Sample records for laser tissue interaction

  1. Heat transfer modelling of pulsed laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  2. Laser interaction with tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, M.W.

    These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.

  3. 355, 532, and 1064 nm picosecond laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2012-12-01

    In this article, we investigate how 355, 532, and 1064 nm picosecond lasers interact with grass tissues. We have identified five interaction regimes, and based on this classification, interaction maps have been constructed from a systematic experiment. The optical properties of light absorbing grass constituents are studied theoretically in order to understand how and how much light is absorbed by grass tissues. Scanning electron microscopy and optical microscopy are employed for observing morphological and structural changes of grass tissues. To the best of the authors' knowledge, this is the first investigation into laser interaction with plant leaves and reveals some fundamental findings regarding how a laser interacts with grass tissues and how plant leaves can be processed using lasers.

  4. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  5. Curriculum in biomedical optics and laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  6. LATIS3D: The Goal Standard for Laser-Tissue-Interaction Modeling

    NASA Astrophysics Data System (ADS)

    London, R. A.; Makarewicz, A. M.; Kim, B. M.; Gentile, N. A.; Yang, T. Y. B.

    2000-03-01

    The goal of this LDRD project has been to create LATIS3D-the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications. The purpose of this project was to develop and apply a computer program for laser-tissue interaction modeling to aid in the development of new instruments and procedures in laser medicine.

  7. Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Weigmann, Hans-Juergen

    1995-01-01

    Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.

  8. Holmium:YAG and erbium:YAG laser interaction with hard and soft tissue

    NASA Astrophysics Data System (ADS)

    Charlton, Andrew; Dickinson, Mark R.; King, Terence A.; Freemont, Anthony J.

    1991-06-01

    The holmium YAG and erbium YAG lasers operating at 2.1 micrometers and 2.9 micrometers respectively, are the subject of great interest for various medical applications. The interaction of both these pulsed lasers with biological tissue involves absorption of the radiation by water leading to rapid heating and ablation, however the different absorption coefficients at these two wavelengths give rise to different ablation efficiencies and haemostatic properties for the two lasers. It is this cut/seal ratio that determines for which medical applications each of these lasers is most suited. The lasers were used to produce incisions in various tissues by translating the tissue at fixed speed beneath a focused laser beam. The laser energy density was varied between 100 and 500 J/cm2 and the lasers were operated at 2 Hz. After irradiation the tissues were fixed in formalin, processed routinely into paraffin wax, sectioned at 5 micrometers and stained with haemotoxylin and eosin. This allowed the dimensions of the incisions to be measured, as well as the depth of coagulative denatured tissue surrounding each incision. In this way the cut/seal ratio was determined for both the holmium YAG and erbium YAG laser in a range of hard and soft tissues. Results show that the latent heat of ablation for the holmium YAG laser interacting with soft tissue varies between 20-50 kJ/cm3, almost an order of magnitude larger than with the erbium YAG laser. Furthermore, the depth of coagulative necrosis with holmium YAG extends 100-400 micrometers , compared with 10-30 micrometers for erbium YAG. The two interactions clearly lead to vastly different results suggesting that the holmium YAG laser is suitable for producing lesions in highly vascular tissue where haemostasis is important, whereas the erbium YAG laser is better suited to avascular tissue requiring large depths of incision.

  9. Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature

    NASA Astrophysics Data System (ADS)

    Welch, Ashley J.; van Gemert, Martin J. C.

    The development of a unified theory for the optical and thermal response of tissue to laser radiation is no longer in its infancy, though it is still not fully developed. This book describes our current understanding of the physical events that can occur when light interacts with tissue, particularly the sequence of formulations that estimate the optical and thermal responses of tissue to laser radiation. This overview is followed by an important chapter that describes the basic interactions of light with tissue. Part I considers basic tissue optics. Tissue is treated as an absorbing and scattering medium and methods are presented for calculating and measuring light propagation, including polarized light. Also, methods for estimating tissue optical properties from measurements of reflection and transmission are discussed. Part II concerns the thermal response of tissue owing to absorbed light, and rate reactions are presented for predicting the extent of laser induced thermal damage. Methods for measuring temperature, thermal properties, rate constants, pulsed ablation and laser tissue interactions are detailed. Part III is devoted to examples that use the theory presented in Parts I and II to analyze various medical applications of lasers. Discussions of Optical Coherence Tomography (OCT), forensic optics, and light stimulation of nerves are also included.

  10. Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.

    2011-07-01

    A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition rates.

  11. Comparative laser-tissue interaction effects at 1.96 and 2.01 um of Cr; Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Pinto, Joseph F.; Esterowitz, Dina; Aretz, H. Thomas

    1992-08-01

    A pulsed spiking and nonspiking Cr; thulium (Tm):YAG flash lamp pumped laser operating at 1.96 and 2.01 μm was investigated in vitro in the clinically relevant power range for its basic laser-tissue interaction with soft, cartilaginous, and bone tissues. Some explanations of the differences and possible medical applications are discussed.

  12. In vivo monitoring laser tissue interaction using high resolution Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Shin, Dong Jun; Ahn, Jin-Chul; Chung, Phil-Sang; Kim, DaeYu

    2017-02-01

    Laser-induced therapies include laser ablation to remove or cut target tissue by irradiating high-power focused laser beam. These laser treatments are widely used tools for minimally invasive surgery and retinal surgical procedures in clinical settings. In this study, we demonstrate laser tissue interaction images of various sample tissues using high resolution Fourier-domain optical coherence tomography (Fd-OCT). We use a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength) with a 4W maximum output power at a 20 kHz repetition rate to ablate in vitro and in vivo samples including chicken breast and mouse ear tissues. The Fd-OCT system acquires time-series Bscan images at the same location during the tissue ablation experiments with 532nm laser irradiation. The real-time series of OCT cross-sectional (B-scan) images compare structural changes of 532nm laser ablation using same and different laser output powers. Laser tissue ablation is demonstrated by the width and the depth of the tissue ablation from the B-scan images.

  13. Interaction thresholds in Er:YAG laser ablation of organic tissue

    NASA Astrophysics Data System (ADS)

    Lukac, Matjaz; Marincek, Marko; Poberaj, Gorazd; Grad, Ladislav; Mozina, Janez I.; Sustercic, Dusan; Funduk, Nenad; Skaleric, Uros

    1996-01-01

    Because of their unique properties with regard to the absorption in organic tissue, pulsed Er:YAG lasers are of interest for various applications in medicine, such as dentistry, dermatology, and cosmetic surgery. The relatively low thermal side effects, and surgical precision of erbium medical lasers have been attributed to the micro-explosive nature of their interaction with organic tissue. In this paper, we report on preliminary results of our study of the thresholds for tissue ablation, using an opto-acoustic technique. Two laser energy thresholds for the interaction are observed. The lower energy threshold is attributed to surface water vaporization, and the higher energy threshold to explosive ablation of thin tissue layers.

  14. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    PubMed

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible. Histologically, after laser ablation, presence of odontoblastic nuclei is important. Consistency and composition of the intracellular tissue is another factor influencing cell viability. If heat is intensive and exists for an extended time, the consistency of the intracellular ground substance may not be preserved. Accordingly, the application of excessive energy densities has been shown to result in significant damage to pulp tissue and in particular to odontoblasts. Studies showed that the use of Er:YAG laser to treat dental hard tissues is both safe and effective for caries removal, cavity preparation and enamel etching.

  15. Sensor-based laser ablation for tissue specific cutting: an experimental study.

    PubMed

    Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas

    2004-01-01

    The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.

  16. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    PubMed

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  17. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  18. Interaction dynamics of temporal and spatial separated cavitation bubbles in water

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.

    2010-02-01

    The LASIK procedure is a well established laser based treatment in ophthalmology. Nowadays it includes a cutting of the corneal tissue bases on ultra short pulses which are focused below the tissue surface to create an optical breakdown and hence a dissection of the tissue. The energy of the laser pulse is absorbed by non-linear processes that result in an expansion of a cavitation bubble and rupturing of the tissue. Due to a reduction of the duration of treatment the current development of ultra short laser systems points to higher repetition rates. This in turn results in a probable interaction between different cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. We present a high-speed photography analysis of cavitation bubble interaction for two spatial separated laser-induced optical breakdowns varying the laser pulse energy as well as the spatial distance. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape, asymmetric water streams and jet formation were observed. The results of this research can be used to comprehend and optimize the cutting effect of ultra short pulse laser systems with high repetition rates (> 1 MHz).

  19. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    PubMed

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  20. Acoustic experimental investigation of interaction femtosecond laser pulses with gas-aerosol media and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.

    2008-02-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  1. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  2. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    PubMed

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Simulation study of interaction of pulse laser with tumor-embedded gastric tissue using finite element analysis

    NASA Astrophysics Data System (ADS)

    Liu, Lantian; Li, Zhifang; Li, Hui

    2018-01-01

    The study of interaction of laser with tumor-embedded gastric tissue is of great theoretical and practical significance for the laser diagnosis and treatment of gastric cancer in medicine. A finite element (FE)-based simulation model has been developed incorporating light propagation and heat transfer in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. In this study, FE model is composed of three parts of 1) homogeneous background soft tissues submerged in water, 2) tumor tissue inclusion, and 3) different wavelengths of short pulsed laser source (450nm, 550nm, 632nm and 800nm). The laser point source is placed right under the tissues submerged in water. This laser source light propagation through the multi-layer tissues using the diffusion equation and bioheat transfer in tissues is simulated using bioheat equation for temperature change. The simulation results show that the penetration depth and light energy distribution mainly depend on the optical parameters of the different wavelengths of the tissue. In the process of biological heat transfer, the temperature of the tissue decreases exponentially with the depth and the deep tissues are almost unaffected. The results are helpful to optimize the laser source in a photoacoustic imaging system and provide some significance for the further study of the early diagnosis of gastric cancer.

  4. Highlights of laser-tissue interaction mechanism

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2001-10-01

    The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.

  5. Investigation of the interaction of the solder components for laser welding of biological tissues

    NASA Astrophysics Data System (ADS)

    Ryabki, Dmitrii I.; Gerasimenko, Alexander Yu.; Kvasnov, Bogdan A.; Pyankov, Evgeny S.; Pyanov, Ivan V.; Telyshev, Dmitry V.; Podgaetsky, Vitaly M.

    2017-07-01

    Increase the weld strength is main directions of development of laser welding technology. Laser solders are used to increase tensile strength of welds and reduce of tissue temperature necrosis. Soldering components interaction effect the solder tensile strength characteristics of laser welds. Tensile strengths for welds obtained using of solder various concentration BSA and SWCNT was measured. Dimensions laser solder aggregates were measured. The dependence between the dimensions of the aggregates of laser solder and the tensile strength of the weld has been revealed.

  6. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing

    PubMed Central

    Sriramoju, Vidyasagar; Alfano, Robert R.

    2015-01-01

    Abstract. Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy–matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions. PMID:26465615

  7. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Alfano, Robert R.

    2015-10-01

    Femtosecond (fs) pulse lasers in the near-infrared (NIR) range exhibit very distinct properties upon their interaction with biomolecules compared to the corresponding continuous wave (CW) lasers. Ultrafast NIR laser tissue bonding (LTB) was used to fuse edges of two opposing animal tissue segments in vivo using fs laser photoexcitation of the native vibrations of chomophores. The fusion of the incised tissues was achieved in vivo at the molecular level as the result of the energy-matter interactions of NIR laser radiation with water and the structural proteins like collagen in the target tissues. Nonthermal vibrational excitation from the fs laser absorption by water and collagen induced the formation of cross-links between tissue proteins on either sides of the weld line resulting in tissue bonding. No extrinsic agents were used to facilitate tissue bonding in the fs LTB. These studies were pursued for the understanding and evaluation of the role of ultrafast NIR fs laser radiation in the LTB and consequent wound healing. The fs LTB can be used for difficult to suture structures such as blood vessels, nerves, gallbladder, liver, intestines, and other viscera. Ultrafast NIR LTB yields promising outcomes and benefits in terms of wound closure and wound healing under optimal conditions.

  8. Dynamic and interaction of fs-laser induced cavitation bubbles for analyzing the cutting effect

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Schumacher, S.; Nuzzo, V.; Ripken, T.; Lubatschowski, H.

    2009-07-01

    A prominent laser based treatment in ophthalmology is the LASIK procedure which nowadays includes a cutting of the corneal tissue based on ultra short pulses. Focusing an ultra short laser pulse below the surface of biological tissue an optical breakdown is caused and hence a dissection is obtained. The laser energy of the laser pulses is absorbed by nonlinear processes. As a result a cavitation bubble expands and ruptures the tissue. Hence positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the duration of the treatment the current development of ultra short laser systems points to higher repetition rates in the range of hundreds of KHz or even MHz instead of tens of kHz. This in turn results in a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra short pulse laser systems with high (> 1 MHz) repetition rates.

  9. The Adjunctive Soft-Tissue Diode Laser in Orthodontics.

    PubMed

    Borzabadi-Farahani, Ali

    2017-04-01

    Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.

  10. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.

    2015-01-01

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.

  11. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  12. Human dental enamel and dentin structural effects after Er:YAG laser irradiation.

    PubMed

    Lima, Darlon Martíns; Tonetto, Mateus Rodrigues; de Mendonça, Adriano Augusto Melo; Elossais, André Afif; Saad, José Roberto Cury; de Andrade, Marcelo Ferrarezi; Pinto, Shelon Cristina Souza; Bandéca, Matheus Coelho

    2014-05-01

    Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations--namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and influence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifications caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the superficial structure of the target tissue irradiated, may be correlated to the structural optical modifications of the substrate produced by an interaction of the energy propagated by laser systems.

  13. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  14. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  15. Comparison of experimental models for predicting laser-tissue interaction from 3.8-micron lasers

    NASA Astrophysics Data System (ADS)

    Williams, Piper C. M.; Winston, Golda C. H.; Randolph, Don Q.; Neal, Thomas A.; Eurell, Thomas E.; Johnson, Thomas E.

    2004-07-01

    The purpose of this study was to evaluate the laser-tissue interactions of engineered human skin and in-vivo pig skin following exposure to a single 3.8 micron laser light pulse. The goal of the study was to determine if these tissues shared common histologic features following laser exposure that might prove useful in developing in-vitro and in-vivo experimental models to predict the bioeffects of human laser exposure. The minimum exposure required to produce gross morphologic changes following a four microsecond, pulsed skin exposure for both models was determined. Histology was used to compare the cellular responses of the experimental models following laser exposure. Eighteen engineered skin equivalents (in-vitro model), were exposed to 3.8 micron laser light and the tissue responses compared to equivalent exposures made on five Yorkshire pigs (in-vivo model). Representative biopsies of pig skin were taken for histologic evaluation from various body locations immediately, one hour, and 24 hours following exposure. The pattern of epithelial changes seen following in-vitro laser exposure of the engineered human skin and in-vivo exposure of pig skin indicated a common histologic response for this particular combination of laser parameters.

  16. Concepts of risk assesment of complex chemical mixtures in laser pyrolysis fumes

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Meier, Thomas H.

    1996-01-01

    Laser-tissue interaction may generate by energy absorption a complex mixture of gaseous, volatile, semi-volatile and particular substances. At the time about 150 different components are known from IR-laser interaction with different organ tissues like liver, fat, muscle and skin. The laser-tissue interaction process thereby is dominated by heating processes, which is confirmed by the similarity of formed chemical products in comparison with conventional cooking processes for food preparation. With the identified chemical substances and relative amounts in backmind a walk along the think path of risk assessment with special reference to pyrolysis products is given. The main way of intake of pyrolysis products is the inhalative one, which results from the fine aerosols formed and the high spreading energy out of the irradiated source. The liberated amounts of irritative chemicals as (unsaturated) aldehydes, heterocycles of bad odor and possibly cancerogenic acting substances relates to some (mu) g/g of laser vaporized tissue. With regard to this exposure level in a hypothetic one cubic meter volume the occupational limit settings are far away. Even indoor air exposure levels are in nearly all cases underwent, for the content of bad smelling substances forces an effective ventilation. Up to now no laser typical chemical substance could be identified, which was not elsewhere known by frying or baking processes of meat, food or familiar. Starting with the GRAS concept of 1957 the process of risk assessment by modified food products and new ingredients is still improofing. The same process of risk assessment is governing the laser pyrolysis products of mammalian tissues. By use of sufficient suction around the laser tissue source the odor problems as well as the toxicological problems could be solved.

  17. Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater.

    PubMed

    Lü, Tao; Xiao, Qing; Xia, Danqing; Ruan, Kai; Li, Zhengjia

    2010-01-01

    To overcome the inconsecutive drawback of shadow and schlieren photography, the complete dynamics of cavitation bubble oscillation or ablation products induced by a single holmium laser pulse [2.12 microm, 300 micros (FWHM)] transmitted in different core diameter (200, 400, and 600 microm) fibers is recorded by means of high-speed photography. Consecutive images from high-speed cameras can stand for the true and complete process of laser-water or laser-tissue interaction. Both laser pulse energy and fiber diameter determine cavitation bubble size, which further determines acoustic transient amplitudes. Based on the pictures taken by high-speed camera and scanned by an optical coherent microscopy (OCM) system, it is easily seen that the liquid layer at the distal end of the fiber plays an important role during the process of laser-tissue interaction, which can increase ablation efficiency, decrease heat side effects, and reduce cost.

  18. Fluorescence diagnosis and photochemical treatment of diseased tissue using lasers: Part I.

    PubMed

    Andersson-Engels, S; Johansson, J; Svanberg, S; Svanberg, K

    1989-12-15

    Lasers are useful in many applications in medicine and biology. Historically, most laser use has involved heat generated in the interaction of the laser beam with the tissue. Today, however, the spectroscopic aspects of this laser use are playing a more dominant role in a number of applications. In this two-part series, Sune Svanberg and co-workers present illustrations of emerging clinical applications from cooperative work performed by the Lund Institute of Technology and the Lund University Hospital. Part I includes a survey of laser techniques for atomic and molecular analyses of samples of medical interest, spectroscopic analysis of the laser-induced plasma obtained when a high-power pulsed laser beam interacts with tissue, and the use of tumor-seeking agents in combination with laser radiation to provide new possibilities for malignant tumor detection and treatment. Part II, which will appear in the January 1, 1990, issue, describes the use of laser-induced fluorescence for tumor and plaque diagnostics. Different lasers have been used, and research efforts increasingly are being focused on excimer lasers and lasers in the IR region for the ablation of atherosclerotic plaques, cell layer by cell layer.

  19. Laser-Neuron Interaction with Femtosecond Beat-Modulated 800-1200 nm Photon Beams, as the Treatment of Brain Cancer Tissue. Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-03-01

    I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.

  20. An In Vitro Model for Retinal Laser Damage

    DTIC Science & Technology

    2007-01-01

    Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on Optical Interactions with Tissue...necessarily endorsed by the United States Air Force. Optical Interactions with Tissue and Cells XVIII, edited by Steven L. Jacques, William P. Roach, Proc...used for the 532-nm exposures. Verification of laser wavelength was performed with a spectrometer (Ocean Optics ). Figure 4 provides a schematic

  1. Review on toxicology of aerosols produced during medical laser treatment or electrosurgery

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Meier, Thomas H.

    1994-02-01

    Medical laser treatment enlarged its application in recent years in an explosive way. By a given distance to the patient the laser surgeon can cut, coagulate, or evaporate human tissue in a very distinct manner. Due to the mainly thermal interaction of the laser light with the irradiated tissue it may be heated up to pyrolysis conditions. By pyrolysis of human tissue degradation products are generated, which may be harmful. Chemical substances and particles formed of tissue could be toxic, cancerogenic or irritant to skin and airways or after uptake. Special hazards of human laser plume in the health care environment may result from infectious viruses, bacterias, parasites, spread tumor cells and DNA fragments.

  2. Laser tissue welding in ophthalmic surgery.

    PubMed

    Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Pini, Roberto

    2008-09-01

    Laser welding of ocular tissues is an alternative technique or adjunct to conventional suturing in ophthalmic surgery. It is based on the photothermal interaction of laser light with the main components of the extracellular matrix of connective tissues. The advantages of the welding procedure with respect to standard suturing and stapling are reduced operation times, lesser inflammation, faster healing and increased ability to induce tissue regeneration. The procedure we set up is based on the use of an infrared diode laser in association with the topical application of the chromophore Indocyanine Green. Laser light may be delivered either continuously or in pulses, thus identifying two different techniques that have been applied clinically in various types of transplants of the cornea.

