum at accelerator voltages, titanium was found to offer a 45% reduction in volumetric erosion rates. To ensure that screen grid sputter erosion rates are not higher at discharge chamber potentials, titanium and molybdenum sputter erosion rates were measured at these potentials. Preliminary results showed only a slightly higher volumetric erosion rate for titanium, so that screen grid erosion is insignificant. A number of material, thermal, and mechanical properties were also examined to identify any fabrication, launch environment, and thruster operation issues. Several titanium grid sets were successfully fabricated. A titanium grid set was mounted onto an NSTAR 30 cm engineering model ion thruster and tested to determine optics performance. The titanium optics operated successfully over the entire NSTAR power range of 0.5 to 2.3 kW. Differences in impingement-limited perveances and electron backstreaming limits were found to be due to a larger cold gap for the titanium optics. Discharge losses for titanium grids were lower than those for molybdenum, likely due to a slightly larger titanium screen grid open area fraction. Radial distributions of beam current density with titanium optics were very similar to those with molybdenum optics at all power levels. Temporal electron backstreaming limit measurements showed that titanium optics achieved thermal equilibrium faster than molybdenum optics.

  19. Conducting Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  20. Oxygen-Methane Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  1. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  2. Modeling the thermal response of porcine cartilage to laser irradiation

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, Sergio H.; Aguilar, Guillermo; Basu, Reshmi; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    Cartilage laser thermoforming, also known as laser reshaping, is a new surgical procedure that allows in-situ treatment of deformities in the head and neck with less morbidity than traditional approaches. During laser irradiation, cartilage becomes sufficiently subtle or deformable for stretching and shaping into new stable configurations. This study describes the experimental and theoretical characterization of the thermal response of porcine cartilage to laser irradiation (Nd:YAG). The surface temperature history of cartilage specimens was monitored during heating and thermal relaxation; using laser exposure times ranging between 1 and 15 s and laser powers of 1 to 10 W. The experimental results were then used to validate a finite element model, which accounts for heat diffusion, light propagation in tissue, and heat loss due to water evaporation. The simultaneous solution of the energy and mass diffusion equations resulted in predictions of temperature distribution in cartilage that were in good agreement with experiments. The model simulations will provide insights to the relationship between the laser treatment parameters (exposure time, laser beam diameter, and power) and the onset of new molecular arrangements and cell thermal injury in the material, thus conceiving basic guidelines of laser thermoforming.

  3. Changing correlation into anticorrelation by superposing thermal and laser light.

    PubMed

    Liu, Jianbin; Zhou, Yu; Li, Fu-Li; Xu, Zhuo

    2014-07-01

    Correlation can be changed into anticorrelation by superposing thermal and laser light with the same frequency and polarization. Two-photon interference theory is employed to interpret this phenomenon. An experimental scheme is designed to verify the theoretical predictions by employing pseudothermal light to simulate thermal light. The experimental results are consistent with the theoretical results.

  4. Thermal emf generated by laser emission along thin metal films

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.

    1991-07-01

    Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.

  5. NASA's Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2001-01-01

    NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.

  6. Thermal effects in laser-assisted embryo hatching

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  7. Multi-Thruster Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    An electric propulsion machine includes an ion thruster having a discharge chamber housing a large surface area anode. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, at least a second thruster may be disposed radially offset from the ion thruster.

  8. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  9. Thermal injuries as a result of CO2 laser resurfacing.

    PubMed

    Grossman, A R; Majidian, A M; Grossman, P H

    1998-09-01

    CO2 laser resurfacing of the face for fine wrinkles has gained great popularity over a short period of time. The use of the CO2 laser has proven to be effective in reducing or eliminating fine wrinkles. This tool in the surgeon's armamentarium has been added to those of dermabrasion and chemical peel. The theoretical advantage of the use of the CO2 laser for resurfacing has been better accuracy and reportedly more control of the depth of penetration. The use of the CO2 laser has been welcomed by many cosmetic surgeons. Until now, there have been few reported cases of complications with the use of the CO2 laser. To many, this would sound too good to be true; unfortunately, that is the case. The CO2 laser is a high-energy machine that can indeed cause thermal injury. This thermal injury can result in deep burns to the skin and hypertrophic scarring. We feel this is more common than is currently being reported, and we share our experience as a burn and wound care referral service. During an 18-month period, 20 consecutive patients were referred to our practice who had received injuries from the CO2 laser resurfacing laser. We present here in this review a summary of those injuries. The CO2 resurfacing laser is a very effective tool for the treatment of fine wrinkles, but it is not without the potential for serious complications. We urge caution with the use of the laser and prompt recognition and treatment of thermal injury to the skin.

  10. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions have been proposed which will utilize 30-cm mercury bombardment ion thrusters and also will require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  11. High reliability cathode heaters for ion thrusters

    NASA Technical Reports Server (NTRS)

    Mueller, L. A.

    1976-01-01

    A number of space missions were proposed which utilize 30-cm mercury bombardment ion thrusters and also require a large number of thruster restarts. A test program was carried out to determine thermal cycle life of several different cathode heater designs. Plasma/flame sprayed heaters and swaged type heaters were tested. Four of the five plasma/flame sprayed heaters tested failed in a comparatively short time. Four tantalum swaged heaters that were brazed to the tantalum cathode tube were successfully tested and met the goals that were set at the start of the test.

  12. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  13. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  14. Thermal measurements of short-duration CO2 laser resurfacing

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Fried, Daniel; Reinisch, Lou; Bell, Thomas; Lyver, Rex

    1997-05-01

    The thermal consequences of a 100 microsecond carbon-dioxide laser used for skin resurfacing were examined with infrared radiometry. Human skin was evaluated in a cosmetic surgery clinic and extirpated rodent skin was measured in a research laboratory. Thermal relaxation following single pulses of in vivo human and ex vivo animal skin were quantitatively similar in the 30 - 1000 msec range. The thermal emission from the area of the irradiated tissue increased monotonically with increasing incident laser fluence. Extremely high peak temperatures during the 100 microsecond pulse are attributed to plume incandescence. Ejecta thermal emission may also contribute to our measurements during the first several msecs. The data are combined into a thermal relaxation model. Given known coefficients, and adjusting tissue absorption to reflect a 50% water content, and thermal conductivity of 2.3 times that of water, the measured (both animal back and human forearm) and calculated values coincide. The high thermal conductance suggests preferential thermal conduction along the protein matrix. The clinical observation of a resurfacing procedure clearly shows thermal overlap and build-up is a result of sequential, adjacent pulses. A decrease of 4 - 6 degrees Celsius in surface temperature at the treatment site that appeared immediately post-Tx and gradually diminished over several days is possibly a sign of dermal convective and/or evaporative cooling.

  15. Algorithm for Analyzing Thermal Images of Laser Irradiated Human Skin

    PubMed Central

    Toumi, Johnny; Saiof, Fawaz; Bachir, Wesam

    2016-01-01

    Introduction: Tracking temporal changes of temperature during laser skin treatment plays an important role in improving the process of laser skin treatment itself. There are a number of methods to analyze temperature’s temporal dependency during laser skin treatment; some of those methods depend on imaging the skin with thermal cameras. However, the use of thermal cameras exhibits specific problems, including the ability to track laser-skin interaction spot. This paper is dedicated to solve that problem using digital image processing program coded with Matlab. Methods: The measurements were taken for 15 native Syrian subjects of different sex, age and skin tones, the treated ailment was port wine stain. The clinical work (laser exposure) was performed in Damascus University, hospital of dermatology. The treatment was observed by thermal camera and analyzed using the proposed Matlab coded tracking system. Results: For all the subjects, the treatment laser spot was tracked and the curves of skin temperature change with time where calculated by the use of the proposed algorithm, then the active time was calculated for each subject. The algorithm proved practical and robust. Conclusion: The proposed algorithm proved to be efficient and can be used to support future researchers with capability to measure the temperature with high frame rate. PMID:28144436

  16. Mechanisms of Laser-Tissue Interaction: II. Tissue Thermal Properties

    PubMed Central

    Ansari, Mohammad Ali; Erfanzadeh, Mohsen; Mohajerani, Ezeddin

    2013-01-01

    Laser-tissue interaction is of great interest due to its significant application in biomedical optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction which has to be considered in biomedical studies are the thermal properties of the tissue and the thermal changes caused by the interaction of light and tissue. In this review paper the effects of light on the tissue at different temperatures are discussed. Then, due to the noticeable importance of studying the heat transfer quantitatively, the equations governing this phenomenon are presented. Finally a method of medical diagnosis called thermography and some of its applications are explained. PMID:25606316

  17. Miniature cold gas thrusters

    NASA Astrophysics Data System (ADS)

    Bzibziak, R. J., Sr.

    1992-07-01

    Cold gas thrusters provide a safe, inexpensive, lightweight and reliable means of propulsive control for small satellites, projectiles and maneuvering control systems. Moog Inc. has designed and developed a family of miniature cold gas thrusters for use on Strategic Defense Iniative flight simulation experiments, sounding rockets, small satellite applications, astronaut control systems, and close proximity maneuvering systems for Space System. Construction features such as coil assembly, core assembly, armature assembly, external housing and valve body are discussed. The design approach, performance characteristics and functional description of cold gas thrusters designed for various applications are presented.

  18. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  19. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Paeng, Dongwoo; Yeo, Junyeob; Lee, Daeho; Moon, Seung-Jae; Grigoropoulos, Costas P.

    2015-09-01

    This work is concerned with the laser wavelength effect on the electrical properties and surface morphology of laser-sintered nanoparticle thin films. Silver nanoparticle thin films spin-coated on soda lime glass substrates were irradiated with lasers of three different wavelengths (near ultraviolet 405 nm, green 514.5 nm, near infrared 817 nm) at varied laser intensities and scanning speeds. Scanning electron microscopy images and ex situ resistivity measurements show that the photo-thermal sintering alters significantly the film surface morphology and electrical properties, depending on the processing parameters (laser wavelength, laser intensities and scanning speed). While the optical response of the material is determined largely by the processing laser wavelength, the laser beam intensity and scanning speed regulate the induced temperature field. Examination of the optical properties of as-deposited silver nanoparticle thin film in conjunction with scanning electron microscopy images taken from the laser-sintered lines helps elucidate how the processing laser wavelength modulates the optical response of silver nanoparticle thin film and therefore affects the thermal response.

  20. Thermal Aspects of Ductile Mode Micro Laser Assisted Machining

    SciTech Connect

    Virkar, Saurabh R.; Patten, John A.

    2011-01-17

    This paper presents the simulation work performed to study an innovative process called micro-Laser Assisted Machining ({mu}-LAM). {mu}-LAM is being used for machining hard and brittle semiconductor and ceramic materials such as Silicon Carbide. Numerical simulations were carried out using the commercial software AdvantEdge Version 5.4. The cutting tool is modeled as a single point diamond tip. The workpiece material (4H-SiC) is heated locally during the actual machining process by a laser beam, which passes through the diamond tool tip. The workpiece is heated beyond the thermal softening point in order to study the effect of increased temperature on the machining process. The initial work started with an approximate thermal softening curve to ensure that thermal effects can be incorporated in the simulation model. A new thermal softening curve was developed based upon experimental data and implemented in the material model. A thermal boundary was provided on the workpiece top surface to simulate the effect of laser heating. In all three cases the chip formation was observed and the changes in cutting and thrust forces were evaluated. The simulation results indicate a significant decrease in machining forces if Silicon Carbide is heated and thermally softened thus demonstrating the benefits of the {mu}-LAM process.

  1. Imaging laser-induced thermal fields and effects

    NASA Astrophysics Data System (ADS)

    Verdaasdonck, Rudolf M.

    1995-05-01

    Laser light interaction with biological tissues is a combination of optical, thermal and mechanical effects depending on the energy applied per unit of volume per unit of time. Visualization of the phenomena with a high temporal and spatial resolution, contributes to a better understanding of the mechanism of action, especially when pulsed lasers are involved. For this goal, setups were developed based on Schlieren techniques to image the interaction of pulsed (CO2, Holmium and Excimer) and CW (CO2, Nd:YAG, Cu-vapor) lasers with physiological media and biological tissues. In a 'fast' Schlieren setup, images of shock waves and fast expanding and imploding vapor bubbles were captured using very short light flashes (10 ns-10 microseconds). These recordings suggest that these explosive vapor bubbles seem to be the main dynamism for tissue ablation. In a 'color' Schlieren setup, very small changes in optical density of the media induced by temperature gradients, were color coded. Calibration of the color images to absolute temperatures were performed by using calculated temperature distributions and by thermocouple measurements. Cameras with high speed shutters (0.1-50 ms) enabled the recording of dynamic images of the thermal relaxation and heat diffusion in tissues during variation of pulse length and repetition rate. Despite pulse lengths < ms, heat generation in tissue was considerable already at pulse repetition rates above a few Hz. Similar Schlieren techniques were applied to study the thermal characteristics of laser probes, e.g. for the treatment of Benign Prostatic Hyperplasia (BPH). In combination with thermal modeling an optimal therapy might be predicted. Schlieren techniques, generating high-speed and 'thermal' images, can provide a good understanding of the ablation mechanism and the thermo-dynamics during laser-tissue interaction with continuous wave and pulse lasers.

  2. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Mantenieks, Maris A.; Lapointe, Michael R.

    1991-01-01

    MPD (MagnetoPlasmaDynamic) thrusters demonstrated between 2000 and 7000 seconds specific impulse at efficiencies approaching 40 percent, and were operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. To date, however, only a limited number of thruster configurations, propellants, and operating conditions were studied. The present status of MPD research is reviewed, including developments in the measured performance levels and electrode erosion rates. Theoretical studies of the thruster dynamics are also described. Significant progress was made in establishing empirical scaling laws, performance and lifetime limitations and in the development of numerical codes to simulate the flow field and electrode processes.

  3. MPD thruster technology

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Lapointe, Michael R.; Mantenieks, Maris A.

    1991-01-01

    MPD thrusters have demonstrated between 2000 and 7000 sec specific impulse at efficiencies approaching 40 percent, and have been operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. This work reviews the present status of MPD thruster research, including developments in the measured performance levels and electrode erosion rates, and theoretical studies of the thruster dynamics. Significant progress has been made in establishing empirical scaling laws, performance and lifetime limitations, and in the development of numerical codes to simulate the flowfield and the electrode processes.

  4. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  5. Laser window with annular grooves for thermal isolation

    DOEpatents

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  6. Laser thermal probe recanalization of occluded arteries.

    PubMed

    White, R A; White, G H

    1989-04-01

    Applications of laser energy for treatment of vascular disease have recently received much attention; metal-tipped laser probes are being investigated as a device for recanalization of occluded arteries, especially as an adjunct to balloon dilatation. Developments in instrumentation and techniques have reduced the incidence of complications, notably perforation, to an acceptable level. Initial data show that recanalization of iliac, femoral, and popliteal lesions can be accomplished in a majority of cases, with the chance of success being inversely proportional to the length of occlusion. Results in the tibial vessels are disappointing. Patency of the treated vessels at 12 months appears to be superior to that of percutaneous transluminal angioplasty for similar lesions but inferior to that of surgical bypass for all occlusions greater than 3 cm in length.

  7. Thermal resistance of ridge-waveguide lasers mounted upside down

    SciTech Connect

    Amann, M.

    1987-01-05

    The heat dissipation in upside down mounted ridge-waveguide lasers equipped with a double-channel structure is analyzed by a simplified device model. Assuming an isothermal active region, the thermal resistance is obtained by means of conformal mapping. A comparison to published experimental results shows good agreement.

  8. Comparison of thermal management techniques for semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Giet, S.; Kemp, A. J.; Burns, D.; Calvez, S.; Dawson, M. D.; Suomalainen, S.; Harkonen, A.; Guina, M.; Okhotnikov, O.; Pessa, M.

    2008-02-01

    Semiconductor Disk Lasers (SDLs) are compact lasers suitable for watt to multi-watt direct generation in the 670- 2350nm waveband and frequency-doubled operation in the ultraviolet and visible regions. This is, however, critically dependent on the thermal management strategy used as, in this type of laser, the pump is absorbed over micrometer lengths and the gain and loss are temperature sensitive. In this paper, we compare the two heat dissipation techniques that have been successfully deployed to-date: the "thin device" approach where the semiconductor active mirror is bonded onto a heatsink and its substrate subsequently removed, and the "heatspreader" technique where a high thermal conductivity platelet is directly bonded onto the active part of the unprocessed epilayer. We show that for SDLs emitting at 1060nm with pump spots of ~80µm diameter, the heatspreader approach outperforms the thin-device alternative, with the best results being obtained with a diamond heatspreader. Indeed, the thermal resistances are measured to be 4.9, 10.4 and 13.0 K/W for diamond-bonded, SiC-bonded and flip-chip devices respectively. It is also observed, as expected, that the thermal management strategy indirectly affects the optimum output coupling and thus the overall performance of these lasers.

  9. Thermal runaway in semiconductor laser windows.

    PubMed

    Johnson, R L; O'Keefe, J D

    1972-12-01

    A small perturbation model is used to obtain analytical expressions for the critical or runaway power density for laser windows constructed of semiconductor materials. These equations are used to compute the critical power density for several realistic window installations taking account of the finite value of realizable convection cooling coefficients. Computations were prepared for silicon transmitting 4 .0-micro. radiation and for germanium at 10.6 micro. In this way it is shown that power densities are principally limited by the effectiveness of cooling from the face of the window, that is, the surface perpendicular to the laser beam. Since convection cooling coefficients are small the transmission of high power densities through semiconductor windows is therefore contingent upon finding more effective means to cool the window from the face. Finally, a simplified calculation was made in an attempt to account for nonuniformity of the incident laser beam. a given window, but not severely. The results show the onuniformity reduces the runaway power for a given window, but not severely.

  10. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  11. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  12. 43. Bow thruster room. Bow thruster engine not used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Bow thruster room. Bow thruster engine not used for powering hydraulics to boom as in some other tenders in same class. - U.S. Coast Guard Cutter BRAMBLE, Waterfront at Lincoln Avenue, Port Huron, St. Clair County, MI

  13. Thermal blooming on laser propagation in an aspirating pipe

    NASA Astrophysics Data System (ADS)

    Zhu, Fuyin; Wang, Jihong; Ren, Ge; Tan, Yufeng; Zhu, Nengbing; Ai, Zhiwei

    2016-10-01

    Thermal blooming effect of gas on laser propagation can seriously degrade performance of far-field beam quality and energy distribution. Numerical simulation is carried out to study the influences of thermal blooming on laser propagation in line pipes. A physical model of thermal blooming effect of gas on laser propagation in an aspirating pipe is established. Axial flow and suction in the outlet are used to attenuate the thermal blooming effect. Based on the computational fluid dynamics (CFD) software, stable calculation of flow field is carried out first, then the optical field and the fluent field is coupling calculated by means of user defined function (UDF). The results show that radial flow is enhanced in the aspirating pipe and the index of refraction gradient caused by thermal blooming effect is decreased. It is indicated that the beam quality of the outlet is improved compared with the pipe model without aspirating. The optical path difference (OPD) distribution of the outlet is analyzed and decomposed by Zernike polynomials. It is shown that the defocus item of 4m aspirating pipe is decreased more than an order of magnitude compared with the 4m pipe without aspirating.

  14. Thermal Conductivity Based on Modified Laser Flash Measurement

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2005-01-01

    The laser flash method is a standard method for thermal diffusivity measurement. It employs single-pulse heating of one side of a thin specimen and measures the temperature response of the other side. The thermal diffusivity of the specimen can be obtained based on a one-dimensional transient heat transfer analysis. This paper reports the development of a theory that includes a transparent reference layer with known thermal property attached to the back of sample. With the inclusion of heat conduction from the sample to the reference layer in the theoretical analysis, the thermal conductivity and thermal diffusivity of sample can be extracted from the temperature response data. Furthermore, a procedure is established to select two points from the data to calculate these properties. The uncertainty analysis indicates that this method can be used with acceptable levels of uncertainty.

  15. Thermally widely tunable laser diodes with distributed feedback

    SciTech Connect

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-11

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  16. Thermally widely tunable laser diodes with distributed feedback

    NASA Astrophysics Data System (ADS)

    Todt, R.; Jacke, T.; Meyer, R.; Amann, M.-C.

    2005-07-01

    A thermally widely tunable buried heterostructure laser diode with distributed feedback (DFB) is demonstrated. This device requires only two tuning currents for wide quasicontinuous wavelength tuning, thereby facilitating easy and fast device calibration and control. Furthermore, being based on regular DFB laser fabrication technology, it is readily manufacturable. By using window structures instead of cleaved facets plus antireflection coatings, a regular tuning behavior has been achieved for a DFB-like widely tunable laser diode with only two tuning currents. The laser diode covers the wavelength range between 1552 and 1602 nm. Requiring side-mode suppression ratio and output power above 30 dB and 10 mW, respectively, a wavelength range of 43 nm is accessible.

  17. Laser-Induced Thermal Damage of Skin

    DTIC Science & Technology

    1977-12-01

    through B-3, it may be observed that 2 or 3 pulses will limit the errors in the peak temperatures to less than about 27. While errors in the...pressure. The resultant pressure represents an upper limit in that it does not allow for tissue deforma- tion, i.e., water remains as water without...8217(xqlpO.6)) RET URN END 122 *.wew~inemmUPROUT INE 0OeeU U C *S RO0OMUE INTINSITIEs or LASER SEAN AT GIVEN RADII rOm LAWE C 000 PONER of I WATT-.INTINS

  18. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications.

  19. Laser acupuncture causes thermal changes in small intestine meridian pathway.

    PubMed

    de Souza, Regina Célia; Pansini, Mario; Arruda, Gisele; Valente, Caroline; Brioschi, Marcos Leal

    2016-11-01

    The acupuncture meridians represent the flow of corporal energy which contains the acupuncture points. Laser acupuncture is a form of acupuncture stimulation by the use of laser. Thermographic images represent the propagation of heat in micro-environmental systems. The objective of this study was to investigate the use of thermographic images to document the changes on the small intestine meridian (S.I.M.) when submitted to laser acupuncture. Another important issue regards to the analysis of the flow direction if it is upward when stimulated by acupuncture points. For the execution of this work, a laser acupuncture pen was used in points of the meridian in the S.I.M. Two healthy male volunteers were selected (18 and 60 years old, respectively), and doses of 576,92 J/cm(2) with low-power infrared laser equipment with a wavelength of 780 nm in the SI.3 and SI.19 points were applied. An infrared thermal camera was used to measure the temperature of the S.I.M. during the 6 min laser acupuncture pen stimulus. When the laser acupuncture of both volunteers was conducted in the SI.3 point, it presented hyper-radiation of the hemi face in the same side, far from the application site. When this was applied in the SI.19 point, hyper-radiation in the same point and temperature lowering at the end of the meridian were observed. The laser energy caused thermal changes along the path of the S.I.M., distal, and proximal at the same time, proving the existence of the S.I.M.

  20. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  1. 1125-nm quantum dot laser for tonsil thermal therapy

    NASA Astrophysics Data System (ADS)

    McMillan, Kathleen

    2011-03-01

    Thermal therapy has the potential to provide a nonexcisional alternative to tonsillectomy. Clinical implementation requires that the lymphoid tissue of tonsils is heated homogeneously to produce an amount of primary thermal injury that corresponds to gradual postoperative tonsil shrinkage, with minimal risk of damage to underlying critical blood vessels. Optical constants are derived for tonsils from tissue components and used to calculate the depth of 1/e of irradiance. The 1125 nm wavelength is shown to correspond to both deep penetration and minimal absorption by blood. A probe for tonsil thermal therapy that comprises two opposing light emitting, temperature controlled surfaces is described. For ex vivo characterization of tonsil heating, a prototype 1125 nm diode laser is used in an experimental apparatus that splits the laser output into two components, and delivers the radiation to sapphire contact window surfaces of two temperature controlled cells arranged to irradiate human tonsil specimens from opposing directions. Temperatures are measured with thermocouple microprobes at located points within the tissue during and after irradiation. Primary thermal damage corresponding to the recorded thermal histories are calculated from Arrhenius parameters for human tonsils. Results indicate homogeneous heating to temperatures corresponding to the threshold of thermal injury and above can be achieved in advantageously short irradiation times.

  2. Iodine Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  3. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi

    2007-07-24

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________

  4. Optimization of Cylindrical Hall Thrusters

    SciTech Connect

    Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch

    2007-11-27

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  5. Thermal tests for laser Doppler perfusion measurements in Raynaud's syndrome

    NASA Astrophysics Data System (ADS)

    Kacprzak, Michal; Skora, A.; Obidzinska, J.; Zbiec, A.; Maniewski, Roman; Staszkiewicz, W.

    2004-07-01

    The laser Doppler method offers a non-invasive, real time technique for monitoring of blood perfusion in microcirculation. In practical measurements the perfusion index is given only in relative values. Thus, accurate and reproducible results can be only obtained when using a well controlled stimulation test. The aim of this study was evaluation of the thermal stimulation test, which is frequently used to investigate microcirculation in patients with Raynaud's syndrome. Three types of thermal tests, in which air or water with temperature in range 5°C - 40°C were used. Ten normal volunteers and fifteen patients with clinical symptoms of the primary Raynaud's syndrome were enrolled in this study. To estimate skin microcirculation changes during the thermal test, the multichannel laser Doppler system and laser Doppler scanner were used. The obtained results were analyzed from the point of view of the efficiency of these methods and the thermal provocative tests in differentiation of normal subjects and patient with Raynaud's syndrome.

  6. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  7. Heterogeneously bonded vertical cavity surface emitting lasers and thermal modeling

    NASA Astrophysics Data System (ADS)

    Jeong, Hyejin

    Typically semiconductor materials used for photonic devices have been limited to those exhibiting a direct bandgap. In order to incorporate indirect bandgap and non-semiconducting materials, extensive research efforts have been put into developing hybrid photonic devices, which consist of different materials for the light emitting region and the substrate. In this dissertation, a post-fabrication bonding technique for integrating semiconductor vertical cavity surface emitting lasers (VCSELs) onto hybrid substrates is demonstrated. This approach provides flexibility regarding the choice of device fabrication and hybrid substrate materials. Light output versus injected current and applied voltage characteristics of lasers are measured before and after the transfer process. VCSEL arrays transferred onto Si substrate show that the transfer technique does not degrade the laser performance. VCSEL transfer onto a polyethylene terephthalate (PET) substrate allows for flexible arrays, but with degraded performance due to excessive thermal dissipation. A VCSEL array with an area of 1.0 x 1.2 mm2 is transferred onto a Cu substrate which has a higher thermal conductivity compared to both GaAs and PET. For the transfer bonding process, the final device yield is enhanced by including an etch stop layer in the epitaxial wafer. In order to study the effect of the thermal conductivity of the substrate on the dissipation of heat from the VCSELs, we present a simple VCSEL electro-thermal model, in which an agreement is obtained between simulation and experiment for lasing wavelength with varying laser diameter. Using this model, the thermal limitations of the VCSEL output on different substrates is discussed.

  8. Loss of vasoreactivity by laser thermal energy or argon laser irradiation.

    PubMed

    Tomaru, T; Uchida, Y; Nakamura, F; Miwa, A Y; Kawai, S; Okada, R; Sugimoto, T

    1993-05-01

    Vasoreactivity of laser-treated vessels was investigated in two different experimental conditions. The canine left circumflex coronary artery (LCx) was lased under perfusion with Krebs-bicarbonate buffer by means of a thermal laser (hot-tip probe, HT) at 7 W for 6 seconds and an argon laser beam through a 300 microns optical fiber at 3 W (tip power) for 1 second at 12 spots. A nontreated segment of the LCx served as a control. Two 3-mm long segments were obtained from the treated segment: one to measure the results of potassium (K) induced contraction, and another 3, 4 diaminopyridine (DAP; K channel inhibitor) induced contraction. In 11 instances, coronary angiography of the perfused artery showed less than 50% stenosis after laser treatment. The segments were then mounted isometrically with 1 g tension in Krebs-bicarbonate buffer. Contraction was induced either with 30 mM KCI or 10(-2) M DAP and expressed as developed tension (gram; g). KCI induced vasocontraction of 4.15 +/- 0.93 g in the control, 0.33 +/- 0.71 g in laser irradiated segments (P < 0.0001 vs control), and 0.02 +/- 0.06 g in thermally-treated segments (P < 0.0001 vs control). DAP induced vasocontraction of 5.21 +/- 1.32 g in the control, 0.39 +/- 0.83 g in laser irradiated segments (P < 0.0001 vs control), and 0.07 +/- 0.13 g in thermally treated segments (P < 0.001 vs control). In 4 instances, more than 50% stenosis remained and additional balloon dilatation reduced the stenosis to less than 50%. The lesions also showed reduced vasoreactivity. In vivo thermal angioplasty resulted in reduced vasoreactivity compared to control in 4 anesthetized dogs. Thus, laser and thermal angioplasty reduced vasoreactivity induced by either KCI or 3, 4 DAP. Neither acetylcholine at 10(-6) M nor papaverine at 10(-4) M was able to induce relaxation of treated segments. In conclusion, 1) the lased coronary artery loses its vasoreactivity to either a constrictive or relaxing agent, 2) although stenosis may be produced

  9. Hydrogen-oxygen catalytic ignition and thruster investigation. Volume 2: High pressure thruster evaluations

    NASA Technical Reports Server (NTRS)

    Johnson, R. J.; Heckert, B.; Burge, H. L.

    1972-01-01

    A high pressure thruster effort was conducted with the major objective of demonstrating a duct cooling concept with gaseous propellant in a thruster operating at nominally 300 psia and 1500 lbf. The analytical design methods for the duct cooling were proven in a series of tests with both ambient and reduced temperature propellants. Long duration tests as well as pulse mode tests demonstrated the feasibility of the concept. All tests were conducted with a scaling of the raised post triplet injector design previously demonstrated at 900 lbf in demonstration firings. A series of environmental conditioned firings were also conducted to determine the effects of thermal soaks, atmospheric air and high humidity. This volume presents the results of the high pressure thruster evaluations.