  3. Thermographic study of laser on arteries.

    PubMed

    Mnitentag, J; Marques, E F; Ribeiro, M P; Braga, G A; Navarro, M R; Veratti, A B; Armelin, E; Macruz, R; Jatene, A D

    1987-01-01

    We analyzed the different effects of CO2, Nd-YAG, and argon lasers on aorta by using a Thermovision infrared system that registered the laser interaction with mongrel dog aorta. The images (thermograms) obtained were processed by a computer, which associated each area of the same temperature with a determined color. These thermograms were compared to histological analysis of the respective samples and the following results were obtained: (1) After the application of each laser there is very little propagation of heat in tissue. (2) The CO2 laser makes tissue reach 100 degrees C in less than 0.05 seconds. (3) The heat dissipation time was higher with the Nd-YAG laser due to higher scattering on tissue. Based on this research we conclude that the CO2 laser was best absorbed, the Nd-YAG laser penetrated human tissue with the best results, and the argon laser had the most significant backscattering.

  4. Highlighting the nuances behind interaction of picosecond pulses with human skin: Relating distinct laser-tissue interactions to their potential in cutaneous interventions

    NASA Astrophysics Data System (ADS)

    Uzunbajakava, Natallia E.; Varghese, Babu; Botchkareva, Natalia V.; Verhagen, Rieko; Vogel, Alfred

    2018-02-01

    In recent years, several commercial systems relying on picosecond pulses have been introduced into the field of cutaneous interventions. In parallel with this development, a somewhat distinct research prototype also operating in the picosecond regime was described in literature. Albeit both market-available products and the investigational device employ laser beams of nearly the same pulse duration and were reported to cause laser-induced optical breakdown (LIOB), they are different in terms of wavelength, applied fluence, laser beam quality, optical architecture and related focusing optics, resulting in different histomorphological features (such as e.g. lesion size, location, expression of collagen). Understanding the differences between these systems in relation to implications for clinical results raises a need in highlighting the nuances behind interaction of picosecond pulses with biological tissue. To achieve this, we accentuate the interplay of irradiance levels of picosecond pulses in W/cm2 , absorption properties of a target tissue at a wavelength of a light source and resulting interaction mechanisms with biological object. We also relate these nuances to potential consequences for cutaneous interventions.

  5. Paediatric laser dentistry. Part 1: General introduction.

    PubMed

    Caprioglio, C; Olivi, G; Genovese, M D

    2017-03-01

    Knowledge of the physical characteristics of different laser lights and optical and thermal properties of oral tissues is very important to understand the interaction of dental lasers with biological tissues. Choosing the correct dental laser is crucial to match specific wavelengths with target chromophores of different tissues; this affinity makes laser irradiation selective and therefore minimally invasive. Various types of lasers are used in dentistry, offering a viable alternative to low and high-speed handpieces and surgical blades, and also minimising fear and discomfort of the patient. Lasers can provide innovative and minimally invasive therapies in different branches of dentistry including preventive and restorative dentistry, traumatic injury treatments and surgical procedures. Laser has also biostimulating and anti-inflammatory effects, as well as analgesic effect.

  6. Radiation absorption in different kinds of tissue analysis: ex vivo study with supercontinuum laser source

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Selleri, Stefano; Cucinotta, Annamaria

    2016-03-01

    With the introduction of more and more new wavelengths, one of the main problems of medical laser users was centered on the study of laser-tissue interactions with the aim of determining the ideal wavelength for their treatments. The aim of this ex vivo study was to determine, by means of the utilization of a supercontinuum source, the amount of transmitted energy of different wavelengths in different organ samples obtained by Sprague Dawley rats. Supercontinuum light is generated by exploiting high optical non-linearity in a material and it combines the broadband attributes of a lamp with the spatial coherence and high brightness of laser. Even if the single transmission measurement does not allow us to separate out the respective contribution of scattering and absorption, it gives us an evaluation of the wavelengths not interacting with the tissue. In this way, being possible to determine what of the laser wavelengths are not useful or active in the different kinds of tissue, physicians may choose the proper device for his clinical treatments.

  7. Correlation processing of polarization inhomogenous images in laser diagnostics of biological tissues

    NASA Astrophysics Data System (ADS)

    Trifonyuk, L.

    2012-10-01

    The model of interaction of laser radiation with biological tissue as a two-component amorphous-crystalline matrix was proposed. The processes of formation of polarization of laser radiation are considered, taking into account birefringence network protein fibrils. Measurement of the coordinate distribution of polarization states in the location of the laser micropolarimetr was conducted .The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of polarization azimuth of laser images of histological sections of women's reproductive sphere tissues and pathological changes in human organism. The diagnostic criteria of the prolapse of the vaginal tissue arising are determined.

  8. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    PubMed Central

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success. PMID:25147746

  9. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  10. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.

  11. Use of the erbium, chromium:yttrium-scandium-gallium-garnet laser on human enamel tissues. Influence of the air-water spray on the laser-tissue interaction: scanning electron microscope evaluations.

    PubMed

    Olivi, Giovanni; Angiero, Francesca; Benedicenti, Stefano; Iaria, Giuseppe; Signore, Antonio; Kaitsas, Vassilios

    2010-11-01

    The study investigated the influence of varying amounts of air/water spray and the energy used by an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) 2,780 nm laser when treating dental tissues. The morphological effects produced by the laser interaction on healthy human enamel were evaluated by scanning electron microscopy (SEM). The vestibular and lingual surfaces of ten molars were treated with laser at different power settings; each surface was subdivided into cervical, median, and occlusal parts and treated with different proportions of water spray; the series contained 60 tooth portions. Treatment differed in terms of power setting and air/water percentage. All specimens were then subjected to dehydration and metallisation. At SEM evaluation, the classic aspect of laser-treated enamel was visible: grooves, flakes, shelves and sharp edges, indicative of micro-explosion rather than melting. Vaporisation of the tissue created a clear delimitation from surrounding healthy tissue, with partial respect to the prismatic structure of the treated enamel. The aspect of the enamel was rarely type 1 Silverstone but more frequently type 2 or 3, with prismatic structure not respected and/or completely disordered. These morphological differences appeared to be correlated with the inclination of the laser beam aimed at the enamel prisms and with the percentage of air/water used. The laser system analysed showed itself to be effective at removing human dental enamel. The results appeared to be closely correlated with the variation of the percentage of the laser's water-air spray.

  12. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  13. Surgical lasers and hard dental tissue.

    PubMed

    Parker, S

    2007-04-28

    The cutting of dental hard tissue during restorative procedures presents considerable demands on the ability to selectively remove diseased carious tissue, obtain outline and retention form and maintain the integrity of supporting tooth tissue without structural weakening. In addition, the requirement to preserve healthy tissue and prevent further breakdown of the restoration places the choice of instrumentation and clinical technique as prime factors for the dental surgeon. The quest for an alternative treatment modality to the conventional dental turbine has been, essentially, patient-driven and has led to the development of various mechanical and chemical devices. The review of the literature has endorsed the beneficial effects of current laser machines. However utopian, there is additional evidence to support the development of ultra-short (nano- and femto-second) pulsed lasers that are stable in use and commercially viable, to deliver more efficient hard tissue ablation with less risk of collateral thermal damage. This paper explores the interaction of laser energy with dental hard tissues and bone and the integration of current laser wavelengths into restorative and surgical dentistry.

  14. The effect of CO2 laser treatment on skin tissue.

    PubMed

    Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma

    2015-09-01

    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.

  15. Laser welding of biological tissue: experimental studies in ophthalmology

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Rossi, Francesca; Menabuoni, Luca

    2006-04-01

    In this paper we present an original approach to laser welding of ocular media. Attention is focused on laser welding of the cornea and lens capsule. The process is based on the interaction of near infrared diode laser radiation (at 810 nm) with tissue that was previously stained with an Indocyanine Green solution in sterile water. The topical application of the chromophore makes possible a selective heating of the tissue, which results in a homogenous welding effect with low thermal damage to the surrounding tissue. Experimental tests were performed ex vivo on both capsule and cornea, and in vivo (rabbits) only on the cornea, in order to characterize the process as a whole. Spectrophotometric, biomechanical, and thermal measurements were carried out in order to study the laser-tissue interaction, while morphological, histological and auto-florescence microscopy analyses made during a follow-up study provided information on the healing process in welded rabbit corneas. The welding procedure was set up according to the type of tissue, with the staining procedure and irradiation conditions being optimized in each case. Our test indicated that: 1) laser welding of corneal wounds, which is a non contact technique performed at low continuous wave laser power (12 W/cm2), can be proposed as a support to or substitute for the standard suturing technique in cataract surgery and in penetrating keratoplasty (in corneal transplants); 2) laser welding of the lens capsule requires a "contact irradiating technique" in order to be efficiently performed, since the tissue is in underwater conditions, with single spot pulses of about 100 J/cm2 fluence and pulse duration around 100 ms. In the latter case, laser welding was proposed as a tool for assisting closure of the lens capsule after the lens refilling procedure (Phaco-ersatz), or for repairing capsular breaks induced by accidental traumas or produced intraoperatively.

  16. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina, cornea or the skin. Good agreement between model and experimental results established the validity of the model.

  17. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  18. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  19. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.

    PubMed

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-01-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  20. Photothermal modeling of thulium fibre laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Warnaby, Catherine E.; Coleman, Daniel J.; King, Terence A.

    2003-10-01

    A one-dimensional finite difference model has been used to investigate the temperature distribution within thulium fibre laser-irradiated tissue. Temperature-time and temperature-depth profiles are presented for various laser stimulus parameters in the 2 micron region. These current calculations are aimed at determining theoretical temperature distributions in the application of relatively low power fibre lasers for thermal stimulation of cutaneous nerves in human pain processing. Theoretical skin surface temperatures are compared with those from thermal camera measurements during thulium fibre laser irradiation. The effectiveness of the thulium fibre laser for thermally stimulating cutaneous nerves is confirmed.

  1. Changes in type I collagen following laser welding.

    PubMed

    Bass, L S; Moazami, N; Pocsidio, J; Oz, M C; LoGerfo, P; Treat, M R

    1992-01-01

    Selection of ideal laser parameters for tissue welding is inhibited by poor understanding of the mechanism. We investigated structural changes in collagen molecules extracted from rat tail tendon (> 90% type I collagen) after tissue welding using an 808 nm diode laser and indocyanine green dye applied to the weld site. Mobility patterns on SDS-PAGE were identical in the lasered and untreated tendon extracts with urea or acetic acid. Pepsin incubation after acetic acid extraction revealed a reduction of collagen alpha and beta bands in lasered compared with untreated specimens. Circular dichroism studies of rat tail tendon showed absence of helical structure in collagen from lasered tendon. No evidence for covalent bonding was present in laser-treated tissues. Collagen molecules are denatured by the laser wavelength and parameters used in this study. No significant amount of helical structure is regenerated on cooling. We conclude that non-covalent interactions between denatured collagen molecules may be responsible for the creation of tissue welding.

  2. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    NASA Astrophysics Data System (ADS)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  3. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  4. Laser safety in dentistry

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  5. Simulation of medical Q-switch flash-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    -Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  6. High-speed photography of plasma during excimer laser-tissue interaction.

    PubMed

    Murray, Andrea K; Dickinson, Mark R

    2004-08-07

    During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10(8) frames per second. A maximum velocity of 2.58 +/- 0.52 x 10(4) m s(-1) was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be approximately 7 ms, approximately 80 micros of which was due to luminous plasma and the remainder due to the non-luminous plume.

  7. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy.

    PubMed

    Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M

    2013-02-01

    3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.

  8. [Spectral properties of light migration in apple fruit tissue].

    PubMed

    Sun, Teng-Fei; Zhang, Teng-Teng; Zheng, Tian-Tian; Cao, Zeng-Hui; Zhang, Jun

    2013-11-01

    The present paper simulates laser wavelength 632 and 750 nm Gaussian beam migration in apple fruit tissue using Monte-Carlo method, and researches the spectral properties of absorption and scattering. It was shown that the special energy distribution characteristics of Gaussian beam influenced the diffusion of the laser in the tissue, the reflection, absorption and transmittance of 750 nm by tissue are lower, there are more photons interacting with tissue within the tissue, and they can more clearly reflect the information within the tissue. So, the transmission characteristics of the infrared light were relatively strong in biology tissue, which was convenient for researching biology tissue.

  9. Real-time monitoring of chemical and structural changes induced by light irradiation of cells and tissues

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Thomas, Robert J.; Noojin, Gary; Denton, Michael

    2008-02-01

    We report on a novel approach to study cells and tissues exposed to laser radiation. By using a tightly focused laser beam, a selected area of a cell or a tissue can be selectively irradiated, and the results of this interaction can be immediately interrogated using Raman confocal microscopy. We present our experimental results for skin and eye tissues and individual retinal pigmented epithelium cells demonstrating a great potential of this new research paradigm.

  10. Experimental and clinical standards, and evolution of lasers in neurosurgery.

    PubMed

    Devaux, B C; Roux, F X

    1996-01-01

    From initial experiments of ruby, argon and CO2 lasers on the nervous system so far, dramatic progress was made in delivery systems technology as well as in knowledge of laser-tissue interaction effects and hazards through various animal experiments and clinical experience. Most surgical effects of laser light on neural tissue and the central nervous system (CNS) are thermal lesions. Haemostasis, cutting and vaporization depend on laser emission parameters--wavelength, fluence and mode--and on the exposed tissues optical and thermal properties--water and haemoglobin content, thermal conductivity and specific heat. CO2 and Nd-YAG lasers have today a large place in the neurosurgical armamentarium, while new laser sources such as high power diode lasers will have one in the near future. Current applications of these lasers derive from their respective characteristics, and include CNS tumour and vascular malformation surgery, and stereotactic neurosurgery. Intracranial, spinal cord and intra-orbital meningiomas are the best lesions for laser use for haemostasis, dissection and tissue vaporization. Resection of acoustic neuromas, pituitary tumours, spinal cord neuromas, intracerebral gliomas and metastases may also benefit from lasers as accurate, haemostatic, non-contact instruments which reduce surgical trauma to the brain and eloquent structures such as brain stem and cranial nerves. Coagulative lasers (1.06 microns and 1.32 microns Nd-YAG, argon, or diode laser) will find an application for arteriovenous malformations and cavernomas. Any fiberoptic-guided laser will find a use during stereotactic neurosurgical procedures, including image-guided resection of tumours and vascular malformations and endoscopic tumour resection and cysts or entry into a ventricle. Besides these routine applications of lasers, laser interstitial thermotherapy (LITT) and photodynamic therapy (PDT) of brain tumours are still in the experimental stage. The choice of a laser in a neurosurgical operating room implies an evaluation of the laser use (applications, frequency), of the available budget and costs--including purchase, maintenance and staff training--, and material that will be necessary: unit, peripherals, safety devices and measures, training programme. Future applications of lasers in neurosurgery will come from technological advances and refined experimental applications. The availability of new wavelength, tunable, small sized and "smart" laser units, will enlarge the thermal and non-thermal interactions between laser energy and neural tissue leading to new surgical applications. Tissue photo-ablation, photohynamic therapy using second generation of photosensitizers, updated thermotherapy protocols, are current trends for further use of lasers in neurosurgery.

  11. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions.

    PubMed

    Ryan, Robert W; Wolf, Tamir; Spetzler, Robert F; Coons, Stephen W; Fink, Yoel; Preul, Mark C

    2010-02-01

    The CO(2) laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO(2) laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO(2) laser fiber to conventional methods for incising neural tissue. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO(2) energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. The photonic bandgap fiber CO(2) laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.

  12. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  13. The KTP-(greenlight-) laser--principles and experiences.

    PubMed

    Bachmann, Alexander; Ruszat, Robin

    2007-01-01

    The most recent advance in laser technology for transurethral prostatectomy is represented by the KTP laser. A potassium-titanyl-phosphate-(KTP-) crystal doubles the frequency of pulsed Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser energy to a 532 nm wavelength, which is in the green electromagnetic spectrum (Greenlight-laser) and is selectively absorbed by hemoglobin and not at all by water. Reducing the wavelength leads to a completely different interaction between laser beam and prostatic tissue. In contrast to the early clinical experiences with the Nd:YAG lasers in which vaporization was observed as a side-effect during the procedure, the new KTP laser offers an immediate and efficient vaporization, leading to real tissue ablation. Because of the instant and nearly complete absorption in blood, the depth in vascularized tissue such as prostate is only 0.8 mm. The superficial coagulation prevents the large tissue necrosis that is seen with the Nd:YAG laser, leading to long lasting irritative symptoms due to sloughing of necrotic tissue. Initial experiences, made with a 60W KTP system, demonstrated that the procedure was as effective as conventional transurethral resection of the prostate (TURP) with a lower intraoperative complication rate. In order to speed up vaporization of the prostate laser power has been increased to 80W. The 80W KTP laser combines the tissue debulking properties of TURP and the favourable safety profile of laser surgery. With the new 120W High Performance System, introduced in 2006, vaporization will become more powerful and faster. Initial reports are awaited.

  14. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  15. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  16. Laser-tissue interaction studies using a modified alexandrite laser

    NASA Astrophysics Data System (ADS)

    Paterson, Lorna Menzies

    This thesis forms a detailed study of the alexandrite laser and its potential in the medical field. Applications suggested include dermatological and dental procedures. This body of work encompasses these areas and touches on wider potential applications. A theoretical model has been developed to explain and predict the reaction of tissue to laser light with the wavelength and temporal profile of the alexandrite laser. The interaction of the fundamental 755 nm radiation with a variety of human tissues was initially studied and further studies carried out on porcine liver with long pulse and Q-switched laser pulses. The results were then compared to an analytical theoretical model and also to the standard de Beer's model of an exponential dependence of the light intensity on the attenuation coefficient of the tissue. The presence of a plume of debris was also taken into account. The interaction of the alexandrite laser output with hard dental material was studied. It was observed that 755 and 378 nm (second harmonic) laser light does not significantly affect healthy enamel or dentine. The selective ablation of carious material at 378 nm was observed. A system to photograph a plume of debris leaving an interaction site, with a known time delay from the moment of irradiation, was developed using a frequency doubled, Q-switched Nd:YAG laser. This system could be used to measure plume velocities and also to observe the different stages of fast interactions, e.g. the different thresholds for water evaporation and tissue removal in infrared irradiation of water rich tissue. The removal of tattoo pigment by the alexandrite laser light was investigated using excised human tattoo sections. The limited number of samples available showed a clearing of the intradermal pigment and professionally tattooed pig skin was then used as a replacement for excised human tattoo samples. Professional tattoo pigment embedded in agar was used to look at the acoustic waves induced by laser irradiation at 755 nm with a pulselength of 180 ns. The acoustic waves produced were detected using a PVDF membrane hydrophone (GEC Marconi) and compared to theoretical results. Pressures of up to 1.4 MPa were produced with irradiances of up to 10.6 MWcm-2 which were comparable to the irradiances used to clear the pigment embedded in human skin. The pressure gradient at these pressures is approximately 1.09x1010 Pam-1 giving a pressure difference of 1.09+/-0.17 MPa over a 100 ?m particle. This is not enough to damage human skin which has a tensile strength of 7.3 MPa. A theoretical model was developed, using the accepted theory of pressure waves in a fluid medium, to predict the amplitude of the pressure waves produced in the samples. The experimental results compared well with the ideal theoretical case. The distribution of the laser energy throughout the samples was modelled with the velocity of the debris plume ejected from the sample surface predicted. This velocity was measured and found to be comparable to the velocity previously calculated theoretically.

  17. 3D optical digitation applied to orthodontics: analysis of unilateral cleft lip and palate in newborn infants

    NASA Astrophysics Data System (ADS)

    Canal, Fernando; Garcia-Mateos, Jorge; Rodriguez-Larena, Jorge; Rivera, Alejandro; Aparicio, E.

    2000-12-01

    Medical therapeutic applications using lasers involves understanding the light tissue interaction, in particular the rate ofphotochemical and thermal reactions. Tissue is composed ofa mix ofturbid media. Light propagation in turbid media can be described by the so-called Equation of Radiative Transfer, an integro-differential equation where scattering, absorption and internal reflection are significant factors in determining the light distribution in tissue. The Equation of Radiative Transfer however can not commonly be solved analytically.' In order to visualize and simulate the effects of laser light on heart tissues (myocardium) in relation to the treatment of irregular heart rates or so called arrhythmias, a fast interactive computer program has been developed in Java.

  18. Quantification of phase retardation in corneal tissues using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Beylin, Alexander; Weiblinger, Richard; Ilev, Ilko

    2013-03-01

    The use of femtosecond lasers (FSL) in ophthalmic procedures, such as LASIK, lens replacement (cataract surgery), as well as several other treatments, is growing rapidly. The treatment effect is based on photo ablation of ocular tissues by a series of ultra-short laser pulses. However, the laser beam characteristics change dynamically due to interactions with birefringent corneal tissue, which may affect the outcome of the laser treatment. To better understand the effect the cornea has on the laser characteristics, we developed a system for measuring retardation and validated it with precise, standard phase retarders. Then we measured the phase retardation of FSLs through bovine corneas and found that there is a considerable, location dependent, variation in retardation values. This information can potentially help optimize FSL parameters to make their application in ophthalmic procedures safer and more effective.

  19. Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method

    PubMed Central

    Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-01-01

    Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy. PMID:22191937

  20. NIR-laser tissue welding in an in vivo guinea pig animal model

    NASA Astrophysics Data System (ADS)

    Sriramoju, Vidyasagar; Savage, Howard E.; Katz, A.; Chakraverty, Rahul; Budansky, Yuri; Podder, Rakhi; Davatgarzadeh, Naghmeh; Kartazayev, Uladzimir; Rosen, Richard B.; Alfano, R. R.

    2008-02-01

    Near infrared laser tissue welding (LTW) is achieved by subjecting the closely approximated surgically incised tissues to a laser beam at a wavelength that is absorbed by water in the tissue. Full thickness welds are accomplished with optimum laser power and penetration depths appropriate for the thickness of welded tissues. No extrinsic cross-linking or bonding materials are used. The absorbed laser energy increases the entropy of collagen in the tissue. In LTW, tissue water temperatures transiently rises to approximately 60° C, causing partial denaturing of collagen and other structural proteins due to breaking of hydrogen bonds, electrostatic interactions and some interchain covalent bonds for a short duration of time. This is followed by cross linking of proteins on either side of weld line, with reformation of the above mentioned bonds as the tissue cools, resulting in the formation of water tight full thickness welds. In this study, a cw fiber laser emitting at 1455 nm, corresponding to absorption by a water vibrational overtone, is used for in vivo LTW of surgical incisions made in the skin of guinea pigs under general anesthesia. The tensile strength and healing rates of the welded incisions are compared to suturing of similar incisions. Laser parameters, including power, scanning rates, exposure area, and exposure duration, are optimized to reduce thermal damage while maintaining tensile strength.

  1. Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain.

    PubMed

    Tunc, Burcu; Gulsoy, Murat

    2013-01-01

    The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.

  2. Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application.

    PubMed

    Havel, Miriam; Betz, Christian S; Leunig, Andreas; Sroka, Ronald

    2014-08-01

    The basic difference between the various common medical laser systems is the wavelength of the emitted light, leading to altered light-tissue interactions due to the optical parameters of the tissue. This study examines laser induced tissue effects in an in vitro tissue model using 1,470 nm diode laser compared to our standard practice for endonasal applications (940 nm diode laser) under standardised and reproducible conditions. Additionally, in vivo induced tissue effects following non-contact application with focus on mucosal healing were investigated in a controlled intra-individual design in patients treated for hypertrophy of nasal turbinate. A certified diode laser system emitting the light of λ = 1470 nm was evaluated with regards to its tissue effects (ablation, coagulation) in an in vitro setup on porcine liver and turkey muscle tissue model. To achieve comparable macroscopic tissue effects the laser fibres (600 µm core diameter) were fixed to a computer controlled stepper motor and the laser light was applied in a reproducible procedure under constant conditions. For the in vivo evaluation, 20 patients with nasal obstruction due to hyperplasia of inferior nasal turbinates were included in this prospective randomised double-blinded comparative trial. The endoscopic controlled endonasal application of λ = 1470 nm on the one and λ = 940 nm on the other side, both in 'non-contact' mode, was carried out as an outpatient procedure under local anaesthesia. The postoperative wound healing process (mucosal swelling, scab formation, bleeding, infection) was endoscopically documented and assessed by an independent physician. In the experimental setup, the 1,470 nm laser diode system proved to be efficient in inducing tissue effects in non-contact mode with a reduced energy factor of 5-10 for highly perfused liver tissue to 10-20 for muscle tissue as compared to the 940 nm diode laser system. In the in vivo evaluation scab formation following laser surgery as assessed clinically on endonasal endoscopy was significantly reduced on 1,470 nm treated site compared to 940 nm diode laser treated site. Diode laser system (1,470 nm) induces efficient tissue effects compared to 940 nm diode laser system as shown in the tissue model experiment. From the clinical point of view, the healing process following non-contact diode laser application revealed to be improved using 1,470 nm diode laser compared to our standard diode laser practise with 940 nm. © 2014 Wiley Periodicals, Inc.

  3. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    PubMed

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  4. Basic physics of laser interaction with vital tissue.

    PubMed

    Wigdor, Harvey

    2008-09-01

    It is essential for any practitioner who uses lasers in their clinical practice to understand the basic physics of lasers. It is this knowledge that allows for an educated assessment of the clinical outcomes that lasers produce in our patients. It is also this understanding that provides a scientific basis for the visual feedback the clinician uses to vary parameters as needed to get the desired clinical results. It is the intent of this paper to discuss the very basic reasons why lasers affect tissues the way they do, and to synthesize the plethora of information dental practitioners are seeing regularly in dental journals.

  5. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  6. Investigation of retinal damage during refractive eye surgery

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Sander, M.; Dopke, C.; Grone, A.; Ertmer, W.; Lubatschowski, H.

    2005-04-01

    Ultrashort laser pulses are increasingly used in refractive eye surgery to cut inside transparent corneal tissue. This is exploited by the fs-LASIK procedure which affords the opportunity to correct ametropia without any mechanical effects. The cutting process is caused by the optical breakdown occurring in the laser focus. During this process only a certain amount of the pulse energy is deposited into the tissue. The remaining pulse energy propagates further through the eye and interacts with the retina and the strong absorbing tissue layers behind. Therefore this investigation shall clarify if the intensity of the remaining laser pulse and the resulting temperature field can damage the retina and the surrounding tissue. Threshold values of the retinal tissue and theoretical calculations of the temperature field will be presented.

  7. A novel modeling and simulation technique of photo--thermal interactions between lasers and living biological tissues undergoing multiple changes in phase.

    PubMed

    Dua, Rajan; Chakraborty, Suman

    2005-06-01

    Knowledge of heat transfer in biological bodies has many therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. Extremes of temperature into the freezing and burning ranges are useful in surgical procedures for selective killing and/or removal of target tissues. For example, the primary objective of hyperthermia is to raise the temperature of the diseased tissue to a therapeutic value, typically 41- 44 degrees C, and then thermally destroy it. The present paper therefore aims to develop a mathematical model for effective simulation of photo--thermal interactions between laser rays and biological tissues. In particular, damage of biological tissues when subjected to single point laser diathermy is numerically investigated using a unique enthalpy-based approach for modeling multiple phase change, (namely, melting of fat and vaporization of water content of the tissues) and the associated release/absorption of latent heat in conjunction with unsteady state heat conduction mechanisms. The governing equations of bio-heat transfer coupled with initial and boundary conditions are solved using a finite volume approach in conjunction with line by a line tri-diagonal matrix algorithm (TDMA) solver. Temperature responses of tissues subject to laser heating are quantitatively investigated in detail using the present model, and the resultant solutions are expected to be immensely useful in a variety of Bio-thermal practices in medicine and surgery.

  8. Optoacoustic induced vibrations within the inner ear.

    PubMed

    Zhang, K Y; Wenzel, G I; Balster, S; Lim, H H; Lubatschowski, H; Lenarz, T; Ertmer, W; Reuter, G

    2009-12-07

    An acoustic transient can be generated inside an absorbing tissue as a result of laser-tissue interaction after pulsed laser irradiation. Herein we report a novel application of this physical process, the optoacoustic wave generation in the inner ear and subsequently the induction of basilar membrane vibrations. These laser induced vibrations show a direct correlation to the laser energy and an indirect correlation to the distance from the irradiation focus. Through these characteristics they may be used, in a new generation of cochlear implants, to improve the frequency specific cochlear activation and consequently improve speech perception in hearing impaired patients with residual hearing.

  9. The use of planarians as in vivo animal model to study laser biomodulation effects

    NASA Astrophysics Data System (ADS)

    Munin, Egberto; Garcia, Neila Maria Rocha; Braz, Allison Gustavo; de Souza, Sandra Cristina; Alves, Leandro Procópio; Salgado, Miguel Angel Castillo; Pilla, Viviane

    2007-02-01

    A variety of effects is attributed to the photo stimulation of tissues, such as improved healing of ulcers, analgesic and anti-inflammatory effects, stimulation of the proliferation of cells of different origins and stimulation of bone repair. Some investigations that make qualitative evaluations, like wound healing and evaluation of pain and edema, can be conducted in human subjects. However, deeper investigations on the mechanisms of action of the light stimulus and other quantitative works that requires biopsies or destructive analysis has to be carried out in animal models or in cell cultures. In this work, we propose the use of planarians as a model to study laser-tissue interaction. Contrasting with cell cultures and unicellular organisms, planarians are among the simplest organism having tissue layers, central nerve system, digestive and excretory system that might have been platforms for the evolution of the complex and highly organized tissues and organs found in higher organisms. For the present study, 685 nm laser radiation was employed. Planarians were cut transversally, in a plane posterior to the auricles. The body fragments were left to regenerate and the proliferation dynamics of stem cells was studied by using histological analysis. Maximum cell count was obtained for the laser treated group at the 4 th experimental day. At that experimental time, we also had the largest difference between the irradiated and the non-irradiated control group. We concluded that the studied flatworm could be an interesting animal model for in vivo studies of laser-tissue interactions.

  10. Mid-IR laser system for advanced neurosurgery

    NASA Astrophysics Data System (ADS)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  11. The holmium laser in urology.

    PubMed

    Wollin, T A; Denstedt, J D

    1998-02-01

    To review the physics related to the holmium laser, its laser-tissue interactions, and its application to the treatment of urological diseases. The holmium: YAG laser is a solid-state, pulsed laser that emits light at 2100 nm. It combines the qualities of the carbon dioxide and neodymium:YAG lasers providing both tissue cutting and coagulation in a single device. Since the holmium wavelength can be transmitted down optical fibers, it is especially suited for endoscopic surgery. The authors provide a review of the literature as it relates to the holmium laser and its application to urology. The holmium wavelength is strongly absorbed by water. Tissue ablation occurs superficially, providing for precise incision with a thermal injury zone ranging from 0.5 to 1.0 mm. This level of coagulation is sufficient for adequate hemostasis. The most common urologic applications of the holmium laser that have been reported include incision of urethral and ureteral strictures; ablation of superficial transitional cell carcinoma; bladder neck incision and prostate resection; and lithotripsy of urinary calculi. The holmium: YAG laser is a multi-purpose, multi-specialty surgical laser. It has been shown to be safe and effective for multiple soft tissue applications and stone fragmentation. Its utilization in urology is anticipated to increase with time as a result of these features.

  12. Analysis of thermal damage in vocal cords for the prevention of collateral laser treatment effects

    NASA Astrophysics Data System (ADS)

    Fanjul Vélez, Félix; Luis Arce-Diego, José; del Barrio Fernández, Ángela; Borragán Torre, Alfonso

    2007-05-01

    The importance of vocal cords for the interaction with the world around is obviously known. Vocal cords disorders can be divided mainly into three categories: difficulty of movement of one or both vocal folds, lesion formation on them, and difficulty or lack of mucosal wave movement. In this last case, a laser heating treatment can be useful in order to improve tissue vibration. However, thermal damage should be considered to adjust laser parameters and so to prevent irreversible harmful effects to the patient. in this work, an analysis of thermal damage in vocal folds is proposed. Firstly thermo-optical laser-tissue interaction is studied, by means of a RTT (Radiation Transfer Theory) model solved with a Monte Carlo approach for the optical propagation of radiation, and a bio-heat equation, with a finite difference numerical method based solution, taking into account blood perfusion and boundary effects, for the thermal distribution. The spatial-temporal temperature distributions are obtained for two widely used lasers, Nd:YAG (1064 nm) and KTP (532 nm). From these data, an Arrhenius thermal damage analysis allows a prediction of possible laser treatment harmful effects on vocal cords that could cause scar formation or tissue burn. Different source powers and exposition times are considered, in such a way that an approximation of adequate wavelength, power and duration is achieved, in order to implement an efficient and safe laser treatment.

  13. Fundus oculi pigmentation studies simulating the fs-LASIK process Fundus oculi pigmentation studies simulating the fs-LASIK process

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-06-01

    The femtosecond-laser in situ keratomileusis (fs-LASIK) technique has successfully entered the refractive surgery market to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses based on photodisruption. The laser pulses in the near infrared range (NIR) generate a laser-induced breakdown (LIOB) in the cornea. By propagating through the eye, a certain amount of the pulse is deposited in the cornea and the remaining energy interacts with the strong absorbing tissue behind. Due to the absorption by the retinal pigment epithelium and the transfer of the thermal energy to surrounding tissue, the transmitted energy can induce damage to the retina. The aim of this project was to find out the threshold influences concerning the tissue and the correlation between the results of the macroscopical appraisal and the fundus oculi pigmentation by simulating the fs-LASIK procedure with two various laser systems in the continuous wave (CW) and fs-regime. Therefore ex-vivo determinations were carried out macroscopically and histopathologically on porcine tissue.

  14. Development of selective laser treatment techniques using mid-infrared tunable nanosecond pulsed laser.

    PubMed

    Ishii, Katsunori; Saiki, Masayuki; Hazama, Hisanao; Awazu, Kunio

    2010-01-01

    Mid-infrared (MIR) laser with a specific wavelength can excite the corresponding biomolecular site to regulate chemical, thermal and mechanical interactions to biological molecules and tissues. In laser surgery and medicine, tunable MIR laser irradiation can realize the selective and less-invasive treatments and the special diagnosis by vibrational spectroscopic information. This paper showed a novel selective therapeutic technique for a laser angioplasty of atherosclerotic plaques and a laser dental surgery of a carious dentin using a MIR tunable nanosecond pulsed laser.

  15. Transcranial light-tissue interaction analysis

    NASA Astrophysics Data System (ADS)

    Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.

    2016-03-01

    The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.

  16. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    PubMed

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd:YAG laser.

  17. New approach of Co2 laser use in plastic and dermo-cosmetic surgery

    NASA Astrophysics Data System (ADS)

    Trelles, Mario A.; Trelles, O. R.; Romero, L. F.

    1996-01-01

    Laboratory and mathematical skin examination has played an important role in defining the clinical usefulness and limitations of laser, developing concepts and techniques that have further improved the effectiveness of laser treatment. In addition to this, new technological developments over the years, have helped define the specificity of laser-tissue interaction. Instantaneous conversion by thermal energy of water in a liquid state to a gaseous state when irradiation of skin is done by high power density carbon dioxide laser in short pulses, occurs so quickly that there is minimal thermal conduction to the adjacent tissues structures. The zone of thermal injury could be minimized to the order of only 50 micron thick. In spite of the limited effects of heat conduction, coagulation in vessels can be obtained as well, since small blood vessels are immediately sealed by the laser. Modern carbon dioxide systems can be programmed and make it possible to reproduce shots precisely to vaporize identically thin layers of soft tissue, since absorption by intracellular water limits the depth of penetration. Moreover, collimated handpieces make it possible to deliver a fixed beam diameter and a constant power density as the handpiece is steadily moved over lesions situated on uneven facial contours. The use of large spot sizes gives a more uniform vaporization thus damaging adjacent tissues to a lesser degree, but enlarging of the spot size requires higher energy levels per pulse so that the whole surface can reach a sufficiently high fluence for clean vaporization to take place. For this to be achieved, the fluence required is about 4 - 5 J/cm2 and so UltraPulseR carbon dioxide laser with a 3 mm spot size may be operated with optimal parameters for clean ablation. The resulting surface, covered by dry debris, can be removed by gently scrubbing to avoid thermal build-up, otherwise this remaining tissue can act as a refracting surface as the practical absence of water content means that the carbon dioxide laser light is not efficiently absorbed. This process is repeated layer-by-layer using the same laser parameters until all remaining abnormal tissue has been grossly removed. Utilized as a chain of rapid, short (approx. 1 ms) pulses, with high peak power, tissue can be effectively eliminated, taking advantage of the concept of the known thermal relaxation time of soft tissue. The current laser systems which are built according to the new concept of high technology based upon the knowledge of laser tissue interaction, known as UltraPulsedR Carbon Dioxide Laser, are capable of precise ablation and also of being used in cosmetically sensitive areas with minimal thermal damage. Although the precise clinical role for this laser has yet to be accurately defined, the potential benefits offered by its use appear to be substantial.

  18. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.

    2009-11-01

    Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.

  19. Experimental aspects concerning the laser action on the living tissue

    NASA Astrophysics Data System (ADS)

    Ciuchita, Tavi; Antipa, Ciprian; Stanescu, Constantin S.; Anghel, Sorin; Calugareanu, Mircea

    2001-06-01

    The paper presents some experimental methods of the treatment and investigation aspects and results concerning the interaction of the low energy laser (LEL) with living tissue in the treatment of some skin diseases: lichen ruber planus (LP) and infectious finger pulpits (IFP), scalp alopecia (SA) and crural ulcers (CU). We concluded that LEL therapy is a useful complementary method in the treatments of these skin diseases .

  20. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  1. Tissue welding with 980-nm diode laser system: preliminary study for determination of optimal parameters

    NASA Astrophysics Data System (ADS)

    Korkut, Zeynep D.; Tabakoglu, Haşim Ö.; Bozkulak, Özgüncem; Aksel, Ayla A.; Gulsoy, Murat

    2006-02-01

    In this study, tissue welding with 980-nm laser system, which is first-time in the literature, was performed. Hence, a preliminary study was done to determine optimal parameters for further studies. 1 cm long incisions done on the Wistar rat's dorsal skin were welded. Tissue welding with 980-nm wavelength depends on the degree of photothermal interaction. Thus, different power levels and exposure schedule were investigated. Dorsal sides of all animals were photographed from the date of surgery until they were sacrificed. The clinical examination - opening of wound and presence of infection - was noted. The rats did not show any abnormality on their health, behavior and nutrition manner. As a result, 980-nm diode laser was concluded to be a good candidate for tissue welding applications.

  2. Effects of heat transfer and energy absorption in the ablation of biological tissues by pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin

    2006-09-01

    Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.

  3. Study into penetration speed during laser cutting of brain tissues.

    PubMed

    Yilbas, Z; Sami, M; Patiroglu, T

    1998-01-01

    The applications of CO2 continuous-wave lasers in neurosurgery have become important in recent years. Theoretical considerations of laser applicability in medicine are subsequently confirmed experimentally. To obtain precision operation in the laser cutting process, further theoretical developments and experimental studies need to be conducted. Consequently, in the present study, the heat transfer mechanism taking place during laser-tissue interaction is introduced using Fourier theory. The results obtained from the theoretical model are compared with the experimental results. In connection with this, an experiment is designed to measure the penetration speed during the laser cutting process. The measurement is carried out using an optical method. It is found that both results for the penetration speed obtained from the theory and experiment are in a good agreement.

  4. Dosimetry control and monitoring of selective retina therapy using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kaufmann, Daniel; Burri, Christian; Arnold, Patrik; Koch, Volker M.; Meier, Christoph; Považay, Boris; Justiz, Joern

    2017-07-01

    Selective retina therapy and optical coherence tomography have been combined to monitor laser-tissue interaction in real-time. An ex-vivo study of porcine eyes unveils mechanisms that enable automated and accurate dose-control during laser-therapy.

  5. Understanding the tissue interaction of new treatment modalities in laparoscopic surgery in view of safe and effective application (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Grimbergen, Matthijs C. M.; Klaessens, John H.; van der Veen, Albert J.; Verdaasdonk, Rudolf M.