  10. Advanced space propulsion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1981-01-01

    Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.

  11. Progress on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognari, Peter; Koelfgen, Syri J.; Lee, Mike

    2004-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic field (B(sub p) and B(sub t), respectively). An object with B(sub p)/B(sub t), much much more than 1 is called a Field Reverse Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The thruster operates by repetitively producing plasmoids that are accelerated and ejected at high velocity. As this process is inductive, there are no electrodes. Also, the magnetic structure of the plasmoid should suppress thermal and mass losses to the wall, and improve detachment of the plasma exhaust from the thruster. This concept should be capable of producing an Isp in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable into the MW range. In PTX, the plasmoid is formed inside of a single turn conical theta-pinch coil (17.58 cone angle). The coil is driven by a 640 nF, 35 kV capacitor bank, which rings at a frequency of 500 kHz. Previous experiments on PTX were conducted with a static-fill of propellant gas (6% H2 in He), and demonstrated reliable ionization over a pressure range of 40 - 200 mTorr. We are now adding a fast gas-puff valve to load the propellant, and a ringing pre-ionization circuit (f = 5 Mhz) to better control the plasmoid formation. An alternate coil (8.58 cone angle) will also be used, so as to investigate the effect of coil shape on performance. In addition, a variety of propellants will be used, including hydrogen, nitrogen, and argon. The plasmoid mass and velocity will be measured with a variety of diagnostics, including external B-dot probes and flux loops, a high-speed framing camera, and a HeNe laser interferometer. Internal B-dot probes and a quadruple Langmuir probe will provide additional

  12. Thermal response model of polymer matrix composites under laser irradiating

    NASA Astrophysics Data System (ADS)

    Peng, Guo-liang; Zhang, Xiang-hua; Du, Tai-jiao

    2015-05-01

    A numerical study is conducted to determine which model could be used to compute temperature fields of polymer matrix composites under laser irradiating. By using the local thermal non-equilibrium model, solid and gas temperature on surfaces of materials with different volume convection coefficients have been computed and compared under different heat flux. The results show that the assumption of local thermal equilibrium is not reasonable until the heat flux applied to composites is low enough and the volume convection coefficient is big enough. And the gas may be not important for solid temperature when the volume convection coefficient is small.

  13. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  14. Krypton ion thruster performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J., Jr.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4-5.5 kW. The data are presented, and compared and contrasted to those obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust-to-power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order-of-magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  15. Krypton Ion Thruster Performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  16. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  17. NASA's 2004 Hall Thruster Program

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2004-01-01

    An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.

  18. Thermal effects in IR-laser-irradiated living cells

    NASA Astrophysics Data System (ADS)

    Meier, Thomas H.; Rueck, Angelika C.; Scalfi-Happ, Claudia; Hug, Hubert; Schneider, Marion E.

    2003-10-01

    Irradiation of cell-layers with focussed 2.8 μm ir-laser allows to control the cell temperature from room temperature up to 100°C. Temperatures were calculated for a cell culture model and verified experimentally by thermal mapping of the cell-surrounding medium by means of thermochromic liquid crystals (TLC). Irradiation power and time were varied and associated biological effects like necrosis and apoptosis were observed with respect to the irradiation dosis.

  19. Thermal Changes of Maize Seed by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.

    2015-09-01

    In this research, the thermal evolution in maize seeds ( Zea mays L.) was studied when low-intensity laser irradiation was applied during 60 s. The seeds were irradiated in three different conditions: suspended in air, placed on an aluminum surface, and finally placed on a cardboard; the evolution of the seed temperature was measured by an infrared camera. Photoacoustic spectroscopy and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient (β ) of the seeds. The results indicate that using 650 nm laser light and 27.4 mW, it is possible to produce temperature changes (up to 9.06°C after 1 min) on the seeds. Comparing the mean temperature of the seeds, during and after the incidence of light from a laser, it was found that there were statistically significant differences (P≤ 0.05) from time t1 to time t_{16} (t1 to t_{16}) and t3 to t_{16}, for the laser turned on and off, respectively. The seed condition that had the highest temperature variation, relative to the initial temperature (during the irradiation laser exposure), involved the seeds suspended in air. With regard to the stage of decay of the temperature, it was found that the seed condition that decays more slowly was the seed placed on the cardboard. It was also found that black-dyed maize seeds are optically opaque in the 300 nm to 700 nm range Also, the thermal diffusion length is smaller than the optical penetration length. In the present investigation, it was shown that there is a thermal component associated with the mechanisms of laser biostimulation, which is also a function of the container materials of the seed. In this way, the effects of laser treatment on maize seeds involve at least a temperature effect. It is important to know the temperature changes in the seeds that have been irradiated with a laser beam since they could have substantial practical and theoretical importance.

  20. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  1. Percutaneous MRI-guided laser thermal therapy in canine prostate

    NASA Astrophysics Data System (ADS)

    McNichols, Roger J.; Gowda, Ashok; Gelnett, Marc D.; Stafford, Roger J.

    2005-04-01

    Prostate cancer is the most common cancer in American men excluding skin cancer, and approximately 230,000 cases of prostate cancer will be diagnosed in the U.S. in 2004. In the non-surgical treatment of localized prostate cancer, fiberoptically delivered interstitial laser thermal therapy may be ideal for treating discrete tumors with minimal invasiveness. Real-time magnetic resonance imaging can be used to compute temperature changes based on the proton resonance frequency (PRF) shift, and two-dimensional maps of temperature rise and chronic thermal damage can be constructed in order to control laser therapy. In this work, we describe an MRI-compatible percutaneous grid template and localization and planning software for precise placement of minimally invasive laser catheters to effect a target ablation zone. We evaluated the accuracy of the catheter placement, and we present our preliminary experience with percutaneous MRI-guided feedback controlled laser ablation in a canine prostate model. Histological analysis is used to assess the effectiveness and accuracy of treatment visualization.

  2. Magnetoplasmadynamic Thruster Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    On May 16, 1991, the NASA Headquarters Propulsion, Power, and Energy Division and the NASA Lewis Research Center Low Thrust Propulsion Branch hosted a workshop attended by key experts in magnetoplasmadynamic (MPD) thrusters and associated sciences. The scope was limited to high power MPD thrusters suitable for major NASA space exploration missions, and its purpose was to initiate the process of increasing the expectations and prospects for MPD research, primarily by increasing the level of cooperation, interaction, and communication between parties within the MPD community.

  3. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  4. MPD Thruster Performance Analytic Models

    NASA Technical Reports Server (NTRS)

    Gilland, James; Johnston, Geoffrey

    2007-01-01

    Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.

  5. MPD Thruster Performance Analytic Models

    NASA Technical Reports Server (NTRS)

    Gilland, James; Johnston, Geoffrey

    2003-01-01

    Magnetoplasmadynamic (MPD) thrusters are capable of accelerating quasi-neutral plasmas to high exhaust velocities using Megawatts (MW) of electric power. These characteristics make such devices worthy of consideration for demanding, far-term missions such as the human exploration of Mars or beyond. Assessment of MPD thrusters at the system and mission level is often difficult due to their status as ongoing experimental research topics rather than developed thrusters. However, in order to assess MPD thrusters utility in later missions, some adequate characterization of performance, or more exactly, projected performance, and system level definition are required for use in analyses. The most recent physical models of self-field MPD thrusters have been examined, assessed, and reconfigured for use by systems and mission analysts. The physical models allow for rational projections of thruster performance based on physical parameters that can be measured in the laboratory. The models and their implications for the design of future MPD thrusters are presented.

  6. Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyang; Zhang, Hongzhi; Wang, Yang

    2014-12-01

    Laser induced thermal-crack propagation (LITP) makes the material to produce an uneven temperature field, maximum temperature can't soften or melt the material, induces the thermal stress, then the crack separates along the cutting path. One of the problems in laser asymmetry cutting glass with LITP is the cutting deviation along scanning trajectory. This study lays great emphasis on considering the dynamic extension of crack to explain the reason of the cutting deviation in laser asymmetry cutting glass, includes asymmetric linear cutting and a quarter of a circular curve cutting. This paper indicates the experiments of semiconductor laser asymmetry cutting glass with LITP. Optical microscope photographs of the glass sheet are obtained to examine the cutting deviation. The extended finite element method (XFEM) is used to simulate the dynamic propagation of crack; the crack path does not have to be specified a priori. The cutting deviation mechanism and the crack propagation process are studied by the stress fields using finite element software ABAQUS. This work provides a theoretical basis to investigate the cutting deviation in laser asymmetry cutting glass. In semiconductor laser asymmetry cutting glass, the tensile stress is the basis of crack propagation, then the compressive stress not only makes the crack to extend stably, but also controls the direction of crack propagation.

  7. The effects of exposure to LN2 temperatures and 2.5 suns solar radiation on 30-cm ion thruster performance

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1975-01-01

    An experimental test program was developed to demonstrate all 30 cm Hg-ion bombardment thruster functions over the thermal environment of several proposed missions. A 30 cm thruster with grids dished 1.25 cm and instrumented with 31 thermocouples, was placed in a vacuum tank equipped with minus 196 C walls. Cold storage of a thruster was simulated and temperatures as low as minus 100 C were attained on the thruster. The thruster started successfully from these cold conditions. The thruster operating at both half and full beam power was exposed to 2.5 suns on axis solar simulation. Various thruster thermal configurations, used to simulate multiple thruster operation, were tested at the above conditions. The results of these tests are reported herein.

  8. The effects of exposure to LN2 temperatures and 2.5 suns solar radiation on 30-cm ion thruster performance

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1975-01-01

    An experimental test program was developed to demonstrate all 30 cm Hg-ion bombardment thruster functions over the thermal environment of several proposed missions. A 30 cm thruster with grids dished 1.25 cm and instrumented with 31 thermocouples, was placed in a vacuum tank equipped with -196 C walls. Cold storage of a thruster was simulated and temperatures as low as -100 C were attained on the thruster. The thruster started successfully from these cold conditions. The thruster operating at both half and full beam power was exposed to 2.5 suns on axis solar simulation. Various thruster thermal configurations, used to simulate multiple thruster operation, were tested at the above conditions. The results of these tests are reported herein.

  9. Inverse Thermal Analysis of Refractory Metal Laser Welds

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.

    2013-09-01

    Case study inverse thermal analyses of Vanadium and Tantalum laser welds are presented. These analyses employ a methodology that is in terms of analytic basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric-function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes process conditions of which fall within similar regimes. This study also discusses specific aspects the inverse-analysis methodology relevant to further development of algorithms for its application in practice.

  10. Thermal Effects Induced by Laser Irradiation of Solids

    SciTech Connect

    Galovic, S.

    2004-12-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  11. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  12. Single shot thermometry using laser induced thermal grating

    NASA Astrophysics Data System (ADS)

    Qu, Pubo; Guan, Xiaowei; Zhang, Zhenrong; Wang, Sheng; Li, Guohua; Ye, Jingfeng; Hu, Zhiyun

    2015-05-01

    With the concern of environmental protection and reducing the fossil fuel consumption, combustion processes need to be more efficient and less contaminable. Therefore, the ability to obtain important thermophysical parameters is crucial to combustion research and combustor design. Traditional surveying techniques were difficult to apply in a confined space, especially the physically intrusions of detectors can alter the combustion processes. Laser-based diagnostic techniques, like CARS, SVRS, PLIF and TDLAS, allow the in situ, non-intrusive, spatially and temporally resolved measurements of combustion parameters in hostile environments. We report here a new non-intrusive optical diagnostic technique, based on laser-induced thermal grating. Thermal gratings generated in NO2/N2 binary mixtures, arise from the nonlinear interaction between the medium and the light radiation from the interference of two pulsed, frequency-doubled Nd:YAG lasers (532 nm). This leads to the formation of a dynamic grating through the resonant absorption and the subsequent collisional relaxation. By the temporally resolved detection of a continuous wave, frequency-doubled Nd:YVO4 probe laser beam (671 nm) diffracted by LITG. The temporal behavior of the signal is a function of the local temperature and other properties of gas, various parameters of the target gas can be extracted by analyzing the signal. The accurate singleshot temperature measurements were carried out at different test conditions using a stainless steel pressurized cell, data averaged on 100 laser shots were compared with simultaneously recorded thermocouple data, and the results were consistent with each other. The LITG signal is shown to grow with increasing the gas pressure and is spatially coherent, which makes the LITG thermometry technique a promising candidate in high pressure environments.

  13. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies.

    PubMed

    Lagman, Carlito; Chung, Lawrance K; Pelargos, Panayiotis E; Ung, Nolan; Bui, Timothy T; Lee, Seung J; Voth, Brittany L; Yang, Isaac

    2017-02-01

    Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a novel minimally invasive modality that uses heat from laser probes to destroy tissue. Advances in probe design, cooling mechanisms, and real-time MR thermography have increased laser utilization in neurosurgery. The authors perform a systematic analysis of two commercially available MRgLITT systems used in neurosurgery: the Visualase® thermal therapy and NeuroBlate® Systems. Data extraction was performed in a blinded fashion. Twenty-two articles were included in the quantitative synthesis. A total of 223 patients were identified with the majority having undergone treatment with Visualase (n=154, 69%). Epilepsy was the most common indication for Visualase therapy (n=8 studies, 47%). Brain mass was the most common indication for NeuroBlate therapy (n=3 studies, 60%). There were no significant differences, except in age, wherein the NeuroBlate group was nearly twice as old as the Visualase group (p<0.001). Frame, total complications, and length-of-stay (LOS) were non-significant when adjusted for age and number of patients. Laser neurosurgery has evolved over recent decades. Clinical indications are currently being defined and will continue to emerge as laser technologies become more sophisticated. Head-to-head comparison of these systems was difficult given the variance in indications (and therefore patient population) and disparate literature.

  14. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  15. Colloid micro-Newton thruster development for the ST7-DRS and LISA missions

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Gamero-Castano, Manuel; Hruby, Vlad; Spence, Doug; Demmons, Nate; McCormick, Ryan; Roy, Tom

    2005-01-01

    We present recent progress and development of the Busek Colloid Micro-Newton Thruster (CMNT) for the Space Technology 7 Disturbance Reduction System (ST7-DRS) and Laser Interferometer Space Antenna (LISA) Missions.

  16. Laser beam steering via wave mixing in volumetric thermal gratings

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    1992-06-01

    A volumetric thermal grating (VTG) is a spatially periodic refractive index variation in a volume of gas or liquid, generated by imaging interference fringes into the medium. The fringes can be created and varied by steering laser write beams electronically with acousto- optic (A-O) cells. While the wavelength of the write beams is chosen to be absorbed by a dopant in the VTG medium, a read beam at an off-resonance wavelength can be manipulated by diffraction from the resulting index grating. Potential applications include resonator and amplifier optical isolation prepulse suppression in high-gain amplifiers, noninertial steering of large-diameter laser beams, transfer of phase information between beams to facilitate adaptive optics, Q-switching of chemical lasers, and line selection in broadband lasers. In this paper, we present a preliminary assessment of VTG utility for these optical systems applications by quantitative analysis of the medium density dynamics. In Section 2, we derive a relation between A-O acoustic frequency uncertainty and VTG pointing/steering uncertainty, which also scales desired steering range to required A-O frequency modulation bandwidth. In Section 3, we discuss the temporal response of a doped rare-gas VTG medium. Section 4 is an assessment of VTG beam-steering performance potential using available technology.

  17. Thermal relaxation of adsorbed atoms in an intense laser field

    NASA Astrophysics Data System (ADS)

    Arnoldus, Henk F.; van Smaalen, Sander; George, Thomas F.

    1986-11-01

    Adsorbed atoms on the surface of a harmonic lattice are immersed in a strong laser field. The optical Bloch equations are derived, which include the thermal relaxation and the coherent excitation of the adbond. This is accomplished by a transformation to dressed states, which diagonalizes the interaction with the laser. The single-phonon couplings are then understood as transitions between dressed states. The radiative contributions for arbitrarily strong fields are obtained in the master equation, and it is shown that the coherences with respect to the dressed states decay exponentially, due to the phonon relaxation. General properties of the competing phonon-induced redistribution and optical excitation of the level populations are presented, and exemplified by an explicit elaboration of a three-level system. The results are amenable to analytical evaluation once the interaction potential is prescribed, and extensions of the approach to include multiphonon processes are straightforward.

  18. Interventional cardiovascular therapy by laser and thermal angioplasty

    SciTech Connect

    Litvack, F.; Grundfest, W.S.; Segalowitz, J.; Papaioanniou, T.; Goldenberg, T.; Laudenslager, J.; Hestrin, L.; Forrester, J.S.; Eigler, N.A.; Cook, S. )

    1990-03-01

    The advent of balloon angioplasty as a clinical device crystallized the concept of nonsurgical revascularization. The problems of restenosis, diffuse disease, and total occlusions persist despite the demonstrated efficacy of balloon angioplasty. During the past 5 years, a variety of laser devices and catheter designs have demonstrated usefulness in the treatment of peripheral vascular disease. Initial success rates of 70-90% have been reported in occluded femoropopliteal arteries. Further clinical trials are warranted to compare the relative efficacy of these devices with each other and conventional therapies. Thermal ablative devices have not yet shown great promise for treatment of coronary disease. Modified versions of these devices as well as nonthermally acting excimer lasers are promising as clinical tools for enhancing our ability to nonsurgically revascularize patients, and trials with these devices are now underway. 31 references.

  19. Performance Evaluation of the Prototype Model NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.

  20. Performance and lifetime assessment of MPD arc thruster technology

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Mantenieks, Maris A.

    1988-01-01

    A summary of performance and lifetime characteristics of pulsed and steady-state magnetoplasmadynamic (MPD) thrusters is presented. The technical focus is on cargo vehicle propulsion for exploration-class missions to the Moon and Mars. Relatively high MPD thruster efficiencies of 0.43 and 0.69 have been reported at about 5000 s specific impulse using hydrogen and lithium, respectively. Efficiencies of 0.10 to 0.35 in the 1000 to 4500 s specific impulse range have been obtained with other propellants (e.g., Ar, NH3, N2). Thermal efficiency data in excess of 0.80 at MW power levels using pulsed thrusters indicate the potential of high MPD thruster performance. Extended tests of pulsed and steady-state MPD thrusters yield total impulses at least two to three orders of magnitude below that necessary for cargo vehicle propulsion. Performance tests and diagnostics for life-limiting mechanisms of megawatt-class thrusters will require high fidelity test stands which handle in excess of 10 kA and a vacuum facility whose operational pressure is less than 3 x 10 to the -4 torr.

  1. HG ion thruster component testing

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  2. Thermal annealing of laser damage precursors on fused silica surfaces

    SciTech Connect

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  3. Application of fiber laser in time constant measurement of thin wire thermal resistor

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Feng, Shuanglian; Zhang, Zhigang; Qiang, Xiwen; Zong, Fei; Feng, Gang; Hu, Yuehong

    2016-01-01

    Measuring principle of time constant for thin wire thermal resistor was put forward. An 1.07μm fiber laser was used to output a rectangle laser pulse with edges of several tens microns and width of 100ms, and the thermal resistor under test was shined by the laser. As a result, the temperature of the thermal resistor rose and gradually went up to a fixed level with the irradiation. And then the thermal resistor's temperature dropped and gradually went down to the room temperature with the laser powered off. Time constant of the thermal resistor could be obtained by means of measuring the temperature variation of the thermal resistor due to the laser pulse. A device was designed and experiments were carried out, the time constants of three commonly used thin wire thermal resistors were measured.

  4. Controlling the thermally induced focal shift in laser processing heads

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Abt, Felix; Blázquez-Sánchez, David; Austerschulte, Armin; Hafner, Margit; Liebig, Thomas; von Strobl-Albeg, Philipp; Weber, Rudolf; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-03-01

    A system being able to in situ measure and control not simply the distance between the workpiece and the focusing optics, but the true focal position on the workpiece including the thermally induced focal shift in a laser processing head is presented. In order to achieve this, a bundle of astigmatic measurement beams is used following the same optical path as the welding beam. A camera and a software algorithm allow to keep the focal position constant within a range of 4 mm and with a resolution between 150 μm and 500 μm.

  5. Hg ion thruster component testing

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1979-01-01

    Electron bombardment thrusters, under development to provide both auxiliary and primary propulsion functions for a large variety of space missions are tested. Thruster design verification which requires life tests of durations of the order of the time anticipated in space applications, are discussed. The life time and reliability of an electron bombardment thruster is dependent upon the performance of several critical components including cathodes, vaporizers, and isolators. The performances of the cathode, vaporizer, and propellant isolaters during fatigue analyses are examined.

  6. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, R.; Martin, Adam; Lee, Michael; Smith, James; Koelfgen, Syri

    2003-01-01

    This viewgraph presentation describes the overall Plasma Thruster Experiment (PTX), it's purpose and design, compact toroid propulsion, advantages and requirements of a plasmoid thruster, the projected efficiency, theta-pinch formation, a simulation of the PTX Coil/Bank Circuit using SPICE, the test firing of the PTX Capacitor Bank, PTX diagnostics, the excluded flux array, thruster simulations using MOQUI, and future work on the PTX.

  7. CONTROL OF LASER RADIATION PARAMETERS: Properties of a thermal lens in laser ceramics

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Mukhin, I. B.; Palashov, O. V.; Khazanov, E. A.

    2007-07-01

    A model of thermal optical effects in laser ceramics was constructed, which takes into account random orientations of crystallographic axes in ceramics grains. Analytic expressions for the thermally induced phase, its average value and dispersion were derived. The effect of the beam-phase modulation with the characteristic transverse size of the order of the grain size was predicted. It was shown that deterioration of the parameters of the beam quality caused by this effect is inversely proportional to the ratio of the length of the ceramic element to the grain size.

  8. Thruster sealing system and apparatus

    NASA Technical Reports Server (NTRS)

    Svejkovsky, Paul A. (Inventor)

    1992-01-01

    A thruster nozzle sealing system and apparatus is provided for protection of spacecraft thruster motors. The system includes a sealing plug, a sealing plug insertion tool, an outer cover, an outer cover attachment, and a ferry flight attachment. The sealing plug prevents moisture from entering the thruster engine so as to prevent valve failure. The attachments are interchangeably connectable with the sealing plug. The ferry flight attachment is used during air transportation of the spacecraft, and the outer cover attachment is used during storage and service of the spacecraft. The outer cover provides protection to the thruster nozzle from mechanical damage.

  9. Multimegawatt MPD thruster design considerations

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Parkes, James E.; Mantenieks, Maris A.

    1992-01-01

    Performance and lifetime requirements for multimegawatt magnetoplasmadynamic (MPD) thrusters were used to establish a baseline 2.5 MW thruster design. The chamber surface power deposition resulting from current conduction, plasma and surface radiation, and conduction from the hot plasma was then evaluated to establish the feasibility of thruster operation. It was determined that state of the art lithium heat pipes were adequate to cool the anode electrode, and that the liquid hydrogen propellant could be used to cool the applied field magnet, cathode, and backplate. Unresolved issues having an impact of thruster design are discussed to help focus future research.

  10. Laser Interstitial Thermal Therapy Technology, Physics of Magnetic Resonance Imaging Thermometry, and Technical Considerations for Proper Catheter Placement During Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy.

    PubMed

    Patel, Nitesh V; Mian, Matthew; Stafford, R Jason; Nahed, Brian V; Willie, Jon T; Gross, Robert E; Danish, Shabbar F

    2016-12-01

    Laser-induced thermal therapy has become a powerful tool in the neurosurgical armamentarium. The physics of laser therapy are complex, but a sound understanding of this topic is clinically relevant, as many centers have incorporated it into their treatment algorithm, and educated patients are demanding consideration of its use for their disease. Laser ablation has been used for a wide array of intracranial lesions. Laser catheter placement is guided by stereotactic planning; however, as the procedure has popularized, the number of ways in which the catheter can be inserted has also increased. There are many technical nuances for laser placement, and, to date, there is not a clear understanding of whether any one technique is better than the other. In this review, we describe the basic physics of magnetic resonance-guided laser-induced thermal therapy and describe the several common techniques for accurate Visualase laser catheter placement in a stepwise fashion.

  11. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  12. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  13. Diode-laser based scanning laser thermoelectric microscope for thermal diffusivity characterization of thin films on semiconductor substrates

    SciTech Connect

    Borca-Tasciuc, T.; Chen, G.

    1999-07-01

    This work presents new experimental results in the characterization of thermophysical properties for dielectric thin films on semiconductor substrates using the Scanning Laser Thermoelectric Microscope (SLTM) measurement technique. The new improved SLTM employs a modulated laser beam from a 1.55 {micro}m IR diode laser. The laser is used to create a micro-scale thermal wave in the film by focusing the light through the substrate. At this laser wavelength, the technique can be used to determine the thermal diffusivity for films deposited on semiconductor substrates with the band-gap larger than 0.8eV. The generated thermal wave is detected by a fast responding thermocouple formed between the film surface and the tip of a sharp probe. By scanning the laser beam around the thermocouple, the amplitude and phase distributions of the thermal wave are obtained. The film thermal diffusivity is obtained by fitting the detected phase profile of the thermal wave with a three-dimensional heat conduction model. Experimental results are presented for a film-on-substrate system composed of a two-layer thin film on the silicon substrate. The two-layer film is a 4.65{micro}m silicon dioxide film on which a 100nm thick gold film is deposited in order to provide an absorption layer for the laser light and also to facilitate the thermoelectric detection of the thermal wave.

  14. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    PubMed

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  15. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    SciTech Connect

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  16. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  17. Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew M.; Wang, James; Shetty, Anil M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason

    2008-02-01

    Cooled fiber tip technology has significantly improved the volume coverage of laser induced thermal therapy (LITT), making LITT an attractive technology for the minimally invasive treatment of cancer. Gold coated nanoshells can be tuned to experience a plasmon resonance at a desired laser frequency, there introduction into the treatment region can greatly amplify the effectiveness of the thermal treatment. The goal is to conformaly heat the target, while sparing surrounding healthy tissue. To this end a treatment option that is self-confining to the target lesion is highly desirable. This can be achieved in the liver by allowing nanoshells to be taken up by the healthy tissue of the liver as part of their natural removal from the blood stream. The lesion is then incased inside the nanoshell laden tissue of the surrounding healthy tissue. When an interstitial laser probe is introduced into the center of the lesion the thermal radiation scatters outward until it interacts with and is absorbed by the nanoshells located around the lesion periphery. As the periphery heats it acts as secondary source of thermal radiation, sending heat back into lesion and giving rise to ablative temperatures within the lesion while sparing the surrounding tissue. In order to better monitor therapy and know when the target volume has been ablated, or exceeded, accurate knowledge is needed of both the spatial distribution of heating and the maximum temperature achieved. Magnetic resonance temperature imaging (MRTI) is capable of monitoring the spatiotemporal distribution of temperature in vivo[1]. Experiments have been performed in vitro using a dog liver containing nanoshells (concentration 860ppm) and a tissue like lesion phantom designed to have the optical properties of liver metastasis [2].

  18. Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue.

    PubMed

    van Gemert, M J; Lucassen, G W; Welch, A J

    1996-08-01

    The thermal response of a semi-infinite medium in air, irradiated by laser light in a cylindrical geometry, cannot accurately be approximately by single radial and axial time constants for heat conduction. This report presents an analytical analysis of hear conduction where the thermal response is expressed in terms of distributions over radial and axial time constants. The source term for heat production is written as the product of a Gaussian shaped radial term and an exponentially shaped axial term. The two terms are expanded in integrals over eigenfunctions of the radial and axial parts of the Laplace heat conduction operator. The result is a double integral over the coupled distributions of the two time constants to compute the temperature rise as a function of time and of axial and radial positions. The distribution of axial time constants is a homogeneous slowly decreasing function of spatial frequency (v) indicating that one single axial time constant cannot reasonably characterize axial heat conduction. The distribution of radial time constants is a function centred around a distinguished maximum in the spatial frequency (lambda) close to the single radial time constant value used previously. This suggests that one radial time constant to characterize radial heat conduction may be a useful concept. Special cases have been evaluated analytically, such as short and long irradiation times, axial or radial heat conduction (shallow or deep penetrating laser beams) and, especially, thermal relaxation (cooling) of the tissue. For shallow penetrating laser beams the asymptotic cooling rate is confirmed to be proportional to [(t)0.5-(t-tL)0.5] which approaches 1/t0.5 for t > tL, where t is the time and tL is the laser pulse duration. For deep penetrating beams this is proportional to 1/(t-tL). For intermediate penetration, i.e. penetration depths about equal to spot size diameters, this is proportional to 1/(t-tL)1.5. The double integral has been evaluated

  19. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  20. Electron Transport in Hall Thrusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael Sean

    Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments

  1. Estimation of Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We evaluate mechanical thermal noise in semiconductor lasers, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Our simple model determines an underlying fundamental limit for the frequency noise of free-running semiconductor laser, and provides a framework: where the noise may be potentially reduced with improved design.

  2. Modeling of neutral entrainment in an FRC thruster

    SciTech Connect

    Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey; Cambier, Jean-Luc; Ketsdever, Andrew

    2012-11-27

    Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.

  3. Wear Testing of the HERMeS Thruster

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Gilland, James H.; Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Ahern, Drew M.; Yim, John; Herman, Daniel A.; Hofer, Richard R.; Sekerak, Michael

    2016-01-01

    The Hall-Effect Rocket with Magnetic Shielding (HERMeS) thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) as primary propulsion for the Asteroid Redirect Robotic Mission (ARRM). This thruster is advancing the state-of-the-art of Hall-effect thrusters and is intended to serve as a precursor to higher power systems for human interplanetary exploration. A 2000-hour wear test has been initiated at NASA GRC with the HERMeS Technology Demonstration Unit One and three of four test segments have been completed totaling 728 h of operation. This is the first test of a NASA-designed magnetically shielded thruster to extend beyond 300 hr of continuous operation. Trends in performance, component wear, thermal design, plume properties, and back-sputtered deposition are discussed for two wear-test segments of 246 h and 360 h. The first incorporated graphite pole covers in an electrical configuration where cathode was electrically connected to thruster body. The second utilized traditional alumina pole covers with the thruster body floating. It was shown that the magnetic shielding in both configurations completely eliminated erosion of the boron nitride discharge channel but resulted in erosion of the inner pole cover. The volumetric erosion rate of the graphite pole covers was roughly 2/3 that of the alumina pole covers and the thruster exhibited slightly better performance. Buildup of back-sputtered carbon on the BN channel at a rate of roughly 1.5 µm/kh is shown to have negligible impact on the performance.