    2016-03-01

    During laparoscopic surgery, devices are require to either cut, ablate or coagulate tissue and veins with high precision and controlled lateral damage preferably in an one-for-all modality. The tissue interactions of 3 new treatment modalities were studied using special imaging techniques to obtain a better understanding the working mechanism in view of effective and safe application. The Plasmajet produces a high temperature ionized gas 'flame' directed to the tissue surface at the tip of a 4 mm diameter rigid hand piece. The Lumenis DUO CO2 laser enables endoscopic laser energy delivery through a 1 mm outer diameter flexible hollow waveguide. The 2 µm 'Thulium' laser is delivered by (standard) 400 µm diameter optical fiber. Thermal imaging and Schlieren techniques were used to assess the superficial ablative and coagulation effects these surgical instruments scanning at preset velocities and distances from the surface of biological tissues and phantoms . The CO2 was very effective in tissue ablation even at a distance up to 10 mm due to a very small diverging beam from the hollow waveguide. In contrast, the Thulium laser showed less ablation and increasing coagulation at larger distance to the tissue. The gas 'flame' of the Plasmajet spread the thermal energy over the surface for effective superficial ablation and coagulation. However, the pressure of the gas flow is substantial on the tissue surface creating turbulence and even indirect cooling. The specific ablation and coagulation effects of the three treatment modalities have to be appreciate and the effective and safe application will depend on the preference and skills of the surgeon

  6. Laser induced hierarchical calcium phosphate structures.

    PubMed

    Kurella, Anil; Dahotre, Narendra B

    2006-11-01

    The surface properties of biomedical implant materials control the dynamic interactions at tissue-implant interfaces. At such interfaces, if the nanoscale features influence protein interactions, those of the microscale and mesoscale aid cell orientation and provide tissue integration, respectively. It seems imperative that the synthetic materials expected to replace natural hard tissues are engineered to mimic the complexity of their hierarchical assembly. However, the current surface engineering approaches are single scaled. It is demonstrated that using laser surface engineering a controlled multiscale surface can be synthesized for bioactive functions. A systematic organization of bioactive calcium phosphate coating with multiphase composition on Ti-alloy substrate ranging from nano- to mesoscale has been achieved by effectively controlling the thermo physical interactions during laser processing. The morphology of the coating consisted of a periodic arrangement of Ti-rich and Ca-P-deficient star-like phases uniformly distributed inside a Ca-P-rich self-assembled cellular structure with the presence of CaO, alpha-tricalcium phosphate, CaTiO(3), TiO(2) and Ti phase in the coating matrix. The cellular structures ranged in diameter from 2.5 microm to 10 microm as an assembly of cuboid shaped particles of dimensions of approximately 200 nm x 1 microm. The multiscale texture also included nanoscale particles that are the precursors for many of these phases. The rapid cooling associated with the laser processing resulted in formation, organization and controlling dimensions of the Ca-P-rich glassy phase into a micron scale cellular morphology and submicron scale clusters of CaTiO(3) phase inside the cellular structures. The self-assembly of the coating into multiscale structure was influenced by chemical and physical interactions among the multiphases that evolved during laser processing.

  7. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  8. Propagation Effects in the Assessment of Laser Damage Thresholds to the Eye and Skin

    DTIC Science & Technology

    2007-01-01

    Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...evaluation of the role of propagation with regard to laser damage to tissues. Regions of the optical spectrum, where linear and non-linear propagation...photo-chemical toxicity. Exposure limits commonly address skin and eye hazards through separate definitions. Differing optical absorption and scattering

  9. Influence of laser light on bioimplants used in otorhinolaryngology.

    PubMed

    Siedek, Vanessa; Nehls, Kristina; Zur Nieden, Katrin; Leunig, Andreas; Sroka, Ronald

    2014-05-01

    In otorhinolaryngology, dermatology and reconstructive surgery biomaterials as implants and a variety of lasers are used. Laser light applied near to an implant could have the risk to damage these materials. Therefore, their resistance exposed to laser light is of interest. A diode laser emitting at 940 nm and a CO2 laser were used to investigate its effects to the biomaterials Bioverit®, Medpor® and Palacos®, and in addition, an excised implant containing Medpor® and nasal turbinate tissue, excised and fixed in formalin. The macro- and microscopic changes of the material, temperature development during laser energy application in dependency to distance of fibre and material, time of exposure and applied power were investigated. Interaction of diode laser light with Bioverit® (0 mm distance, 360 s, 10 W, 3,600 J) resulted in minimal microscopic effects in direct contact of with the fibre. Using Medpor® (1 mm, 10s, 10 W, 100 J) resulted in melting and perforation. In the case of Palacos® (0.6 mm, 10s, 10 W, 100 J), melting occurred creating a flat excavation. The effect to Medpor® in nasal turbinate (1-2 mm, 10s, 10 W, 100 J) showed tissue denaturation and carbonisation and creation of a hole. The interaction of the CO2 laser with Bioverit® (3 cm, 0.5, 1 and 5 s, 2, 10 or 20 W) induced melting and discolouring resulting finally in a perforating hole. Depending on the material, first damage starts 10 s after an impact of 100 J (threshold value). So interaction between laser energy and biomaterials occurs. This should be carefully considered during clinical laser treatments especially nearby implants.

  10. Monte Carlo simulation of cutaneous absorption and reflectance for clear, matt and dark biological tissue with varicosities: an investigation for dermatological laser

    NASA Astrophysics Data System (ADS)

    Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel

    2013-05-01

    We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.

  11. Tissue photoablation process with short-pulsed lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Gerhard J.; Doerschel, Klaus; Kar, Hasan

    1992-03-01

    Since Hippocrates, physicians have three weapons to fight malignant diseases of the human body: Quae medicamenta non sanat, ferrum sanat; quae ferrum non sanat, ignis sanat; and quae vero ignis non sanat, insanabilia reputari oportet. Today there are various possibilities to use the ''fire'': electrical and optical cauterization; mono- and bipolar rf-surgery; ionizing radiation for tumor treatment; and last but not least, the laser of laser tissue interactions, all can be used to remove malignant tissue either by biological digestion or immediate ablation, i.e., photovaporization or photodecomposition. This paper will discuss a semiempirical theory of the so-called photoablation process and the thermal side effects of the surrounding tissue. The term ''Photoablation; has to be well differentiated with the terms photovaporization, photodisruption and photofragmentation. As will be shown in this paper, photoablation is a microscale fast thermal explosion.

  12. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser radiation the Er:YAG-laser radiation could also only be delivered via mirror systems, while the radiation of the Ho:YAG-Laser can be well transmitted through quartz fibers. The energy of the well known and in other medical disciplines often used Nd:YAG - laser (1,064 μm, pulse duration 150 us) laser can be transmitted through fiber systems without problems, but this laser has not the effectivity to work sufficient on healthy hard dental tissues due to the high transmission in mineralized dental tissues. The thermal injuries of this laser type are not tolerable. The short pulsed TEA-C02-laser (9,6 and 10,6 μm, pulse duration 200-300 ns), which has an excellent coupling not only to the hydrogeneous tissues but also to the mineralized tissues could be an alternative system to prepare dental tissues. The greatest disadvantage of this system is the noneffective delivery of the light energy through flexible fiber systems, which are still in development. Another good chance perhaps will have the q-switched Neodym, Erbium and Holmium:- YAG lasers with pulse durations of about some hundred ns. Both, possible thermal influences and possible disruptive effects should be small enough to let the adjacent tissues undamaged.

  13. Malignancies and atherosclerotic plaque diagnosis--is laser induced fluorescence spectroscopy the ultimate solution?

    PubMed

    Papazoglou, T G

    1995-04-01

    A non-invasive diagnostic tool that can identify diseased tissue sites in situ and in real time could have a major impact on the detection and treatment of cancer and atherosclerosis. A review of the research performed on the utilization of laser induced fluorescence spectroscopy (LIFS) as a means of diseased tissue diagnosis is presented. Special emphasis is given to problems which were raised during clinical trials and recent experimental studies. The common origin and possible solution of these problems are shown to be related to, firstly, the identification of the fluorescent chemical species, secondly, the determination of the excitation/collection geometry and its effect to the method and, finally, the further elaboration on the laser-tissue interaction.

  14. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    DTIC Science & Technology

    2004-06-01

    Additionally, we offer 3 conceptual cartoons outlining our vision for the future progres of laser bioeffects research, metabonomic risk assessment...future progress of laser bioeffects research, metabonomic risk assessment modeling and knowledge building from laser bioeffects data. BACKGROUND In the...our concepts of future laser bioeffects research directions (Figure 5), a metabonomic risk assessment model of laser tissue interaction (Figure 6

  15. Optothermal transfer simulation in laser-irradiated human dentin.

    PubMed

    Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex

    2003-04-01

    Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.

  16. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  17. Excimer laser in arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.

    1991-05-01

    The development of efficient high-power lasersystems for use in surgery, especially in arthroscopic fields, leads to a new push for all endoscopic techniques. Both techniques, laser and endoscope, complete each other in an ideal way and allow applications which could not be reached with conventional techniques. One of the newer laser types is the excimer laser, which will be a good choice for surface treatment because of its very considerate interaction with tissue. One example is the ablation or smoothing of articular cartilage and meniscal shaving in orthopaedics. On the other hand, the power of this laser system is high enough to cut tissue, for instance in the lateral release, and offers therefore an alternative to the mechanical and electrical instruments. All lasers can only work fine with effective delivery systems. Sometimes there is only a single fiber, which becomes very stiff at diameters of more than 800 micrometers . This fiber often allows only the tangential treatment of tissue, most of the laser power is lost in the background. New fiber systems with many, sometimes hundreds of very thin single fibers, could offer a solution. Special handpieces and fibersystems offer distinct advantages in small joint arthroscopy, especially those for use with excimer lasers will be discussed.

  18. Biological effects caused by low-power laser light in the treatment of the dentition, periodontium, and mucosa of oral cavity, and lip diseases

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Erina, Stanislava V.; Kashuba, Victor A.; Pankova, Svetlana N.; Stepanov, Nicolay N.; Kazmina, Svetlana G.; Dergunova, Elvira I.; Buerger, F.; Herdt, Alexander; Podolskaya, Elana E.; Shumilovitch, Bogdan R.; Ippolitov, Yu. A.; Tchernov, V. I.

    1997-12-01

    Nowadays low-power therapy is one of the leading trends in a combined treatment of the oral cavity and lips diseases. The present paper sums up the results of the investigation into the biological effects caused by low-power laser light (LPLL) during its interaction with hard and soft tissues of the oral cavity and lips. A research on the effect of LPLL upon the remineralization processes in the hard dental tissues in the stage in the stage of an initial caries was carried out in 150 patients. The biological effects caused by an interaction of LPLL with the parodontium tissues in the process of treatment of medium degree disease of the parodontium were studied in 140 patients; the effects of the above mentioned character which generated in lips tissues during treatment of a post-radiation chilitis were analyzed in 32 patients. Immunological, biochemical histochemical, morphological, stomatoscopic, bacteriological and other methods were employed while studying the bioeffects caused by LPLL in the parodontium, lips tissues and hard tissues of the tooth.

  19. Investigation of the formation mechanism and morphology of the features created in the interior of cornea by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Vukelic, Sinisa

    2015-03-01

    Laser assisted corneal surgeries often rely on the nonlinear absorption effect of ultrafast lasers to induce features in the interior of the cornea without affecting the surface. In particular, corneal flap formation in femtosecond assisted Laser- Assisted in situ Keratomileusis (LASIK) is based on the bubble creation. This study focuses on the interaction between the tissue and the femtosecond laser. Interior of cornea is treated with tightly focused femtosecond laser pulses. Due to the nature of the process, heating of the tissue within and around the focal volume is practically instantaneous. The affected region is subject to thermoelastic stress that arises with the steep temperature elevation. To predict the size of the region subject to the morphological changes due to the laser treatment, the temperature field is calculated. Cavitation bubble initiation and expansion process, which acts as precursor to the stress induced tissue trauma, is studied as well. Theoretical findings are compared against experimental results. High-speed camera is utilized to assess the laser treatment process, showing the temporal development of the cavitation bubbles. The results obtained in this study facilitate a better understanding of the effects of femtosecond laser assisted corneal surgeries and help in choosing optimal laser parameters.

  20. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  1. Critical review of lasers in benign prostatic hyperplasia (BPH).

    PubMed

    Gravas, Stavros; Bachmann, Alexander; Reich, Oliver; Roehrborn, Claus G; Gilling, Peter J; De La Rosette, Jean

    2011-04-01

    • Laser treatment of benign prostatic hyperplasia has challenged transurethral resection of the prostate (TURP) due to advances in laser technology, better understanding of tissue-laser interactions and growing clinical experience. • Various lasers have been introduced including neodymium: yttrium aluminium garnet (YAG), holmium (Ho):YAG, potassium titanyl phosphate:YAG, thulium(Tm) and diode laser. Based on the different wave-length dependent laser-prostatic tissue interactions, the main techniques are coagulation, vaporization, resection and enucleation. • The present review aims to help urologists to distinguish and to critically evaluate the role of different laser methods in the treatment by using an evidence-based approach. It also details further evidence for use in specific patient groups (in retention, on anticoagulation) and addresses the issues of cost and learning curve. • Coagulation-based techniques have been abandoned; holmium ablation/resection of the prostate has been superseded by the enucleation technique Ho-laser enucleation of the prostate (HoLEP). The short-term efficacy of the emerging laser treatments such as diode and Tm prostatectomy has been suggested by low quality studies. HoLEP and photoselective vaporization of the prostate (PVP) represent valid clinical alternatives to TURP. HoLEP is the most rigorously analysed laser technique with durable efficacy for any prostate size and low early and late morbidity. PVP has grown in acceptance and popularity but long-term results from high quality studies are pending. © 2010 THE AUTHORS; BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  2. Vanderbilt free-electron-laser project in biomedical and materials research. Annual report, 1 February 1987-31 January 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haglund, R.F.; Tolk, N.H.

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the usemore » of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.« less

  3. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.

  4. Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery

    NASA Astrophysics Data System (ADS)

    Girard, Guillaume; Zhou, Sheng; Bigaouette, Nicolas; Brunette, Isabelle; Chaker, Mohamed; Germain, Lucie; Lavertu, Pierre-Luc; Martin, François; Olivié, Gilles; Ozaki, Tsuneyuki; Parent, Mireille; Vidal, François; Kieffer, Jean-Claude

    2004-10-01

    The Femtosecond laser is a very promising tool for performing accurate dissection in various cornea layers. Clearly, the development of this application requires basic knowledge about laser-tissue interaction. One of the most significant parameter in laser applications is the ablation threshold, defined as the minimal laser energy per unit surface required for ablation. This paper investigates the ablation threshold as a function of the laser pulse duration for two corneal layers (endothelium and epithelium) as well as for hydrogel with different hydration degrees. The measured ablation thresholds prove to behave very differently as a function of the pulse duration for the various materials investigated, although the values obtained for the shortest laser pulses are quite similar. Our experimental results are fitted with a simple model for laser-matter interaction in order to determine some intrinsic physical parameters characterizing each target.

  5. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  6. Laser optical method of visualizing cutaneous blood vessels and its applications in biometry and photomedicine

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

    2011-05-01

    We propose and examine a new approach to visualizing a local network of cutaneous blood vessels using laser optical methods for applications in biometry and photomedicine. Various optical schemes of the formation of biometrical information on the architecture of blood vessels of skin tissue are analyzed. We developed an optical model of the interaction of the laser radiation with the biological tissue and a mathematical algorithm of processing of measurement results. We show that, in medicine, the visualization of blood vessels makes it possible to calculate and determine regions of disturbance of blood microcirculation and to control tissue hypoxia, as well as to maintain the local concentration of oxygen at a level necessary for the normal cellular metabolism. We propose noninvasive optical methods for modern photomedicine and biometry for diagnostics and elimination of tissue hypoxia and for personality identification and verification via the pattern of cutaneous blood vessels.

  7. Tomsk Cardiology Center program on lasers in cardiovascular: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Eugeni P.; Karpov, Rostislav S.; Dudko, Victor A.; Shipulin, Vladimir M.

    1994-12-01

    Recent progress in biomedical optics resulted in increased activity in this area at a number of different centers. Reported are the first results of the program directed to incorporate at Tomsk Cardiology Center experience gained in Tomsk optical profile research institutions in areas of light-matter interaction, high resolution spectroscopy, laser physics and relevant software and their usage in cardiac therapy, surgery, and diagnostics. To coordinate research work in this direction the special unit-laboratory of laser medicine is organized at the Center. Laboratory activity goes in the following directions: study of spectral properties of vessel walls in norm and atherosclerosis, comparative study of different wavelength laser radiation action on normal and atherosclerotically damaged tissues, novel approach to intravascular imaging, and usage of high sensitive laser spectroscopy for early diagnosis of cardiac diseases. The spectroscopic study of AP and normal tissue is aimed at understanding of differences in internal energy structures and ways of energy migration which are of critical importance for reaching selective laser action on normal and deceased tissues. To compare thermal, mechanical, and photo-chemical variations of tissues caused by laser radiation the XeCl excimer laser with Raman shifting cell and Nd:YAG laser with second, third, and fourth harmonic converters are employed. Fine influence of pulse duration, intensity, and repetition rates on AP removal is considered in laboratory experiments with vessel samples. Preliminary results on theoretical consideration for determination of spectroscopically detectable markers of some cardiac diseases are reported as well.

  8. Digital-holographic analysis of femtosecond laser-induced photodisruption in ocular tissue

    NASA Astrophysics Data System (ADS)

    Saerchen, Emanuel; Biessy, Kevin; Kemper, Björn; Lubatschowski, Holger

    2014-02-01

    High repetition rated femtosecond laser oscillator systems with low pulse energy are more often applied for precise and safer eye surgery. Especially, the cutting procedure in the crystalline lens is of high important for presbyopia treatment. Nevertheless, the fundamental laser tissue interaction process is not completely understood, because apparently a self-induced process takes place, were one modified region changes the focusing behavior of following laser pulses. We used a MHz repetition rate femtosecond laser system with nJ-pulse energy which were focused inside an ocular-tissue-phantom (Hydroxy-ethylmethacrylat - HEMA) to induce photodisruption. The material change, caused by the fs-pulses was measured simultaneously with a compact digital-holographic microscope. To investigate the material manipulation at different time scales, we used a continuously illuminating light source. The holographic images provide quantitative values for optical path length difference (OPL), which is equivalent to a refractive index change. This change of the optical properties may cause following pulses to obtain different focusing conditions. Time lapse measurements during the laser application were performed, which show the temporal evolution of OPL. An increase of OPL during the laser application was measured, which was followed by a decrease in OPL after laser processing. Furthermore, similar experiments were performed in distilled water and in native porcine crystalline lenses. The fs-laser cutting effects in HEMA and crystalline lens were transferable. Simultaneous measurements of the material modification during the cutting process give rise to better knowledge of treatment modalities during ocular tissue processing.

  9. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  10. Nd:YAG and CO2 laser therapy of oral mucosal lesions.

    PubMed

    White, J M; Chaudhry, S I; Kudler, J J; Sekandari, N; Schoelch, M L; Silverman, S

    1998-12-01

    Experiences gained in the management of oral mucosal lesions by CO2 and Nd:YAG laser therapy in an outpatient clinic treated over an 80-year period are described. Lasers have indications for use in dentistry for incision, excision, and coagulation of intraoral soft tissue. Advances in laser technology have provided delivery systems for site-specific delivery of laser energy with short interaction items on tissue to be ablated. This study retrospectively evaluates a series of clinical case studies. Sixty-four patients with a variety of benign oral soft tissue lesions were treated by laser excision. Thirty-five patients were treated by a pulsed fiberoptic delivered Nd:YAG contact laser, and 29 by a continuous free-beam CO2 non-contact laser. The largest group of lesions treated were leukoplakia (39 cases). Other lesions excised and biopsied were lichen planus, squamous papilloma, pyogenic granuloma, focal melanosis, nonhealing traumatic ulceration, hemangioma, and lymphangioma. All patients were followed postoperatively (mean 6.8 months, range 1-36 months). Laser excision was well tolerated by patients with no intraoperative or postoperative adverse effects. All patients healed postsurgically with no loss of function. CO2 and Nd:YAG lasers are successful surgical options when performing excision of benign intraoral lesions. Advantages of laser therapy include minimal postoperative pain, conservative site-specific minimally invasive surgeries, and elimination of need for sutures.

  11. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    PubMed Central

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605

  12. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis.

    PubMed

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  13. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  14. US-guided application of Nd:YAG laser in porcine pancreatic tissue: an ex vivo study and numerical simulation.

    PubMed

    Di Matteo, Francesco; Martino, Margareth; Rea, Roberta; Pandolfi, Monica; Panzera, Francesco; Stigliano, Egidio; Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio; Pacella, Claudio Maurizio; Breschi, Luca; Perrone, Giuseppe; Coppola, Roberto; Costamagna, Guido

    2013-11-01

    Laser ablation (LA) with a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is a minimally invasive approach able to achieve a high rate of complete tissue necrosis. In a previous study we described the feasibility of EUS-guided Nd:YAG pancreas LA performed in vivo in a porcine model. To establish the best laser setting of Nd:YAG lasers for pancreatic tissue ablation. A secondary aim was to investigate the prediction capability of a mathematical model on ablation volume. Ex vivo animal study. Hospital animal laboratory. Explanted pancreatic glands from 60 healthy farm pigs. Laser output powers (OP) of 1.5, 3, 6, 10, 15, and 20 W were supplied. Ten trials for each OP were performed under US guidance on ex vivo healthy porcine pancreatic tissue. Ablation volume (Va) and central carbonization volume (Vc) were measured on histologic specimens as the sum of the lesion areas multiplied by the thickness of each slide. The theoretical model of the laser-tissue interaction was based on the Pennes equation. A circumscribed ablation zone was observed in all histologic specimens. Va values grow with the increase of the OP up to 10 W and reach a plateau between 10 and 20 W. The trend of Vc values rises constantly until 20 W. The theoretical model shows a good agreement with experimental Va and Vc for OP between 1.5 and 10 W. Ex vivo study. Volumes recorded suggest that the best laser OP could be the lowest one to obtain similar Va with smaller Vc in order to avoid the risk of thermal injury to the surrounding tissue. The good agreement between the two models demonstrates the prediction capability of the theoretical model on laser-induced ablation volume in an ex vivo animal model and supports its potential use for estimating the ablation size at different laser OPs. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  15. New application system for simultaneous laser and ultrasonic transmission in endoscopic surgery (LUST)

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Liebold, K.; Mueller, Gerhard J.

    1998-04-01

    A new combined Laser and Ultrasound Surgical Therapy (LUST) device for an endoscopically suitable coagulation and tissue fragmentation based on the transmission of laser radiation and ultrasound via flexible silica glass fibers was developed at the LMTB. The ultrasound tissue interaction is based on the well-known CUSA-technology, which enables the surgeon to cut various types of tissue with different degrees of effectiveness. This selective cutting performance is a very useful feature, e.g. for a brain tumor extirpation, where it must be guaranteed that vessels and nerves are not affected while ensuring a fast reduction of the tumor mass. Application fields are in oncology, neurosurgery and angioplasty. The laser radiation can be used for tissue coagulation purposes and homeostasis. With a fiber based LUST-system working at a resonance frequency of 30 kHz, using a laser-vibrometer, velocity amplitudes of up to 20 m/s could be detected at the distal end which corresponds to an elongation of more than 100 micrometers . The investigations have shown that the velocity amplitude, next to suction, frequency and cross section of the active fiber tip, has the greatest impact on the fragmentation rate. With a suction setting of 5 W, the following tissue fragmentation rates could be achieved with a 1.3 mm2 fiber cross section and a tip amplitude velocity of 12 m/s: brain tissue 50 mg/s, liver 4,5 mg/s and kidney 4 mg/s. Laser radiation up to 25 watt was sufficient to coagulate soft tissue. This new approach in developing an application system for the therapeutical use of laser radiation and ultrasound via optical waveguides offers new possibilities in minimally invasive surgery, providing a complete new working sphere for the surgeon. The flexible opto-acoustic waveguide (400 - 1700 micrometers ) can be bent making areas accessible which were inaccessible before. The surgeon can use the laser radiation for tissue coagulation or cutting and the ultrasound for tissue fragmentation and tissue reduction without changing the instrumentation.

  16. Superpulsed carbon dioxide laser: an update on cutaneous surgical applications

    NASA Astrophysics Data System (ADS)

    Wheeland, Ronald G.

    1990-06-01

    Superpulsing the carbon dioxide laser allows delivery of high energy pulses separated by short pauses during which tissue cooling can occur.1 This new technology can provide several important advantages in cutaneous surgery over similar procedures performed with conventional continuous discharge carbon dioxide laser systems. In the excisional mode, there is a two-thirds reduction in thermal necrosis of the wound edge.2 This should translate into more rapid healing3 and increased rate of gain in tensile strength. In the vaporizational mode, precise, superficial and bloodless ablation of multiple benign appendigeal tumors is possible with less thermal damage yielding excellent cosmetic results. The establishment through additional research of accurate laser parameters, pulse duration, peak energy levels, and frequency of pulses, will help improve the specificity of the laser-tissue interaction to provide even better surgical results.

  17. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important. © 2015 Wiley Periodicals, Inc.

  18. Combined 1.06- and 1.32-um Nd:YAG laser in the treatment of rectosigmoideal tumors

    NASA Astrophysics Data System (ADS)

    Horak, Ladislav; Fanta, J.; Marek, Jan

    1993-07-01

    Since January 1988 we have been using the combined Nd:YAG laser Medicalas. The laser operates on the wavelength of 1.06 micrometers with maximum output power of 100 W, and a wavelength of 1.32 micrometers with maximum output power of 30 W. Introduction of the laser into clinical practice was preceded by experimental operation, where we verified the interaction of laser emittance on both wavelengths with the tissues of colon, stomach, esophagus, and open surgery of the abdominal and thoracic cavities.

  19. Excimer laser ablation of the cornea

    NASA Astrophysics Data System (ADS)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  20. Effects of laser interaction with living human tissues

    NASA Astrophysics Data System (ADS)

    Molchanova, O. E.; Protasov, E. A.; Protasov, D. E.; Smirnova, A. V.

    2016-09-01

    With the help of a highly sensitive laser device with the wavelength λ = 0.808 pm, which is optimal for deep penetration of the radiation into biological tissues, the effects associated with the appearance of uncontrolled human infrasonic vibrations of different frequencies were investigated. It was established that the observed fluctuations are associated with the vascular system which is characterized by its own respiratory movements, occurring synchronously with the movements of the respiratory muscles, the operation of the heart muscle, and the effect of compression ischemia. The effect of “enlightenment” of a tissue is observed with stopping of blood flow in vessels by applying a tourniquet on the wrist.

  1. Thermal injury models for optical treatment of biological tissues: a comparative study.

    PubMed

    Fanjul-Velez, Felix; Ortega-Quijano, Noe; Salas-Garcia, Irene; Arce-Diego, Jose L

    2010-01-01

    The interaction of optical radiation with biological tissues causes an increase in the temperature that, depending on its magnitude, can provoke a thermal injury process in the tissue. The establishment of laser irradiation pathological limits constitutes an essential task, as long as it enables to fix and delimit a range of parameters that ensure a safe treatment in laser therapies. These limits can be appropriately described by kinetic models of the damage processes. In this work, we present and compare several models for the study of thermal injury in biological tissues under optical illumination, particularly the Arrhenius thermal damage model and the thermal dosimetry model based on CEM (Cumulative Equivalent Minutes) 43°C. The basic concepts that link the temperature and exposition time with the tissue injury or cellular death are presented, and it will be shown that they enable to establish predictive models for the thermal damage in laser therapies. The results obtained by both models will be compared and discussed, highlighting the main advantages of each one and proposing the most adequate one for optical treatment of biological tissues.

  2. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.

    2017-03-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  3. Subsurface femtosecond tissue alteration: selectively photobleaching macular degeneration pigments in near retinal contact.

    PubMed

    Manevitch, Zakhariya; Lewis, Aaron; Levy, Carol; Zeira, Evelyne; Banin, Eyal; Manevitch, Alexandra; Khatchatouriants, Artium; Pe'er, Jacob; Galun, Eithan; Hemo, Itzhak

    2012-06-14

    This paper uses advances in the ultrafast manipulation of light to address a general need in medicine for a clinical approach that can provide a solution to a variety of disorders requiring subsurface tissue manipulation with ultralow collateral damage. Examples are age-related macular degeneration (AMD), fungal infections, tumors surrounded by overlying tissue, cataracts, etc. Although lasers have revolutionized the use of light in clinical settings, most lasers employed in medicine cannot address such problems of depth-selective tissue manipulation. This arises from the fact that they are mostly based on one photon based laser tissue interactions that provide a cone of excitation where the energy density is sufficiently high to excite heat or fluorescence in the entire cone. Thus, it is difficult to excite a specific depth of a tissue without affecting the overlying surface. However, the advent of femtosecond (fs) lasers has caused a revolution in multiphoton microscopy (Zipfel et al. Nat. Biotechnol. 2003, 21, 1369-1377; Denk et al. Science 1990, 248, 73-76) and fabrication (Kawata et al. Nature 2001, 412, 697-698). With such lasers, the photon energy density is only high enough for multiphoton processes in the focal volume, and this opens a new direction to address subsurface tissue manipulation. Here we show in an AMD animal model, Ccr2 KO knockout mutant mice, noninvasive, selective fs two-photon photobleaching of pigments associated with AMD that accumulate under and in ultraclose proximity to the overlying retina. Pathological evidence is presented that indicates the lack of collateral damage to the overlying retina or other surrounding tissue.

  4. Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.

    2005-04-01

    The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to calculate the forces experienced in the optical trap are discussed in detail in the following.

  5. The morphological tissue response of the piglet oesophagus to experimental irradiation by 1320 nm Nd:YAG laser.

    PubMed Central

    Stratmann, U; Schaarschmidt, K; Lehmann, R R; Schürenberg, M; Willital, G H; Berens, A

    1995-01-01

    The oesophagus of 18 minipiglets was exposed to endoscopic intraluminal irradiation with a 1320 nm Nd:YAG laser (10 W, 20 s) via a radial applicator with strictly radially symmetric light distribution. Immediately and at 2, 3, 4 and 8 wk after irradiation, the oesophagus was perfusion-fixed and filled with contrast solution. Radiographs were taken for evaluation by microradiometry. The specimens were subsequently prepared for light and transmission electron microscopy. The immediate reaction to irradiation was a morphological gradient of damage extending from the centre of the laser exposure where there was cellular thermonecrosis in all layers of the wall and condensation of the extracellular matrix, to a peripheral zone (at a distance of up to 8 mm from the region where the laser was centred) which showed only minor tissue damage manifested by intracellular vacuolation. In this zone dilatation of most vascular lumina was prominent. In the period between 2 and 8 wk after irradiation all phases of wound healing were observed and resulted in occlusion of the lumen of the oesophagus by early scar tissue after an interval of more than 3 wk at the former centre of laser exposure. Peripherally, epithelial regeneration resulted in a new luminal lining. Both the process of epithelial regeneration and that of fibrous repair indicated a good reparative capacity of laser-irradiated oesophageal wall tissues resembling the phases of normal wound healing. The immediate laser interaction with tissue indicated that the noncellular matrix components of tissues are more resistant to the photothermal effect than the cellular components. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:8586565

  6. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  7. Numerical study on the thawing process of biological tissue induced by laser irradiation.

    PubMed

    Zhou, Jianhua; Liu, Jing; Yu, Aibing

    2005-06-01

    Most of the laser applications in medicine and biology involve thermal effects. The laser-tissue thermal interaction has therefore received more and more attentions in recent years. However, previous works were mainly focused on the case of laser heating on normal tissues (37 degrees C or above). To date, little is known on the mechanisms of laser heating on the frozen biological tissues. Several latest experimental investigations have demonstrated that lasers have great potentials in tissue cryopreservation. But the lack of theoretical interpretation limits its further application in this area. The present paper proposes a numerical model for the thawing of biological tissues caused by laser irradiation. The Monte Carlo approach and the effective heat capacity method are, respectively, employed to simulate the light propagation and solid-liquid phase change heat transfer. The proposed model has four important features: (1) the tissue is considered as a nonideal material, in which phase transition occurs over a wide temperature range; (2) the solid phase, transition phase, and the liquid phase have different thermophysical properties; (3) the variations in optical properties due to phase-change are also taken into consideration; and (4) the light distribution is changing continually with the advancement of the thawing fronts. To this end, 15 thawing-front geometric configurations are presented for the Monte Carlo simulation. The least-squares parabola fitting technique is applied to approximate the shape of the thawing front. And then, a detailed algorithm of calculating the photon reflection/refraction behaviors at the thawing front is described. Finally, we develop a coupled light/heat transport solution procedure for the laser-induced thawing of frozen tissues. The proposed model is compared with three test problems and good agreement is obtained. The calculated results show that the light reflectance/transmittance at the tissue surface are continually changing with the progression of the thawing fronts and that lasers provide a new heating method superior to conventional heating through surface conduction because it can achieve a uniform volumetric heating. Parametric studies are performed to test the influences of the optical properties of tissue on the thawing process. The proposed model is rather general in nature and therefore can be applied to other nonbiological problems as long as the materials are absorbing and scattering media.

  8. Laser-guided direct writing for three-dimensional tissue engineering: Analysis and application of radiation forces

    NASA Astrophysics Data System (ADS)

    Nahmias, Yaakov Koby

    Tissue Engineering aims for the creation of functional tissues or organs using a combination of biomaterials and living cells. Artificial tissues can be implanted in patients to restore tissue function that was lost due to trauma, disease, or genetic disorder. Tissue equivalents may also be used to screen the effects of drugs and toxins, reducing the use of animals in research. One of the principle limitations to the size of engineered tissue is oxygen and nutrient transport. Lacking their own vascular bed, cells embedded in the engineered tissue will consume all available oxygen within hours while out branching blood vessels will take days to vascularize the implanted tissue. Establishing capillaries within the tissue prior to implantation can potentially eliminate this limitation. One approach to establishing capillaries within the tissue is to directly write endothelial cells with micrometer accuracy as it is being built. The patterned endothelial cells will then self-assemble into vascular structures within the engineering tissue. The cell patterning technique known as laser-guided direct writing can confine multiple cells in a laser beam and deposit them as a steady stream on any non-absorbing surface with micrometer scale accuracy. By applying the generalized Lorenz-Mie theory for light scattering on laser-guided direct writing we were able to accurately predict the behavior of with various cells and particles in the focused laser. In addition, two dimensionless parameters were identified for general radiation-force based system design. Using laser-guided direct writing we were able to direct the assembly of endothelial vascular structures with micrometer accuracy in two and three dimensions. The patterned vascular structures provided the backbone for subsequent in vitro liver morphogenesis. Our studies show that hepatocytes migrate toward and adhere to endothelial vascular structures in response to endothelial-secreted hepatocyte growth factor (HGF). Our approach has the advantage of retaining the natural heterotypic cell-cell interaction and spatial arrangement of native tissue, which is important for proper tissue function.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Microsoft Office; Windows MediaPlayer or RealPlayer.

  9. Near "real" time magnetic resonance images as a monitoring system for interstitial laser therapy: experimental protocols

    NASA Astrophysics Data System (ADS)

    Castro, Dan J.; Farahani, Keyvan; Soudant, Jacques; Zwarun, Andrew A.; Lufkin, Robert B.

    1992-06-01

    The failure rate of cancer treatment remains unacceptably high, still being a leading cause of mortality in adults and children despite major advances over the past 50 years in the fields of surgery, radiation therapy and, more recently, chemo and immunotherapy. Surgical access to some deep tumors of the head and neck and other areas often require extensive dissections with residual functional and cosmetic deformities. Repeated treatment is not possible after maximum dose radiotherapy and chemotherapy is still limited by its systemic toxicity. An attractive solution to these problems would be the development of a new adjunctive method combining the best features of interstitial laser therapy for selective tumor destruction via minimally invasive techniques for access and 3-D magnetic resonance imaging (MRI) as a monitoring system for laser-tissue interactions. Interstitial laser therapy (ILT) via fiberoptics allow laser energy to be delivered directly into deeper tissues. However, this concept will become clinically useful only when noninvasive, accurate, and reproducible monitoring methods are developed to measure energy delivery to tissues. MRI has numerous advantages in evaluating the irreversible effects of laser treatment in tissues, since laser energy includes changes not only in the thermal motions of hydrogen protons within the tissue, but also in the distribution and mobility of water and lipids. These techniques should greatly improve the use of ILT in combination with MRI to allow treatment of deeper, more difficult to reach tumors of head and neck and other anatomical areas with a single needle stick.

  10. Temporal evolution of liquid-assisted hard bio-tissue ablation with infrared pulsed lasers under a liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng

    2016-10-01

    Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.

  11. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  12. Experimental Proof for the Role of Nonlinear Photoionization in Plasmonic Phototherapy.

    PubMed

    Minai, Limor; Zeidan, Adel; Yeheskely-Hayon, Daniella; Yudovich, Shimon; Kviatkovsky, Inna; Yelin, Dvir

    2016-07-13

    Targeting individual cells within a heterogeneous tissue is a key challenge in cancer therapy, encouraging new approaches for cancer treatment that complement the shortcomings of conventional therapies. The highly localized interactions triggered by focused laser beams promise great potential for targeting single cells or small cell clusters; however, most laser-tissue interactions often involve macroscopic processes that may harm healthy nearby tissue and reduce specificity. Specific targeting of living cells using femtosecond pulses and nanoparticles has been demonstrated promising for various potential therapeutic applications including drug delivery via optoporation, drug release, and selective cell death. Here, using an intense resonant femtosecond pulse and cell-specific gold nanorods, we show that at certain irradiation parameters cell death is triggered by nonlinear plasmonic photoionization and not by thermally driven processes. The experimental results are supported by a physical model for the pulse-particle-medium interactions. A good correlation is found between the calculated total number and energy of the generated free electrons and the observed cell death, suggesting that femtosecond photoionization plays the dominant role in cell death.

  13. INTERACTION OF LASER RADIATION WITH MATTER: Calculation of the kinetics of heating and structural changes in the cartilaginous tissue under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sobol', E. N.; Kitai, M. S.

    1998-07-01

    A theoretical model is developed for the calculation of the temperature fields and determination of the size of a zone with structural changes in the cartilaginous tissue. The model is based on a simultaneous analysis of the heat and mass transfer processes and it takes into account the bulk absorption of laser radiation by the tissue, surface evaporation of water, and temperature dependences of the diffusion coefficients. It is assumed that under the influence of a phase transition between free and bound water, caused by heating of the cartilage to 70°C, the proteoglycans of the cartilage matrix become mobile and, as a result of such mass transfer, structural changes are induced in the cartilaginous tissue causing relaxation of stresses or denaturation. It is shown that the maximum temperature is then reached not on the irradiated surface but at some distance from it, and that the size of the zones of structural changes (denaturation depth) depends strongly on the energy density of the laser radiation and its wavelength, on the duration of the irradiation, and on the cartilage thickness. This model makes it possible to calculate the temperature fields and the depth of structural changes in laser-induced relaxation of stresses and changes in the shape of the cartilaginous tissue.

  14. Color-encoded distance for interactive focus positioning in laser microsurgery

    NASA Astrophysics Data System (ADS)

    Schoob, Andreas; Kundrat, Dennis; Lekon, Stefan; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-08-01

    This paper presents a real-time method for interactive focus positioning in laser microsurgery. Registration of stereo vision and a surgical laser is performed in order to combine surgical scene and laser workspace information. In particular, stereo image data is processed to three-dimensionally reconstruct observed tissue surface as well as to compute and to highlight its intersection with the laser focal range. Regarding the surgical live view, three augmented reality concepts are presented providing visual feedback during manual focus positioning. A user study is performed and results are discussed with respect to accuracy and task completion time. Especially when using color-encoded distance superimposed to the live view, target positioning with sub-millimeter accuracy can be achieved in a few seconds. Finally, transfer to an intraoperative scenario with endoscopic human in vivo and cadaver images is discussed demonstrating the applicability of the image overlay in laser microsurgery.

  15. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    NASA Astrophysics Data System (ADS)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  16. Laser Surgery: Organelles to Organs

    NASA Astrophysics Data System (ADS)

    Berns, Michael W. D.