  4. Sub-second laser heating of thermal impulse sensors

    NASA Astrophysics Data System (ADS)

    Gunawidjaja, Ray; Anderson, Benjamin R.; Price, Patrick; Diez-y-Riega, Helena; Eilers, Hergen

    2017-01-01

    We have developed thermal impulse sensors to measure and record temperature and heating duration in explosive fireballs. The functionality of these sensors is similar to that of our temperature-only sensors - rare-earth ions are used to monitor temperature-induced phase changes. However, in this case two sensor materials, p-Dy:Y2O3 and p-Eu:ZrO2, with different phase change kinetics are mixed. In addition, a fluorescence standard, Ho:ZrO2, is included. Also, using laser heating, we have now reduced the shortest heating duration for our calibration measurements from the previously reported 2 s to 100 ms, and we have evaluated these sensors for temperatures between 400 °C and 900 °C, and heating times between 100 ms and 1000 ms. Using spectral matching, we determine the temperature and heating duration.

  5. Thermal effect on prebunched two-beam free electron laser

    NASA Astrophysics Data System (ADS)

    Mirian, N. S.; Maraghechi, B.

    2013-08-01

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  6. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  7. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  8. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  9. Laser initiated thermal tuning of a cholesteric liquid crystal

    SciTech Connect

    Natarajan, Lalgudi V.; Tondiglia, Vincent P.; Sutherland, Richard L.; Siwecki, Stephen A.; White, Timothy J.; Wofford, Jeremy M.; Bunning, Timothy J.

    2010-07-05

    We report on the large wavelength range and light-initiated thermal tuning of the reflection of a liquid crystal (LC) formulation (S811/ZLI-2806) near a smectic (SmA) to cholesteric (CLC) phase transition enabled by the use of a high order parameter heat transfer dye (anthraquinone, AQ). Upon irradiation with a 647 nm Krypton ion (Kr{sup +}) laser line, absorption by AQ generates heat that is transferred to the surrounding LC host. In the S811/ZLI-2806 formulation examined here, the optically generated increase in temperature serves to transition the phase from SmA to CLC. As has been documented, the SmA->CLC transition is typified by a pitch contraction that blueshifts the position of the CLC reflection, in this case a shift from 2500 to 700 nm that can occur in less than 100 s. The tuning range and speed are dependent on the laser power and the amount of dye in the cell.

  10. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  11. Free-Electron Lasers, Thermal Diffusion, Chemical Kinetics, and Surgery

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn; Hutson, M. Shane

    2001-11-01

    Experiments demonstrate that the Mark-III FEL is a particularly effective tool for etching soft matter with remarkably little damage surrounding the site when tuned to wavelengths near 6.45 microns. Based on these observatons, human neuorsurgical and ophthalmic procedures were developed and have been performed successfully. A thermodynamic model was proposed to account for the wavelength dependence; however, the dynamics have not been well understood. We have theoretically investigated thermal diffusion and chemical kinetics in a system of alternating layers of protein and water as heated by a Mark-III FEL. The model is representative of cornea and the exposure conditions are comparable to previous experimental FEL investigations. A substantial temperature enhancement develops in the surface layer on the ten-nanosecond time scale. We consider the onset of both the helix-coil transition and chemical bond breaking of collagen in terms of the thermal, chemical, and structural properties of the system as well as laser wavelength and pulse structure.

  12. PT-1 Plasmoid Thruster Capable of Multi-Mode Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Rose, Frank; Eskridge, Richard; Martin, Adam; Alam, Mohammed

    2008-01-01

    This slide presentation reviews the concept of a Plasmoid Thruster that is capable of operating in several different modes. A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. The Drive and Bias circuits, the gas distribution, the pre-ionization stage, and the operation sequence are detailed. The advantages of the Plasmoid thruster and the research and technology required for development of this form of propulsion is reviewed.

  13. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.

  14. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  15. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.

  16. Thermal modelling of high-power laser diodes mounted using various types of submounts

    SciTech Connect

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-10-31

    Using three-dimensional thermal modelling of a highpower 980-nm laser diode with a stripe contact width of 100 μm as an example, we analyse the thermal parameters of high-power laser diodes mounted using submounts. We consider a range of thermal conductivities of submounts that includes parameters of widely used thermal compensators based on AlN, BeO and SiC, as well as on CuW and CuMo composites and polycrystalline and single-crystal synthetic diamond with high thermal conductivity. Taking into account experimental overall efficiency vs. pump current data, we calculate the temperature of the active layer as a function of the width, thickness and thermal conductivity of the submount at thermal loads corresponding to cw output powers of 10, 15 and 20 W. (lasers)

  17. Empirical electron cross-field mobility in a Hall effect thruster

    SciTech Connect

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-10-05

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B{sup 2} or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B{sup 2} or 1/B mobility laws for discharge voltages in the 500-700 V range.

  18. Ion Velocity Distribution in a Low-Power Cylindrical Hall Thruster

    DTIC Science & Technology

    2010-07-01

    S. A. and Fisch , N. J., “Cylindrical Hall Thrusters,” Proceedings of the 37th AIAA Plasmadynamics and Lasers Conference, No. AIAA-2006-3245, American...Channel of Low-Power Hall Thruster,” IEEE Transactions on Plasma Science, Vol. 36, No. 5, October 2008, pp. 1989–1997. 4Raitses, Y., S. A. and Fisch , N. J... Fisch , N. J., “Enhanced Ionization in the Cylindrical Hall Thruster,” Journal of Applied Physics, Vol. 94, No. 2, 2003. 16Gildea, S. R., B. O. and

  19. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  20. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  1. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  2. Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, Norman P.

    1990-01-01

    The laser performance of Nd:Cr:GSGG and Nd:YAG was investigated and compared for laser efficiency, thermal focusing, and depolarization effects. Laser efficiency was studied for Nd:Cr:GSGG and Nd:YAG under similar conditions. Laser efficiency was measured as a function of electrical energy and output mirror reflectivity. Maximum laser efficiency was calculated by determining the losses in the laser cavity. Thermal focusing and birefringence loss of Nd:Cr:GSGG and Nd:YAG have been examined by varying the average pump power. The average pump power changed by adjusting both the energy per pulse and the pulse-repetition frequency. Substantial thermal focusing differences for Nd:Cr:GSGG are explained.

  3. Metal-cavity quantum-dot lasers with enhanced thermal performance.

    PubMed

    Matsudaira, A; Lu, C-Y; O'Brien, T; Chuang, S L

    2012-08-15

    We designed, fabricated, and characterized thermal performances of Fabry-Pérot quantum-dot lasers with both metal-coated and conventional dielectric waveguides. With proper design, metals, such as Ag, Au, Cu, and Al can function as a low loss waveguide wall as well as an efficient heat remover. Metal-cavity waveguide lasers showed excellent threshold and characteristic temperature working above 120 °C, while dielectric waveguide lasers ceased operation near 80 °C under the same conditions. The thermal analysis of these lasers showed that metal-cavity lasers have approximately 1.5 times higher thermal conductivity compared with those of the dielectric lasers. We believe that the metal-coating of waveguides and the proper selection of metal efficiently remove the heat from the active region and enable stable lasing operation at high temperature.

  4. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognan, Peter; Koelfgen, Syri J.; Lee, Mike

    2004-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. If B(sup p)/B(sub t) is much greater than 1, it is an FRC; if B(sub p) approximately equals B(sub t), it is a Spheromak. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust. This concept should be capable of producing an Isp in the range of 5,000 - 10,OOO seconds, with high thrust density. PTX is a device designed to study this concept. The plasmoid is formed inside of a single turn conical theta-pinch coil, driven by a 560 nF, 35 kV capacitor bank. Experiments conducted with a static-fill of propellant gas (6% H2 in He) demonstrated reliable ionization over a pressure range of 40 - 200 mTorr. A fast gas-puff valve to inject propellant has since been added, and a ringing pre-ionization circuit to independently control ionization has been tested. Hydrogen, deuterium, argon, and an N2/H2 mixture have been tried as propellants. Measurements of the plasmoid shape, mass, and velocity, using a variety of diagnostics will be presented,

  5. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Lee, Mike; Fimohnsti, Peter; Koelfgen, Syri J.

    2005-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic fields. If B(sub p/B(sub t) much greater than 1 it is an FRC; if B(sub p) approximately equal to B(sub t), it is a Spheromak. A plasmoid thruster would operate by repetitively producing plasmoids that are accelerated to high velocity. The process is inductive, and the magnetic structure of the plasmoid suppresses thermal and mass losses, and improves detachment of the exhaust, This concept should be capable of producing an Isp in the range of 5,000 - l0,000 seconds, with high thrust density. PTX is a device designed to study this concept. The plasmoid is formed inside of a single turn conical theta-pinch coil, driven by a 560 nF, 35 kV capacitor bank. Experiments conducted with a static-fill of propellant gas (6% H2 in He) demonstrated liable ionization over a pressure range of 40 - 200 mTorr. A fast gas-puff valve to inject propellant has since been added, and a ringing preionization circuit to independently control ionization has been tested, hydrogen, deuterium, argon, and an N2 / H2 mixture have been tried as propellants. Measurements of the plasmoid shape, mass, and velocity, using a variety of diagnostics will be presented.

  6. Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Yang, Lijun; Zhang, Hongzhi; Wang, Yang

    2016-07-01

    This study was aimed at introducing the laser induced thermal-crack propagation (LITP) technology to solve the silicon-glass double layer wafer dicing problems in the packaging procedure of silicon-glass device packaged by WLCSP technology, investigating the feasibility of this idea, and studying the crack propagation process of LITP cutting double layer wafer. In this paper, the physical process of the 1064 nm laser beam interact with the double layer wafer during the cutting process was studied theoretically. A mathematical model consists the volumetric heating source and the surface heating source has been established. The temperature and stress distribution was simulated by using finite element method (FEM) analysis software ABAQUS. The extended finite element method (XFEM) was added to the simulation as the supplementary features to simulate the crack propagation process and the crack propagation profile. The silicon-glass double layer wafer cutting verification experiment under typical parameters was conducted by using the 1064 nm semiconductor laser. The crack propagation profile on the fracture surface was examined by optical microscope and explained from the stress distribution and XFEM status. It was concluded that the quality of the finished fracture surface has been greatly improved, and the experiment results were well supported by the numerical simulation results.

  7. NEXT Ion Thruster Performance Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.

  8. Thermal macular injury from a 154 mW green laser pointer.

    PubMed

    Lim, Maria E; Suelzer, Joseph; Moorthy, Ramana S; Vemuri, Gautam

    2014-12-01

    We report a case of accidental thermal injury due to improper use of a laser pointer obtained outside of the United States. A 13-year-old received a laser pointer as a gift and looked at a reflection of the beam. The patient underwent full ophthalmologic examination with fundus photography, spectral domain optical coherence tomography, and fluorescein angiography. Visual acuity in the left eye was 20/100 at presentation. Fundus examination and ancillary tests were consistent with thermal macular injury. The laser pointer was analyzed and found to be a green diode laser with average power output of 154 mW.

  9. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  10. Hall thruster with grooved walls

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ning, Zhongxi; Yu, Daren

    2013-02-01

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings help to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.

  11. Simulation of Electric Propulsion Thrusters

    DTIC Science & Technology

    2011-01-01

    Electric Propulsion Thrusters RTO-EN-AVT-194 17 - 3 [3] is a well-developed, highly successful numerical technique for simulating rarefied gas flows ... Rarefied Flows (Modeles et methodes de calcul des coulements de gaz rarefies ). RTO-EN-AVT-194 14. ABSTRACT Electric propulsion thrusters are replacing...METHODS The focus of this article is on numerical methods used to model the flow of gas and plasma through electric propulsion devices. Discussion

  12. Hall Thruster Technology for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oh, David; Aadland, Randall

    2005-01-01

    The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.

  13. Superconducting electromagnetic thruster

    SciTech Connect

    Meng, J.

    1993-02-11

    An electromagnetic thruster for marine vehicles using a jet of water driven by the interaction of a mutually perpendicular intensified magnetic field and an intensified electric field is disclosed. The intensified magnetic field is produced by superconducting coils cooled by a coolant such as liquid helium. An intensified electric field is produced by passing high amperage current across the seawater jet. These interacting fields produce a Lorentz force perpendicular to mutually perpendicular electric and magnetic field vectors which is used to drive the seawater jet. In some embodiments, the force may also be used to draw water into the jet from the boundary layer flow around the vehicle thereby reducing boundary layer turbulence and associated radiated noise.

  14. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Trabelzini, Franco; Grolman, Wilko

    2014-06-01

    High-speed thermal imaging enables visualization of heating of the vestibule during laser-assisted stapedotomy, comparing KTP, CO2, and Thulium laser light. Perforation of the stapes footplate with laser bears the risk of heating of the inner ear fluids. The amount of heating depends on absorption of the laser light and subsequent tissue ablation. The ablation of the footplate is driven by strong water absorption for the CO2 and Thulium laser. For the KTP laser wavelength, ablation is driven by carbonization of the footplate and it might penetrate deep into the inner ear without absorption in water. The thermal effects were visualized in an inner ear model, using two new techniques: (1) high-speed Schlieren imaging shows relative dynamic changes of temperatures up to 2 ms resolution in the perilymph. (2) Thermo imaging provides absolute temperature measurements around the footplate up to 40 ms resolution. The high-speed Schlieren imaging showed minimal heating using the KTP laser. Both CO2 and Thulium laser showed heating below the footplate. Thulium laser wavelength generated heating up to 0.6 mm depth. This was confirmed with thermal imaging, showing a rise of temperature of 4.7 (±3.5) °C for KTP and 9.4 (±6.9) for Thulium in the area of 2 mm below the footplate. For stapedotomy, the Thulium and CO2 laser show more extended thermal effects compared to KTP. High-speed Schlieren imaging and thermal imaging are complimentary techniques to study lasers thermal effects in tissue.

  15. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  16. Investigation of water spray to reduce collateral thermal damage during laser resection of soft tissue

    NASA Astrophysics Data System (ADS)

    Theisen-Kunde, D.; Wolken, H.; Ellebrecht, D.; Danicke, V.; Wurster, L.; Kleemann, M.; Birngruber, R.

    2013-06-01

    To reduce unwanted collateral thermal damage to surrounding tissue and organs during laparoscopic laser dissection (cw, wavelength: 1.9μm) of porcine liver water spray was used. Size and amount of the produced water droplets of the water spray were photographed by short time imaging and analyzed by imaging software. At in vivo measurements on fresh porcine liver the depth of thermal damage was reduced by 85 % with water spray and the lateral size of thermal damage at the tissue surface could be reduced by 67%. This results show that especially for laparoscopic laser surgery water spray application might be a useful tool to avoid unwanted collateral thermal damage.

  17. Use of a CO2 laser for thermal effect simulation on sintered carbide inserts

    NASA Astrophysics Data System (ADS)

    de Pascale, O.; Esposito, C.; Lepore, M.; Lo Casto, S.; Passannanti, G.

    In order to study the thermal behavior of sintered carbide inserts during interrupted cutting, thermal cycles have been carried out by using a CO2 high-power laser with different conditions to simulate the actual cutting stress. It has been pointed out that the use of a laser is adequate for this purpose and that, even should the thermal fractures themselves not cause the collapse of the inserts, the thermal actions alone will be responsible for the growth of microfractures which weight heavily in predicting tool life.

  18. Impurity and defect interactions during laser thermal annealing in Ge

    SciTech Connect

    Milazzo, R. De Salvador, D.; Carnera, A.; Napolitani, E.; Impellizzeri, G.; Privitera, V.; Piccinotti, D.; La Magna, A.; Fortunato, G.; Portavoce, A.; Mangelinck, D.

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron is shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.

  19. Test facility and preliminary performance of a 100 kW class MPD thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Mantenieks, Maris A.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.

    1989-01-01

    A 260 kW magnetoplasmadynamic (MPD) thruster test facility was assembled and used to characterize thrusters at power levels up to 130 kW using argon and helium propellants. Sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. A thermal efficiency correlation developed by others for low power MPD thrusters defined parametric guidelines to minimize electrode losses in MPD thrusters. Argon and helium results suggest that a parameter defined as the product of arc voltage and the square root of the mass flow rate must exceed .7 V-kg(1/2)-s(-1/2) in order to obtain thermal efficiencies in excess of 60 percent.

  20. Ion Thruster Support and Positioning System

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Inventor)

    1998-01-01

    A system for supporting and selectively positioning an ion thruster relative to a surface of a spacecraft includes three angularly spaced thruster support assemblies. Each thruster support assembly includes a frame which has a rotary actuator mounted thereon. The rotary actuator is connected to an actuator member which is rotatably connected to a thruster attachment member connected to a body of the thruster. A stabilizer member is rotatably mounted to the frame and to the thruster attachment member. The thruster is selectively movable in the pitch and yaw directions responsive to movement of the actuator members by the actuators on the thruster support assemblies. A failure of any one actuator on a thruster support assembly will generally still enable limited thruster positioning capability in two directions. In a retracted position the thruster attachment members are held in nested relation in saddles supported on the frames of the thruster support assemblies. The thruster is securely held in the retracted position during periods of high loading such as during launch of the spacecraft.

  1. High-definition color image in dye thermal transfer printing by laser heating

    NASA Astrophysics Data System (ADS)

    Kitamura, Takashi

    1999-12-01

    In laser thermal transfer printing using dye sublimation type medium, a high definition and continuous tone image can be obtained easily because the laser beam is focused to small spot and heat energy can be controlled by the pulse width modulation of laser light. The donor ink sheet is composed of the laser absorbing layer and sublimation dye layer. The tone reproduction was depend on the mixture ratio of dye to binder and thickness of ink layer. The four color ink sheets such as cyan, magenta, yellow and black were prepared for color printing image which have a high resolution and good continuous tone reproduction using sublimation dye transfer printing by laser heating.

  2. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles

    NASA Astrophysics Data System (ADS)

    Zelenska, K. S.; Zelensky, S. E.; Poperenko, L. V.; Kanev, K.; Mizeikis, V.; Gnatyuk, V. A.

    2016-01-01

    Interaction of highly viscous polystyrene suspensions of light-absorbing microparticles with pulsed radiation of a Q-switched YAG:Nd3+ laser is investigated. Absorption of laser radiation by the suspended microparticles causes thermal decomposition (pyrolysis) of the polymer in the vicinity of the overheated particles. Laser-induced incandescence (LII) of light-absorbing microparticles under irradiation by a sequence of laser pulses is observed. The mechanism of laser marking includes formation of light-absorbing and scattering centers by accumulation of carbonaceous and gaseous products of pyrolysis.

  3. Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

    PubMed Central

    Varghese, Babu; Bonito, Valentina; Jurna, Martin; Palero, Jonathan; Verhagen, Margaret Hortonand Rieko

    2015-01-01

    We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown. PMID:25909007

  4. Study of laser heated propulsion devices. Part 2: Assessment of laser propulsion modeling and simulation requirements

    NASA Technical Reports Server (NTRS)

    Thoenes, J.

    1982-01-01

    Theoretical models for the laser heated thruster are reviewed. The requirements for an improved laser heated thruster theoretical model are discussed. The application of a time dependent finite difference Navier-Stokes equation solution to the laser heated thruster problem is described, along with a simple closed form solution which was developed in order to gain insight into the difficulties encountered in the pursuit of the numerical solution.

  5. The investigation of transient thermal effects in optical elements under high laser intensities

    NASA Astrophysics Data System (ADS)

    Kaskow, Mateusz; Tarka, Jan; Kwiatkowski, Jacek; Zendzian, Waldemar; Gorajek, Lukasz; Jabczynski, Jan K.

    2012-06-01

    The most important limitations in development of high energy and high power lasers based on solid state technology are thermal effects occurring under high intensity and high heat loads. The thermo-optical effects occurring inside output couplers, folding mirrors, output windows can significantly diminish the beam quality of high power lasers and therefore have to be investigated. The knowledge on transient thermal effects occurring inside bulk laser elements exposed on laser intensities of several dozens of kW/cm2 is of special interest for some specific applications (e.g. heat capacity lasers). The aims of work were theoretical analysis of those effects occurring inside the laser mirrors and its experimental verification. The hints for choice of the best materials (from the point of view of thermal limitations) for laser windows and output couplers were pointed out. The special laboratory setup enabling simultaneous registration of thermo-optical effects applying shearing interferometry and wavefront sensing by means of Shack-Hartmann test was worked out. The transient as well as averaged in time thermal-optical effects occurring inside the volume of examined element as a result of surface absorption in the coatings and bulk absorption in the material can be resolved and measured. The resolution of measurements: less than 0.1 K temperature difference and thermally induced optical power of about 0.1 D were demonstrated.

  6. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 μs. The cathode introduces azimuthal asymmetry, which persists for about 30 μs into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  7. Multifluid nonequilibrium simulation of arcjet thrusters

    NASA Astrophysics Data System (ADS)

    Miller, Scott Alan

    1994-01-01

    A detailed numerical model has been developed to study the gas dynamic flow in an electrothermal arcjet thruster. This two-temperature, Navier-Stokes model consistently incorporates viscosity, heat conduction, ohmic dissipation, collisional energy transfer between electrons and heavy species, ambipolar diffusion, nonequilibrium dissociation and ionization, and radiation. The fluid equations are solved by Mac Cormack's method while an iterative procedure is used to relax an electric potential equation, from which the current distribution in the thruster is obtained. Using hydrogen propellant, solutions are achieved for a range of input parameters and the underlying physics and internal structures of these arcjet flows are revealed. In particular, a mechanism for self-sustaining anodic arc attachment is identified. It is found that ambipolar diffusion from the arc core coupled with enhanced nonequilibrium dissociation and ionization in the outer flow provide enough charge carriers for the current to pass self-consistently between the arc core and the anode wall. Numerical solutions are compared with experimental results from the German TT1 radiatively-cooled arcjet thruster. Calculated discharge voltage is within 1-2% to 10% of experimental measurements, and predicted specific impulse is within 5-10% agreement over a range of applied currents and mass flow rates. In addition, flow solutions are used to explain observed trends in performance as quantities such as the specific power and mass flow rate are varied. An anode thermal model is constructed which yields more accurate predictions of the inlet gas and electrode wall temperatures, and this model is coupled to the arcjet flow solver in order to obtain a more self-consistent solution. Finally, a simplified stability analysis of the near-anode arc attachment region is performed. It is found that a localized ionization instability may be initiated in this region, but that the system is stable under the flow

  8. Thermal elasto-plastic stress analysis during laser heating of a metal plate

    NASA Astrophysics Data System (ADS)

    Chen, Yanbei; Lu, Jian; Ni, Xiaowu

    2008-03-01

    During laser heating of a metal material, the continuity of material confines its free expansion, thermal stresses arise. On one hand the thermal expansion of the heated zone of the material increases with the increase of temperature, the thermal stress level increases correspondingly; on the other hand the mechanical properties of the material will change with the increase of temperature, especially the elastic modulus, yield strength and tensile strength drop significantly, which is the so-called thermal softening problem. Due to the effect of the two factors, as the heating time or the intensity of the laser beam increases, it is possible that the stress levels of the heated zone of the material exceed the yield strength, which leads the material to come into a plastic stage. Thus, a thermal plastic problem occurs. In this study, thermal elasto-plastic stresses during laser heating of a metal plate are computed by the finite element method (FEM) based on thermal elasto-plastic constitutive theory. The mechanical behaviors of the metal material during the laser heating are analyzed. By the analysis of the results, it is found that thermal expansion leads to the increase of stress level early during the laser irradiating, and thermal softening causes the decrease of stress levels in the plastic zone and the slow growth and even decrease of stress levels in elastic zone later. The radial stresses are all compressive stresses, and the hoop stresses are compressive stresses within about the laser spot and are tensile stresses at other place. This work may be beneficial to the laser processing of metal materials.

  9. Thermal compensator for closed-cycle helium refrigerator. [assuring constant temperature for an infrared laser diode

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hillman, J. J. (Inventor)

    1979-01-01

    The wave length of an infrared, semiconductor laser diode having an output frequency that is dependent on the diode temperature is maintained substantially constant by maintaining the diode temperature constant. The diode is carried by a cold tip of a closed cycle helium refrigerator. The refrigerator has a tendency to cause the temperature of the cold tip to oscillate. A heater diode and a sensor diode are placed on a thermal heat sink that is the only highly conductive thermal path between the laser diode and the cold tip. The heat sink has a small volume and low thermal capacitance so that the sensing diode is at substantially the same temperature as the heater diode and substantially no thermal lag exists between them. The sensor diode is connected in a negative feedback circuit with the heater diode so that the tendency of the laser diode to thermally oscillate is virtually eliminated.

  10. Emission spectra of YAG:Er3+ under pulse laser-thermal excitation

    NASA Astrophysics Data System (ADS)

    Marchenko, V. M.; Shakir, Yu. A.

    2016-12-01

    Spectra and kinetics of emission of YAG:0.5% Er3+ monocrystal in visible and NIR ranges were investigated under laser-thermal excitation by the pulses of CO2 laser of 100 ns duration at wavelength λ = 10,6 μμm. Kinetics of integral emission was interpreted.

  11. Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation.

    PubMed

    Avetisyan, Yuri A; Yakunin, Alexander N; Tuchin, Valery V

    2012-04-01

    Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

  12. Influence Pulse Duration Methodical Error of Determination of Thermal Translucent Materials Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Katz, Mark M.; Katz, Ilija M.

    2016-02-01

    The analysis of errors in the determination of thermal diffusivity of a typical semiconductor material - Germany, due to radiative energy transfer in the heated layer of material, under conditions consistent with the implementation of the method under the influence of the laser pulse on the surface of the collimated laser pulse of finite duration.

  13. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  14. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.

    PubMed

    Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng

    2013-01-01

    Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.

  15. Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze

    SciTech Connect

    Brenna, R.T.; Pugh, J.L.; Denney, P.E.

    1994-12-31

    A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

  16. Fabrication of ethanol blended hydrogen peroxide 50 mN class MEMS thruster

    NASA Astrophysics Data System (ADS)

    Huh, Jeongmoo; Lee, Jeongsub; Seo, Daeban; Kang, Shinjae; Kwon, Sejin

    2013-12-01

    MEMS thruster with blended propellant was fabricated and experimentally tested in order to improve specific impulse of micro scale monopropellant thruster and to improve stability of thrust to be better. 90 wt. % H2O2 blended with 25 O/F ratio ethanol was used as propellant of thruster and platinum on alumina support was used as catalyst for decomposition of propellant. Thruster was made by five layers of photosensitive glasses. Four layers were integrated by thermal bonding method and catalyst was directly inserted into chamber before UV bonding process for the last layer bonding. Results of experimental tests showed ethanol blended hydrogen peroxide had higher specific impulse than unblended hydrogen peroxide. Expected improvement of thrust stability due to the blended propellant was found only in the transient state of thrust. Also, unlike the thrust instability of vertical type thruster of previous research, improvement of thrust stability was found owe to horizontal type thruster pattern on glass, despite aspect ratio limitation of glass fabrication with wet etching process. During the experimental test, combustion phenomena of ethanol with decomposed hydrogen peroxide were observed through glass layer and it made fracture on structure of thruster.

  17. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  18. Ion velocity and plasma potential measurements of a cylindrical cusped field thruster

    SciTech Connect

    MacDonald, N. A.; Young, C. V.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-05-01

    Measurements of the most probable time-averaged axial ion velocities and plasma potential within the acceleration channel and in the plume of a straight-channeled cylindrical cusped field thruster operating on xenon are presented. Ion velocities for the thruster are derived from laser-induced fluorescence measurements of the 5d[4]{sub 7/2}-6p[3]{sub 5/2} xenon ion excited state transition centered at {lambda}=834.72nm. Plasma potential measurements are made using a floating emissive probe with a thoriated-tungsten filament. The thruster is operated in a power matched condition with 300 V applied anode potential for comparison to previous krypton plasma potential measurements, and a low power condition with 150 V applied anode potential. Correlations are seen between the plasma potential drop outside of the thruster and kinetic energy contours of the accelerating ions.

  19. Ablation velocity and thermal damage of myocardial tissue using a CO2 laser for transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Beek, Johan F.; van Leeuwen, Ton G. J. M.; Beek, W. J.

    1999-02-01

    Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar

  20. Mercury ion thruster research, 1978

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1978-01-01

    The effects of 8 cm thruster main and neutralizer cathode operating conditions on cathode orifice plate temperatures were studied. The effects of cathode operating conditions on insert temperature profiles and keeper voltages are presented for three different types of inserts. The bulk of the emission current is generally observed to come from the downstream end of the insert rather than from the cathode orifice plate. Results of a test in which the screen grid plasma sheath of a thruster was probed as the beam current was varied are shown. Grid performance obtained with a grid machined from glass ceramic is discussed. The effects of copper and nitrogen impurities on the sputtering rates of thruster materials are measured experimentally and a model describing the rate of nitrogen chemisorption on materials in either the beam or the discharge chamber is presented. The results of optimization of a radial field thruster design are presented. Performance of this device is shown to be comparable to that of a divergent field thruster and efficient operation with the screen grid biased to floating potential, where its susceptibility to sputter erosion damage is reduced, is demonstrated.

  1. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  2. Thermal lens shaping for stigmatic Brewster-cut diode-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Rimington, Nathan

    By combining an elliptical-shaped diode laser pump spot with the one-dimensional heat flow in a laser slab, the thermal lens can be shaped to compensate for astigmatism. The intrinsic astigmatism in a Brewster slab was compensated for in two different laser crystals---Nd:YAG and Nd:GdVO4---using this thermal lens-shaping technique. The modeling of the lens allowed the estimation of the thermo-optic coefficient of Nd:GdVO4, and it was found to be 4 (+/-1) x 10-6/K.