    1998-03-01

    Understanding the physical mechanisms of light interaction with biological molecules and structure has resulted in the application of photons to a wide variety of biological and medical problems ranging from subcellular manipulation/surgery to the successful diagnosis and treatment of human disease. Mechanisms such as the generation and transfer of heat, light-driven chemistry (photochemistry), high peak power acoustic-mechanical effects, high photon-energy induced bond breaking, and optical induced forces through momentum transfer, are being utilized in single cells at the microscopic (submicron and micron) level as well as the macroscopic level in tissue and organs. At the subcellular level, focused laser microbeams (laser scissors and tweezers) are being used to cut and move chromosomes to study genetic function as well as to clone and sequence genes. The same laser technology is being used to manipulate a variety of cell organelles such as mitochondria, cell membranes, nucleoli, and mitochondria in order to study their functions in cell physiology. At the tissue level, lasers are being used to diagnose and treat malignancy in combination with light-activated drugs, to ablate cornea and other hard and soft tissue through ultraviolet photoablation, to selectively ablate structures within the skin under controlled heating/cooling conditions, and to differentiate normal from abnormal tissue using a variety of fluorescence detection and light scattering techniques.

  17. Selective preparation of hard dental tissue: classical and laser treatments comparison

    NASA Astrophysics Data System (ADS)

    Dostálova, Tat'jana; Jelínkova, Helena; Němec, Michal; Koranda, Petr; Miyagi, Mitsunobu; Iwai, Katsumasa; Shi, Yi-Wei; Matsuura, Yuji

    2006-02-01

    For the purpose of micro-selective preparation which is part of the modern dentistry four various methods were examined: ablation by Er:YAG laser radiation (free-running or Q-switching regime), preparation of tissues by ultrasonic round ball tip, and by the classical dental drilling machine using diamond round bur. In the case of Er:YAG laser application the interaction energy 40 mJ in pulse of 200 us yielding to the interaction intensity 62 kW/cm2, and 20 mJ in pulse of 100 ns yielding to the interaction intensity 62 MW/cm2 was used for the case of free running, and Q-switch regime, respectively. For comparisson with the classical methods the ultrasound preparation tip (Sonixflex cariex TC, D - Sonicsys micro) and dental driller together with usual preparation burrs and standard handpiece were used. For the interaction experiment the samples of extracted human teeth and ebony cut into longitudinal sections and polished were used. The thickness of the prepared samples ranged from 5 to 7 mm. The methods were compared from the point of prepared cavity shape (SEM), inner surface, and possibility of selective removal of carries. The composite filling material was used to reconstruct the cavities. The dye penetrating analysis was performed.

  18. Risk evaluation of possible human hazards by chemicals, particles, and infectious units

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Spleiss, Martin

    1996-12-01

    Formation of laser plume by laser-tissue interaction means an inhomogeneous, pluriphasic and dynamic multicomponent system of biological material and induced modifications. While IR_laser applications often simulate processes of thermal food preservation, UV-lasers favor formation of aromatic organic compounds as VOC. Along with traces of PAH, nitriles and O-/N-containing heterocyclic compounds two classes of dialkyldiketopyrroli(di)nes are special formed VOC as laser solvents. Inhalable particles or partially dried and modified biomass contain - along with infectious particles - a lot of temperature degradation products. Ames tests and Comet-assays gave hint to some mutagenic activities present in laser smoke.

  19. The sensitivity in the IR spectrum of the intact and pathological tissues by laser biophotometry.

    PubMed

    Ravariu, Cristian; Bondarciuc, Ala

    2014-03-01

    In this paper, we use the laser biophotometry for in vivo investigations, searching the most sensitive interactions of the near-infrared spectrum with different tissues. The experimental methods are based on the average reflection coefficient (ARC) measurements. For healthy persons, ARC is the average of five values provided by the biophotometer. The probe is applied on dry skin with minimum pilosity, in five regions: left-right shank, left-right forearm, and epigastrium. For the pathological tissues, the emitting terminal is moved over the suspected area, controlling the reflection coefficient level, till a minimum value occurs, as ARC-Pathological. Then, the probe is moved on the symmetrical healthy region of the body to read the complementary coefficient from intact tissue, ARC-Intact, from the same patient. The experimental results show an ARC range between 67 and 59 mW for intact tissues and a lower range, up to 58-42 mW, for pathological tissues. The method is efficient only in those pathological processes accompanied by variable skin depigmentation, water retention, inflammation, thrombosis, or swelling. Frequently, the ARC ranges are overlapping for some diseases. This induces uncertain diagnosis. Therefore, a statistical algorithm is adopted for a differential diagnosis. The laser biophotometry provides a quantitative biometric parameter, ARC, suitable for fast diagnosis in the internal and emergency medicine. These laser biophotometry measurements are representatives for the Romanian clinical trials.

  20. Endoluminal non-contact soft tissue ablation using fiber-based Er:YAG laser delivery

    NASA Astrophysics Data System (ADS)

    Kundrat, Dennis; Fuchs, Alexander; Schoob, Andreas; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-03-01

    The introduction of Er:YAG lasers for soft and hard tissue ablation has proven promising results over the last decades due to strong absorption at 2.94 μm wavelength by water molecules. An extension to endoluminal applications demands laser delivery without mirror arms due to dimensional constraints. Therefore, fiber-based solutions are advanced to provide exible access while keeping space requirements to a minimum. Conventional fiber-based treatments aim at laser-tissue interactions in contact mode. However, this procedure is associated with disadvantages such as advancing decrease in power delivery due to particle coverage of the fiber tip, tissue carbonization, and obstructed observation of the ablation progress. The objective of this work is to overcome aforementioned limitations with a customized fiber-based module for non-contact robot-assisted endoluminal surgery and its associated experimental evaluation. Up to the authors knowledge, this approach has not been presented in the context of laser surgery at 2.94 μm wavelength. The preliminary system design is composed of a 3D Er:YAG laser processing unit enabling automatic laser to fiber coupling, a GeO2 solid core fiber, and a customized module combining collimation and focusing unit (focal length of 20 mm, outer diameter of 8 mm). The performance is evaluated with studies on tissue substitutes (agar-agar) as well as porcine samples that are analysed by optical coherence tomography measurements. Cuts (depths up to 3mm) with minimal carbonization have been achieved under adequate moistening and sample movement (1.5mms-1). Furthermore, an early cadaver study is presented. Future work aims at module miniaturization and integration into an endoluminal robot for scanning and focus adaptation.

  1. A laser-abrasive method for the cutting of enamel and dentin.

    PubMed

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  2. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  3. Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters.

    PubMed

    Bello-Silva, Marina Stella; Wehner, Martin; Eduardo, Carlos de Paula; Lampert, Friedrich; Poprawe, Reinhart; Hermans, Martin; Esteves-Oliveira, Marcella

    2013-01-01

    This study aimed to evaluate the possibility of introducing ultra-short pulsed lasers (USPL) in restorative dentistry by maintaining the well-known benefits of lasers for caries removal, but also overcoming disadvantages, such as thermal damage of irradiated substrate. USPL ablation of dental hard tissues was investigated in two phases. Phase 1--different wavelengths (355, 532, 1,045, and 1,064 nm), pulse durations (picoseconds and femtoseconds) and irradiation parameters (scanning speed, output power, and pulse repetition rate) were assessed for enamel and dentin. Ablation rate was determined, and the temperature increase measured in real time. Phase 2--the most favorable laser parameters were evaluated to correlate temperature increase to ablation rate and ablation efficiency. The influence of cooling methods (air, air-water spray) on ablation process was further analyzed. All parameters tested provided precise and selective tissue ablation. For all lasers, faster scanning speeds resulted in better interaction and reduced temperature increase. The most adequate results were observed for the 1064-nm ps-laser and the 1045-nm fs-laser. Forced cooling caused moderate changes in temperature increase, but reduced ablation, being considered unnecessary during irradiation with USPL. For dentin, the correlation between temperature increase and ablation efficiency was satisfactory for both pulse durations, while for enamel, the best correlation was observed for fs-laser, independently of the power used. USPL may be suitable for cavity preparation in dentin and enamel, since effective ablation and low temperature increase were observed. If adequate laser parameters are selected, this technique seems to be promising for promoting the laser-assisted, minimally invasive approach.

  4. Dynamics of blood plasma by spectropolarimetry and biochemical techniques

    NASA Astrophysics Data System (ADS)

    Voloshynska, Katerina; Ilashchuka, Tetjana; Prydij, Olexander; Gruia, Maria

    2014-08-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the dynamics of metabolic syndrome and choosing the best personal treatment. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues.

  5. Spectropolarimetry of blood plasma in optimal molecular targeted therapy

    NASA Astrophysics Data System (ADS)

    Voloshynska, Katerina; Ilashchuk, Tetjana; Yermolenko, Sergey

    2015-02-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the dynamics of metabolic syndrome and choosing the best personal treatment. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues.

  6. Photolasertherapy for the treatment of infections in neurosurgery: experimental and clinical study

    NASA Astrophysics Data System (ADS)

    Lombard, Gian F.

    1996-12-01

    At the first time, the CO2 laser was utilised in infective neurosurgical pathology as a surgical cutting instrument to remove inflammatory pseudomembranes in chronic osteomyelitis, and as a vaporising instmment on the dura mater surface. Successively, the instrument, defocused and at a low power, was used for prolonged and diffuse photo coagulation ofthe surgical cavity, particularly, ofthe dural surface and ofthe osteomyelitic bone edges, with the aim to sterilise tissues. So, we saw a shortening of the average time of wound healing and a lack of recurrence of the septic pathology. Then, we have treated, with CO2 laser, intracranial infective pathology: i.e. primary abscesses, capsulated or not, circumscribed purulent encephalitis, secondary abscesses in surgical cavities (patients operated for intracranial hematomas and tumors). In these cases we have obtained a lack of septic recurrences and an improvement ofneurological post-operative course. Thank to these results, we have continued to use laser in infective pathology; for giving an experimental support to these results we have carried on researches in vivo (on the experimental animal) to see the interaction between the laser and inflammatory tissue, and in vitro (on bacterial culture: in solid and liquid media) to see the laser effect on the bacterial cell. The bacterial cell has been also sensibiized to the photo dynamic effect of the laser (Argon, He-Ne), with hematoporphyrin. The goal of these experiments is to understand the role of thermal, photochemical, and mechanic resonance laser effects in the interaction between laser radiation and bacterial cell.

  7. Laser radiation bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostálová, Tat'jana; Jelínková, Helena; Šulc, Jan; Koranda, Petr; Nemec, Michal; Racek, Jaroslav; Miyagi, Mitsunobu

    2008-02-01

    Ceramic brackets are an aesthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths, which can lead to bracket breakage and enamel damage during classical type of debonding. This study examined the possibility of laser radiation ceramic brackets removing as well as the possible damage of a surface structure of hard dental tissue after this procedure. Two types of lasers were used for the experiments - a laser diode LIMO HLU20F400 generating a wavelength of 808 nm with the maximum output power 20W at the end of the fiber (core diameter 400 μm, numerical aperture 0.22). As a second source, a diode-pumped Tm:YAP laser system generating a wavelength of 1.9 μm, with up to 3.8 W maximum output power was chosen. For the investigation, extracted incisors with ceramic brackets were used. In both cases, laser radiation was applied for 0.5 minute at a maximum power of 1 W. Temperature changes of the irradiated tissue was registered by camera Electrophysics PV320. After the interaction experiment, the photo-documentation was prepared by the stereomicroscope Nikon SMZ 2T, Japan. The surface tissue analysis was processed in "low vacuum" (30 Pa) regime without desiccation. This technique was used to record back-scattered electron images. Selecting the appropriate laser, resin, and bracket combination can minimize risks of enamel degradation and make debonding more safe.

  8. Laser Ablation for Cancer: Past, Present and Future

    PubMed Central

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  9. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    PubMed

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  10. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  11. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  12. Chromatically encoded high-speed photography of cavitation bubble dynamics inside inhomogeneous ophthalmic tissue

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Matthias, B.; Kranert, F.; Wetzel, C.; Krüger, A.; Ripken, T.

    2016-03-01

    The interaction effect of photodisruption, which is used for dissection of biological tissue with fs-laser pulses, has been intensively studied inside water as prevalent sample medium. In this case, the single effect is highly reproducible and, hence, the method of time-resolved photography is sufficiently applicable. In contrast, the reproducibility significantly decreases analyzing more solid and anisotropic media like biological tissue. Therefore, a high-speed photographic approach is necessary in this case. The presented study introduces a novel technique for high-speed photography based on the principle of chromatic encoding. For illumination of the region of interest within the sample medium, the light paths of up to 12 LEDs with various emission wavelengths are overlaid via optical filters. Here, MOSFET-electronics provide a LED flash with a duration <100 ns; the diodes are externally triggered with a distinct delay for every LED. Furthermore, the different illumination wavelengths are chromatically separated again for detection via camera chip. Thus, the experimental setup enables the generation of a time-sequence of <= 12 images of a single cavitation bubble dynamics. In comparison to conventional time-resolved photography, images in sample media like water and HEMA show the significant advantages of this novel illumination technique. In conclusion, the results of this study are of great importance for the fundamental evaluation of the laser-tissue interaction inside anisotropic biological tissue and for the optimization of the surgical process with high-repetition rate fs-lasers. Additionally, this application is also suitable for the investigation of other microscopic, ultra-fast events in transparent inhomogeneous materials.

  13. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  14. Study on laser-assisted drug delivery with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Guei; Tsai, Ting-Yen; Yang, Chih-Hsun; Tsai, Meng-Tsan

    2017-04-01

    The nail provides a functional protection to the fingertips and surrounding tissue from external injuries. Nail plate divided into three layers including dorsal, intermediate, and ventral layers. The dorsal layer consists of compact, hard keratins, limiting topical drug delivery through the nail. In this study, we investigate the application of fractional CO2 laser that produces arrays of microthermal ablation zones (MAZs) to facilitate drug delivery in the nails. Moreover, optical coherence tomography (OCT) is implemented for real-time monitoring of the laser-skin tissue interaction, sparing the patient from invasive surgical sampling procedure. Observations of drug diffusion through the induced MAZ array are achieved by evaluating the time-dependent OCT intensity variance. Subsequently, nails are treated with cream and liquid topical drugs to investigate the feasibility and diffusion efficacy of laser-assisted drug delivery. Our results show that fractional CO2 laser improves the efficacy of topical drug delivery in the nail plate, and that OCT could potentially be used for in vivo monitoring of the depth of laser penetration as well as real-time observations of drug delivery.

  15. Histologic effects of resurfacing lasers.

    PubMed

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Irradiation by pulsed Nd:YAG laser induces the production of extracellular matrix molecules by cells of the connective tissues: a tool for tissue repair

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Basile, Venere; Cialdai, Francesca; Romano, Giovanni; Fusi, Franco; Conti, Antonio

    2008-04-01

    Many studies demonstrated that mechanical stress is a key factor for tissue homeostasis, while unloading induce loss of mass and impairment of function. Because of their physiological function, muscle, connective tissue, bone and cartilage dynamically interact with mechanical and gravitational stress, modifying their properties through the continuous modification of their composition. Indeed, it is known that mechanical stress increases the production of extracellular matrix (ECM) components by cells, but the mechanotransduction mechanisms and the optimal loading conditions required for an optimal tissue homeostasis are still unknown. Considering the importance of cell activation and ECM production in tissue regeneration, a proper use of mechanical stimulation could be a powerful tool in tissue repair and tissue engineering. Studies exploring advanced modalities for supplying mechanical stimuli are needed to increase our knowledge on mechanobiology and to develop effective clinical applications. Here we describe the effect of photomechanical stress, supplied by a pulsed Nd:YAG laser on ECM production by cells of connective tissues. Cell morphology, production of ECM molecules (collagens, fibronectin, mucopolysaccharides), cell adhesion and cell energy metabolism have been studied by using immunofluorescence and autofluorescence microscopy. The results show that photomechanical stress induces cytoskeleton remodelling, redistribution of membrane integrins, increase in production of ECM molecules. These results could be of consequence for developing clinical protocols for the treatment of connective tissue dideases by pulsed Nd:YAG laser.

  17. Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study.

    PubMed

    Elhilali, Mostafa M; Badaan, Shadie; Ibrahim, Ahmed; Andonian, Sero

    2017-06-01

    To evaluate in vitro and in vivo effects of Moses technology in Holmium laser and to compare it with the Regular mode in terms of lithotripsy efficiency and laser-tissue interactions. The Lumenis ® Pulse™ P120H holmium laser system together with Moses D/F/L fibers were used to compare the Regular mode with the Moses modes in stone retropulsion by using a high-speed camera, and stone ablation efficiency. In addition, a porcine ureteroscopy model was used to assess stone fragmentation and dusting as well as laser-tissue interaction with the ureteral wall. After a laser pulse, in vitro stone displacement experiments showed a significant reduction in retropulsion when using the Moses mode. The stone movement was reduced by 50 times at 0.8 J and 10 Hz (p < 0.01). The pronounced reduction of retropulsion in the Moses mode was clearly observed during fragmentation setting (high energy) and dusting (low energy, high Hz). In addition, stone fragmentation tests showed that the Moses modes resulted in a significantly higher ablation volume when compared with the Regular mode (160% higher; p < 0.001). In vivo assessment also supported the reduction in retropulsion when treating stones in the porcine kidney. Histological analysis of the porcine ureter after direct lasing in the Moses mode suggested less damage than in the Regular mode. The Moses technology resulted in more efficient laser lithotripsy, in addition to significantly reduced stone retropulsion, and displayed a margin of safety that may result in a shorter procedural time and safer lithotripsy.

  18. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  19. Noninvasive micromanipulation of live HIV-1 infected cells via laser light

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience

    2015-12-01

    Live mammalian cells from various tissues of origin can be aseptically and noninvasively micromanipulated via lasers of different regimes. Laser-driven techniques are therefore paving a path toward the advancement of human immuno-deficiency virus (HIV-1) investigations. Studies aimed at the interaction of laser light, nanomaterials, and biological materials can also lead to an understanding of a wealth of disease conditions and result in photonics-based therapies and diagnostic tools. Thus, in our research, both continuous wave and pulsed lasers operated at varying wavelengths are employed, as they possess special properties that allow classical biomedical applications. This paper discusses photo-translocation of antiretroviral drugs into HIV-1 permissive cells and preliminary results of low-level laser therapy (LLLT) in HIV-1 infected cells.

  20. Introduction to photon traditional Chinese medicine

    NASA Astrophysics Data System (ADS)

    Liu, Songhao; Liu, Timon C.; Li, Yan; Meng, Yao-Yong

    2000-10-01

    Photon traditional Chinese medicine (PTCM), and inter- discipline of photonics and traditional Chinese medicine (TCM), studies TCM, such as the diagnostics, therapeutics, indistinct disease theory, rehabilitation, health care and so forth, by using photonics. IN this paper, we will give an introduction of PTCM and review its progress in the collective interaction of low intensity laser irradiation with biological systems, the propagation of low intensity laser irradiation through tissue, the biophotonics representation of acupoint, low intensity laser therapy, TCM laser hemotherapy, laser acupuncture. In this paper, the concept of biological unit was put forward for acupoint and cell membrane receptors to be considered as an identical particle model. The interaction of identical particles was studied by quantum chemistry, as well as the response of the system interacting with physical factors by the time quantum theory on radiation-matter interaction. It was shown that the identical particles from coherent states, the response rate of the super-change state is a linear function of N2 and N3 (N is the particle number), and the one of the sub-change state is zero. Its application led to the explanation of the contribution of biological unit number of acupoint to acupoint specificity and the contribution of cell membrane receptors to low in tensity laser irradiation. The comparative research of acupoint effect and cell function with biophoton emission showed that acupoint states and the membrane receptor state are related to body diseases.

  1. [Crystalline lens photodisruption using femtosecond laser: experimental study].