  3. Thermal Influence of CNT on the Polyamide 12 Nanocomposite for Selective Laser Sintering.

    PubMed

    Bai, Jiaming; Goodridge, Ruth D; Yuan, Shangqin; Zhou, Kun; Chua, Chee Kai; Wei, Jun

    2015-10-20

    The thermal influence of carbon nanotubes (CNTs) on the PA12 in the laser sintering process was assessed by physical experiments and a three dimensional simulation model. It appears that, by adding the CNTs into the PA12 matrix, the thermal conductivity increased. A double ellipsoidal heat flux model was applied to input a three dimensional, continuous moving, volumetric laser heat source. The predicted three dimensional temperature distributions suggested that the laser heat was conducted wider and deeper in the PA12-CNT sample than PA12. Greater heat conduction can reduce the interspace between two successive layers, and result in the increase of the parts' density and properties.

  4. Laser-flash in-plane thermal analysis: The case of oriented UHMWPE

    NASA Astrophysics Data System (ADS)

    Forte, Giuseppe; Ronca, Sara

    2016-05-01

    Laser-flash thermal analysis has been applied to measure the thermal diffusivity of highly oriented samples of Ultra High Molecular Weight Polyethylene. Due to the anisotropy of the sample, in-plane measurements are required instead of through-plane ones.

  5. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  6. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Inert gases, particularly argon and xenon, are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. Hollow cathode data were obtained for a wide range of operating conditions. Some test conditions gave plasma coupling voltages at or below the sputtering threshold, hence should permit long operating lifetimes. All observations of hollow cathode operation were consistent with a single theory of operation, in which a significant amount of the total electron emission is from localized areas within the orifice. This mode of emission is also supported by scanning electron microscope photographs that indicate local temperatures at or near the melting temperature of the tungsten tip. Experimental hollow cathode performance was correlated for two orifice diameters, three inert gas propellants, and a range of flow rates for each propellant. The basic theory for the production of doubly ionized argon and xenon was completed. Experimental measurements of the doubly ionized fraction agree with theory within about plus or minus 20 percent. High voltage isolators were studied for the propellant feed line. The breakdown voltage per segment ranged from 300 to over 500 V with argon.

  7. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1984-01-01

    A simple model describing the discharge chamber performance of high strength, cusped magnetic field ion thrusters is developed. The model is formulated in terms of the energy cost of producing ions in the discharge chamber and the fraction of ions produced in the discharge chamber that are extracted to form the ion beam. The accuracy of the model is verified experimentally in a series of tests wherein the discharge voltage, propellant, grid transparency to neutral atoms, beam diameter and discharge chamber wall temperature are varied. The model is exercised to demonstrate what variations in performance might be expected by varying discharge chamber parameters. The results of a study of xenon and argon orificed hollow cathodes are reported. These results suggest that a hollow cathode model developed from research conducted on mercury cathodes can also be applied to xenon and argon. Primary electron mean free paths observed in argon and xenon cathodes that are larger than those found in mercury cathodes are identified as a cause of performance differences between mercury and inert gas cathodes. Data required as inputs to the inert gas cathode model are presented so it can be used as an aid in cathode design.

  8. High temperature oxidation-resistant thruster research

    NASA Technical Reports Server (NTRS)

    Wooten, John R.; Lansaw, P. Tina

    1990-01-01

    A program was conducted for NASA-LeRC by Aerojet Propulsion Division to establish the technology base for a new class of long-life, high-performance, radiation-cooled bipropellant thrusters capable of operation at temperatures over 2200 C (4000 F). The results of a systematic, multi-year program are described starting with the preliminary screening tests which lead to the final material selection. Life greater than 15 hours was demonstrated on a workhorse iridium-lined rhenium chamber at chamber temperatures between 2000 and 2300 C (3700 and 4200 F). The chamber was fabricated by the Chemical Vapor Deposition at Ultramet. The program culminated in the design, fabrication, and hot-fire test of an NTO/MMH 22-N (5-lbF) class thruster containing a thin wall iridium-lined rhenium thrust chamber with a 150:1 area ratio nozzle. A specific impulse of 310 seconds was measured and front-end thermal management was achieved for steady state and several pulsing duty cycles. The resulting design represents a 20 second specific impulse improvement over conventional designs in which the use of disilicide coated columbium chambers limit operation to 1300 C (2400 F).

  9. Reduction of Thermal Emittance by using P-polarized Laser at Oblique Incidence

    SciTech Connect

    Xiang,D.; Park, S.; Park, J.; Parc, Y.; Wang, X.

    2006-01-01

    High charge low emittance electron beam is crucial for the 4th generation light source. Conventionally the beam is generated by photoinjector with laser illuminating the cathode at nearly normal incidence. In this paper attention was called to the use of laser at oblique incidence, which we believe, may be more beneficial. It is found that when the laser illuminates the cathode at oblique incidence, the quantum efficiency (QE) and thermal emittance show strong dependence on incidence angle and polarization state. By using p-polarized laser at oblique incidence, surface photoemission is initiated by the presence of the normal electric field which results in a higher QE and lower thermal emittance. With this technique, the increase in QE by almost 5 times and the reduction of thermal emittance by 40% should be quite expectable for a Copper photo-cathode with atomically smooth surface.

  10. Thermal analysis in a solar pumped laser for Mg energy cycle

    NASA Astrophysics Data System (ADS)

    Bagheri, Behgol; Uchidat, Shgeaki

    2012-10-01

    Thermal analysis of a high-power cw solar-pumped laser under development as a magnesium energy cycle driver has been conducted experimentally and analytically. The laser system is equipped with a Fresnel lens and a cone-shaped secondary mirror chamber (SMC). The SMC realizes a hybrid-pumping scheme combining axial- and side-pumping configurations to enhance solar light absorption to a rod-shaped laser medium. A non-uniform temperature profile was obtained during experiments due to combination of volumetric heating and surface cooling, which leads to a nonuniform variation of index of refraction in the laser medium. The thermal lensing and thermal stress-induced birefringence are analyzed.

  11. Thermal Conductivity Measurement Setup for Low Temperature Characterization of Laser Materials

    DTIC Science & Technology

    2014-09-01

    supplied to the lower heater . ............................7 Fig. 5 Our experimental results for thermal conductivity of undoped single-crystal YAG as...lower heater at each test temperature and the steady-state thermal gradient between the two copper plates was measured. With these results, we were able... Thermal Conductivity Measurement Setup for Low Temperature Characterization of Laser Materials by Zachary D Fleischman and Tigran Sanamyan

  12. PET/Computed Tomography and Thermoablation (Radiofrequency, Microwave, Cryotherapy, Laser Interstitial Thermal Therapy).

    PubMed

    Bonichon, Françoise; Godbert, Yann; Gangi, Afshin; Buy, Xavier; Palussière, Jean

    2015-10-01

    Thermal ablation (radiofrequency, microwave, cryosurgery, laser interstitial thermal therapy) is being used more frequently as a local treatment of secondary but also primary cancers and benign lesions. It has a low morbidity and is repeatable. The problem is that computed tomographic scan has limits, and RECIST criteria are not applicable. The objective of this article is to summarize the usefulness and pitfalls of PET/computed tomography in detecting a relapse after thermal ablation as soon as possible.

  13. Thermal fatigue test for turbine housing by a pulse YAG laser

    NASA Astrophysics Data System (ADS)

    Kutsuna, Muneharu; Fujita, Shinji; Sugita, Yuji; Yamada, Katsushige

    2000-02-01

    A steam turbine housing (casing) for power plant is subject to thermal fatigue in the long service. Evaluation of the life time is required for the replacement of turbine housing. In the present work, the possibility of thermal fatigue test by laser to accelerate the thermal damage of the materials (heat resisting Cr-Mo steel) and estimate the life time of casing in short time has been investigated using a pulse YAG laser. The test specimen are taken from the turbine housing which have been used for 100,000 hours in service. The pulse YAG laser of 100 pps was irradiated on the specimen with different beam spot sizes for one sec. and interrupted for 9 sec. as a thermal fatigue cycle. Max. cycle in this laser thermal fatigue tests was 5400 cycles. The peak temperature of theram cycle was about 220 degrees Celsius after 5400 cycles in this laser thermal fatigue test. The fatigue crack was observed at the root of circular groove after 5400 cycles.

  14. Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 microm.

    PubMed

    Jacinto, C; Catunda, T; Jaque, D; Bausá, L E; García-Solé, J

    2008-04-28

    We report on a simple and accurate method for determination of thermo-optical and spectroscopic parameters (thermal diffusivity, temperature coefficient of the optical path length change, pump and fluorescence quantum efficiencies, thermal loading, thermal lens focal length, etc) of relevance in the thermal lensing of end-pumped neodymium lasers operating at 1.06- and 1.3- microm channels. The comparison between thermal lensing observed in presence and absence of laser oscillation has been used to elucidate and evaluate the contribution of quantum efficiency and excited sate absorption processes to the thermal loading of Nd:YAG lasers.

  15. Thermal effects in laser-assisted pre-embryo zona drilling

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2001-04-01

    Diode lasers ((lambda) equals 1480 nm) are used with in vitro fertilization to dissect the zone pellucida (shell) of pre- embryos. A focused laser beam is applied in vitro to form a channel or trench in the zona pellucida. The procedure is used to facilitate biopsy or as a promoter of embryo hatching. We present examples and measurements of zona pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g., by overheating. In order to define safe regimes we have derived some thermal side effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed- beam experiment a HeNe laser probe is used to detect the temperature-induced change in the refractive index of an aqueous solution, and estimate local thermal gradient. We find that the diode laser beam produces superheated water approaching 200 degree(s)C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  16. Electron dynamics in Hall thruster

    NASA Astrophysics Data System (ADS)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  17. Inert-gas thruster technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Trock, D. C.

    1981-01-01

    Attention is given to recent advances in component technology for inert-gas thrusters. It is noted that the maximum electron emission of a hollow cathode with Ar can be increased 60-70% by using an enclosed keeper configuration. Operation with Ar but without emissive oxide has also been attained. A 30-cm thruster operated with Ar at moderate discharge voltages is found to give double-ion measurements consistent with a double-ion correlation developed earlier on the basis of 15-cm thruster data. An attempt is made to reduce discharge losses by biasing anodes positive of the discharge plasma. The performance of a single-grid ion-optics configuration is assessed. The ion impingement on the single-grid accelerator is found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator is 2-3 times the aperture diameter.

  18. NEXT Thruster Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Sovey, James S.

    2007-01-01

    Component testing is a critical part of thruster life validation activities under NASA s Evolutionary Xenon Thruster (NEXT) project testing. The high voltage propellant isolators were selected for design verification testing. Even though they are based on a heritage design, design changes were made because the isolators will be operated under different environmental conditions including temperature, voltage, and pressure. The life test of two NEXT isolators was therefore initiated and has accumulated more than 10,000 hr of operation. Measurements to date indicate only a negligibly small increase in leakage current. The cathode heaters were also selected for verification testing. The technology to fabricate these heaters, developed for the International Space Station plasma contactor hollow cathode assembly, was transferred to Aerojet for the fabrication of the NEXT prototype model ion thrusters. Testing the contractor-fabricated heaters is necessary to validate fabrication processes for high reliability heaters. This paper documents the status of the propellant isolator and cathode heater tests.

  19. Helicon plasma thruster discharge model

    SciTech Connect

    Lafleur, T.

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  20. Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory.

    PubMed

    Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew

    2016-04-01

    Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.

  1. Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, K.; Camp, J.

    2011-01-01

    So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design.

  2. Thermal lensing characterization of a high-radiance 946nm planar waveguide laser

    NASA Astrophysics Data System (ADS)

    Ng, S. P.; Mackenzie, J. I.

    2012-06-01

    We present the characterization of the in-plane thermal lens in a quasi-four-level Nd:YAG planar waveguide (PW) laser configured for high-radiance operation with an external stable-cavity. Our approach utilises the measurement of the laser's output irradiance distribution at the near- and far-field positions concurrently in order to obtain the "real time" beam propagation parameter and thus beam quality factor, M2. Coupled with the knowledge of the intra-cavity-thermal-lens- dependent beam sizes at an intra-cavity beam waist, the power dependent effective thermal lens focal length was characterized. A thermal lens focal length of >450 mm was obtained at all incident pump powers up to the maximum level of 87 W. This characterization enabled the build of a 29 W 946 nm PW laser with a record output radiance of 4.3 TWm-2sr-1.

  3. Thermal effects in thin-film organic solid-state lasers.

    PubMed

    Zhao, Zhuang; Mhibik, Oussama; Leang, Tatiana; Forget, Sébastien; Chénais, Sébastien

    2014-12-01

    With the recent development of organic solid-state lasers (OSSLs) architectures enabling power scaling and progresses towards continuous-wave operation, the question of thermal effects now arises in OSSLs. In this paper, a Rhodamine 640-PMMA based vertical external cavity surface emitting organic laser is investigated. A thermal microscope is used to record temperature maps at the organic thin film surface during laser action; those maps are compared with time-resolved finite element thermal simulations. The measured and simulated peak temperature rises are in good accordance and are shown to remain below 10 K in standard operating conditions, showing a negligible impact on performance. The validated model is used to investigate typical OSSL structures from the literature, in a virtual high average power regime, and up to the CW regime. It is shown that whenever true CW organic lasing will be realized, significant thermal effects will have to be considered and properly managed.

  4. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.

  5. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1985-01-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.

  6. Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers.

    PubMed

    Etxebarria, J; Ortega, J; Folcia, C L; Sanz-Enguita, G; Aramburu, I

    2015-04-01

    We have studied the degradation process of the laser emission in a cholesteric liquid crystal laser. We have found that there exists a negative correlation between the laser efficiency and the amount of light scattered by the liquid-crystal sample in the illuminated area. The growth of scattering is attributed to the appearance of small imperfections generated in the sample as a result of certain thermal processes that involve the dye molecules. The scattering implies an increase of the coefficient of distributed losses, which is the main response of the rise of the laser threshold.

  7. Thermal poling induced second-order nonlinearity in femtosecond- laser-modified fused silica

    SciTech Connect

    An Honglin; Fleming, Simon; McMillen, Benjamin W.; Chen, Kevin P.; Snoke, David

    2008-08-11

    Thermal poling was utilized to induce second-order nonlinearity in regions of fused silica modified by 771 nm femtosecond laser pulses. With second-harmonic microscopy, it was found that the nonlinearity in the laser-modified region was much lower than that in nonmodified regions. This is attributed to a more rigid glass network after irradiation by the femtosecond laser pulses and/or lack of mobile alkali ions. Measurement of the distribution of chemical elements in the femtosecond-laser-modified region in a soda lime glass revealed a lower level of sodium ions.

  8. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1985-10-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.

  9. Enhanced Performance of Cylindrical Hall Thrusters

    SciTech Connect

    Y. Raitses, A. Smirnov, and N.J. Fisch

    2007-05-14

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50%–60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma.

  10. High-speed quantitative phase imaging of dynamic thermal deformation in laser irradiated films

    NASA Astrophysics Data System (ADS)

    Taylor, Lucas N.; Brown, Andrew K.; Olson, Kyle D.; Talghader, Joseph J.

    2015-11-01

    We present a technique for high-speed imaging of the dynamic thermal deformation of transparent substrates under high-power laser irradiation. Traditional thermal sensor arrays are not fast enough to capture thermal decay events. Our system adapts a Mach-Zender interferometer, along with a high-speed camera to capture phase images on sub-millisecond time-scales. These phase images are related to temperature by thermal expansion effects and by the change of refractive index with temperature. High power continuous-wave and long-pulse laser damage often hinges on thermal phenomena rather than the field-induced effects of ultra-short pulse lasers. Our system was able to measure such phenomena. We were able to record 2D videos of 1 ms thermal deformation waves, with 6 frames per wave, from a 100 ns, 10 mJ Q-switched Nd:YAG laser incident on a yttria-coated glass slide. We recorded thermal deformation waves with peak temperatures on the order of 100 degrees Celsius during non-destructive testing.

  11. The Use of Laser-Induced Fluorescence to Characterize Discharge Cathode Erosion in a 30 cm Ring-Cusp Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S. (Technical Monitor); Williams, George J., Jr.

    2004-01-01

    Relative erosion rates and impingement ion production mechanisms have been identified for the discharge cathode of a 30 cm ion engine using laser-induced fluorescence (LIF). Mo and W erosion products as well as neutral and singly ionized xenon were interrogated. The erosion increased with both discharge current and voltage and spatially resolved measurements agreed with observed erosion patters. Ion velocity mapping identified back-flowing ions near the regions of erosion with energies potentially sufficient to generate the level of observed erosion. Ion production regions downstream of the cathode were indicated and were suggested as possible sources of the erosion causing ions.

  12. Helium-neon laser: thermal high-resolution recording.

    PubMed

    Carlson, C O; Stone, E; Bernstein, H L; Tomita, W K; Myers, W C

    1966-12-23

    Scan-line recording by means of a moving laser spot has been achieved on metallic and organic thin films Recording rates of the order of one million spots per second were obtained with a laser beam power of 38 milliwatts at the recording surface. Typical recorded line widths were of the order of 2 microns.

  13. NASA GRC High Power Electromagnetic Thruster Program

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.; Pencil, Eric J.

    2004-02-01

    Interest in high power electromagnetic propulsion has been revived to support a variety of future space missions, such as platform maneuvering in low earth orbit, cost-effective cargo transport to lunar and Mars bases, asteroid and outer planet sample return, deep space robotic exploration, and piloted missions to Mars and the outer planets. Magnetoplasmadynamic (MPD) thrusters have demonstrated, at the laboratory level, the capacity to process megawatts of electrical power while providing higher thrust densities than current electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of NASA space science and human exploration strategic initiatives, Glenn Research Center is developing and testing pulsed, MW-class MPD thrusters as a prelude to long-duration high power thruster tests. The research effort includes numerical modeling of self-field and applied-field MPD thrusters and experimental testing of quasi-steady MW-class MPD thrusters in a high power pulsed thruster facility. This paper provides an overview of the GRC high power electromagnetic thruster program and the pulsed thruster test facility.

  14. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  15. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  16. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  17. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  18. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  19. Design of a High-Energy, Two-Stage Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Thio, Y. C. F.; Cassibry, J. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Design details of a proposed high-energy (approx. 50 kJ/pulse), two-stage pulsed plasma thruster are presented. The long-term goal of this project is to develop a high-power (approx. 500 kW), high specific impulse (approx. 7500 s), highly efficient (approx. 50%),and mechanically simple thruster for use as primary propulsion in a high-power nuclear electric propulsion system. The proposed thruster (PRC-PPT1) utilizes a valveless, liquid lithium-fed thermal plasma injector (first stage) followed by a high-energy pulsed electromagnetic accelerator (second stage). A numerical circuit model coupled with one-dimensional current sheet dynamics, as well as a numerical MHD simulation, are used to qualitatively predict the thermal plasma injection and current sheet dynamics, as well as to estimate the projected performance of the thruster. A set of further modelling efforts, and the experimental testing of a prototype thruster, is suggested to determine the feasibility of demonstrating a full scale high-power thruster.

  20. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Xinyu; Wu, Jing; Wu, Chunting; Sun, Hongtao; Yu, Yongji; Jin, Guangyong

    2015-04-01

    By studying the theory of heat conduction, we established the transient heat conduction equation for a pulsed laser diode (LD) end pumped thulium doped laser. Combined with the actual working environment of a pulsed LD end pumped single-ended composite Tm:YAG rod, the expressions of transient temperature distribution and the time-varying thermal focal length were obtained by the integral transform method and the method of separation of variables. Under 240 mJ pump energy and repetition rates of 80, 90, and 100 Hz, thermal effects in the pulsed LD end pumped single-ended composite Tm:YAG rod were simulated, and the thermal lens focal length of the single-ended composite Tm:YAG rod was measured in experiments. The theoretical analysis was verified by the comparison between the theoretical results and the experimental results.

  1. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p thermal effects from the Nd:YAG laser. Enamel had lower maximum surface temperatures than dentin for all laser powers and times. The surface temperature ranged from 34 +/- 1 degree(s)C to 110 +/- 4 degree(s)C on enamel and 62 +/- 5 degree(s)C to 392 +/- 82 degree(s)C on dentin. As power and time of exposure increased, both the maximum surface temperature and thermal penetration distance increased. The greatest length of thermal effect on the surface (11.0 +/- 0.9 mm) and thermal penetration distance (4.7 +/- 0.4 mm) recorded were caused by the air-cooled turbine drill on dentin. Surface temperatures were much higher for the Nd:YAG laser applied to enamel

  2. Laser assisted crystallization of ferromagnetic amorphous ribbons: A multimodal characterization and thermal model study

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Devaraj, Arun; Bowden, Mark; Santhanakrishnan, S.; Smith, Casey; Ramanujan, R. V.; Thevuthasan, Suntharampillai; Banerjee, Rajarshi; Dahotre, Narendra B.

    2013-11-01

    This paper focuses on laser-based de-vitrification of amorphous soft magnetic Fe-Si-B ribbons and its consequent influence on the magnetic properties. Laser processing resulted in a finer scale of crystallites due to rapid heating and cooling during laser annealing compared to conventional furnace annealing process. A significant increase in saturation magnetization is observed for laser-annealed ribbons compared to both as-received and furnace annealed samples coupled with an increase in coercivity compared to the as received samples. The combined effect of thermal histories and stresses developed during laser annealing results in the formation of nano-crystalline phase along the laser track. The phase evolution is studied by micro-XRD and TEM analysis. Solute partitioning and compositional variation within the phases are obtained by Local Electrode Atom probe analysis. The evolution of microstructure is rationalized using a Finite Element based heat transfer multi-physics model.

  3. Laser Assisted Crystallization of Ferromagnetic Amorphous Ribbons: A Multimodal Characterization and Thermal Model Study

    SciTech Connect

    Katakam, Shravana K.; Devaraj, Arun; Bowden, Mark E.; Santhanakrishnan, S.; Smith, Casey; Ramanujan, Raju; Thevuthasan, Suntharampillai; Banerjee, Rajarshi; Dahotre, Narendra B.

    2013-11-14

    This paper focuses on laser-based de-vitrification of amorphous soft magnetic Fe-Si-B ribbons and its consequent influence on the magnetic properties. Laser processing resulted in a finer scale of crystallites due to rapid heating and cooling during laser annealing compared to conventional furnace annealing process. A significant increase in saturation magnetization is observed for laser-annealed ribbons compared to both as-received and furnace annealed samples coupled with an increase in coercivity compared to as received sample. The combined effect of thermal histories and stresses developed during laser annealing results in the formation of nano-crystalline phase along the laser track. The phase evolution is traced with the aid of micro-XRD and TEM analysis. The solute partitioning and compositional variation within the phases are obtained by Local Electrode Atom probe analysis. The evolution of microstructure is rationalized using a Finite Element based heat transfer multi-physics model.

  4. Thermal stress effect in diode end-pumped Nd:YVO4 bar laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Krishnan, Ganesan; Khamsan, Nur Ezaan; Zainal, Roslinda; Bakhtiar, Hazri

    2012-06-01

    The thermal stress effect on various doping levels of yttrium vanadate crystal Nd:YVO4 is investigated. Diode end-pumped source was used to obtain the input-output characteristics of the vanadate crystal. The laser performance of the low doping crystal is poor since the optical conversion efficiency is small and high threshold pump power. However the low Dopant crystal is not associated with thermal stress thus no thermal damage. Differently with higher concentration of Nd ions crystal, the laser performance is relatively high but it is accompanied with thermal damage which comprised of microcrack, microfracture and contamination. The high absorption on the doping ions with additional external impurities causes extra heat generation which leads to thermal fracture.

  5. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  6. Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.

  7. Laser-assisted surgery with different wavelengths: a preliminary ex vivo study on thermal increase and histological evaluation.

    PubMed

    Merigo, Elisabetta; Clini, Fabio; Fornaini, Carlo; Oppici, Aldo; Paties, Carlo; Zangrandi, Adriano; Fontana, Matteo; Rocca, Jean-Paul; Meleti, Marco; Manfredi, Maddalena; Cella, Luigi; Vescovi, Paolo

    2013-02-01

    Since the introduction of laser in clinical practice, different wavelengths have been used for oral surgery on the basis of the different characteristics and affinities of each one. The aim of this study was a comparison of different laser wavelengths in relation to both thermal increase and "histological quality" in a model of soft tissue surgery procedures. Thermal evaluation was realized, during laser-assisted surgery excision performed on a bovine tongue, by a thermal camera device to evaluate thermal increase on the surface of the sample and with four thermocouples to evaluate thermal increase on the depth of the specimen; temperature was recorded before starting surgical procedure and at the peak of every excision. The quality of excision, in terms of tissue damage and regularity, was realized by two blind examiners on the basis of established criteria. The highest superficial thermal increase was recorded for Superpulse 5-W CO2 laser, the lowest one for Er:YAG laser. The highest in depth thermal increase was recorded for 5 W Diode laser, the lowest one for Er:YAG laser. The best quality of incision was obtained with a 3-W CO2 laser and 3-W diode laser; epithelial, stromal, and vascular damages were evaluated with different degrees for all the used wavelengths with the best result, in terms of "tissue respect," for Er:YAG laser. In all the surgical procedures performed, thermal increase was evaluated until the end of the procedure; at remaining tissue level, thermal decrease was evaluable in the few seconds after surgery. The Er:YAG laser was the device with a lower influence on thermal increase; CO2 and diode lasers revealed a good histological quality. Further studies may be necessary to test the reliability of laser devices for the excision of all the types of specimens needing histological evaluation and diagnosis.

  8. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high

  9. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M.; Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-01

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ~25 GPa and ~1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  10. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  11. Enhanced Thermal Coupling by a Repetitively Pulsed Laser.

    DTIC Science & Technology

    1985-03-01

    88 13. Energy Absorbed by the Target Per Unit Area as a Function of Radius .......................... 90 14. Depth of Laser Induced...Much work has been done in past years, primarily by researchers at the United States Air Force Weapons Laboratory, in studying the effects of high-power...the Boeing Aerospace Laboratory under contract to the the United States Air Force Weapons Laboratory. The laser used for the experiments was a Marx

  12. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  13. Stability of absorption phenomena in laser-thermal propulsion

    NASA Technical Reports Server (NTRS)

    Merkle, C. L.; Tsai, Y.-L. P.

    1984-01-01

    The mean flow and stability characteristics of laser absorption phenomena in a choked converging-diverging nozzle are considered. Calculations are presented for a given nozzle geometry and a series of laser intensities. Gas absorptivities corresponding to a hydrogen-cesium mixture are used with different initial temperatures being selected to investigate the effects of changes in the shape of the k-T curve. Both stability and mean flow calculations are limited to the one-dimensional case. The mean flow results show a decrease in mass flow as laser power is increased, along with increasingly steep temperature profiles. Calculations span regions of partial and complete absorption. One region is found where multiple solutions exist. Local stability results indicate the u-c characteristic is the only unstable mode in the unheated case. Laser heat addition makes this mode more unstable and also destabilizes the u-characteristic. Numerical calculations of disturbance propagation show that the instability of the u-c disturbances is counteracted by their reflection to u + c disturbances at the upstream end. The growth of the u-disturbances is localized in regions where the temperature profile is steep and they are damped in other regions. The increasing destabilization that is observed with increased laser power is probably the reason for difficulty in obtaining converged mean flow solutions at high laser intensities.

  14. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  15. Residual Stress Analysis of Laser-Drilled Thermal Barrier Coatings Involving Various Bond Coats

    NASA Astrophysics Data System (ADS)

    Guinard, C.; Montay, G.; Guipont, V.; Jeandin, M.; Girardot, J.; Schneider, M.

    2015-01-01

    The gas turbine combustion chamber of aero-engines requires a thermal barrier coating (TBC) by thermal spraying. Further heat protection is achieved by laser drilling of cooling holes. The residual stresses play an important role in the mechanical behaviour of TBC. It could also affect the TBC response to delamination during laser drilling. In this work, studies of the cracking behaviour after laser drilling and residual stress distribution have been achieved for different bond coats by plasma spray or cold spray. From interface crack length measured pulse-by-pulse after laser percussion drilling at 20° angle, the role of the various bond coats on crack initiation and propagation are investigated. It is shown that the bond coat drastically influences the cracking behaviour. The residual stresses profiles were also determined by the incremental hole-drilling method involving speckle interferometry. An original method was also developed to measure the residual stress profiles around a pre-drilled zone with a laser beam at 90°. The results are discussed to highlight the influence of TBCs interfaces on the resulting residual stresses distribution before laser drilling, and also to investigate the modification around the hole after laser drilling. It is shown that laser drilling could affect the residual stress state.

  16. Thermal conductivity tensors of the cladding and active layers of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Cui, Boya; Vurgaftman, I.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Meyer, J. R.; Grayson, M.

    2014-12-01

    The cross-plane and in-plane thermal conductivities of the W-active stages and InAs/AlSb superlattice optical cladding layer of an interband cascade laser (ICL) were characterized for temperatures ranging from 15 K to 324 K. The in-plane thermal conductivity of the active layer is somewhat larger than the cross-plane value at temperatures above about 30 K, while the thermal conductivity tensor becomes nearly isotropic at the lowest temperatures studied. These results will improve ICL performance simulations and guide the optimization of thermal management.

  17. Direct thrust measurement of a 30-cm ion thruster

    NASA Technical Reports Server (NTRS)

    Banks, B.; Rawlin, V.; Weigand, A. J.; Walker, J.

    1975-01-01

    A direct thrust measurement of a 30-cm diameter ion thruster was accomplished by means of a laser interferometer thrust stand. The thruster was supported in a pendulum manner by three 3.65-m long wires. Electrical power was provided by means of 18 mercury filled pots. A movable 23-button planar probe rake was used to determine thrust loss due to ion beam divergence. Values of thrust, thrust loss due to ion beam divergence, and thrust loss due to multiple ionization were measured for ion beam currents ranging from 0.5 A to 2.5 A. Measured thrust values indicate an accuracy of approximately 1% and are in good agreement with thrust values calculated by indirect measurements.