    PubMed

    Chatoux, O; Touboul, D; Buestel, C; Balcou, P; Colin, J

    2010-09-01

    The aim of this study was to analyze the interactions during femtosecond (fs) laser photodisruption in ex vivo porcine crystalline lenses and to study the parameters for laser interaction optimization. An experimental femtosecond laser was used. The laser characteristics were: 1030 nm wavelength; pulse duration, 400 fs; and numerical aperture, 0.13. Specific software was created to custom and monitor any type of photoablation pattern for treatment purposes. Porcine crystalline lenses were placed in an open sky holder filled with physiological liquid (BSS) covered by a glass plate. A numerical camera was associated with metrological software in order to magnify and quantify the results. Transmission electron microscopy (TEM) was performed on some samples to identify the microscopic plasma interactions with the lens. The optimization of parameters was investigated in terms of the optical breakdown threshold, the sizing of interactions, and the best pattern for alignments. More than 150 crystalline lenses of freshly enucleated pigs were treated. The optical breakdown threshold (OBT) was defined as the minimal energy level per pulse necessary to observe a physical interaction. In our study, the OBT varied according to the following parameters: the crystalline lens itself, varying from 4.2 to 7.6 μJ (mean, 5.1 μJ), and the depth of laser focus, varying up to 1 μJ, increasing in the depth of the tissue. Analyzing the distance between impacts, we observed that the closer the impacts were the less power was needed to create a clear well-drawn defect pattern (lines), i.e., with a 4-μJ optimized OBT, when the impacts were placed every 2 μm for the x,y directions and 60 μm for the z direction. Coalescent bubbles created by plasma formation always disappeared in less than 24h. The nonthermal effect of plasma and the innocuousness on surrounding tissues were proven by the TEM results. The crystalline lens photodisruption by the femtosecond laser seems an innovative technique usable in the ultra precise crystalline lens cutting. Experimental studies in vivo are necessary in order to define of them the applications (surgery of the cataract and presbyopia) and limits in the cavitations bubbles kinetic and transfer. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  2. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  3. Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy N.; Voronine, Dmitri V.; Ko, Brian A.; Lee, Ho Wai Howard; Rana, Aman; Bagavathiannan, Muthukumar V.; Sokolov, Alexei V.; Scully, Marlan O.

    2017-05-01

    The ability to distinguish between crops and weeds using sensors from a distance will greatly benefit the farming community through improved and efficient scouting for weeds, reduced herbicide input costs and improved profitability. In the present study, we examined the utility of femtosecond laser-induced breakdown spectroscopy (LIBS) for plant species differentiation. Greenhouse-grown plants of dallisgrass, wheat, soybean and bell pepper were evaluated using LIBS under an ambient environment. LIBS experiments were performed on the leaf samples of different plant species using a femtosecond laser system with an inexpensive lightweight detector. Temperatures of laser-induced plasma in plants depend on many parameters and were determined for each of the study species by the constituent elements interacting with femtosecond laser pulses. Using elemental calcium transitions in plant tissue samples to measure plasma temperatures, we report consistent differences among the four study species, with average values ranging from 5090 ± 168 K (soybean) to 5647 ± 223 K (dallisgrass).

  4. Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2010-03-01

    I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.

  5. Laser technology and applications in gynaecology.

    PubMed

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  6. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.

    PubMed

    Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki

    2006-12-20

    Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.

  7. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    PubMed

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P < 0.01 for both). The temperature on film FOTCs increases exponentially with adjusted R 2  = 0.959 in continuous wave mode, while in pulsed mode with adjusted R 2  = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  8. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    PubMed

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.

  9. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues.

    PubMed Central

    Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A

    2002-01-01

    We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336

  10. Noninvasive micromanipulation of live HIV-1 infected cells via laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mthunzi, Patience

    Live mammalian cells from various tissues of origin can be aseptically and noninvasively micromanipulated via lasers of different regimes. Laser-driven techniques are therefore paving a path toward the advancement of human immuno-deficiency virus (HIV-1) investigations. Studies aimed at the interaction of laser light, nanomaterials, and biological materials can also lead to an understanding of a wealth of disease conditions and result in photonics-based therapies and diagnostic tools. Thus, in our research, both continuous wave and pulsed lasers operated at varying wavelengths are employed, as they possess special properties that allow classical biomedical applications. This paper discusses photo-translocation of antiretroviral drugsmore » into HIV-1 permissive cells and preliminary results of low-level laser therapy (LLLT) in HIV-1 infected cells.« less

  11. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum is presented. Appropriate design precautions have been undertaken to ensure that prelasing does not occur. In this system, the main Q-switched pulse may be followed by one pulse of lower amplitude "postlasing" when an optimised quarter wave voltage of 750 V is applied. It was found that the laser produced 320 ns pulses with 2.5 mJ pulse energy and 3.3 kW peak power at low repetition rates of 50-70 Hz. This is the first time that such studies of electro-optic modulator (EOM) Q-switched Tm3+ fibre lasers have been reported. The maximum peak power was obtained for an optimum cavity length of 2.15 meters, made up of fibre length, broadband beamsplitter polarizer, Q-switch crystal and passive space. Computer simulation of Tm3+doped silica and Er2-doped fluorozirconate fibre lasers using general laser analysis and design (GLAD) software has been successfully investigated for the first time. Input files, which are very similar to language are created to model three designs of fibre lasers, two for Tm3+-doped silica fibre lasers, core pumped at 1.57 mum and cladding pumped at 790 nm, and one for a 2.7 mum Er3+-doped fluorozirconate fibre laser cladding pumped at 975 nm. Results are presented from a relatively comprehensive computer model, which simulates CW operation of the fibre lasers. The simulation suggests that to enhance the conversion energy we have to optimise between the absorption coefficient of the fibre and the diffraction algorithms. Comparison of soft and hard tissue ablation with high peak power Q-switched and CW Tm3+-silica fibre lasers are presented. The ablation of chicken breast and lamb liver tissues as a soft tissue and cartilage as a hard tissue have been investigated using a free running CW-Tm3+-doped fibre laser (wavelength 1.99 mum, with self-pulsation duration ranging over 1 to few tens of microseconds) and for Q-switched operation of the same laser (pulse duration ranging from 150 ns to 900 ns and pulse repetition rates from 100 Hz to 17 kHz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  12. In vitro inhibitory activity of probiotic products against oral Candida species.

    PubMed

    Zhao, C; Lv, X; Fu, J; He, C; Hua, H; Yan, Z

    2016-07-01

    To evaluate the inhibitory activity of probiotics against oral Candida species. Four commercial probiotic products were screened. Bacillus subtilis R0179 was found to have a significant antifungal effect. Bacillus subtilis-Candida interactions were evaluated using disc diffusion tests, confocal laser scanning microscopy, scanning electron microscopy and interaction with engineered human oral mucosa tissue. Bacillus subtilis exhibited clear zones of inhibition for Candida albicans and Candida parapsilosis but not for Candida krusei. A remarkable reduction in the number of Candida cells and abundant Candida cell death were visualized with confocal laser scanning microscopy. Shrinkage and deformation of Candida cells was observed using scanning electron microscopy. Culture of C. albicans on engineered human oral mucosa tissues resulted in the presence of a large number of yeast cells on the tissue surface and the development of large-scale tissue damage. However, comparatively fewer Candida cells were observed on B. subtilis-treated tissues. We also use ultra performance liquid chromatography/time of flight mass spectrometry (UPLC/TOF MS) to explore the preliminary antifungal mechanism of B. subtilis R0179 and to detect that whether it can secrete an antifungal agent, Iturin A. Bacillus subtilis R0179 exhibits a significant inhibitory effect on the growth of Candida species. Bacillus subtilis has the potential to be used in the prevention or treatment of oral candidiasis. © 2016 The Society for Applied Microbiology.

  13. Holmium:YAG (lambda=2120nm) vs. Thulium fiber (lambda=1908nm) laser for high-power vaporization of canine prostate tissue

    NASA Astrophysics Data System (ADS)

    Casperson, Andrew L.; Barton, Robert A.; Scott, Nicholas J.; Fried, Nathaniel M.

    2008-02-01

    Direct studies comparing different lasers for treatment of BPH are lacking. This preliminary study compares continuous-wave (CW) vs. pulsed prostate tissue vaporization for the Thulium fiber laser and Holmium:YAG laser, both operating near the 1940 nm water absorption peak in tissue. A 50-W Thulium fiber laser (λ= 1908 nm) delivered CW laser radiation through a 600-μm silica fiber in non-contact mode with a 5-mm-diameter spot at the tissue surface. A Holmium:YAG laser (λ= 2120 nm) operated with an energy of 2 J, pulse rate of 25 Hz, and average power of 50 W, and delivered pulsed laser radiation through a 600-μm silica fiber with a 5-mm-diameter laser spot to achieve similar irradiances at the tissue surface. Tissue vaporization was performed in air with the prostate kept hydrated in saline. Tissue vaporization efficiency of both lasers was compared (n = 10 canine prostates for each laser group). Mean vaporization efficiency measured 5.30 +/- 0.48 kJ/g vs. 4.13 +/- 0.46 kJ/g for Thulium fiber and Holmium lasers (P < 0.05). Tissue vaporization rates measured 0.57 +/- 0.05 g/min vs. 0.73 +/- 0.07 g/min (P < 0.05). The Holmium:YAG laser vaporizes prostate tissue at a higher rate than the Thulium fiber laser, for the same average power delivered to the tissue. Both the Thulium fiber laser and Holmium:YAG lasers are capable of vaporizing prostate tissue at a rate > 1 g/min if operated at the high powers (100-W) typically used in the clinic.

  14. Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

    PubMed

    Gelskey, S C; White, J M; Gelskey, D E; Kremers, W

    1998-11-01

    The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

  15. Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation

    NASA Astrophysics Data System (ADS)

    Jiao, Luguang; Yang, Zaifu; Wang, Jiarui

    2014-09-01

    With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.

  16. New developments in ophthalmic applications of ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Spooner, Greg J. R.; Juhasz, Tibor; Ratkay-Traub, Imola; Djotyan, Gagik P.; Horvath, Christopher; Sacks, Zachary S.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.; Kurtz, Ron M.

    2000-05-01

    The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.

  17. Instrumentation For The Surgical Application Of The Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Frank, F.; Bailer, P.; Beck, O.; Bowering, R.; Hofstetter, A.

    1984-03-01

    The Nd:YAG laser has become a coagulation instrument, which has found acceptance in interdisciplinary surgery. The main contributors are its highly efficient coagulation capability in interaction with tissue and the fact that the Nd:YAG laser beam can be transmitted by means of a simple quartz-glass fiber. Appropriate systems and instruments for transmission and operation have been developed for the various applications in neurosurgery, pulmology, gastroenterology, urology, gynaecology and dermatology. Operation methods in open and endoscopic surgery under use of several hand held devices and flexible as well as rigid endoscopes are being demonstrated by clinical examples of application.

  18. Er:YAG delamination of immersed biological membranes using sealed flexible hollow waveguides

    NASA Astrophysics Data System (ADS)

    Sagi-Dolev, A. M.; Dror, Jacob; Inberg, Alexandra; Ferencz, J. R.; Croitoru, Nathan I.

    1996-04-01

    The radiation of Er-YAG laser ((lambda) equals 2.94 micrometer) gives selective interaction with tissues. The extinction in soft tissues is only a few micrometers and in hard tissues is of the order of hundreds of micrometers. This makes this type of laser very suitable for treatments in dentistry, orthopedy, or ophthalmology. Because the usual silica fibers are not transmitting the radiation at lambda equals 2.94 micrometer of this laser, many applications cannot be presently performed. Fused silica hollow fibers for Er-YAG radiation were developed in our laboratory and several possible applications in dentistry, orthopedy and ophthalmology were indicated. Hole opening and implantation preparation of teeth were experimented, using Er-YAG laser and hollow plastic waveguide delivery systems. Hole drilling in cow bones was demonstrated for applications in orthopedy. A new procedure of delivering Er-YAG radiation on fibrotic membranes of inner eggshell as a model of the membranes in eyes was developed employing silica hollow waveguides of 0.5 and 0.7 mm ID or a plastic waveguide of 1.0 mm ID. For this purpose waveguides with sealed distal tip were employed to enable us to approach the delivery system through liquid media near to the membrane. This experiment demonstrates the possibility of surgical applications in vitectomy in ophthalmology using Er-YAG laser and silica hollow waveguides.

  19. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  20. Investigation of the differentiation of ex vivo nerve and fat tissues using laser-induced breakdown spectroscopy (LIBS): Prospects for tissue-specific laser surgery.

    PubMed

    Mehari, Fanuel; Rohde, Maximillian; Kanawade, Rajesh; Knipfer, Christian; Adler, Werner; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2016-10-01

    In the present study, the elemental compositions of fat and nerve tissue during their plasma mediated laser ablation are studied in the context of tissue differentiation for laser surgery applications by using Laser-Induced Breakdown Spectroscopy (LIBS). Tissue samples of porcine fat and nerve were prepared as ex vivo experimental objects. Plasma mediated laser ablation is performed using an Nd : YAG laser in open air and under normal stray light conditions. The performed measurements suggest that the two tissue types show a high similarity in terms of qualitative elemental composition while at the same time revealing a distinct difference in the concentration of the constituent elements. Different analysis approaches are evaluated and discussed to optimize the tissue-differentiation performance of the LIBS approach. Plasma mediated laser tissue ablation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  2. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  3. Gold nanoshell thermal confinement of conformal laser thermal therapy in liver metastasis

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew M.; Wang, James; Shetty, Anil M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason

    2008-02-01

    Cooled fiber tip technology has significantly improved the volume coverage of laser induced thermal therapy (LITT), making LITT an attractive technology for the minimally invasive treatment of cancer. Gold coated nanoshells can be tuned to experience a plasmon resonance at a desired laser frequency, there introduction into the treatment region can greatly amplify the effectiveness of the thermal treatment. The goal is to conformaly heat the target, while sparing surrounding healthy tissue. To this end a treatment option that is self-confining to the target lesion is highly desirable. This can be achieved in the liver by allowing nanoshells to be taken up by the healthy tissue of the liver as part of their natural removal from the blood stream. The lesion is then incased inside the nanoshell laden tissue of the surrounding healthy tissue. When an interstitial laser probe is introduced into the center of the lesion the thermal radiation scatters outward until it interacts with and is absorbed by the nanoshells located around the lesion periphery. As the periphery heats it acts as secondary source of thermal radiation, sending heat back into lesion and giving rise to ablative temperatures within the lesion while sparing the surrounding tissue. In order to better monitor therapy and know when the target volume has been ablated, or exceeded, accurate knowledge is needed of both the spatial distribution of heating and the maximum temperature achieved. Magnetic resonance temperature imaging (MRTI) is capable of monitoring the spatiotemporal distribution of temperature in vivo[1]. Experiments have been performed in vitro using a dog liver containing nanoshells (concentration 860ppm) and a tissue like lesion phantom designed to have the optical properties of liver metastasis [2].

  4. Anomalous optical behavior of biological media: modifying the optical window of myocardial tissues

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Raja, M. Yasin A.; Svenson, Robert H.

    1996-05-01

    In medical experimental and clinical treatment modalities of light, laser photocoagulation of ventricular tachycardia amongst others, the success of the application relies on whether or not the procedure operates in the optical window of the light-tissue interaction. The optical window of biological tissues can be determined by spectral scans of the optical properties. Optical anomalies may result from the irradiance, the wavelength, or from the tissue composition itself. The transmission of cw Nd:YAG laser light on myocardial tissue showed a nonlinearity in the transmission curve at approximately 3 kW/mm2 irradiance. The total attenuation coefficient dropped sharp from 1.03 plus or minus 0.04 mm-1 to 0.73 plus or minus 0.05 mm-1 at this point in the curve. On the other hand, aneurysm tissue has a highly organized fiber structure, which serves as light-guides, since the transmission of light along the length of the collagen fibers is approximately 50% higher than the transmission perpendicular to the fiber orientation. In addition, changes in optical properties due to tissue phase changes also influence the penetration depth. These phenomena can be utilized to manipulate the optical penetration to an advantage.

  5. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  6. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.« less

  7. Cryosurgery and laser surgery in the treatment of malignant and benign laryngeal processes.

    PubMed

    Miehlke, A; Chilla, R; Vollrath, M

    1979-01-01

    Cryosurgery of the larynx is still in the stage of development. In the treatment of laryngeal papillomas cryosurgery has been quite successful. The use of cryosurgery in laryngo-hypopharyngeal carcinoma and in laryngeal stenosis is still restricted to special indications (old age, risk patients). A combination of cryosurgery and telecobalt irradiation has proven valuable in the management of tumors. After the basic physics of laser radiation are explained, the principle mechanisms of interaction between the CO2 laser on human tissue are mentioned. This is followed by the description of the different indications for laser surgery in the larynx. A chordectomy and the opening of a subglottic stenosis with the laser beam are described and documented with photographs. Finally, there is an outlook to an eventually broader spectrum of indications for laser surgery in the field of ent.

  8. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  9. Modelling and characterization of photothermal effects assisted with gold nanorods in ex vivo samples and in a murine model

    NASA Astrophysics Data System (ADS)

    Lamela Rivera, Horacio; Rodríguez Jara, Félix; Cunningham, Vincent

    2011-03-01

    We discuss in this article the implementation of a laser-tissue interaction and bioheat-transfer 2-D finite-element model for Photothermal Therapy assisted with Gold Nanorods. We have selected Gold Nanorods as absorbing nanostructures in order to improve the efficiency of using compact diode lasers because of their high opto-thermal conversion efficiency at 808 and 850 nm. The goal is to model the distribution of the optical energy among the tissue including the skin absorption effects and the tissue thermal response, with and without the presence of Gold Nanorods. The heat generation due to the optical energy absorption and the thermal propagation will be computationally modeled and optimized. The model has been evaluated and compared with experimental ex-vivo data in fresh chicken muscle samples and in-vivo BALB/c mice animal model.

  10. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.

    PubMed

    Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul

    2016-10-01

    The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10 15 mm -3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  12. Frequency Analysis of the Laser Biospeckle

    NASA Astrophysics Data System (ADS)

    Enes, Adilson M.; Rabelo, Giovanni F.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; Vilela, Michelle

    2008-04-01

    This research work presents a study of beans seed tissue (Phaseolous vulgaris, L.) optical interactions with laser aiming to contribute to the development of biospeckle techniques applied to the recognition of bean seed tissue vitality when contaminated with fungi, by differentiating the generated frequency spectra. Biospeckle is an interference optic phenomenon occurring when a laser beam reaches a surface exhibiting some dynamic process, due to biological activities or purely physical changes. The technique involves image processing to distinguish each different active material contribution present in the seed, by means of the procedure known as "Moment of Inertia" and frequency analysis. Frequency analysis was carried by Fourier Transform preceded by module of convolution. A great challenge in this area is to identify the elements contribution to increase biospeckle activity, such as water, microorganisms, among others. This research work is recognized to provide an important step aiming to characterize the interaction of laser with biological material. Three groups of bean seeds were employed, one represented by healthy seeds and two groups composed of seeds contaminated with Aspergillus spp as well as with Fusarium spp fungi. The biospeckle analysis considered the activity and its frequency spectra. The seeds were each one exposed to laser in a random order. The results reveled differences in the average values of MI of the three seed groups. Also, some different harmonics in the biospeckle pattern in a same group as well as among seed groups had been noticed. These results allow confirming that it is possible to differentiate contaminated seeds from non-contaminated ones by means of biospeckle frequency analysis.