  18. Thermal denaturation of egg protein under nanosecond pulsed laser heating of gold nanoparticles

    SciTech Connect

    Meshalkin, Yu P; Lapin, I N; Svetlichnyi, Valery A

    2011-08-31

    Thermal denaturation of egg protein in the presence of gold nanoparticles via their heating at the plasmon resonance wavelength by the pulsed radiation of the second harmonic of an Nd:YAG laser (532 nm) is investigated. The experimental dependence of the protein denaturation time on the mean laser power is obtained. The heating temperature of the medium with gold nanoparticles is calculated. The numerical estimates of the temperature of the heated medium containing protein and gold nanoparticles (45.3 deg. C at the moment of protein denaturation) are in good agreement with the literature data on its thermal denaturation and with the data of pyrometric measurements (42.0 {+-} 1.5 deg. C). The egg protein may be successfully used to investigate the specific features of laser heating of proteins in the presence of metal nanoparticles under their excitation at the plasmon resonance wavelength. (laser methods in biology)

  19. Numerical Simulation of the Thermal Efficiency During Laser Deep Penetration Welding

    NASA Astrophysics Data System (ADS)

    Ganser, A.; Pieper, J.; Liebl, S.; Zaeh, M. F.

    The advantages of laser beam welding, such as its high flexibility, its high local energy input, and its fast processing speed, led to a substantial increase of industrial applications of the technology. High losses can be observed during laser welding of materials with a high thermal conductivity, such as aluminum or copper. This is caused by the heat conduction losses in the surrounding area of the process zone and due to reflections. These energy losses lead to a reduced efficiency of the laser welding process. A numerical model based on a CFD simulation is presented, which enables to calculate the molten pool isotherms. The thermal efficiency is determined for different keyhole geometries and welding velocities. This efficiency is defined as the ratio between the energy which is required to melt the volume of metal in the fusion zone and the absorbed laser beam power.

  20. Evidence of thermal additivity during short laser pulses in an in vitro retinal model

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Tijerina, Amanda J.; Dyer, Phillip N.; Oian, Chad A.; Noojin, Gary D.; Rickman, John M.; Shingledecker, Aurora D.; Clark, Clifton D.; Castellanos, Cherry C.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-03-01

    Laser damage thresholds were determined for exposure to 2.5-ms 532-nm pulses in an established in vitro retinal model. Single and multiple pulses (10, 100, 1000) were delivered to the cultured cells at three different pulse repetition frequency (PRF) values, and overt damage (membrane breach) was scored 1 hr post laser exposure. Trends in the damage data within and across the PRF range identified significant thermal additivity as PRF was increased, as evidenced by drastically reduced threshold values (< 40% of single-pulse value). Microthermography data that were collected in real time during each exposure also provided evidence of thermal additivity between successive laser pulses. Using thermal profiles simulated at high temporal resolution, damage threshold values were predicted by an in-house computational model. Our simulated ED50 value for a single 2.5-ms pulse was in very good agreement with experimental results, but ED50 predictions for multiple-pulse trains will require more refinement.

  1. Three-dimensional thermal response numerical simulation of laser irradiating simulative warhead target

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman

    2015-05-01

    The thermal response of a cylindrical simulative warhead consisting of the steel casing and the TNT explosive irradiated by laser is simulated, basing on the smoothed particle hydrodynamics method. Preliminary computational simulation results show that, when the power density of 500W/cm2 continuous laser irradiation on a sealed explosive device consisting of the type 304 steel casing with thickness of 5mm and TNT explosive, compared with no airflow, the speed of 200m/s tangential airflow can reduce the thermal initiation time of 0.6s. In the case of incident laser power density is high, the convection cooling effect of tangential airflow can be neglected. The oxidation of airflow can significantly shorten the thermal initiation time of internal explosive.

  2. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  3. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  4. Progress on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognari, Peter; Koelfgen, Syri

    2005-01-01

    A plasmoid, also called a compact toroid, is a compact plasma structure with an integral magnetic field, that may be categorized according to the relative strength of the poloidal and toroidal magnetic field (Bp and Bt, respectively). An object with Bp/Bt much greater than 1 is called a Field Reverse Configuration (FRC); if Bp = Bt, it is called a Spheromak. The plasmoid thruster is a pulsed inductive device which operates by repetitively producing plasmoids that are accelerated and ejected at high velocity. As the process is inductive, this thruster avoids the problem of electrode erosion. Also, the magnetic structure of the plasmoid should suppress thermal and mass losses to the wall, and improve detachment of the plasma exhaust from the thruster. This concept should be capable of producing an Isp of 5,000 seconds and greater, with thrust densities of order 10(exp 5) N/sq m. The plasmoid thruster consists chiefly of a conical theta-pinch coil. Propellant is introduced onto a bias magnetic field, produced by an auxiliary coil, and is then pre-ionized, freezing in the magnetic field. The theta-pinch coil is then energized producing a field aligned anti- parallel to the bias field. The reversed field reconnects with the bias field to form the plasmoid. The magnetic pressure of the reversed field accelerates the plasmoid out of the thruster . A series of experiments have been conducted on the PTX device, which consisted of a single turn conical theta-pinch coil, driven by a 560 nF, 35 kV capacitor bank, which rang at a frequency of 500 kHz, and served all three functions required for formation: pre-ionization, bias field loading, and field reversal. Initial ionization was found to occur in an annular region at the exit plane of the coil, and was found to be reproducible with a variety of gases, including H2, D2, Ar, and an H2/N2 mixture (75% / 25%). A fast gas valve for injecting propellant has been tested, as well as a ringing pre-ionization circuit (operating at 5

  5. Laser-induced thermal desorption facilitates postsource decay of peptide ions.

    PubMed

    Kim, Shin Hye; Lee, Aera; Song, Jae Yong; Han, Sang Yun

    2012-05-01

    We investigated the thermal mechanism involved in laser desorption/ionization (LDI) of thermally labile molecules from the flat surfaces of amorphous Si (a-Si) and crystalline Si (c-Si). a-Si was selected for this study because of its thermal property, such as low thermal conductivity; thus, it was predicted to be highly susceptible to laser-induced surface heating. By virtue of lack of surface nanostructures, the flat surfaces offer a simple model system to focus on the thermal mechanism, avoiding other effects, including possible non-thermal contributions that can arise from the physical existence of surface nanostructures. For the energetics study, the internal energies of substituted benzylpyridinium ions produced by LDI on the bare and coated surfaces of a-Si and c-Si were obtained using the survival yield method. The results, including LDI thresholds, ion yields, and internal energies all suggested that the LDI mechanism would be indeed thermal, which is most likely promoted by thermal desorption caused by laser-induced surface heating. In addition, the LDI process driven by laser-induced thermal desorption (LITD) was also found to be capable of depositing an excessive internal energy in resulting LDI ions, which underwent a dissociation. It exhibited the essentially same features as in postsource decay (PSD) in MALDI-TOF/TOF mass spectrometry. We report that the LDI process by LITD offers not only a way of intact ionization but also a facile means for PSD of peptide ions, which this work demonstrates is well suited to peptide sequencing using TOF/TOF mass spectrometry.

  6. Noncontacting Laser Inspection System for Dimensional Profiling of Space Application Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.

    2011-01-01

    A noncontacting, two-dimensional (2-D) laser inspection system has been designed and implemented to dimensionally profile thermal barriers being developed for space vehicle applications. In a vehicle as-installed state, thermal barriers are commonly compressed between load sensitive thermal protection system (TPS) panels to prevent hot gas ingestion through the panel interface during flight. Loads required to compress the thermal barriers are functions of their construction, as well as their dimensional characteristics relative to the gaps in which they are installed. Excessive loads during a mission could damage surrounding TPS panels and have catastrophic consequences. As such, accurate dimensional profiling of thermal barriers prior to use is important. Due to the compliant nature of the thermal barriers, traditional contact measurement techniques (e.g., calipers and micrometers) are subjective and introduce significant error and variability into collected dimensional data. Implementation of a laser inspection system significantly enhanced the method by which thermal barriers are dimensionally profiled, and improved the accuracy and repeatability of collected data. A statistical design of experiments study comparing laser inspection and manual caliper measurement techniques verified these findings.

  7. Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser.

    PubMed

    Shang, Jianli; Zhu, Xiao; Zhu, Guangzhi

    2011-11-10

    Thermal lensing in the thin-disk laser influences the output beam quality and optical efficiency significantly. In this paper, an analytical approach is taken to study the production mechanisms, features, and influences of thermal lensing in the end-pumped thin-disk laser. We calculate the distributions of temperature, stress, strain, and expansion in the disk and the curvature of the crystal using an analytic method. The expressions of the thermal lens focal length depending on the radius are presented. The optical path difference, a major cause of thermal lensing, is induced by the thermo-optical effect, the photoelastic effect, and inhomogeneous distribution of thermal expansion and the excited population. Thermal lensing is found to be aspheric with undesired aberrations and birefringence effects. Furthermore, a convex mirror due to the axial temperature gradient occurs in a free disk, and the convex mirror is found to be spherical in the center region of the disk. Based on the results of our analysis, the aspect ratio and size of the laser mode of the gain region may be adjusted to limit the damaging effects of thermal lensing.

  8. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  9. Laser-induced short time scale thermal chemistry of perfluoropolyether lubricant films

    SciTech Connect

    Heller, J.; Mate, C.J.; Poon, C.C.; Tam, A.C.

    1999-11-09

    The authors investigate the effect of heating a perfluoropolyether lubricant film in a localized area for relatively short time periods using laser irradiation versus conventional oven heating. These experiments help provide understanding on how flash temperatures generated at frictional contacts affect the thermal chemistry of lubricant films. In these experiments, a CO{sub 2} laser heats a 50 {micro}m wide area of a silicon wafer for time periods ranging from 0.1 to 60 s. The surface temperature within the heated area (up to 280 C in these experiments) is monitored with a second laser by measuring the change in reflectivity near the center of the heated area. A major difference observed for laser heating compared to oven heating is that the effective evaporation rate is orders of magnitude higher for laser heating. If the lubricant film is heated for sufficiently long enough time at high temperatures, the authors are able to observe thermal bonding of the lubricant via its alcohol end groups to the silicon oxide surface, followed by thermal decomposition of the lubricant molecules. After laser heating, the authors are able to observe the diffusion of lubricant back into the localized heated area using a combination of optical microscopy and imaging ellipsometry.

  10. Laser-induced thermal dynamics and temperature localization phenomenon in tissues and cells doped with nanoshells

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Avetisyan, Yury A.; Tuchin, Valery V.

    2012-03-01

    Paper presents and discusses the features of laser-induced thermal dynamics of the gold nanoshells, which is associated with their relatively large size and layered structure. Unlike bulk nanoparticles the existence of a novel thermal phenomenon - hoop-shaped narrow hot zone on the nanoshell surface - is found. It is caused by spatial-temporal inhomogeneities of light field diffracted by a nanoshell and corresponding absorption of laser radiation. The numerical solution of time-dependent heat conduction equation accounting for corresponding spatially inhomogeneous distribution of heating sources is presented.

  11. Laser cutting of Kevlar laminates and thermal stress formed at cutting sections

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.

    2012-02-01

    Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.

  12. Evaluation of thermal effects on the beam quality of disk laser with unstable resonator

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Beirami, Reza

    2017-01-01

    In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.

  13. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  14. Pump power stability range of single-mode solid-state lasers with rod thermal lensing

    SciTech Connect

    De Silvestri, S.; La Porta, P.; Magni, V.

    1987-11-01

    The pump power stability range of solid-state laser resonators operating in the TEM/sub 00/ mode has been thoroughly investigated. It has been shown that, for a very general resonator containing intracavity optical systems, rod thermal lensing engenders a pump power stability range which is a characteristic parameter of laser material and pump cavity, but is independent of resonator configuration. Stability ranges have been calculated and critically discussed for Nd:YAG, Nd:Glasses, Nd:Cr:GSGG, and alexandrite. The independence of the pump power stability range from the resonator configuration has been experimentally demonstrated for a CW Nd:YAG laser.

  15. Using laser-induced thermal voxels to pattern diverse materials at the solid–liquid interface

    SciTech Connect

    Zarzar, Lauren D.; Swartzentruber, B. S.; Donovan, Brian F.; Hopkins, Patrick E.; Kaehr, Bryan

    2016-08-05

    We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. In conclusion, this strategy expands the chemistries and materials that can be used in combination with laser direct writing.

  16. Investigating Thermal Interactions in the Case of Laser Assisted Joining of PMMA Plastic and Steel

    NASA Astrophysics Data System (ADS)

    Bauernhuber, Andor; Markovits, Tamás

    Laser transmission joining of dissimilar materials is a novel and promising area of researches on joining technology. However, processes during laser assisted metal plastic (LAMP) joining are not completely explained yet. In the course of this study, the authors investigated the joining process of PMMA plastic and steel by means of laser, as a part of their research on dissimilar material joining. The characteristic process temperature was measured during the joining by different heating conditions, to describe thermal interactions between the polymer and the metal part, and to better understand the mechanism of joining.

  17. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (BP and Bt, respectively). An Object with B P t >> 1 is classified as a Field Reverse Configuration (FRC); if B, = Bt, it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids, and subsequently ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp s in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N/sq m. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to several MW s. The plasmoids mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing.

  18. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  19. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  20. Thermal laser-assisted angioplasty of renal artery stenosis for renovascular hypertension.

    PubMed

    Tani, M; Mizuno, K; Midorikawa, H; Igari, T; Egawa, M; Niimura, S; Fukuchi, S; Hoshino, S

    1993-01-01

    Percutaneous transluminal laser-assisted angioplasty of a renal artery stenosis was performed in a 16-year-old woman with renovascular hypertension. The stenotic portion of the renal artery was predilated by delivering Nd-YAG laser energy to the terminal tip of a laser catheter. Although the luminal diameter did not increase sufficiently with laser angioplasty alone, it allowed passage of the balloon catheter and subsequent successful balloon angioplasty. Immediately after dilatation, the patient's blood pressure fell to normal, and plasma renin activity decreased. There were no serious complications. Thermal laser angioplasty seems to be an effective adjunct technique for the treatment of severe renal artery stenosis which does not allow initial passage of a balloon catheter.

  1. Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Bjorklund, R. A.

    1973-01-01

    The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.

  2. A Microwave Thruster for Spacecraft Propulsion

    SciTech Connect

    Chiravalle, Vincent P

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  3. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  4. Thermal conductivity and electron-phonon relaxation in a metal heated by a subpicosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Anisimov, S. I.

    2006-06-01

    This paper discusses the initial stages of the interaction of subpicosecond laser pulses with metallic targets: the absorption of light, energy transport by electronic thermal conductivity, and electron-phonon relaxation. It is shown that, with moderate surface energy density, hydrodynamic motion begins after the electronic and lattice temperatures equalize. A connection is established between the energy exchange rate between the electrons and the lattice and the electronic thermal conductivity (an analog of the Wiedemann-Franz law).

  5. CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.; Pierściński, K.; Morawiec, M.; Karbownik, P.; Gutowski, P.; Bugajski, M.

    2016-11-01

    The development of charge coupled device thermoreflectance (CCD TR) instrumentation for accurate and rapid evaluation of the thermal characteristics of quantum cascade lasers is demonstrated. The thermal characterization of such devices provides a mode for comparing different operating conditions, geometries and device designs. The method allows for registration of the high-resolution maps of the temperature distribution in a time not exceeding several seconds. The capabilities of the CCD TR are compared with standard TR spectroscopy.

  6. Time-resolved thermal mirror technique with top-hat cw laser excitation.

    PubMed

    Astrath, Francine B; Astrath, Nelson G; Shen, Jun; Zhou, Jianqin; Malacarne, Luis C; Pedreira, P R B; Baesso, Mauro L

    2008-08-04

    A theoretical model was developed for time-resolved thermal mirror spectroscopy under top-hat cw laser excitation that induced a nanoscale surface displacement of a low absorption sample. An additional phase shift to the electrical field of a TEM(00) probe beam reflected from the surface displacement was derived, and Fresnel diffraction theory was used to calculate the propagation of the probe beam. With the theory, optical and thermal properties of three glasses were measured, and found to be consistent with literature values. With a top-hat excitation, an experimental apparatus was developed for either a single thermal mirror or a single thermal lens measurement. Furthermore, the apparatus was used for concurrent measurements of thermal mirror and thermal lens. More physical properties could be measured using the concurrent measurements.

  7. Performance testing of a fixed configuration microwave arcjet thruster

    NASA Technical Reports Server (NTRS)

    Sullivan, D. J.; Micci, M. M.

    1994-01-01

    The microwave arcjet thruster uses microwave energy to create a free-floating plasma discharge within a microwave resonant cavity. This discharge typically absorbs 99% of the input power and converts it to thermal energy which is then transferred to the flowing propellant gas. Recent modifications have allowed the thruster to be operated in a fixed configuration where neither the cavity geometry nor the tuning mechanisms are adjusted. The prototype has demonstrated its ability to operate in this fixed configuration using a variety of propellant gases, i.e., nitrogen, helium, ammonia, and hydrogen. The current design is capable of efficient operation over a wide range of power levels (250 W to over 6000 W). Current work is focused on obtaining LIF velocimetry data of the velocity profile at the exit plane of the nozzle.

  8. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, James S.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  9. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, J.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  10. KTP and Er:YAG laser dental bleaching comparison: a spectrophotometric, thermal and morphologic analysis.

    PubMed

    Nguyen, C; Augros, C; Rocca, J P; Lagori, G; Fornaini, C

    2015-11-01

    The aim of this study was to compare the results, in terms of temperature, colour change and morphology, of two different laser wavelengths with two different concentrations of hydrogen peroxide (HP). The lasers used were KTP (potassium-titanyl-phosphate) laser (λ = 532 nm (PD = 1.98 W/cm2)) and Er:YAG laser (λ = 2940 nm (PD = 2.54 W/cm2)). The bleaching gels used were PolaOffice 35% HP gel and PolaOffice+ 6% HP gel (SDI, Australia). Thirty-six extracted human teeth were selected and divided into two groups. For the 35% HP treatment, 18 teeth were randomly assigned to three subgroups: (1) HP gel without laser irradiation vs. HP gel + KTP laser irradiation; (2) HP gel without laser irradiation vs. HP gel + Er:YAG irradiation; and (3) HP gel + KTP laser irradiation vs. HP gel + Er:YAG irradiation. The same protocol was used for the 6% HP bleaching treatment. The bleaching results were analysed by a spectrophotometer, the thermal elevation by K thermocouples and the enamel surface by a scanning electron microscope (SEM). The Kruskal-Wallis test and the Mann-Whitney test were performed, and the data were analysed using the software StatView and the free Web statistics tool BiostaTGV. The thermal elevation of the Er:YAG groups was higher than KTP, while only the group 35% HP gel vs. 35% HP gel + Er:YAG showed significant colour differences (p < 0.05). SEM photographs showed slight enamel surface morphologic alterations after bleaching treatment. The Er:YAG laser may improve the bleaching results of 35% HP even if it increases the gel temperature, when compared to the KTP laser.

  11. CONTROL OF LASER RADIATION PARAMETERS: Compensation of dynamic thermal deformations of mirrors in high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Rodionov, A. Yu; Sergeev, V. V.; Smirnov, A. A.; Starovoitov, A. V.; Sherstobitov, V. E.

    2004-11-01

    A system of compensation of thermal deformations of resonator mirrors in high-power CO2 slab lasers based on profiled heating of the mirror back surface is studied theoretically and experimentally. It is shown that such a heating of a resonator mirror makes it possible to minimise dynamic distortions of the output-beam wave front in the case when the lasing power can be varied.

  12. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  13. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    NASA Astrophysics Data System (ADS)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  14. Thermal conductivity enhancement of laser induced graphene foam upon P3HT infiltration

    NASA Astrophysics Data System (ADS)

    Smith, M. K.; Luong, D. X.; Bougher, T. L.; Kalaitzidou, K.; Tour, J. M.; Cola, B. A.

    2016-12-01

    Significant research has been dedicated to the exploration of high thermal conductivity polymer composite materials with conductive filler particles for use in heat transfer applications. However, poor particle dispersibility and interfacial phonon scattering have limited the effective composite thermal conductivity. Three-dimensional foams with high ligament thermal conductivity offer a potential solution to the two aforementioned problems but are traditionally fabricated through expensive and/or complex manufacturing methods. Here, laser induced graphene foams, fabricated through a simple and cost effective laser ablation method, are infiltrated with poly(3-hexylthiophene) in a step-wise fashion to demonstrate the impact of polymer on the thermal conductivity of the composite system. Surprisingly, the addition of polymer results in a drastic (250%) improvement in material thermal conductivity, enhancing the graphene foam's thermal conductivity from 0.68 W/m-K to 1.72 W/m-K for the fully infiltrated composite material. Graphene foam density measurements and theoretical models are utilized to estimate the effective ribbon thermal conductivity as a function of polymer filling. Here, it is proposed that the polymer solution acts as a binding material, which draws graphene ligaments together through elastocapillary coalescence and bonds these ligaments upon drying, resulting in greatly reduced contact resistance within the foam and an effective thermal conductivity improvement greater than what would be expected from the addition of polymer alone.

  15. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  16. Electron-wall Interaction in Hall Thrusters

    SciTech Connect

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch

    2005-02-11

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  17. Variable depth thermal lesions in rabbit corneas using a tunable thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Noguera, Guillermo; Castro-Combs, Juan; Behrens, Ashley

    2007-02-01

    Laser-induced thermal changes in the cornea have been used clinically for refractive surgery. This study describes the creation of variable depth thermal lesions in the cornea using a tunable Thulium fiber laser. Thermal lesions were created in fresh rabbit corneas, ex vivo, at three different wavelengths (1873 nm, 1890 nm, and 1904 nm) (n=6 corneas each). All other laser parameters were kept fixed with power of 5.5 W, 25-ms exposure time, and 650-μm diameter spot, yielding a single pulse exposure of 138 mJ, and a fluence of 42 J/cm2. Optical coherence tomography (OCT) and histology were used to measure pre- and post-operative corneal thickness and lesion dimensions. OCT measurements of pre and post-operative corneal thickness and lesion depth (in microns) were: (1873 nm: 450+/-30, 801+/-95, 655+/-51), (1890 nm: 460+/-27, 618+/-70, 332+/-56), (1904 nm: 448+20, 550+/-42, 245+36), respectively. By comparison, histologic measurements were: (1873 nm: 470+25, 828+21, 540+/-31), (1890 nm: 457+/-13, 625+/-17, 350+/-43), (1904 nm: 465+/-40, 627+/-35, 239+/-23), respectively. OCT lesion depth measured 82%, 54%, and 45% of corneal thickness, compared to histologic analysis of 65%, 56%, and 38%. This is the first preliminary test of a compact and tunable Thulium fiber laser for creating variable depth thermal lesions in the cornea. The Thulium fiber laser may have potential use as a replacement for the Ho:YAG and diode lasers for thermal keratoplasty.

  18. Multifluid Nonequilibrium Simulation of Arcjet Thrusters.

    NASA Astrophysics Data System (ADS)

    Miller, Scott Alan

    A detailed numerical model has been developed to study the gasdynamic flow in an electrothermal arcjet thruster. This two-temperature, Navier-Stokes model consistently incorporates viscosity, heat conduction, ohmic dissipation, collisional energy transfer between electrons and heavy species, ambipolar diffusion, nonequilibrium dissociation and ionization, and radiation. The fluid equations are solved by MacCormack's method while an iterative procedure is used to relax an electric potential equation, from which the current distribution in the thruster is obtained. Using hydrogen propellant, solutions are achieved for a range of input parameters and the underlying physics and internal structures of these arcjet flows are revealed. In particular, a mechanism for self-sustaining anodic arc attachment is identified. It is found that ambipolar diffusion from the arc core coupled with enhanced nonequilibrium dissociation and ionization in the outer flow provide enough charge carriers for the current to pass self-consistently between the arc core and the anode wall. Numerical solutions are compared with experimental results from the German TT1 radiatively-cooled arcjet thruster. Calculated discharge voltage is within 1-2% to 10% of experimental measurements, and predicted specific impulse is within 5-10% agreement over a range of applied currents and mass flow rates. In addition, flow solutions are used to explain observed trends in performance as quantities such as the specific power and mass flow rate are varied. An anode thermal model is constructed which yields more accurate predictions of the inlet gas and electrode wall temperatures, and this model is coupled to the arcjet flow solver in order to obtain a more self-consistent solution. Finally, a simplified stability analysis of the near-anode arc attachment region is performed. It is found that a localized ionization instability may be initiated in this region, but that the system is stable under the flow conditions

  19. Understanding the decisive thermal processes in laser sintering of polyamide 12

    NASA Astrophysics Data System (ADS)

    Wegner, Andreas; Witt, Gerd

    2015-05-01

    Due to the advancements during the last decade, the laser sintering process has achieved a high technical level, which allows parts being used for Rapid Manufacturing applications. However, the processes still show a poor reproducibility of part quality. Furthermore, process interruptions or defective parts still occur regularly. The know-how and expertise needed to avoid these kind of problems is still insufficient. The temperature increase in the powder bed during laser exposure is the driving force in laser sintering of plastics. The resulting part properties strongly depend on the interaction of melt temperature and melt viscosity caused by the laser power input in the powder bed. Additionally, cooling conditions and temperature gradients in the powder bed significantly influence the accuracy and especially the warpage of parts. However, literature provides only little information on these decisive thermal processes. Therefore, additional information is necessary to improve process understanding as well as part properties in laser sintering. In a first approach, a high-speed thermal imaging system is implemented into a LS-machine in order to measure the melt temperatures during and after laser exposure as a function of different process parameters. The measured data show significant correlations between temperatures and part properties. It turns out that especially the melt temperature after laser exposure has a strong influence on the resulting part properties. In a second approach, detailed measurements of temperature distributions within the powder bed are performed while using wireless temperature sensors. In addition, the influence of different heater parameter settings on the cooling conditions is investigated by using a new Advanced Temperature Guiding system with 15 single heater cycles. The results of the study lead to an enhanced understanding of the thermal processes in laser sintering and enable a significant improvement of processing conditions.

  20. Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Belghachem, Nabil

    2015-12-01

    The highest ever reported 10 kW peak power in monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip laser was achieved. To show the superiority of monolithic microchip lasers over those with external mirrors the laser generation characteristics of the same samples in both cases were compared.

  1. Cylindrical Hall Thrusters with Permanent Magnets

    SciTech Connect

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-10-18

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT. __________________________________________________

  2. An engineering model 30 cm ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; King, H. J.; Schnelker, D. E.

    1973-01-01

    Thruster development at Hughes Research Laboratories and NASA Lewis Research Center has brought the 30-cm mercury bombardment ion thruster to the state of an engineering model. This thruster has been designed to have sufficient internal strength for direct mounting on gimbals, to weigh 7.3 kg, to operate with a corrected overall efficiency of 71%, and to have 10,000 hours lifetime. Subassemblies, such as the ion optical system, isolators, etc., have been upgraded to meet launch qualification standards. This paper presents a summary of the design specifications and performance characteristics which define the interface between the thruster module and the remainder of the propulsion system.

  3. High Power MPD Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric

    2004-01-01

    High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.

  4. Cylindrical Hall thrusters with permanent magnets

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-11-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction in both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  5. Adapting magnetoelectrostatic containment to inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.; James, E. L.

    1981-01-01

    Two different types of 12 cm magnetoelectrostatic containment (MESC) ion thrusters have been adapted to argon-xenon operation. Discharge chamber optimization produced excellent performance with both the hexagonal and hemispherical shaped thrusters. The hemispherical thruster design yielded the best performance, ionizing 75 to 96 percent of the xenon propellant with a discharge energy consumption rate of 185 to 320 eV/ion. Argon operation of the same thruster achieved 60 to 80 percent propellant ionization at 215 to 370 eV/ion.

  6. Ion sources for space thrusters (invited)

    NASA Astrophysics Data System (ADS)

    Grigoryan, V. G.

    1996-03-01

    One of the main tasks of the creation of spacecraft power plants is raising the thrust producing jet velocity. Conventional chemical engines create jet velocities in the range of 3000-4500 m/s. This situation can be drastically changed if beams of charged particles accelerated by electric and magnetic fields are used to produce thrust. In such cases practically any jet velocity might be created, which considerably enlarges the number of tasks being fulfilled by spacecraft having such types of thruster. Several types of electric propulsion thrusters exist nowadays. They differ in the principles of acceleration of charged particles, for example, arc jets, magnetic plasma dynamic thrusters, stationary plasma thrusters, pulse thrusters, and ion thrusters. Electric propulsion thrusters are practically the accelerators of charged particles which operate under rather strict requirements concerning energy consumption and lifetime. Since the mid-fifties in Russia there have been intensive studies of practically all types of electric propulsion thrusters, including their tests in space, and beginning with the mid-seventies they have been practically used aboard spacecraft with a long, active lifetime. The study of the physical process involved together with the research design allowed Russian scientists to develop electric propulsion thrusters in the power range from hundreds of watts to tens of kilowatts, with jet velocities between 20000 and 50000 m/s and lifetime more than several thousand hours.

  7. Arcjet thruster research and technology, phase 1

    NASA Technical Reports Server (NTRS)

    Knowles, Steven C.

    1987-01-01

    The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.

  8. Thermally robust semiconductor optical amplifiers and laser diodes

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  9. Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry.

    PubMed

    Di, Jianglei; Yu, Yang; Wang, Zhaomin; Qu, Weijuan; Cheng, Chee Yuen; Zhao, Jianlin

    2016-12-12

    Thermal lensing in diode-side-pumped Nd:YAG laser has been measured quantitatively using digital holographic interferometry. A series of holograms, carrying the information of the laser rod under different pump currents, are recorded with a CCD and reconstructed numerically. The optical path difference induced by the thermal lensing and the corresponding evolution process under different currents are obtained accordingly. Further, the thermal lensing diopters, induced aberrations, and its Zernike coefficients are calculated. The proposed method can be applied in the thermal lensing measurement and the optimization design of a laser resonator.

  10. Investigation of mercury thruster isolators

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1973-01-01

    Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.

  11. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    NASA Astrophysics Data System (ADS)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  12. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    NASA Astrophysics Data System (ADS)

    Shang, Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G.; Watkins, K. G.

    2011-11-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  13. Laser optoacoustic technique for real-time measurement of thermal damage in tissues

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud; Karabutov, Alexander A.; Oraevsky, Alexander A.

    1999-05-01

    Optoacoustic monitoring of thermally-induced damage in tissues in real time is proposed as a mean for controlling the extent of tissue coagulation in human organs, such as liver, prostate, myocardium, breast, and brain. This technique can potentially provide fast and accurate feedback information during tumor thermal coagulation by interstitial delivery of laser, ultrasonic, radiofrequency, and microwave radiation or conductive and convective heating. Amplitude and temporal characteristics of optoacoustic signals are dependent on optical and thermophysical properties of tissues. Changes in tissue optical properties during coagulation can be detected by measuring and analyzing the amplitude and temporal characteristics of the optoacoustic signals. We performed studies on optoacoustic monitoring of coagulation by CW Nd:YAG laser interstitial irradiation and conductive heating. Q-switched Nd:YAG laser pulses were used as a probing radiation to obtain optoacoustic pressure profiles and images. Our preliminary studies suggest that the laser optoacoustic technique is capable of detecting thermally-induced changes in optical properties of liver, myocardium, and prostate. The major merits of the laser optoacoustic monitoring of tissue coagulation include high contrast provided by changes in tissue optical properties, capability to perform real-time measurements, and high spatial resolution.

  14. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; Mikellides, Ioannis; Sekerak, Michael; Polk, James

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  15. Laser-induced thermal explosion mode for selective nano-photothermolysis of cancer cells

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Zharov, Vladimir P.; Joenathan, Charles; George, Thomas F.

    2007-02-01

    A new mechanism is proposed for selective laser killing of abnormal cells by laser thermal explosion of single nanoparticles - "nano-bombs" - delivered to the cells. Thermal explosion of the nanoparticles is realized when the heat generates within the strongly-absorbing target more rapidly than the heat can diffuse away. On the basis of simple energy balance, it is shown that the lower level of the threshold energy density of a single laser pulse required for thermal explosion of solid gold nanospehere is about 40 mJ/cm2, which is well below the safety standard for medical lasers (100 mJ/cm2) for healthy tissue and cells. The nanoparticle's explosion energy density can be reduced further (up to 11 mJ/cm2) by using gold nanorods due to higher plasmon-resonance absorption efficiency of nanorods. Additionally, the nanorods optical resonance lies in the near-IR region, where biological tissue transmissivity is the highest. Here, the effective therapeutic effect for cancer cell killing can be achieved due to nonlinear phenomena, which accompany the thermal explosion of the nanoparticles: generation of the strong shock wave with supersonic expansion of dense vapor in the cell volume, producing sound waves and optical plasma.

  16. Thermal aspects of laser-based measurement and ultrafast laser processing of dielectric materials

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Hua

    Two extreme regimes for laser applications on dielectric materials are presented in this dissertation. First, two independent novel techniques that use low power laser light to make precision non-contact measurement of liquids are introduced: (1) real-time concentration measurement of NaCl-H2O and MgCl2-H2O aqueous mixtures in a flowing system, and (2) temperature or concentration measurements of liquids, including water, ethanol, methanol, 1-proponal, and their mixtures, at a free surface as well as a solid-liquid interface. These measurement techniques exhibit very high spatial and temporal resolutions, making them good candidates for use in microscale and MEMS-based measurement technologies. Another extreme of laser applications is materials processing using high power ultrashort laser pulses, which exhibits exciting new opportunities for non-contact materials modification with high precision and high feature quality. The second part of this dissertation focuses on modeling the interactions between ultrashort laser pulses and dielectrics. Present models effectively characterize several dominant parameters during ultrafast laser processing of dielectrics. Good agreement has been found between the model predictions and the experimental results. Future research will be directed towards the utilization of these model predictions to enhance energy deposition and material removal rate during ultrafast laser processing, improve machined features, and optimize technologies that involve laser-microstructures fabrication.

  17. Arcjet thruster research and technology

    NASA Technical Reports Server (NTRS)

    Makel, Darby B.; Cann, Gordon L.

    1988-01-01

    The design, analysis, and performance testing of an advanced lower power arcjet is described. A high impedance, vortex stabilized 1-kw class arcjet has been studied. A baseline research thruster has been built and endurance and performance tested. This advanced arcjet has demonstrated long lifetime characteristics, but lower than expected performance. Analysis of the specific design has identified modifications which should improve performance and maintain the long life time shown by the arcjet.

  18. Micro-Chemical Monopropellant Thruster

    DTIC Science & Technology

    2006-02-01

    securing them within a suitable chamber, formed of a section of stainless steel tube. A layer of magnesium oxide based ceramic adhesive (Aremco...thruster reduces, the mass flow rate of propellant reduces together with the associated dimensions of the complete system. Empirical guidelines exist...catalyst bed performance, but initial indications suggested that a ceramic foam of density greater than 20% was required. The tests with the

  19. Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-12-01

    Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy.

  20. Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method

    PubMed Central

    Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-01-01

    Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy. PMID:22191937

  1. Study of Breathing Oscillations in a Hall Thruster

    NASA Astrophysics Data System (ADS)

    Keller, Scott; Raitses, Yevgeny; Diallo, Ahmed

    2014-10-01

    Breathing oscillations are the most powerful low frequency (10-30 kHz) oscillations that are typically observed in different types of Hall thrusters. We report on investigations of the effects of both natural and artificially driven breathing oscillations on the discharge and plasma properties of a cylindrical Hall thruster. In order to produce artificially coherent oscillations, a sinusoidal modulation up to 30 VAC of the anode potential in the range of 5-30 kHz is applied to the thruster. These driven modes are studied in operating regimes with and without naturally occurring oscillations. The imposed periodicity allows for measurement of the time-dependent ion velocity distribution through a novel heterodyne approach to laser-induced fluorescence (LIF) using phase-sensitive detection. Further comparison between natural and driven modes is performed through the analysis of the discharge and ion currents, as well as high-speed imaging data. Results serve both to validate the LIF technique and to improve understanding of breathing oscillations. In particular, we show oscillations of the ion velocity distribution function due to breathing oscillations and explain their correlation with oscillations of the discharge and ion currents. This work was supported by DOE Contract DE-AC02-09CH11466.

  2. Numerical Analysis of Effects of Incident Laser Wavelength on Thermal Nonequilibrium Laser-supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki; Koide, Takuya; Nakamori, Manabu

    Laser-supported detonation (LSD) waves are important because they can generate the high pressures and high temperatures necessary for laser propulsion systems. Although CO2 laser beams, which have a wavelength of 10.6 μm, have been considered to be one of the most powerful sources of LSD waves, a glass laser beam (1.053μm), for example, also have high power. In this study, we numerically simulated LSD waves propagating through a diatomic gas, in order to evaluate the effects of incident laser wavelength on the construction of the LSD wave. We used the physical-fluid dynamics scheme, which has been developed for simulating unsteady and nonequilibrium LSD waves propagating through hydrogen gas.

  3. Plasma thrusters development in France

    NASA Astrophysics Data System (ADS)

    Rolfo, André; Cadiou, Anne; Secheresse, O.; Dumazert, P.; Gounot, V.; Ragot, X.; Mattei, N.; Grassin, T.; Garnero, P.

    2002-07-01

    This paper presents an overview of the FRENCH plasma propulsion activities. The main existing and future projects are described. The field of application of plasma propulsion is the station keeping and the orbit raising of geostationary telecommunication satellites (STENTOR) and the transfer of interplanetary vehicles such as Mars Sample Return. The works done in the frame of the preparation of the first commercial spacecraft as well as the preparation of the future and the associated Research and Technology program are described. The scientific activity supporting the development of Hall thrusters is on-going in the frame of the GDR (Groupement de Recherche) CNRS/CNES/Snecma Moteurs /ONERA on Plasma Propulsion. Several Russian entities are also involved: the MIREA (Moscow Institute of Radioelectronics and Automatics), of the RIAME MAI (Research Institute of Applied Mechanics and Electrodynamics - Moscow Aviation Institute) and of the SPT « father å Professor MOROZOV The industrial development activities are jointly conducted by Snecma Moteurs and Russian manufacturer FAKEL. The future developments are mainly dedicated to the use of electric propulsion for the orbit raising of telecommunications satellites which leads to the development of thrusters with higher thrust than those existing today. Works are also performed to develop and improve the tools necessary to evaluate the plume effects of plasma thrusters.

  4. The effect of laser treatment of WC-Co coatings on their failure under thermal cycling

    NASA Astrophysics Data System (ADS)

    Kasterov, Artur; Shugurov, Artur; Kazachenok, Marina; Panin, Alexey; Cheng, Chin-Hsiang; Chang, I.-Ling

    2016-11-01

    The given paper studies the effect of surface laser treatment of WC-Co coatings on their surface morphology, phase composition and thermal cycling behavior. The coatings were sprayed on stainless steel substrates with the use of a high velocity oxy fuel spraying process. Application of the scanning electron microscopy and X-ray diffraction showed that re-melting of the coating surface layer during laser treatment induced changes in its phase composition as well as the formation of regular rows of globular asperities on the coating surface. The latter resulted in a sharp increase in thermal shock resistance of the laser treated WC-Co coatings under water quench tests; its underlying mechanism are proposed and discussed in the paper.

  5. Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser.

    PubMed

    Hashida, M; Mishima, H; Tokita, S; Sakabe, S

    2009-07-20

    Ablation of expanded polytetrafluoroethylene without disruption of the fine porous structure is demonstrated using an intense femtosecond-pulse laser. As a result of laser-matter interactions near ablation threshold fluence, high-energy ions are emitted, which cannot be produced by thermal dissociation of the molecules. The ion energy is produced by Coulomb explosion of the elements of (-CF(2)-CF(2)-)(n) and the energy spectra of the ions show contributions from the Coulomb explosions of the ions rather than those of thermal expansion to generate high-energy ions. The dependence of ion energy on the laser fluence of a 180-fs pulse, compared with that of a 400-ps pulse, also suggests that the high-energy ions are accelerated by Coulomb explosion.

  6. Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load

    NASA Astrophysics Data System (ADS)

    Gouman, Julien; Beck, Thomas; Affolter, Michael; Thomas, Nicolas; Geissbühler, Urs; Péteut, Alain; Bandy, Timothy; Servonet, Anthony; Piazza, Daniele; Seiferlin, Karsten; Ghose, Kaustav

    2014-12-01

    The BepiColombo Laser Altimeter (BELA) has been selected to fly on ESA's BepiColombo mission to Mercury. The instrument will be the first European laser altimeter designed for interplanetary flight. This paper describes the setup used to characterize the angular movements of BELA under the simulated environmental conditions that the instrument will encounter when orbiting Mercury. The system comprises a laser transmitter and a receiving telescope, which can move with respect to each other under thermal load. Tests performed using the Engineering Qualification Model show that the setup is accurate enough to characterize angular movements of the instrument components to an accuracy of ≈10 μrad. The qualification instrument is thermally stable to operate during all mission phases around Mercury proving that the transmitter and receiver sections will remain within the alignment requirements during its mission.

  7. Finite element thermal analysis for PMMA/st.st.304 laser direct joining

    NASA Astrophysics Data System (ADS)

    Hussein, Furat I.; Salloomi, Kareem N.; Akman, E.; Hajim, K. I.; Demir, A.

    2017-01-01

    This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process parameters involving peak power (Pp=3 kW), pulse duration (τ=5 ms), pulse repetition rate (PRR=20 Hz) and scanning speed (v=4 mm/s) are applied for both modes.

  8. Heat transfer and thermal lensing in large-mode high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Chan, Paddy K. L.; Pipe, Kevin P.; Plant, Jason J.; Swint, Reuel B.; Juodawlkis, Paul W.

    2007-02-01

    In semiconductor lasers, key parameters such as threshold current, efficiency, wavelength, and lifetime are closely related to temperature. These dependencies are especially important for high-power lasers, in which device heating is the main cause of decreased performance and failure. Heat sources such as non-radiative recombination in the active region typically cause the temperature to be highly peaked within the device, potentially leading to large refractive index variation with bias. Here we apply high-resolution charge-coupled device (CCD) thermoreflectance to generate two dimensional (2D) maps of the facet temperatures of a high power laser with 500 nm spatial resolution. The device under test is a slab-coupled optical waveguide laser (SCOWL) which has a large single mode and high power output. These characteristics favor direct butt-coupling the light generated from the laser diode into a single mode optical fiber. From the high spatial resolution temperature map, we can calculate the non-radiative recombination power and the optical mode size by thermal circuit and finite-element model (FEM) respectively. Due to the thermal lensing effect at high bias, the size of the optical mode will decrease and hence the coupling efficiency between the laser diode and the single mode fiber increases. At I=10I th, we found that the optical mode size has 20% decrease and the coupling efficiency has 10% increase when comparing to I=2I th. This suggests SCOWL is very suitable fr optical communication system.

  9. Human percutaneous and intraoperative laser thermal angioplasty: initial clinical results as an adjunct to balloon angioplasty.

    PubMed

    Sanborn, T A; Greenfield, A J; Guben, J K; Menzoian, J O; LoGerfo, F W

    1987-01-01

    In this study, the safety and efficacy of percutaneous laser thermal angioplasty as an adjunct to balloon angioplasty were investigated in 13 patients with severe peripheral vascular disease. By means of a novel fiberoptic laser delivery system (Laserprobe) in which argon laser energy is converted to heat in a metallic tip at the end of the fiberoptic fiber, improvement in the angiographic luminal diameter was noted in 14 of 15 femoropopliteal vessels (93%) by delivering 8 to 13 watts of continuous argon laser energy as the Laserprobe was advanced through the lesion. Initial clinical success (indicated by relief of symptoms and increase in Doppler index) for the combined laser and balloon angioplasty procedures was obtained in 12 of 15 vessels (80%), with inadequate balloon dilatation being the limiting factor in three patients. No significant complications of vessel perforation, dissection, pain, spasm, or embolization of debris occurred. Of the 12 patients who had procedures with initial angiographic and clinical success, 10 (83%) were asymptomatic in the initial follow-up period of 1 to 9 months (mean 6 months). Thus, laser thermal angioplasty with a Laserprobe is a safe and effective adjunct to peripheral balloon angioplasty. This technique has the potential to increase the initial success rate of angioplasty for lesions that are difficult or impossible to treat by conventional means. By removing most of the obstructing lesion, this technique may also reduce recurrent stenosis.

  10. Optimization of energy transfer in microwave electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Sullivan, D. J.; Micci, M. M.

    1993-01-01

    Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.

  11. Optimization of energy transfer in microwave electrothermal thrusters

    NASA Astrophysics Data System (ADS)

    Sullivan, D. J.; Micci, M. M.

    1993-11-01

    Results are presented from preliminary tests conducted to evaluate the performance of a prototype microwave electrothermal thruster. The primary component of the device is a microwave resonant cavity. The device produces stable axial plasmas within a pressurized section of the cavity with the plasma positioned in the inlet region of the nozzle. Plasma stability is enhanced by axial power coupling, an optimal distribution of electric power density within the cavity, and a propellant gas flow which has a large vortical velocity component. The thruster has been operated with a number of propellant gases: helium, nitrogen, ammonia, and hydrogen. Plasmas can be formed in a reliable manner at cavity pressures of 1 kPa and incident power levels ranging from 50 W to 350 W, depending on the gas used, and can be operated at pressures up to 300 kPa at power levels up to 2200 W. Ideal performance results of vacuum Isp and thermal efficiency vs. specific power are presented for each gas. Representative results of this preliminary work are: He - Isp = 625 s, eta-thermal = 90 percent; N2 - Isp = 270 s, eta-thermal = 41 percent; NH3 - Isp = 475 s, eta-thermal= 55 percent; H2 - Isp = 1040 s, eta-thermal = 53 percent.

  12. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  13. Effect of vacuum and thermal shock on laser treatment of Trichophyton rubrum (toenail fungus)

    NASA Astrophysics Data System (ADS)

    Aguilar, Guillermo; Sun, Feng; Carlier, Pierre; Young, Erica; Hennings, David; González, F. Javier

    2010-02-01

    The eradication of Trichophyton rubrum has been attempted via laser irradiation because it could result advantageous relative to current clinical therapies. Anticipating that the necessary thermal effects could unintentionally damage the underlying toe dermal layer, we have explored two auxiliary approaches: (a) laser irradiation under vacuum pressure, with and without water dousing and, (b) cooling followed by laser heating (thermal shock). The rationale is that at low pressures, the temperature necessary to achieve water evaporation/boiling is significantly reduced, thus requiring lower fluences. Similarly, a thermal shock induced by cooling followed by laser irradiation may require lower fluences to achieve fungus necrosis. For all experiments presented we use a Cooltouch, model CT3 plus, 1320 nm laser to irradiate fungi colonies. The vacuum pressure experiments exposed fungi colonies to a subatmospheric pressure of 84.7 kPa (25 inHg) with and without water dousing for 5 min, followed by irradiation with 4.0 J/cm2 fluence and 40-90 J total energies. The thermal shock experiments consisted of three sections at 4.8 J/cm2: cooling the fungus to 0 °C at 0.39 °C/min and then irradiating to 45-60 °C cooling to -20 °C at 1.075 °C/min and irradiating to 45 °C and cooling to -20 °C at 21.5 °C/min and irradiating to 45 °C. Fungus growth rate over a 1-week period assessed the feasibility of these procedures. Results indicated both approaches hamper the growth rate of fungi colonies relative to untreated control samples, especially water dousing under vacuum conditions and slow cooling rate preceding irradiation for thermal shock effect.

  14. Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis

    SciTech Connect

    Yang, S T; Matthews, M J; Elhadj, S; Draggoo, V G; Bisson, S E

    2009-07-07

    In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 {micro}m CO{sub 2} laser were obtained using an infrared radiation thermometer based on a Mercury Cadmium Telluride (MCT) camera. Laser spot sizes ranged from 250 {micro}m to 1000 {micro}m diameter with peak axial irradiance levels of 0.13 to 16 kW/cm{sup 2}. For temperatures below 2800K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident laser irradiance. The effective thermal conductivity estimated over this range was approximately 2W/mK, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000K yielded thermal diffusivity values which were close to reported values of 7 x 10{sup -7} m{sup 2}/s. Above {approx}2800K, the fused silica surface temperature asymptotically approaches 3100K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T{sup 3} temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800K heat transport due to evaporation must be considered. The thermal transport in fused silica up to 2800K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties.

  15. Lifetime Assessment of the NEXT Ion Thruster

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.

    2010-01-01

    Ion thrusters are low thrust, high specific impulse devices with required operational lifetimes on the order of 10,000 to 100,000 hr. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest throttling point. Currently, a NEXT engineering model ion thruster with prototype model ion optics is undergoing a long duration test to determine wear characteristics and establish propellant throughput capability. The NEXT thruster includes many improvements over previous generations of ion thrusters, but two of its component improvements have a larger effect on thruster lifetime. These include the ion optics with tighter tolerances, a masked region and better gap control, and the discharge cathode keeper material change to graphite. Data from the NEXT 2000 hr wear test, the NEXT long duration test, and further analysis is used to determine the expected lifetime of the NEXT ion thruster. This paper will review the predictions for all of the anticipated failure mechanisms. The mechanisms will include wear of the ion optics and cathode s orifice plate and keeper from the plasma, depletion of low work function material in each cathode s insert, and spalling of material in the discharge chamber leading to arcing. Based on the analysis of the NEXT ion thruster, the first failure mode for operation above a specific impulse of 2000 sec is expected to be the structural failure of the ion optics at 750 kg of propellant throughput, 1.7 times the qualification requirement. An assessment based on mission analyses for operation below a specific impulse of 2000 sec indicates that the NEXT thruster is capable of double the propellant throughput required by these missions.

  16. Thermal effect of diode-pumped solid state lasers based on composite crystals

    NASA Astrophysics Data System (ADS)

    Hao, Ming-ming; Lu, Guo-guang; Zhu, Hong-bo; Huang, Yun; En, Yun-fei

    2013-12-01

    Thermal effect of diode-pumped solid-state lasers (DPSSL) based on YAP/Tm:YAP composite crystal is studied by using of finite element method (FEM). It is found that the peak temperature in a composite rod decreases to less than 80% of that in a non-composite crystal. Thermal stress of composite rod is obviously reduced to less than 70% comparing with non-composite crystal. It is also demonstrated that length of thermal lens unchanged with increasing of un-doped crystal length, which means that beam quality of composite laser wouldn't be improved by non-composite crystal. Therefore, it is concluded that using composite crystal would benefit for the properties of temperature and heat stress while insignificance for beam quality of DPSSL.

  17. Perturbative diffusion theory formalism for interpreting temporal light intensity changes during laser interstitial thermal therapy.

    PubMed

    Chin, Lee C L; Whelan, William M; Vitkin, I Alex

    2007-03-21

    In an effort to understand dynamic optical changes during laser interstitial thermal therapy (LITT), we utilize the perturbative solution of the diffusion equation in heterogeneous media to formulate scattering weight functions for cylindrical line sources. The analysis explicitly shows how changes in detected interstitial light intensity are associated with the extent and location of the volume of thermal coagulation during treatment. Explanations for previously reported increases in optical intensity observed early during laser heating are clarified using the model and demonstrated with experimental measurements in ex vivo bovine liver tissue. This work provides an improved understanding of interstitial optical signal changes during LITT and indicates the sensitivity and potential of interstitial optical monitoring of thermal damage.

  18. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    PubMed

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  19. Pathological considerations of laser-tissue interactions: light microscopic assessment of thermal damage of skin

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Goetschkes, Margaret

    1992-06-01

    A variety of fixatives and stains were examined for the ability to differentially stain the extracellular matrix components of thermal damage to the skin in an attempt to provide methods for examining the extent of thermal effects. This information is important in comparing different lasers and laser parameters. Four zones of thermal damage were identified including char and three zones of less extensive damage. The lower bounds of the damage with steady state conditions for these zones were 64 - 66 degree(s)C, 80 - 85 degree(s)C, and > 100 degree(s)C. The best choices based on this study include the following: fixative: Bouin's, overall stain: H & E, inner zone stain: Pinkus' acid orcein giemsa, middle zone stain: Movat's pentachrome, and outer zone stain: the modified elastic stain presented in the appendix of this paper.

  20. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    SciTech Connect

    Patil, S. D.; Takale, M. V.

    2013-07-15

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works.

  1. Pulse laser head with monolithic thermally bonded microchip operating at 1.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Młyńczak, Jarosław; Kopczyński, Krzysztof; Belghachem, Nabil; Kisielewski, Jarosław; Stepień, Ryszard; Wychowaniec, Marek; Galas, Jacek; Litwin, Dariusz; CzyŻewski, Adam

    2016-12-01

    On the basis of thermally bonded Er,Yb:glass/Co:MALO microchip a laser head pumped by fiber coupled laser diode was designed. The performance of the laser head were investigated and the main output parameters were determined. The energy over 40 μJ in 3.8 ns pulse with repetition rate of 0.735 kHz was achieved. The laser head characterized by such parameters can successfully be used in tele-detection applications.

  2. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers.

    PubMed

    Drachenberg, Derrek R; Andrusyak, Oleksiy; Venus, George; Smirnov, Vadim; Glebov, Leonid B

    2014-02-20

    High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.

  3. Effects of 946-nm thermal shift and broadening on Nd3+:YAG laser performance

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Ghasem, Rezaei

    2015-12-01

    Spectroscopic properties of flashlamp pumped Nd3+:YAG laser are studied as a function of temperature in a range from -30 °C to 60 °C. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of 4F3/2 → 4I9/2 are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature. The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is, thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state. Project supported by Estahban Branch, Islamic Azad University.

  4. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  5. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  6. Thermal rocketing and the Laser Geodynamic Satellite (LAGEOS-1)

    SciTech Connect

    Miller, W.A.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. LAGEOS is the most accurately tracked satellite in orbit. It is a totally passive, dense spherical satellite covered with 426 cube corner reflectors. Besides its great utility in measuring the Earth`s length of day and polar wobble, this satellite can be used to measure, for the first time, the general relativistic frame-dragging effect. Of the five dominant error sources in such an experiment, the largest one involves surface interaction of thermal forces (thermal rocketing) and its influence on the orbital nodal precession. The project objective was to enhance an already available theoretical model (computer code) developed at Los Alamos based on new optical-spin data obtained at the University of Maryland. The project objective was met and the enhanced code will serve as the new spin-dynamics model for future LAGEOS satellite missions.

  7. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser.

    PubMed

    Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V

    2014-05-01

    Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.

  8. Thermalization time of thin metal film heated by short pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hong-Yu; Zhang, Yuan-Chong; Song, Ya-Qin; Chen, Dian-Yun

    2004-10-01

    Based on the hyperbolic two-step heat conduction model, using the Laplace transform and numerical inverse transform method (Riemann-sum approximation method), the thermal behaviour of thin metal films has been studied during femtosecond pulse laser heating. Also the thermalization time, which is the time for the electron gas and solid lattice to reach thermal balance, has been studied in detail. The values of thermalization time for silver (Ag), gold (Au), copper (Cu) and lead (Pb) are obtained. The effects of material parameters of the thin metal film on the thermalization time are considered for the four kinds of metals by changing one of the parameters and regarding the other parameters as constant. For a typical metal material, the order of the thermalization time is of the order of hundreds of picoseconds. The thermalization time decays exponentially with the increase of phonon-electron coupling factor or electron gas thermal conductivity and it increases linearly with the increase of the ratio of lattice heat capacity to electron gas heat capacity. However, the relaxation time of the electron gas has very little effect on the thermalization time.

  9. Thermal and optical modeling of "blackened" tips for diode laser surgery

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.

    2016-04-01

    This paper presents the results of thermal and optical modeling of "blackened" tips (fiber-optic thermal converter) with different structures: film and volumetric. Film converter is created by laser radiation action on a cork or paper and it is a one-step process. As a result, a carbonized cork or paper adhered to the distal end of the optical fiber absorbs light that leads to heating of the distal end of the optical fiber. We considered the peculiarities of volumetric converters formed by sintering (second step) of the target material transferred to the tip, at irradiating the target with laser radiation (first step). We investigated the interaction between 980 nm laser radiation and converters in the air and water. As a result of experiments and modeling, it was obtain, that converter temperature and power of converter destruction depend on the environment in which it is placed. We found that film converter in the air at average power of laser radiation of 0.30+/-0.05 W is heated to 900+/-50°C and destructed, and volumetric converter in the air at average power of laser radiation of 1.0+/-0.1 W is heated to 1000+/-50°C and destructed at reaching of 4.0+/-0.1 W only. We found that film converter in the water at average power of laser radiation of 1.0+/-0.1 W is heated to 550+/-50°C and destructed at reaching of 4.0+/-0.1 W only. Volumetric converter at average power of laser radiation of4.0+/-0.1 W is heated to 450+/-50°C and is not destructed up to 7.5+/-0.1 W, it is heated to 500+/-50°C in this case. Thus, volumetric converter is more resistant to action of laser heating.

  10. Laser cleaning of works of art: evaluation of the thermal stress induced by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    De Cruz, A.; Andreotti, A.; Ceccarini, A.; Colombini, M. P.

    2014-06-01

    The Er:YAG laser has proven particularly efficient in cleaning procedures of works of art. The removal of the superficial deposits is achieved through melting, thermal decomposition and evaporation. However, the energy absorbed by vibrational modes is dissipated as heat, increasing the temperature of the surface coating that could cause damage on the object. The aim of this study was to evaluate the temperature increase induced by a Er:YAG MonaLaser (LLC., Orlando, FL, USA). To that purpose, we designed a dedicated device to perform the tests in an inert atmosphere or with a wetting agent, to measure the radiant energy per laser pulse. Tests were carried out both on graphite, which absorbs IR radiation and showed a very intense flash emission, and on different kind of samples representative of materials with different levels of conductivity and thermal diffusivity. Results obtained showed that the temperature increase in the irradiated surface depends on the substrate but never causes the damage of the organic and inorganic material. The use of a solvent as wetting agent has been also tested.

  11. Developing a scalable inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    James, E.; Ramsey, W.; Steiner, G.

    1982-01-01

    Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.

  12. Plasma-Surface Interactions in Electric Thrusters

    NASA Astrophysics Data System (ADS)

    Goebel, Dan

    2013-09-01

    Of critical importance in electric propulsion missions in space is thruster life, which is determined to a large extent by wall erosion from plasma-materials interactions. While the plasmas generated in different thrusters vary, the particle fluxes, energies and temperatures in contact with the walls are somewhat similar. The erosion rates are then determined by details of materials, incident angles, etc. In ion and Hall thrusters commonly used today, for example, cathode life is determined by low energy (<=100 eV) Xe ion erosion of the cathode electrodes. Erosion of ion thruster accelerator grids is dominated by charge exchange ion bombardment with energies of 200 to 400 V. The incident angle of these ions is near normal, but the sputtered particles are ejected with a butterfly distribution that directs particles along the thruster axis and causes build up of material on the upstream and downstream surfaces. In Hall thrusters, the plasma materials interactions at the wall are complicated because the walls are typically ceramic and selected for a low secondary electron yield for thruster performance. The erosion rates at the wall vary due to non-uniform plasma contact with the surface causing grooves and surface changes. These effects will be discussed for various thrusters.

  13. Micro-Discharge Micro-Thruster

    DTIC Science & Technology

    2005-06-01

    Approved for public release, distribution unlimited 1 American Institute of Aeronautics and Astronautics Micro -discharge Micro -thruster John...This paper summarizes the experiments and analysis of the micro -discharge micro - thruster developed jointly by Ewing Technology Associates and the...University of Washington. The key experimental result has been the demonstration of a sustained discharge in a very simple micro -discharge type of

  14. Azimuthal Spoke Propagation in Hall Effect Thrusters

    DTIC Science & Technology

    2013-08-01

    Approved for public release; distribution unlimited. IEPC-2013- Background Pressure Effects on Krypton Hall Effect Thruster Internal Acceleration...Why are we doing this work? – Continued examination of alternative Hall effect thruster propellants: Krypton – Interest in effects of test...Distribution unlimited 2 Photograph of BHT-600 operating on krypton Long exposure photograph of BHT-600 operating on krypton showing extended plume

  15. Finite element analysis of cornea thermal damage due to pulse incidental far IR laser.

    PubMed

    Shibib, Khalid Salem

    2013-05-01

    Due to the wide use of laser systems in human activities, an accidental event of laser exposure may occur where the most susceptible part to injury is the eye. A typical invisible pulsed, far IR, CO2 laser beam was used as an intrabeam accidentally struck an eye leading to raise its temperature to a limit where a pain sensation was started followed by aversion response with a delay of 0.25 s. At this time, the laser beam was assumed to terminate with respect to the cornea. The finite element method (FEM) was used successfully to predict, numerically, the temperature distribution through the anterior part of the eye when subjected to the laser beam. The FEM program was written using Visual Basic 6 coding. The effects of laser parameters such as laser beam profile, pulse width, and repetition rate on the temperature distribution and the consequential thermal damage were studied. The efficiency of the constructed computer program of the present work was examined by the comparison of the predicted results with those obtained from previously published experimental and theoretical works. The comparison shows good agreements.

  16. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating.

    PubMed

    Nazarian, Ashot; Presser, Cary

    2016-01-10

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner's sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent.

  17. Thermal Signature Measurements for Ammonium Nitrate/Fuel Mixtures by Laser Heating

    PubMed Central

    Nazarian, Ashot; Presser, Cary

    2016-01-01

    Measurements were carried out to obtain thermal signatures of several ammonium nitrate/fuel (ANF) mixtures, using a laser-heating technique referred to as the laser-driven thermal reactor (LDTR). The mixtures were ammonium nitrate (AN)/kerosene, AN/ethylene glycol, AN/paraffin wax, AN/petroleum jelly, AN/confectioner’s sugar, AN/cellulose (tissue paper), nitromethane/cellulose, nitrobenzene/cellulose, AN/cellulose/nitromethane, AN/cellulose/nitrobenzene. These mixtures were also compared with AN/nitromethane and AN/diesel fuel oil, obtained from an earlier investigation. Thermograms for the mixtures, as well as individual constituents, were compared to better understand how the sample thermal signature changes with mixture composition. This is the first step in development of a thermal-signature database, to be used along with other signature databases, to improve identification of energetic substances of unknown composition. The results indicated that each individual thermal signature was associated unambiguously with a particular mixture composition. The signature features of a particular mixture were shaped by the individual constituent signatures. It was also uncovered that the baseline signature was modified after an experiment due to coating of unreacted residue on the substrate surface and a change in the reactor sphere oxide layer. Thus, care was required to pre-oxidize the sphere prior to an experiment. A minimum sample mass (which was dependent on composition) was required to detect the signature characteristics. Increased laser power served to magnify signal strength while preserving the signature features. For the mixtures examined, the thermal response of each ANF mixture was found to be different, which was based on the mixture composition and the thermal behavior of each mixture constituent. PMID:26955190

  18. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  19. Role of laser and thermal ablation devices in the treatment of vascular diseases.

    PubMed

    Litvack, F; Grundfest, W S; Papaioannou, T; Mohr, F W; Jakubowski, A T; Forrester, J S

    1988-05-09

    Since the first coronary angioplasty in 1977, both the number and complexity of interventional procedures have grown dramatically. Continuous-wave and pulsed lasers may further extend the capabilities of balloon angioplasty. Fiberoptic catheters may be used to transmit continuous-wave laser energy to ablate plaque via thermal mechanisms. Pulsed laser systems (such as the excimer) are technologically more complex than the continuous-wave systems, but may prove superior in small vessels given their ability to ablate plaque with minimal associated effects. On the other hand, modifications of the fiber-optic tip, such as the placement of a metal cap, have yielded even better results than current bare fiber systems. Such laser thermal techniques have proved a useful adjunct to balloon dilatation in peripheral vessels, but further research is necessary to determine their effect on coronary arteries. New, nonlaser technologies, however, may provide simpler power sources for thermal angioplasty. Although balloon angioplasty remains the cornerstone of interventional vascular therapy, new technologies should help to further expand the indications for nonsurgical interventions.

  20. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  1. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  2. Cathode Effects in Cylindrical Hall Thrusters

    SciTech Connect

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  3. Scaling of Ion Thrusters to Low Power

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Grisnik, Stanley P.; Soulas, George C.

    1998-01-01

    Analyses were conducted to examine ion thruster scaling relationships in detail to determine performance limits, and lifetime expectations for thruster input power levels below 0.5 kW. This was motivated by mission analyses indicating the potential advantages of high performance, high specific impulse systems for small spacecraft. The design and development status of a 0.1-0.3 kW prototype small thruster and its components are discussed. Performance goals include thruster efficiencies on the order of 40% to 54% over a specific impulse range of 2000 to 3000 seconds, with a lifetime in excess of 8000 hours at full power. Thruster technologies required to achieve the performance and lifetime targets are identified.

  4. Effect of laser remelting on the tribological performance of thermal barrier coatings.

    PubMed

    Rico, A; Sevillano, F; Múnez, C J; López, M D; Utrilla, V; Rodríguez, J; Poza, P

    2012-06-01

    Gas turbine's efficiency improves as operating temperature is increased. For this reason, metallic components used in turbine engines, for propulsion and power generation, are protected by thermal barrier coatings (TBC). Laser glazing has been used to enhance the oxidation and corrosion resistance of thermally sprayed TBC, but there is no information about the effect of this treatment on the tribological performance. ZrO2(CaO) top coat and NiAIMo bond coating were flame sprayed onto an AlSI 1045 carbon steel. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. Both, the as sprayed and the laser remelted top coatings, were formed by cubic ZrO2 with some tetragonal precipitates. The grain size was reduced by the laser treatment. The mechanical properties and the local wear rate were evaluated by depth sensing indentation and scratch tests respectively. The nanoscale wear behaviour was always improved by the laser treatment.

  5. Transverse laser cooling of a thermal atomic beam of dysprosium

    SciTech Connect

    Leefer, N.; Cingoez, A.; Gerber-Siff, B.; Sharma, Arijit; Torgerson, J. R.; Budker, D.

    2010-04-15

    A thermal atomic beam of dysprosium atoms is cooled using the 4f{sup 10}6s{sup 2}(J=8){yields}4f{sup 10}6s6p(J=9) transition at 421 nm. The cooling is done via a standing light wave orthogonal to the atomic beam. Efficient transverse cooling to the Doppler limit is demonstrated for all observable isotopes of dysprosium. Branching ratios to metastable states are demonstrated to be <5x10{sup -4}. A scheme for enhancement of the nonzero-nuclear-spin-isotope cooling and a method for direct identification of possible trap states are proposed.

  6. Thermal Model of Laser-Induced Eye Damage

    DTIC Science & Technology

    1974-10-08

    Measurement of the Choroidal Blood j Flow in the Rabbit Using 85-Krpton," Exp. Eye Res._ 16, pp 421- 425 (1973) 15. "Thermal Problems in Biotechnology ...QM VIH 8- 1. ALLLN ET AL LCL1PSt bNUkNS IN h’UMANS AN)LAf5,)kATORPY mL AS LIE MLNT IN H A fif.1 $* S A M-1.L 01 (Ay Y 6w 2a ALLLN LT AL HUL’m CT Iij

  7. Liquid-metal-fed Pulsed Plasma Thrusters for In-space Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.

    2004-01-01

    Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that show promise to increase thruster propellant utilization, dynamic, and electrical efficiency. Calibration results from a compact, electromagnetically-pumped propellant feed system are presented. Results for lithium and gallium propellants show capability to meter propellant at flow rates up to 10 +/- 0.1 mg/s. Experiments investigating the initiation of arc discharges using liquid metal droplets are presented. High speed photography and laser interferometry provide spatially and temporally resolved information on the decomposition of liquid metal droplets , and the evolution of the accelerating current channel.

  8. Thermal interaction of short-pulsed laser focused beams with skin tissues

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2009-07-01

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  9. Thermal, anisotropic microhardness and laser induced surface damage studies on certain metal complexes of thiourea

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Sabari Girisun, T. C.

    2011-09-01

    Single crystals of thiourea metal complexes with selected group II metal ions, zinc and cadmium, have been grown by solvent evaporation technique and characterized by XRD studies. The thermal, mechanical and laser induced surface damage properties of thiourea and its metal complexes in (1 0 0) plane were studied. From the improved photopyroelectric technique the thermal properties of the metal complexes were evaluated. Due to larger heat capacity ZTS (382.4 J kg -1 K -1) has better thermal stability than BTCC (304.09 J kg -1 K -1), TTCS (293.5 J kg -1 K -1) and BTZC (255.24 J kg -1 K -1). Vickers hardness studies reveal that the materials have reverse indentation size effect and belong to soft material type. Elastic stiffness was found to be very large for ZTS (8.05) than TTCS (5.38), BTCC (1.57 GPa) and BTZC (0.76 GPa). Multi-shot laser damage studies reveal that ZTS (40 GW/cm 2) has higher laser damage threshold and the roles of the group II metal ions in improving the mechanical and thermal stability of the metal complexes are discussed.

  10. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    SciTech Connect

    Shiraishi, Hiroyuki

    2008-04-28

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO{sub 2} gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.

  11. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2008-04-01

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO2 gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.

  12. A comparison of two laser-based diagnostics for analysis of particles in thermal spray streams

    SciTech Connect

    Smith, M.F.; O`Hern, T.J.; Brockmann, J.E.

    1995-07-01

    This paper discusses two commercially-available laser diagnostics that have been used in thermal spray research at Sandia National Laboratories: (1) a Phase Doppler Particle Analyzer (PDPA) and (2) a Laser Two-Focus (L2F) velocimeter. The PDPA provides simultaneous, correlated measurements of particle velocity and particle size distributions; but, particle sizing doesn`t work well with non-spherical particles or particles with rough surfaces. The L2F is used to collect particle velocity and number density distributions, and it can readily distinguish and separately measure particles with off-axis velocity vectors. PDPA and L2F principles of operation are presented along with potential advantages and limitations for thermal spray research. Four experiments were conducted to validate and compare measurement results with the PDPA and L2F instruments: (1) spinning wire, (2) powder in a High-Velocity Oxy-Fuel (HVOF) jet, (3) powder in a cold jet, and (4) droplets in a wire-fed HVOF jet. TWO DIFFERENT TYPES of commercially-available laser velocimeter systems, a Phase Doppler Particle Analyzer and a Laser-Two-Focus velocimeter have been used in the Thermal Spray Research Laboratory at Sandia National Laboratories. Each of these techniques has inherent advantages and limitations for thermal spray, and each involves assumptions that may not be valid for some experimental conditions. This paper describes operating principles and possible sources of measurement error for these two diagnostic systems. Some potential advantages and limitations are also presented. Four types of experiments were also conducted to validate and compare PDPA and L2F measurement results: (1) spinning wire, (2) powder in a High-Velocity Oxy-Fuel (HVOF) jet, (3) powder in a cold jet, and (4) droplets in a wire-fed HVOF jet. We also offer a few observations related to practical issues such as ease-of-use, reliability, and effects of dust and vibration in a thermal spray lab.

  13. Solubility, thermal, photoconductivity and laser damage threshold studies on L-serine acetate (LSA) single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Thayanithi, V.; Mani, A.; Amudha, M.; Kumar, P. Praveen

    2015-06-01

    L-serine acetate crystal was grown by slow evaporation technique. Solubility of L-Serine Acetate was determined at different temperatures. L-Serine Acetate was characterized by SEM is to identify the morphology of the crystal. TG and DTA study reveals the thermal stability of the grown crystal. Dielectric measurement was carried out for different temperature ranges. Photo conductivity study revealed the nature of conductivity of the crystal under halogen light. Laser damage threshold of the crystal was measured using Nd:YAG laser source. NLO property of the crystal is confirmed by Kurtz-Perry powder technique.

  14. Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

    NASA Astrophysics Data System (ADS)

    Hey, Franz Georg; Keller, A.; Johann, U.; Braxmaier, C.; Tajmar, M.; Fitzsimons, E.; Weise, D.

    2015-05-01

    In the context of investigations for a sufficient attitude control thruster for LISA, we have developed a thruster test facility which consists of a highly precise thrust balance coupled with plasma diagnostics. In parallel to the test facility development, investigations to downscale a High Efficiency Multistage Plasma Thruster (HEMP-T) are also being carried out. The thruster has been used to demonstrate the measurement capabilities of the facility. The setup allows a parallel operation of all instruments and can also be used for other types of μN propulsion systems including cold gas thrusters. The thrust balance consists of two pendulums. As read out a heterodyne laser interferometer is used. Differential wave front sensing (DWS) enables the measurement of the pendulum tilt which, via suitable calibration using an electrostatic comb, can be converted to a thrust. The whole setup is a symmetric configuration enabling a common-mode rejection of the dominant noise sources (e.g. seismic noise etc.). The thrust balance has a demonstrated precision of 0.1 μN. Based on our unique design, this precision can be attained down to 10-3 Hz. Thus, the measurement setup is especially suitable for characterising the thrust noise of potential eLISA propulsion candidates. We give an overview of the design, the present performance and the future plans.

  15. Optical and thermal simulations of noninvasive laser coagulation of the human vas deferens

    NASA Astrophysics Data System (ADS)

    Schweinsberger, Gino R.; Cilip, Christopher M.; Trammell, Susan R.; Cherukuri, Harish; Fried, Nathaniel M.

    2011-03-01

    Successful noninvasive laser coagulation of the canine vas deferens, in vivo, has been previously reported. However, there is a significant difference between the optical properties of canine and human skin. In this study, Monte Carlo simulations of light transport through tissue and heat transfer simulations are performed to determine the feasibility of noninvasive laser vasectomy in humans. A laser wavelength of 1064 nm was chosen for deep optical penetration in tissue. Monte Carlo simulations determined the spatial distribution of absorbed photons inside the tissue layers (epidermis, dermis, and vas). The results were convolved with a 3-mm-diameter laser beam, and then used as the spatial heat source for the heat transfer model. A laser pulse duration of 500 ms and pulse rate of 1 Hz, and cryogen spray cooling were incident on the tissue for 60 s. Average laser power (5-9 W), cryogen pulse duration (60-100 ms), cryogen cooling rate (0.5-1.0 Hz), and increase in optical transmission due to optical clearing (0-50 %), were studied. After application of an optical clearing agent to increase skin transmission by 50%, an average laser power of 6 W, cryogen pulse duration of 60 ms, and cryogen cooling rate of 1 Hz resulted in vas temperatures of ~ 60°C, sufficient for thermal coagulation, while 1 mm of the skin surface (epidermis and dermis) remained at a safe temperature of ~ 45 °C. Monte Carlo and heat transfer simulations indicate that it is possible to noninvasively thermally coagulate the human vas without adverse effects (e.g. scrotal skin burns), if an optical clearing agent is applied to the skin prior to the procedure.

  16. Measuring the thermal expansion coefficient of the carbon fiber optical tube by heterodyne laser interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; He, Wenjun; Zhang, Lei; Zhao, Xuan; Tian, Yuqi

    2016-11-01

    In This paper, we present an experimental design of measuring thermal expansion coefficient of the carbon fiber optical tube based on the heterodyne laser interferometry. In the course of the experiment, the error caused by the temperature changes of the external environment was considered, and the compensation is carried out. The data of the experiment was recorded and analyzed. The curve of the thermal expansion coefficient of the carbon fiber optical tube was close. The measurement of the thermal expansion coefficient was finished within a small range of temperature changes. The thermal expansion coefficient of the carbon fiber optical tube was 6 0.78 x 10-5m/ ° C - × , which was consistent with the experience value. Athermalization for the supporting structure of the Cassette optical system was designed according to the results of the experiment.

  17. Percutaneous laser thermal angioplasty: initial clinical results with a laser probe in total peripheral artery occlusions.

    PubMed

    Cumberland, D C; Sanborn, T A; Tayler, D I; Moore, D J; Welsh, C L; Greenfield, A J; Guben, J K; Ryan, T J

    1986-06-28

    A metal-tipped laser fibre was used during percutaneous angioplasty of femoral/popliteal or iliac artery occlusions in 56 patients. Primary success was achieved in 50 (89%) of these total occlusions, providing a channel for subsequent balloon dilatation. Before the procedure, 18 lesions had been judged untreatable by conventional angioplasty and four of the six failures were in these. Complications directly attributable to the laser probe were one case of vessel perforation and two cases of entry into vessel walls; these had no sequelae. Other acute complications were a distal thrombosis in a non-heparinised patient, requiring local streptokinase treatment, and two reocclusions and one transient peripheral embolic episode in the first 24 hours. The laser probe technique has potential for increasing the proportion of patients suitable for angioplasty.

  18. Laser induced optically and thermally reversible birefringence in azopolymers

    NASA Astrophysics Data System (ADS)

    Nazarova, D.; Nedelchev, L.; Ivanov, D.; Blagoeva, B.; Berberova, N.; Stoykova, E.; Mateev, G.; Kostadinova, D.

    2016-01-01

    Azopolymers are well known organic materials for polarization holographic recording due to the induced anisotropy under illumination with polarized light. They possess all the desirable characteristics of the known polarization-sensitive materials, as high sensitivity and reversibility, but excel them substantially in the magnitude of the photoinduced birefringence. This makes possible to record reversible polarization gratings with high diffraction efficiency. In this paper results of experimental investigations on the reversibility properties of birefringence photoinduced in azopolymers are reported, depending on the conditions of subsequent optical and thermal treatment. Thin films of different polymers were prepared in order to examine the kinetics of multiple recording and erasure of birefringence in different types of azopolymers. The reversibility of the polarization recording has been studied using two different method of erasure - by increased temperature and on illumination with circularly polarized light.

  19. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  20. The Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  1. Coil system for plasmoid thruster

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  2. Parallel plate radiofrequency ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1982-01-01

    An 8-cm-diam. argon ion thruster is described. It is operated by applying 100 to 160 Mhz rf power across a thin plasma volume in a strongly divergent static magnetic field. No cathode or electron emitter is required to sustain a continuous wave plasma discharge over a broad range of propellant gas flow. Preliminary results indicate that a large fraction of the incident power is being reflected by impedance mismatching in the coupling structure. Resonance effects due to plasma thickness, magnetic field strength, and distribution are presented. Typical discharge losses obtained to date are 500 to 600 W per beam ampere at extracted beam currents up to 60 mA.

  3. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-03-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  4. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ning, Zhongxi; Liu, Hui; Yu, Daren; Zhou, Zhongxiang

    2011-11-01

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  5. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    SciTech Connect

    Ning Zhongxi; Liu Hui; Yu Daren; Zhou Zhongxiang

    2011-11-28

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  6. Laser Diagnostics for Spacecraft Propulsion

    DTIC Science & Technology

    2015-10-13

    Monopropellant Thrusters Operation • Monopropellant flows over catalyst bed to initiate exothermic decomposition • Propellant is expanded and accelerated out of...post-test – Cut open thruster to examine catalyst • Diode Laser Absorption Spectroscopy – Non-intrusive, in-situ measurements – Temperature, species...distribution unlimited.  AFTC/PA Clearance No. XXXX Propellant Catalyst Bed Decomposition Chamber Thrust Chamber 5 Diode Laser Absorption Spectroscopy Beer

  7. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  8. Transient thermal deformation of alumina (A12O3) substrate during laser drilling

    NASA Astrophysics Data System (ADS)

    Halter, Ryan; Jayaraman, Subash B.; Tittmann, Bernhard R.

    2001-08-01

    The cracking and failure in ceramic substrates during the laser drilling process has been acknowledged as a major problem by designers and manufacturers in the electronic component industries. The cracking and failure is due to large localized thermal stresses within the narrow heat-affected zone on the ceramics. Although the knowledge of the stress distribution in the ceramic substrate is important in understanding and solving the cracking/failure problem, it is impossible to measure the stress directly. The physical parameters of the laser drilling process such as temperatures or displacements, which can be directly related to stresses, can however be measured. That is why, in this research, an electronic speckle pattern interferometer (ESPI) system was designed and used to take speckle pattern images of the ceramic surface during the laser drilling process. Using commercial software, the speckle fringe images were image processed to quantify whole-field transient out-of-plane displacement measurements. A deformation history of the ceramic surface during the laser shaping process with millisecond temporal resolution was obtained, restricted only by the camera frame rate, camera resolution and laser power available. A finite difference model was developed to compare the deformation measurements with the predicted strain calculations. The experimental study and the analysis show that the designed in-situ electronic speckle pattern interferometer system provides an excellent experimental basis for whole- field, transient deformation measurements of ceramic substrates during the laser drilling process.

  9. Thermally induced distortion of high average power laser system by an optical transport system

    SciTech Connect

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.

  10. Thermally induced mode distortion and its limit to power scaling of fiber lasers.

    PubMed

    Ke, Wei-Wei; Wang, Xiao-Jun; Bao, Xian-Feng; Shu, Xiao-Jian

    2013-06-17

    A general model is proposed to describe thermal-induced mode distortion in the step-index fiber (SIF) high power lasers. Two normalized parameters in the model are able to determine the mode characteristic in the heated SIFs completely. Shrinking of the mode fields and excitation of the high-order modes by the thermal-optic effect are investigated. A simplified power amplification model is used to describe the output power redistribution under various guiding modes. The results suggest that fiber with large mode area is more sensitive on the thermally induced mode distortion and hence is disadvantaged in keeping the beam quality in high power operation. The model is further applied to improve the power scaling analysis of Yb-doped fiber lasers. Here the thermal effect is considered to couple with the optical damage and the stimulated Raman scattering dynamically, whereas direct constraint from the thermal lens is relaxed. The resulting maximal output power is from 67kW to 97kW, depending on power fraction of the fundamental mode.

  11. Laser-projected photothermal thermography using thermal wave field interference for subsurface defect characterization

    NASA Astrophysics Data System (ADS)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-09-01

    The coherent superposition of two anti-phased thermal wave fields creates a zone of destructive interference which is extremely sensitive to the presence of defects without any reference measurements. Combining a high power laser with a spatial light modulator allows modulating phase and amplitude of an illuminated surface that induces spatially and temporally controlled thermal wave fields. The position and depth of defects are reconstructed from analysis of the amplitude and phase of the resulting photothermal signal. The proposed concept is experimentally validated and supported by numerical modeling.

  12. Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser.

    PubMed

    Bonner, Gerald M; Pask, Helen M; Lee, Andrew J; Kemp, Alan J; Wang, Jiyang; Zhang, Huaijin; Omatsu, Takashige

    2012-04-23

    The thermal lens induced in an a-cut BaWO(4) crystal by stimulated Raman scattering is measured using lateral shearing interferometry. The strength of the lens is proportional to the Stokes output power. For light polarized parallel to the a-axis, and a Stokes mode radius of 120 μm, the lens is negative and highly astigmatic: -0.8 D W(-1) in the plane parallel to the a-axis and -7.7 D W(-1) in the plane parallel to the c-axis. The implications of this thermal lens for Raman laser design are discussed.

  13. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  14. Laser interstitial thermal therapy in treatment of brain tumors--the NeuroBlate System.

    PubMed

    Mohammadi, Alireza M; Schroeder, Jason L

    2014-03-01

    Treatment of brain tumors remains challenging. Cytoreductive surgery is used as the first line treatment for most brain tumors. However complete, curative, resection is not achievable in many tumors leading to the need for adjuvant chemotherapy and radiation therapy. Laser interstitial thermal therapy (LITT) is a minimally invasive cytoreductive treatment. A low voltage laser is used to induce hyperthermia and to kill tumor cells. The extent of thermal damage is controlled through use of real-time MR-thermography guidance. Initial results have shown the feasibility of LITT for a variety of brain pathologies. LITT can be considered as an alternative type of surgery for difficult to access brain tumors and also for tumors in patients who are deemed high risk for more traditional surgery. Randomized trials are currently planned to continue assessing the efficacy of LITT and long-term follow-up data are awaited.

  15. Analysis of thermal images from diode lasers: Temperature profiling and reliability screening

    NASA Astrophysics Data System (ADS)

    Kozlowska, Anna; Latoszek, Mateusz; Tomm, Jens W.; Weik, Fritz; Elsaesser, Thomas; Zbroszczyk, Mariusz; Bugajski, Maciej; Spellenberg, B.; Bassler, M.

    2005-05-01

    Imaging thermography in the 3-5μm wavelength range is applied to the analysis of thermal properties of high-power diode lasers. We investigate these devices by inspecting their front facets as well as their active regions along the resonator. The latter is done through top windows within the substrate. Raw data are found to be mostly interfered by thermal radiation traveling through the substrate, which is transparent for infrared light. Substracting this contribution and recalibration allows for obtaining realistic temperature profiles along laser structures. Facet heating is analyzed complementary by micro-Raman spectroscopy. We show how hot spots at the front facet, in the substrate, or even in the active region within the substrate are discovered. Our approach paves the way for an advanced methodology of device screening.

  16. Analysis of thermal images from diode lasers: Temperature profiling and reliability screening

    SciTech Connect

    Kozlowska, Anna; Latoszek, Mateusz; Tomm, Jens W.; Weik, Fritz; Elsaesser, Thomas; Zbroszczyk, Mariusz; Bugajski, Maciej; Spellenberg, B.; Bassler, M.

    2005-05-16

    Imaging thermography in the 3-5 {mu}m wavelength range is applied to the analysis of thermal properties of high-power diode lasers. We investigate these devices by inspecting their front facets as well as their active regions along the resonator. The latter is done through top windows within the substrate. Raw data are found to be mostly interfered by thermal radiation traveling through the substrate, which is transparent for infrared light. Substracting this contribution and recalibration allows for obtaining realistic temperature profiles along laser structures. Facet heating is analyzed complementary by micro-Raman spectroscopy. We show how hot spots at the front facet, in the substrate, or even in the active region within the substrate are discovered. Our approach paves the way for an advanced methodology of device screening.

  17. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  18. Long lifetime hollow cathodes for 30-cm mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Kerslake, W. R.

    1976-01-01

    An experimental investigation of hollow cathodes for 30-cm Hg bombardment thrusters was carried out. Both main and neutralizer cathode configurations were tested with both rolled foil inserts coated with low work function material and impregnated porous tungsten inserts. Temperature measurements of an impregnated insert at various positions in the cathode were made. These, along with the cathode thermal profile are presented. A theory for rolled foil and impregnated insert operation and lifetime in hollow cathodes is developed. Several endurance tests, as long as 18000 hours at emission currents of up to 12 amps were attained with no degradation in performance.

  19. Enhanced fiber coupled laser power and brightness for defense applications through tailored diode and thermal design

    NASA Astrophysics Data System (ADS)

    Patterson, Steve; Koenning, Tobias; Köhler, Bernd; Ahlert, Sandra; Bayer, Andreas; Kissel, Heiko; Müntz, Holger; Noeske, Axel; Rotter, Karsten; Segref, Armin; Stoiber, Michael; Unger, Andreas; Wolf, Paul; Biesenbach, Jens

    2012-06-01

    Advances in both diode laser design and packaging technology, particularly thermal management, are needed to enhance the brightness of fiber coupled diode lasers while maintaining the small size and light weight required for defense applications. The principles of design for high efficiency fiber coupling are briefly covered. Examples are provided of fielded and demonstrated 100 and 200 micron diameter fiber coupled packages ranging in output from a few hundred to kW-class units in fibers, to include sub-kg/kW capabilities. The demand for high-power and high-brightness fiber coupled diode laser devices is mainly driven by applications for solid-state and fiber laser pumping. The ongoing power scaling of fiber lasers requires scalable fiber-coupled diode laser devices with increased power and brightness. A modular diode laser concept combining high power, high brightness, wavelength stabilization and low weight, which is considerable concern in the SWaP trades needed to field defense systems, has been developed. In particular the defense technology requires robust but lightweight high-power diode laser sources in combination with high brightness. The heart of the concept is a specially tailored diode laser bar, with the epitaxial and lateral structures designed such that only standard fast- and slow-axis collimator lenses in combination with appropriate focusing optics are required to couple the beam into a fiber with a core diameter of 200 μm and a numerical aperture (NA) of 0.22. The spectral quality, which is an important issue especially for fiber laser pump sources, is ensured by means of Volume Holographic Gratings (VHG) for wavelength stabilization. This paper presents a detailed characterization of different diode laser sources based on the scalable modular concept. The optical output power is scaled from 180 W coupled into a 100 μm NA 0.22 fiber up to 800W coupled into a 400 μm NA 0.22 fiber. In addition we present a lightweight laser unit with an output

  20. Minimizing superficial thermal injury using bilateral cryogen spray cooling during laser reshaping of composite cartilage grafts.

    PubMed

    Chang, Cheng-Jen; Cheng, Sally M H; Chiu, Lynn L; Wong, Brian J F; Ting, Keen

    2008-09-01

    Composite cartilage grafts were excised from New Zealand rabbit ears. Flat composite grafts (of cartilage and overlying skin graft on both surfaces) were obtained from each ear and cut into a rectangle measuring 50 mm by 25 mm (x by y) with an average thickness of approximately 1.3 mm (z), skin included. Specimens were manually deformed with a jig and maintained in this new position during laser illumination. The composite cartilage grafts were illuminated on the concave surface with an Nd:YAG laser (1,064 nm, 3 mm spot) at 10 W, 20 W, 30 W, 40 W, 50 W. Cryogen spray cooling (CSC) was applied to both exterior (convex) and interior (concave) surfaces of the tissue to reduce thermal injury to the grafts. CSC was delivered: (1) in controlled applications (cryogen released when surface reached 40 degrees C, and (2) receiving only laser at above wattage, no CSC [representing the control group]. The specimens were maintained in a deformation for 15 minutes after illumination and serially examined for 14 days. The control group with no CSC caused injury to all specimens, ranging from minor to full thickness epidermal thermal injury. Although most levels of laser and CSC yielded a high degree of reshaping over an acute time period, after 14 days specimens exposed to 30 W, 40 W, 50 W retained shape better than those treated at 10 W and 20 W. The specimens exposed to 50 W with controlled CSC retained its new shape to the highest degree over all others, and thermal injury was minimal. In conclusion, combinations of laser and CSC parameters were effective and practical for the reshaping of composite cartilage grafts.

  1. Investigation of a repetitive pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.; Winsor, N. K.

    1986-01-01

    A pulsed electrothermal (PET) thruster with 1000:1 ratio nozzle is tested in a repetitive mode on water propellant. The thruster is driven by a 60J pulse forming network at repetition rates up to 10 Hz (600W). The pulse forming network has a .31 ohm impedance, well matched to the capillary discharge resistance of .40 ohm, and is directly coupled to the thruster electrodes without a switch. The discharge is initiated by high voltage breakdown, typically at 2500V, through the water vapor in the interelectrode gap. Water is injected as a jet through a .37 mm orifice on the thruster axis. Thruster voltage, current and impulse bit are recorded for several seconds at various power supply currents. Thruster to power ratio is typically T/P = .07 N/kW. Tank background pressure precludes direct measurement of exhaust velocity which is inferred from calculated pressure and temperature in the discharge to be about 14 km/sec. Efficiency, based on this velocity and measured T/P is .54 + or - .07. Thruster ablation is zero at the throat and becomes measurable further upstream, indicating that radiative ablation is occurring late in the pulse.

  2. Analytical Ion Thruster Discharge Performance Model

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Wirz, Richard E.; Katz, Ira

    2006-01-01

    A particle and energy balance model of the plasma discharge in magnetic ring-cusp ion thrusters has been developed. The model follows the original work of Brophy in the development of global 0-D discharge models that utilize conservation of particles into and out of the thruster and conservation of energy into the discharge and out of the plasma in the form of charged particles to the walls and beam and plasma radiation. The present model is significantly expanded over Brophy's original work by including self-consistent calculations of the internal neutral pressure, electron temperature, primary electron density, electrostatic ion confinement (due to the ring-cusp fields), plasma potential, discharge stability, and time dependent behavior during recycling. The model only requires information on the thruster geometry, ion optics performance and electrical inputs such as discharge voltage and currents, etc. to produce accurate performance curves of discharge loss versus mass utilization efficiency. The model has been benchmarked against the NEXIS Laboratory Model (LM) and Development Model (DM) thrusters, and successfully predicts the thruster discharge loss as a function of mass utilization efficiency for a variety of thrusters. The discharge performance model will be presented and results showing ion thruster performance and stability given.

  3. Laser thermal therapy monitoring using complex differential variance in optical coherence tomography

    PubMed Central

    Lo, William C. Y.; Uribe-Patarroyo, Néstor; Nam, Ahhyun S.; Villiger, Martin; Vakoc, Benjamin J.; Bouma, Brett E.

    2016-01-01

    Conventional thermal therapy monitoring techniques based on temperature are often invasive, limited by point sampling, and are indirect measures of tissue injury, while techniques such as magnetic resonance and ultrasound thermometry are limited by their spatial resolution. The visualization of the thermal coagulation zone at high spatial resolution is particularly critical to the precise delivery of thermal energy to epithelial lesions. In this work, an integrated thulium laser thermal therapy monitoring system was developed based on complex differential variance (CDV), which enables the 2D visualization of the dynamics of the thermal coagulation process at high spatial and temporal resolution with an optical frequency domain imaging system. With proper calibration to correct for noise, the CDV-based technique was shown to accurately delineate the thermal coagulation zone, which is marked by the transition from high CDV upon heating to a significantly reduced CDV once the tissue is coagulated, in 3 different tissue types ex vivo: skin, retina, and esophagus. The ability to delineate thermal lesions in multiple tissue types at high resolution opens up the possibility of performing microscopic image-guided procedures in a vast array of epithelial applications ranging from dermatology, ophthalmology, to gastroenterology and beyond. PMID:27623742

  4. Gold nanoshell/polysaccharide nanofilm for controlled laser-assisted tissue thermal ablation.

    PubMed

    Redolfi Riva, Eugenio; Desii, Andrea; Sinibaldi, Edoardo; Ciofani, Gianni; Piazza, Vincenzo; Mazzolai, Barbara; Mattoli, Virgilio

    2014-06-24

    We report on the fabrication and characterization of a freestanding ultrathin, mucoadhesive gold nanoshell/polysaccharide multilayer nanocomposite (thermonanofilm, TNF), that can be used for controlled photothermal ablation of tissues through irradiation with near-infrared radiation (NIR) laser. The aim of this work is to provide a new strategy to precisely control particle concentration during photothermalization of cancerous lesions, since unpredictable and aspecific biodistributions still remains the central issue of inorganic nanoparticle-assisted photothermal ablation. Gold nanoshell encapsulation in polysaccharide matrix is achieved by drop casting deposition method combined with spin-assisted layer-by-layer (LbL) assembly. Submicrometric thickness of films ensures tissue adhesion. Basic laser-induced heating functionality has been demonstrated by in vitro TNF-mediated thermal ablation of human neuroblastoma cancer cells, evidenced by irreversible damage to cell membranes and nuclei. Ex vivo localized vaporization and carbonization of animal muscular tissue is also demonstrated by applying TNF onto tissue surface. Thermal distribution in the tissue reaches a steady state in a few seconds, with significant increases in temperature (ΔT > 50) occurring across an 1 mm span, ensuring control of local photothermalization and providing more safety and predictability with respect to traditional laser surgery. A steady-state model of tissue thermalization mediated by TNFs is also introduced, predicting the temperature distribution being known the absorbance of TNFs, the laser power, and the tissue thermal conductivity, thus providing useful guidelines in the development of TNFs. Thermonanofilms can find applications for local photothermal treatment of cancerous lesions and wherever high precision and control of heat treatment is required.

  5. Thermal radiation of laser heated niobium clusters Nb(+)(N), 8 ⩽ N ⩽ 22.

    PubMed

    Hansen, Klavs; Li, Yejun; Kaydashev, Vladimir; Janssens, Ewald

    2014-07-14

    The thermal radiation from small, laser heated, positively charged niobium clusters has been measured. The emitted power was determined by the quenching effect on the metastable decay, employing two different experimental protocols. The radiative power decreases slightly with cluster size and shows no strong size-to-size variations. The magnitude is 40-50 keV/s at the timescale of several microseconds, which is the measured crossover time from evaporative to radiative cooling.

  6. Implications of the corneal temperature range in the prediction of laser thermal damage. [Monkeys

    SciTech Connect

    Mikesell, G.W. Jr.; Schepler, K.L.

    1980-04-01

    Corneal temperatures of the rhesus monkeys have been measured under conditions that may exist during laser experiments. The minimum and maximum temperatures found for all experimental conditions were 29.54/sup 0/C and 39.16/sup 0/C, respectively, a range of 9.62/sup 0/C. A computer model of thermal damage due to laser irradiation was used to determine the effect varying initial temperature could have on corneal damage thresholds (ED50's). The range of 9.62/sup 0/C found in monkeys for all experimental conditions corresponded to a 39% difference in threshold power. The dependence of damage thresholds on initial temperature could be an important factor to consider when basing laser safety standards on damage threshold data.

  7. Experimental determination of thermal profiles during laser spike annealing with quantitative comparison to 3-dimensional simulations

    SciTech Connect

    Iyengar, Krishna; Jung, Byungki; Willemann, Michael; Thompson, Michael O.; Clancy, Paulette

    2012-05-21

    Thin film platinum resistors were used to directly measure temperature profiles during laser spike annealing (LSA) with high spatial and temporal resolution. Observed resistance changes were calibrated to absolute temperatures using the melting points of the substrate silicon and thin gold films. Both the time-dependent temperature experienced by the sample during passage of the focussed laser beam and profiles across the spatially dependent laser intensity were obtained with sub-millisecond time resolution and 50 {mu}m spatial resolution. Full 3-dimensional simulations incorporating both optical and thermal variations of material parameters were compared with these results. Accounting properly for the specific material parameters, good agreement between experiments and simulations was achieved. Future temperature measurements in complex environments will permit critical evaluation of LSA simulations methodologies.

  8. Thermal analysis of thin multi-layer metal films during femtosecond laser heating

    NASA Astrophysics Data System (ADS)

    Karakas, A.; Tunc, M.; Camdali, Ü.

    2010-12-01

    Multi-layer metals films are widely used in modern engineering applications such as gold-coated metal mirrors used in high power laser systems. A transient heat flux model is derived to analyze multi-layer metal films under laser heating. The two separate system composed of electrons and the lattice is considered to take into account the electron-lattice interaction. The present model predicted the effects of underlying chromium's thermal properties on temperature rise of the top gold layer. The effects of two adjacent and different metals with different electron-lattice coupling factors are analyzed for the heating mechanism of different lattices. The derived transient model combined with the two different conservation equations for the lattice and electrons are applied for the ultra short-pulse laser heating of a multi-layer film composed of gold and chromium.

  9. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    NASA Astrophysics Data System (ADS)

    Ahedo, Eduardo; Navarro-Cavallé, Jaume

    2013-04-01

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.

  10. Helicon thruster plasma modeling: Two-dimensional fluid-dynamics and propulsive performances

    SciTech Connect

    Ahedo, Eduardo; Navarro-Cavalle, Jaume

    2013-04-15

    An axisymmetric macroscopic model of the magnetized plasma flow inside the helicon thruster chamber is derived, assuming that the power absorbed from the helicon antenna emission is known. Ionization, confinement, subsonic flows, and production efficiency are discussed in terms of design and operation parameters. Analytical solutions and simple scaling laws for ideal plasma conditions are obtained. The chamber model is then matched with a model of the external magnetic nozzle in order to characterize the whole plasma flow and assess thruster performances. Thermal, electric, and magnetic contributions to thrust are evaluated. The energy balance provides the power conversion between ions and electrons in chamber and nozzle, and the power distribution among beam power, ionization losses, and wall losses. Thruster efficiency is assessed, and the main causes of inefficiency are identified. The thermodynamic behavior of the collisionless electron population in the nozzle is acknowledged to be poorly known and crucial for a complete plasma expansion and good thrust efficiency.

  11. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  12. Structural Analysis of Pyrolytic Graphite Optics for the HiPEP Ion Thruster

    NASA Technical Reports Server (NTRS)

    Meckel, Nicole; Polaha, Jonathan; Juhlin, Nils

    2006-01-01

    The long lifetime requirements of interplanetary exploration missions is driving the need to develop long-life components for the electric propulsion thrusters that are being targeted for these missions. One of the primary life-limiting components of ion thrusters are the optics, which are continuously eroded during the operation of the thruster. Pyrolytic graphite optics are being considered for the High Power Electric Propulsion (HiPEP) ion thruster because of their very high resistance to erosion. This paper describes the structural analysis of the HiPEP pyrolytic graphite. A description of the development of the grid model, as well as the development of the effective properties and stress concentrations in the apertured area of the grids is included. An evaluation of the use of curved grids shows that the increased stiffness (compared to flat grids) prevents intergrid impact during launch, however, the residual stresses introduced by curving the grids pushes the resulting peak stresses beyond the critical stress. As a result, flat grids are recommended as the design solution. Thermally induced grid displacements during normal thruster operation are also presented.

  13. Evaluation of thermal residual stresses in laser drilled alumina ceramics using Micro-Raman spectroscopy and COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Narasimha Murthy, H. N.; Aditya, G.; Anand, B.; Satyanarayana, B. S.; Krishna, M.

    2015-07-01

    This paper presents evaluation of thermal residual stresses in the heat affected zone of laser drilled alumina ceramic by using Micro-Raman spectroscopy. The residual stresses were evaluated for the holes corresponding to the optimal parameters of laser power, scanning speed, frequency and hole diameter. Three such cases were considered for the study. Residual stresses were obtained as a function of the Raman shifts. The nature and magnitude of the residual stresses were indicative of the extent of damage caused in the heat affected zone. In cases where the initial tensile residual stresses exceeded the tensile strength of alumina, cracks were initiated. Laser drilling with higher laser power and lower scanning speed induced initially high compressive and cyclic thermal stresses, causing greater damage to the hole. Transient thermal analysis was performed using COMSOL Multiphysics to predict residual thermal stresses and to validate the micro-Raman results. Scanning Electron Microscopy was used to confirm the damage caused in the heat affected zone.

  14. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    PubMed Central

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-01-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of “heat shock proteins” (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing. PMID:21639585

  15. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  16. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

  17. A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene

    PubMed Central

    Tao, Lu-Qi; Liu, Ying; Ju, Zhen-Yi; Tian, He; Xie, Qian-Yi; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    A flexible sound source is essential in a whole flexible system. It’s hard to integrate a conventional sound source based on a piezoelectric part into a whole flexible system. Moreover, the sound pressure from the back side of a sound source is usually weaker than that from the front side. With the help of direct laser writing (DLW) technology, the fabrication of a flexible 360-degree thermal sound source becomes possible. A 650-nm low-power laser was used to reduce the graphene oxide (GO). The stripped laser induced graphene thermal sound source was then attached to the surface of a cylindrical bottle so that it could emit sound in a 360-degree direction. The sound pressure level and directivity of the sound source were tested, and the results were in good agreement with the theoretical results. Because of its 360-degree sound field, high flexibility, high efficiency, low cost, and good reliability, the 360-degree thermal acoustic sound source will be widely applied in consumer electronics, multi-media systems, and ultrasonic detection and imaging.

  18. Thermal effect of large-diameter laser rod in multi-direction side-pump high power pulsed Nd:YAG laser amplifier

    NASA Astrophysics Data System (ADS)

    Nie, Shuzhen; Zhao, Tianzhuo; Fan, Zhongwei; Xiao, Hong

    2016-10-01

    In this paper, a 15-direction ring laser diode array is chosen as pumping source in order to get uniform pump in laser medium. The diameter of laser rod is 15mm for obtaining high output laser energy. A numerical model of the side-pump pulsed Nd:YAG laser amplifier is set up. The finite element method using Ansys software is adopted to analyze the time-varying thermal effect. In order to find the temperature influence of the pump light's distribution, the temperature distributions in laser rod loaded by 15-direction Gaussian beam and simplified uniform beam are calculated and the results are comparatively analyzed. Despite the highest temperature in laser rod is different, the whole variation trend is similar which indicates time-varying characteristic. The thermal lens effect is also calculated and the results indicate that the temperature gradient in the medium plays the most important role. This study could provide a simulation tool to evaluate the thermal effect of the laser amplifier.

  19. Thermal blooming effects of gas on laser propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Yu, Huahua; Hu, Peng; An, Jianzhu; Zhang, Feizhou

    2015-02-01

    Thermal blooming effect of inner optical path remarkably affects far-field beam quality and energy distributions which should be taken into account in high energy laser (HEL) system. A physical model of thermal blooming is established. Based on the model, numerical simulations are carried out to study both the influences of absorptions of laser energy and tube structures on laser propagation in a closed tube. The natural convection of gas is numerically simulated by computational fluid dynamics (CFD) method. Gas temperature distributions, additional phase differences (APDs), variations of beam quality and drifts of mass center in far-field under different absorptions of laser energy and tube structures (Z-shaped and U-shaped) are compared, respectively. By analysis of numerical simulation results, the switch time of heat conduction and heat convection in gas is distinguished, which significantly affects the variations of beam quality and drifts of mass center in far-field. In addition, it also indicates that less absorption of laser energy improves beam quality and delays the switch time of beam quality between two heat transfer mechanisms. Therefore, it is significant to control the absorptions of laser energy for HEL system in practice. Different tube structures owning different beam paths change the distributions of APDs and thus influence beam quality. APDs of the two horizontal sections are the same (superposition effect) for Z-shaped tube while inverse (compensation effect) for U-shaped tube. It is shown that drifts of mass center in far-field are greatly suppressed for U-shaped tube than that of Z-shaped tube and beam quality is also improved.

  20. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  1. Direct Drive for Low Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2005-01-01

    Due to recent studies, NASA has initiated the development of a low power Hall thruster for discovery class missions. The potential advantages of a low power Hall thruster is primarily due to its high efficiency operation at low power and its lower complexity compared to ion engines. Direct drive is another method of reducing the complexity of a Hall thruster system while improving its efficiency. The technical challenges associated with this technology are reported. Additionally, the benefits of this technology are discussed based on parametric studies and mission analysis.

  2. Evaluation of low power augmented hydrazine thrusters

    NASA Astrophysics Data System (ADS)

    Hadar, Ilan; Gany, Alon

    1992-02-01

    A brief review of the current concepts of power addition to the widespread, low-power hydrazine thruster and a general analysis of the augmentation processes are presented. Among the devices surveyed are the resistojets (RJ) and the arcjets (AJ), which transfer electric energy by physical contact with the hydrazine decomposition gases, and the microwave thrusters (MW), which apply electromagnetic fields generated by microwaves. A comparison between the variety of present and future augmented hydrazine thrusters (AHT) suggests that the AJ is the most promising means for the energy addition procedure, when both reliability and performance are taken into account.

  3. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  4. Performance of large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1981-01-01

    The performance of large inert-gas thrusters is predicted based on present knowledge of ion optics performance and discharge chamber operation. Calculated performance data are given for argon and xenon propellants. The effect of varying propellant utilization and thruster diameter is discussed and the optimum choice of beam diameter for very large systems is indicated for low, intermediate, and high specific impulses. Optimum discharge chamber depths are also specified. Although detailed design considerations may modify the predictions, the general trends indicated should still be useful for directing future technology efforts and evaluating mission studies involving large thrusters.

  5. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  6. Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster

    NASA Technical Reports Server (NTRS)

    Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.

    2014-01-01

    The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.

  7. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    PubMed Central

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  8. Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods: In vitro investigation

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kumaradas, Carl; Karshafian, Raffi

    2012-11-01

    Gold nanorods (GNR) in laser-induced thermal therapy can significantly increase light absorption, leading to a local temperature increase and causing irreversible cell damage. One of the key challenges in using GNR as a thermal therapy agent is to deliver a concentration of GNR to generate sufficient heat and cause cell death. In this study, ultrasound and microbubble induced sonoporation is used to enhance intracellular uptake of GNR and improve the therapeutic outcome of laserinduced thermal therapy. Acute myeloid leukemia (AML) cells in suspension (0.6 mL) were treated with ultrasound and microbubbles (USMB) at 1 MHz frequency, 16 microseconds pulse duration, 1 kHz pulse repetition frequency, 1 minute insonation time, varying acoustic pressures (0, 1.26 and 1.73 MPa) and 10 μL Definity microbubble agent with and without GNR (12 nm × 48 nm) at varying concentration (1.0×1010 to 2.5×1011 GNR/mL). The GNR were manufactured through wet chemical synthesis process and measured using Transmission Electron Microscopy (TEM) and Atomic Absorption Spectroscopy (AAS) for size and concentration respectively. Following ultrasound and microbubble treatment, cells were centrifuged to remove excess gold nanorods and treated in suspension with an 810 nm laser (Diomed 60 NIR) at 4 W for 5 minutes. A thermal camera (FLIR Thermovision A40) was positioned to monitor the sample temperature throughout laser treatment and cell viability was assessed using flow cytometry with propidium iodide. Cell viability of 18±2% was achieved with GNR+USMB (1.26 MPa) compared to 72±3% with GNR alone (12 hour incubation) and 99±0.2% with USMB (1.26 MPa) alone. With increasing GNR concentration during ultrasound and microbubble treatment, laser induced sample temperature increased and consequently cell viability decreased. Cell viability decreased from 92±1% at 1.0×1011 GNR/mL to 29±5% at 1.5×1011 GNR/mL concentration with corresponding maximum temperatures of 50°C and 54°C, respectively

  9. Direct observation of prompt pre-thermal laser ion sheath acceleration

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Kraft, S. D.; Sauerbrey, R.; Schramm, U.

    2012-06-01

    High-intensity laser plasma-based ion accelerators provide unsurpassed field gradients in the megavolt-per-micrometer range. They represent promising candidates for next-generation applications such as ion beam cancer therapy in compact facilities. The weak scaling of maximum ion energies with the square-root of the laser intensity, established for large sub-picosecond class laser systems, motivates the search for more efficient acceleration processes. Here we demonstrate that for ultrashort (pulse duration ~30 fs) highly relativistic (intensity ~1021 W cm-2) laser pulses, the intra-pulse phase of the proton acceleration process becomes relevant, yielding maximum energies of around 20 MeV. Prominent non-target-normal emission of energetic protons, reflecting an engineered asymmetry in the field distribution of promptly accelerated electrons, is used to identify this pre-thermal phase of the acceleration. The relevant timescale reveals the underlying physics leading to the near-linear intensity scaling observed for 100 TW class table-top laser systems.

  10. Laser surface modification (LSM) of thermally-sprayed Diamalloy 2002 coating

    NASA Astrophysics Data System (ADS)

    Gisario, A.; Barletta, M.; Veniali, F.

    2012-09-01

    Thermally-sprayed Diamalloy 2002 is widely used as overlay coating in several applications for their good wear and corrosion protection. Although, in the past, any effort has been produced to deposit Diamalloy 2002 with a low degree of defectiveness, some residual porosity and cracks can often affect the final property of the resulting coatings. Different techniques are commonly used to improve the performance of Diamalloy 2002. Recently, laser post-treatment seems to be one of the most promising, being an effective, non-contact, mini-invasive technology. In this respect, the present investigation deals with the application of a continuous wave high power diode laser to post-treat Diamalloy 2002 deposited by HVOF on AA 6082 T6 aluminum alloy. Different laser power and scan speed were investigated in order to identify the process window most favorable to improve the overall mechanical property of Diamalloy 2002 coatings. The changes in morphology, micro-structure and chemical composition of the coatings after laser post-treatments were investigated by inductive gage profilometry and combined SEM-EDXS. Further, the changes in the mechanical properties of the coatings were investigated in terms of hardness, elastic modulus, scratch and wear resistance. Consistent improvements in mechanical property can be achieved by Diamalloy 2002 when laser processing is performed at higher power and reduced scan speed. Yet, too much increase in power density should be always avoided as it can be detrimental to the final property of the coatings and cause high defectiveness and their failure.

  11. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  12. Experimental investigation of the vibrational and thermal response of a laser spark plug

    NASA Astrophysics Data System (ADS)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit

  13. Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling.

    PubMed

    Poluektova, Anna A; Malskat, Wendy S J; van Gemert, Martin J C; Vuylsteke, Marc E; Bruijninckx, Cornelis M A; Neumann, H A Martino; van der Geld, Cees W M

    2014-03-01

    Minimally invasive treatment of varicose veins by endovenous laser ablation (EVLA) becomes more and more popular. However, despite significant research efforts performed during the last years, there is still a lack of agreement regarding EVLA mechanisms and therapeutic strategies. The aim of this article is to address some of these controversies by utilizing optical-thermal mathematical modeling. Our model combines Mordon's light absorption-based optical-thermal model with the thermal consequences of the thin carbonized blood layer on the laser fiber tip that is heated up to temperatures of around 1,000 °C due to the absorption of about 45% of the laser light. Computations were made in MATLAB. Laser wavelengths included were 810, 840, 940, 980, 1,064, 1,320, 1,470, and 1,950 nm. We addressed (a) the effect of direct light absorption by the vein wall on temperature behavior, comparing computations by using normal and zero wall absorption; (b) the prediction of the influence of wavelength on the temperature behavior; (c) the effect of the hot carbonized blood layer surrounding the fiber tip on temperature behavior, comparing wall temperatures from using a hot fiber tip and one kept at room temperature; (d) the effect of blood emptying the vein, simulated by reducing the inside vein diameter from 3 down to 0.8 mm; (e) the contribution of absorbed light energy to the increase in total energy at the inner vein wall in the time period where the highest inner wall temperature was reached; (f) the effect of laser power and pullback velocity on wall temperature of a 2-mm inner diameter vein, at a power/velocity ratio of 30 J/cm at 1,470 nm; (g) a comparison of model outcomes and clinical findings of EVLA procedures at 810 nm, 11 W, and 1.25 mm/s, and 1,470 nm, 6 W, and 1 mm/s, respectively. Interestingly, our model predicts that the dominating mechanism for heating up the vein wall is not direct absorption of the laser light by the vein wall but, rather, heat flow to the

  14. Thermal Distortion Measurements of a Dual Gridded Antenna Reflector with Laser Radar System Integrated to a Thermal Vacuum Test Facility

    NASA Astrophysics Data System (ADS)

    Hein, Peter Jens; Doring, Daniel; Ihle, Alexander; Reichmann, Olaf; Maeyaert, Michiel

    2014-06-01

    A dual gridded reflector for Ku-Band applications (KuDGR) with two actually gridded shells made of single and individually shaped CFRP-rods (single carbon fibre reinforced plastic) has been developed by HPS. Due to the fact that these shells are made of CFRP-rods conventional methods for coordinate and thermal-distortion (TD) measuring could not be used. Therefore, the Laser Radar system (LR) was identified as best suitable measurement method for this application.The LR was chosen during the KaDGR study performed by HPS due to its capability to measure points contactless without targets and with high precision and a great number of measurement points in a short time. Furthermore, due to the gridded structure measurement systems using interferometric patterns (ESPI, Shearography) or structured light projection could not be applied.The performance of the Laser Radar system was tested during preliminary measurements on the KuDGR bread- board model. For the first environmental tests on the engineering model, the test methods at IABG were specifically adapted and qualified in order to verify that the Laser Radar system can handle the constrains set by a thermal-vacuum (TV) test facility. During the verification test run the objectives were to verify the compatibility of the LR with the positioning with respect to the chamber, the visibility, the test facilities viewport and setup inside the chamber as well as the achievable measurement accuracy. The general compatibility could be shown and optimisations regarding test setup and better accuracy were identified. Since the active surfaces of the reflector contains a multitude of single rods all with different shapes and lengths the vibration influences of the individual facility systems onto the reflector were investigated.The LR system is widely used in industrial applications but references regarding measuring thermo-elastic distortions in a TV test facility using this method are still rare. IABG has developed and

  15. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    NASA Astrophysics Data System (ADS)

    Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; Cuffe, J.; Johnson, J. A.; Peraud, J.-P. M.; Zeng, L.; Lu, Z.; Maznev, A. A.; Wang, E. N.; Alvarado-Gil, J. J.; Sledzinska, M.; Sotomayor Torres, C. M.; Chen, G.; Nelson, K. A.

    2016-12-01

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both "solid" and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.

  16. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  17. Thermal impact of near-infrared laser in advanced noninvasive optical brain imaging

    PubMed Central

    Nourhashemi, Mina; Mahmoudzadeh, Mahdi; Wallois, Fabrice

    2016-01-01

    Abstract. The propagation of laser light in human tissues is an important issue in functional optical imaging. We modeled the thermal effect of different laser powers with various spot sizes and different head tissue characteristics on neonatal and adult quasirealistic head models. The photothermal effect of near-infrared laser (800 nm) was investigated by numerical simulation using finite-element analysis. Our results demonstrate that the maximum temperature increase on the brain for laser irradiance between 0.127 (1 mW) and 12.73  W/cm2 (100 mW) at a 1 mm spot size, ranged from 0.0025°C to 0.26°C and from 0.03°C to 2.85°C at depths of 15.9 and 4.9 mm in the adult and neonatal brain, respectively. Due to the shorter distance of the head layers from the neonatal head surface, the maximum temperature increase was higher in the neonatal brain than in the adult brain. Our results also show that, at constant power, spot size changes had a lesser heating effect on deeper tissues. While the constraints for safe laser irradiation to the brain are dictated by skin safety, these results can be useful to optimize laser parameters for a variety of laser applications in the brain. Moreover, combining simulation and adequate in vitro experiments could help to develop more effective optical imaging to avoid possible tissue damage. PMID:27115020

  18. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  19. Electromagnetic thrusters for spacecraft prime propulsion

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; King, D. Q.

    1984-01-01

    The benefits of electromagnetic propulsion systems for the next generation of US spacecraft are discussed. Attention is given to magnetoplasmadynamic (MPD) and arc jet thrusters, which form a subset of a larger group of electromagnetic propulsion systems including pulsed plasma thrusters, Hall accelerators, and electromagnetic launchers. Mission/system study results acquired over the last twenty years suggest that for future prime propulsion applications high-power self-field MPD thrusters and low-power arc jets have the greatest potential of all electromagnetic thruster systems. Some of the benefits they are expected to provide include major reductions in required launch mass compared to chemical propulsion systems (particularly in geostationary orbit transfer) and lower life-cycle costs (almost 50 percent less). Detailed schematic drawings are provided which describe some possible configurations for the various systems.

  20. Study of monopropellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Kuenzly, J. D.

    1974-01-01

    A 333 mN electrothermal thruster designed to use MIL-grade hydrazine was demonstrated to be suitable for operation with low freezing point monopropellants containing hydrazine azide, monomethylhydrazine, unsymmetrical-dimethylhydrazine and ammonia. The steady-state specific impulse was greater than 200 sec for all propellants. The pulsed-mode specific impulse for an azide blend exceeded 175 sec for pulse widths greater than 50 msec; propellants containing carbonaceous species delivered 175 sec pulsed-mode specific impulses for pulse widths greater than 100 msec. Longer thrust chamber residence times were required for the carbonaceous propellants; the original thruster design was modified by increasing the characteristic chamber length and screen packing density. Specific recommendations were made for the work required to design and develop flight worthy thrusters, including methods to increase propellant dispersal at injection, thruster geometry changes to reduce holding power levels and methods to initiate the rapid decomposition of the carbonaceous propellants.