  13. Evaluation of erbium:YAG and holmium:YAG laser radiation and dental hard tissue

    NASA Astrophysics Data System (ADS)

    Attrill, David Cameron

    Lasers have become increasingly established in medicine as effective alternatives or adjuncts to conventional techniques. In dentistry, several clinical laser systems have been developed and marketed, but their applications have been limited to soft tissue surgery. To date, no laser has been capable of effectively cutting or modifying the highly mineralised dental tissues of enamel and dentine. The aim of this study was to evaluate two new laser systems for use in dentistry through a series of in vitro experiments. Both generic erbium and holmium lasers have theoretically superior operating characteristics over currently established lasers for applications with dental hard tissues. The two lasers investigated in this study were pulsed Er:YAG (lambda=2.94) a.m. and Cr-Tm-Ho:YAG (lambda=2.1mu.m). Both operated with a macropulse duration of approximately 200lambdas, at pulse repetition rates of 2-8Hz and mean pulse energies up to 230mJ. Radiation was focused using CaF[2] lenses (f=50-120mm). The lasers could be operated with or without the addition of a surface water film at the interaction site. Tissue removal efficiency was expressed as a latent heat of ablation (LHA, kJ/cm[3]) using a modification of the technique described by Charlton et al. (1990). The mean LHA's for the Er:YAG laser were 6.24kJ/cm[3] and 22.99kJ/cm[3] with dentine and enamel respectively without water, and 10.07kJ/cm[3] and 18.73kJ/cm[3] for dentine and enamel with water. The Cr-Tm-Ho:YAG laser was unable to effectively remove enamel at the fluences and pulse energies available; the mean LHA's for the Cr-Tm- Ho:YAG laser with dentine were 82.79kJ/cm3 and 57.57kJ/cm3 with and without water respectively. The Cr-Tm-Ho;YAG was approximately 8-9 times less efficient for tissue removal than the Er:YAG system. Er:YAG tissue removal with water was characterised by clean "surgical" cuts, comparable in histological appearance to those obtained using conventional instrumentation. Some thermal disruption and evidence of molten enamel in particular were apparent when the Er:YAG laser was used without water. The Cr-Tm-Ho;YAG laser produced extensive charring and carbonisation of tissues. It was concluded that this laser was unsuitable for clinical applications directed at the removal or modification of enamel and dentine, particularly as the Er:YAG laser offers superior qualities. Further research with the Cr-Tm-Ho:YAG laser was discontinued. A comparison of the mean shear bond strengths of a composite (ZlOO, 3M Dental Products) bonded to enamel was made using either a conventional acid etch technique or one of a range of experimental Er:YAG laser etching configurations. The mean values for acid etching (16.6 MPa) were in all cases significantly greater (p<0.01, Bonferroni) than those obtained with laser etching. The optimal laser etching parameters were a fluence of 24J/cm[2] (1/e[2] calculation) with water resulting in a mean bond strength of 11.5 MPa. This figure represents approximately 70% of the mean obtained with acid etching, and was significantly greater (p<0.01, Bonferroni) than the mean recorded for non etched negative control surfaces (4.4 MPa). Histological evaluation of the etched surfaces demonstrated clear differences in the etching patterns observed between laser and acid etching. Some surface cracking was noted in most laser etched surfaces, but the extent of this was minimised when the laser was applied in conjunction with a surface water film. Pulpal temperature increments following Er:YAG laser irradiation were significantly lower in teeth prepared with water than without (paired t-test, p<0.01). The largest increment in samples prepared with water was 3.9°C, compared to 24.7°C without water. The principal determinant of the temperature increment in either group was the total delivered energy, up to 140J. Linear regression modelling predicts that continuous irradiation up to 160J with water would not result in iatrogenic pulpal damage. In conclusion, the Er:YAG laser was shown to be an effective tool for cutting and modifying dental hard tissues. It almost certainly offers the best combination of safety, efficiency and speed of any laser system designed for preparing cavities. The laser must be used in conjunction with a water coolant on the tissues to minimise the possibility of iatrogenic damage, improve the quality of the laser cuts and in some circumstances increase cutting efficiency. The Er:YAG laser has shown much promise in these in vitro experiments and its progression to clinical use is supported. The Cr-Tm-Ho:YAG laser is significantly less efficient and in vitro results are unfavourable in comparison with the Er:YAG laser. Its clinical use is not supported.

  14. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Theranostic probe for simultaneous in vivo photoacoustic imaging and confined photothermolysis by pulsed laser at 1064 nm in 4T1 breast cancer model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ku, Geng; Pageon, Laura; Li, Chun

    2014-11-01

    Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals.Here, we report that polyethylene glycol (PEG)-coated copper(ii) sulfide nanoparticles (PEG-CuS NPs) with their peak absorption tuned to 1064 nm could be used both as a contrast agent for photoacoustic tomographic imaging of mouse tumor vasculature and as a mediator for confined photothermolysis of tumor cells in an orthotopic syngeneic 4T1 breast tumor model. PEG-CuS NPs showed stronger photoacoustic signal than hollow gold nanospheres and single-wall carbon nanotubes at 1064 nm. MicroPET imaging of 4T1 tumor-bearing mice showed a gradual accumulation of the NPs in the tumor over time. About 6.5% of injected dose were taken up in each gram of tumor tissue at 24 h after intravenous injection of 64Cu-labeled PEG-CuS NPs. For both photoacoustic imaging and therapeutic studies, nanosecond (ns)-pulsed laser was delivered with Q-switched Nd:YAG at a wavelength of 1064 nm. Unlike conventional photothermal ablation therapy mediated by continuous wave laser with which heat could spread to the surrounding normal tissue, interaction of CuS NPs with short pulsed laser deliver heat rapidly to the treatment volume keeping the thermal damage confined to the target tissues. Our data demonstrated that it is possible to use a single-compartment nanoplatform to achieve both photoacoustic tomography and highly selective tumor destruction at 1064 nm in small animals. Electronic supplementary information (ESI) available: Details on methods used for copper staining, synthesis of 64Cu-labeled PEG-CuS NPs, and PAT imaging equipment, and data summary on stability of PEG-CuS NPs, photographs of copper staining in tumor samples, temperature elevation comparing continues wave and pulsed laser beams, and quantitative analysis of treatment-induced necrosis of tumor tissues. See DOI: 10.1039/c4nr05386a

  16. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Adam

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  17. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  18. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    PubMed

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  19. Compact 1.5-GHz intra-burst repetition rate Yb-doped all-PM-fiber laser system for ablation-cooled material removal

    NASA Astrophysics Data System (ADS)

    Akcaalan, Onder; Kalaycioglu, Hamit; Ilday, F. Omer

    Although fs fiber laser systems are powerful technologies for material and tissue processing, limited ablation rates and high energy are drawbacks. Recently, we identified a new regime of laser-material interaction, ablation-cooled laser material removal, where the repetition rate has to be high enough so that the targeted spot size cannot cool down substantially by heat conduction which scales down ablation threshold by several orders of magnitude and reduces thermal effects to the bulk of the target. This opens the door to simplified laser systems for processing. In order to exploit this regime in tissue processing, a compact all-PM-fiber laser amplifier system with an intra-burst repetition rate of 1.5 GHz is developed on a 40 x 65 cm platform. The system is able to produce bursts ranging from 20-ns to 65-ns duration with 20 uJ to 80 uJ total energy, respectively, and pulses with up to 2 uJ individual energy and burst repetition rate ranging from 25 kHz to 200 kHz. The seed signal is generated by a home-built all-normal dispersion oscillator with 385 MHz repetition rate and converted to approximately 1.5 GHz by a multiplier. Amplified pulses are compressed to approximately 250-fs, the shortest pulse width for burst-mode fiber laser systems known to date.

  20. Electrophoretic mobility patterns of collagen following laser welding

    NASA Astrophysics Data System (ADS)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  1. Assessing laser-tissue damage with bioluminescent imaging

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (λ=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ωL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and eosin stains verified the presence of the thermally denatured tissue regions. Immunohistochemical analyses confirmed that maximal hsp70 expression occurred at a depth of 150 µm. Bioluminescent microscopy was employed to corroborate these findings. These results indicate that quantitative BLI in engineered tissue equivalents provides a powerful model that enables sequential gene expression studies. Such a model can be used as a high throughput screening platform for laser-tissue interaction studies.

  2. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  3. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  4. Application of CO laser for laser balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akira; Sakurada, Masami; Mizuno, Kyoichi; Kurita, Akira; Nakamura, Haruo; Suda, Akira; Arai, Tsunenori; Kikuchi, Makoto

    1990-07-01

    CO laser may be efficient for thermal fusion of intima of arterial wall without adventitial tissue damage because of high tissue absorption. To investigate the efficacy of CO laser as a laser bam for laser balloon angioplasty (LBA). CO laser was irradiated to aortic tissue through 3Oim polyethylene membrane and tissue temperature was measured by a thermistor. At 2Owatt/cm2 200joules/cm2 continuous laser exposure (CE), tissue temperature was above 100°C within a depth of 1mm and rapidly decreased to 60 °C or below between 2 and 3mm in depth. Moreover, adventitial temperature could be decreased by changing duty ratio (exposure duration/interval) of intermittent laser exposure (IE) despite of the same laser energy. Light microscopy showed high degree of medial coagulation necrosis in CE, however thermal coagulation was observed only at the surface of intima of aortic tissue in IE at duty ratio 1 / 2. These findings suggested CO laser could coagulate intimal layer with less deep thermal damage compared to Nd- YAG laser and that IE was better for superficial welding than CE at the same energy. We concluded that CO laser might be more efficient as a laser beam for LBA than Nd-YAG laser.

  5. [Cryosurgery and laser surgery as a therapy of malignant and benign laryngeal processes (author's transl)].

    PubMed

    Miehlke, A; Chilla, R; Vollrath, M

    1980-11-01

    Cryosurgery of the larynx is still in a state of development. In the treatment of laryngeal papillomas cryosurgery has been quite successful. The use of cryosurgery in laryngo-hypopharyngeal carcinoma and in laryngeal stenosis is so far restricted to special indications (old age, risk patients). A combination of cryosurgery with telecobalt irradiation has proved valuable in the managemenmt of tumors. After the basic physics of laser radiation are explained, the principle mechanisms of interaction between the CO2-laser and human tissue are mentioned. This is followed by the description of the different indications for laser surgery in the larynx. A chordectomy and the opening of a subglottic stenosis with the laser beam are described and documented with photographs. Finally there is an outlook to an eventually broader spectrum of indications for laser surgery in the ENT-field.

  6. Laser ablation of human atherosclerotic plaque without adjacent tissue injury

    NASA Technical Reports Server (NTRS)

    Grundfest, W. S.; Litvack, F.; Forrester, J. S.; Goldenberg, T.; Swan, H. J. C.

    1985-01-01

    Seventy samples of human cadaver atherosclerotic aorta were irradiated in vitro using a 308 nm xenon chloride excimer laser. Energy per pulse, pulse duration and frequency were varied. For comparison, 60 segments were also irradiated with an argon ion and an Nd:YAG laser operated in the continuous mode. Tissue was fixed in formalin, sectioned and examined microscopically. The Nd:YAG and argon ion-irradiated tissue exhibited a central crater with irregular edges and concentric zones of thermal and blast injury. In contrast, the excimer laser-irradiated tissue had narrow deep incisions with minimal or no thermal injury. These preliminary experiments indicate that the excimer laser vaporizes tissue in a manner different from that of the continuous wave Nd:YAG or argon ion laser. The sharp incision margins and minimal damage to adjacent normal tissue suggest that the excimer laser is more desirable for general surgical and intravascular uses than are the conventionally used medical lasers.

  7. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Zheltov, G. I.; Omelchenko, A. I.; Romanov, G. S.; Romanov, O. G.; Sobol, E. N.

    2013-08-01

    This paper is devoted to theoretical and experimental studies into the thermomechanical action of laser radiation on biological tissues. The thermal stresses and strains developing in biological tissues under the effect of pulse-periodic laser radiation are theoretically modeled for a wide range of laser pulse durations. The models constructed allow one to calculate the magnitude of pressures developing in cartilaginous and eye tissues exposed to laser radiation and predict the evolution of cavitation phenomena occurring therein. The calculation results agree well with experimental data on the growth of pressure and deformations, as well as the dynamics of formation of gas bubbles, in the laser-affected tissues. Experiments on the effect of laser radiation on the trabecular region of the eye in minipigs demonstrated that there existed optimal laser irradiation regimens causing a substantial increase in the hydraulic permeability of the radiation-exposed tissue, which can be used to develop a novel glaucoma treatment method.

  8. Gelatin based on Power-gel.TM. as solders for Cr.sup.4+laser tissue welding and sealing of lung air leak and fistulas in organs

    DOEpatents

    Alfano, Robert R.; Tang, Jing; Evans, Jonathan M.; Ho, Peng Pei

    2006-04-25

    Laser tissue welding can be achieved using tunable Cr.sup.4+ lasers, semiconductor lasers and fiber lasers, where the weld strength follows the absorption spectrum of water. The use of gelatin and esterified gelatin as solders in conjunction with laser inducted tissue welding impart much stronger tensile and torque strengths than albumin solders. Selected NIR wavelength from the above lasers can improve welding and avoid thermal injury to tissue when used alone or with gelatin and esterified gelatin solders. These discoveries can be used to enhance laser tissue welding of tissues such as skin, mucous, bone, blood vessel, nerve, brain, liver, pancreas, spleen, kidney, lung, bronchus, respiratory track, urinary tract, gastrointestinal tract, or gynecologic tract and as a sealant for pulmonary air leaks and fistulas such as intestinal, rectal and urinary fistulas.

  9. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Mencalha, A. L.; Campos, V. M. A.; Ferreira-Machado, S. C.; Peregrino, A. A. F.; Magalhães, L. A. G.; Geller, M.; Paoli, F.

    2013-02-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation.

  10. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  11. Development and performance characteristics of flash lamp pumped Yb:YAG, Cr:Tm:Ho:YAG, Er:Tm:Ho:YLF laser sources and investigation of their potential biological applications

    NASA Astrophysics Data System (ADS)

    Karadimitriou, N.; Klinkenberg, B.; Papadopoulos, D. N.; Serafetinides, A. A.

    2007-07-01

    Laser ablation for the formation of apodized patterns on intraocular lenses, as an alternative of the conventional injection molding, has been proved to be a very promising new technique. For the precise lenses ablation, the use of suitable laser wavelength and pulse duration, resulting in a small optical penetration depth in the lens and in confinement of the energy deposition in a small volume, as well as the reduced thermal damage to the surrounding tissue, is essential. Mid-infrared laser wavelengths, at which the organic biological simulators absorption coefficient is large, meet well the above conditions. Towards the complete understanding of the intraocular lens ablation procedure and therefore the choice of the optimum laser beam characteristics for the most accurate, efficient and safe surgical application, the comparative study of various mid-infrared laser sources is of great interest. In this work we investigate the potential of the development of three different mid-infrared laser sources, namely the Yb:YAG, the Cr:Tm:Ho:YAG and the Er:Tm:Ho:YLF laser, operating at 1029 nm, 2060 nm and 2080 nm respectively and their ability in forming patterns on biomaterials. Pumping was achieved with conventional Xe flash lamps in a double elliptical pump chamber. A properly designed Pulse-Forming- Network capable of delivering energy up to 800 J, in variable lamp illumination durations is used. Several hundreds of mJoules were achieved from the Yb:YAG laser oscillator and several Joules from the Ho:YAG and Ho:YLF laser oscillators. Free running and Q-switched laser operation studies and preliminary experiments on laser and biomaterials (biopolymers and animal tissues) interactions will be reported.

  12. Application of erbium: YAG laser in ocular ablation.

    PubMed

    Tsubota, K

    1990-01-01

    Recent developments in lasers have provided us the possibility of laser ocular surgery. The xenon, argon, neodymium:YAG and dye lasers have been successfully used in out-patient clinics. The excimer laser has been attracting researchers' interest in the new application of laser to cornea and lens. The erbium:YAG laser emits a 2.94-microns beam that can ablate the transparent ocular tissues such as lenses and corneas. The author has applied this laser to the cornea, lens, vitreous and other ocular tissues. The erbium:YAG laser beam was directed through a 1.5-meter-long, 200-microns-diameter fiberoptic guide. The radiant energy measured about 50 mJ at the end of the probe. The laser was emitted as a 400-microsecond pulse. Freshly enucleated rabbit eyes were used in this study. Laser burns were applied to the tissue surface at various energy settings. At minimal power, the tissues were coagulated by the erbium:YAG laser application. At a power of more than 636-954 mJ/mm2, tissue began to evaporate; the tissue loss was observed under a surgical light microscope. Corneal photoablation, lens ablation, iridotomy, trabeculotomy, cutting of the vitreous and retinal ablation were easily performed. Like the excimer laser, the erbium:YAG laser is a potential tool for ocular surgery.

  13. Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

    PubMed

    Anastasiou, A D; Strafford, S; Thomson, C L; Gardy, J; Edwards, T J; Malinowski, M; Hussain, S A; Metzger, N K; Hassanpour, A; Brown, C T A; Brown, A P; Duggal, M S; Jha, A

    2018-04-15

    A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe 3+ -doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe 2 O 3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe 2 O 3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid-IR wavelength and the formation of a new layer to substitute the removed material. The new layer is evaluated through simulated brushing trials and nano-indentation. From the results we can conclude that is more acid resistant than natural enamel while, its mechanical properties are superior to that of current restorative materials. To the best of our knowledge this is the first time that someone demonstrated, laser sintering and bonding of calcium phosphate biomaterials on hard tissues. Although we here we discuss the case of dental enamel, similar approach can be adopted for other hard tissues, leading to new strategies for the fixation of bone/tooth defects. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  14. Modeling the Morphogenesis of Epidermal Tissues on the Surface of a 3D Last

    NASA Astrophysics Data System (ADS)

    McCleery, W. Tyler; Crews, Sarah M.; Mashburn, David N.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane

    2014-03-01

    Embryogenesis in the fruit fly Drosophila melanogaster is coordinated by the interaction of cells in adjacent tissues. For some events of embryogenesis, e.g., dorsal closure, two-dimensional models have been sufficient to elucidate the relevant cell and tissue mechanics. Here, we describe a new three-dimensional cell-level finite element model for investigating germ band retraction - a morphogenetic event where one epidermal tissue, the germ band, initially wraps around the posterior end of the ellipsoidal embryo. This tissue then retracts with a mechanical assist from contraction of cells in a second epidermal tissue, the amnioserosa. To speed simulation run times and focus on the relevant tissues, we only model epidermal tissue interactions. Epidermal cells are defined as polygons constrained to lie on the surface of the ellipsoidal last, but have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. Our choice of modeling parameters is informed by in vivo measurements of cell-level forces using laser microsurgery. We use this model to investigate the multicellular stress fields in normal and aberrant development.

  15. Current status of lasers in soft tissue dental surgery.

    PubMed

    Pick, R M; Colvard, M D

    1993-07-01

    The aims of this paper are to briefly describe laser physics, the types of lasers currently available for use on soft tissues focusing primarily on CO2 and Nd:YAG laser energies, the histological effects of lasers on oral tissues, laser safety, the clinical applications of lasers on oral soft tissues, and future directions. Of the two types of lasers currently available for dental applications, both the CO2 and Nd:YAG lasers can be used for frenectomies, ablation of lesions, incisional and excisional biopsies, gingivectomies, gingivoplasties, soft tissue tuberosity reductions, operculum removal, coagulation of graft donor sites, and certain crown lengthening procedures. The advantages of lasers include a relatively bloodless surgical and post-surgical course, minimal swelling and scarring, coagulation, vaporization, and cutting, minimal or no suturing, reduction in surgical time, and, in a majority of cases, much less or no post-surgical pain. CO2 lasers, compared to Nd:YAG are faster for most procedures, with less depth of tissue penetration and a well-documented history. There have been recent reports on the use of the Nd:YAG laser for periodontal scaling, gingival curettage, and root desensitization, but further research needs to be conducted. Both the CO2 and the Nd:YAG laser have limited use in conventional flap therapy.

  16. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography.

    PubMed

    Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2016-01-01

    To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.

  17. 3D volumetric modeling of grapevine biomass using Tripod LiDAR

    USGS Publications Warehouse

    Keightley, K.E.; Bawden, G.W.

    2010-01-01

    Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.

  18. Approach and potentiality of low level laser therapy in veterinary medicine

    NASA Astrophysics Data System (ADS)

    Paterniani, Valentina; Grolli, Stefano

    2018-04-01

    The Low Level Laser Therapy (LLLT) is an innovative and increasing therapeutic technique in Veterinary Medicine. As in Human Medicine, the low power red/near-infrared laser light could be used to reduce inflammatory conditions, induce analgesia and promote damaged tissues repair, both in conventional animals like horses, dogs and cats and in unconventional ones, including reptiles, birds and exotic mammals. Since A.Eistein (1917) and E.Mester (1968) built its physical and biochemical fundamentals, a growing number of researches, over the years, have expanded the knowledge of the molecular process considered today at the basis of the macroscopic therapeutic effects. Producing a photochemical tissue interaction, laser light is absorbed by the mitochondrial respiratory chain stimulating the generation of ATP, ROS and NO; this determines a modulation in gene expression of proteins playing key roles in cellular processes as tissue repair, inflammatory response and pain control. Different animal pathological conditions could significantly benefit from this therapy, such as acute/chronic muscle-skeletal disorders, dental afflictions, dermatitis, otitis, stomatitis and different kind of skin lesions, as traumatic or post-operative ones. Furthermore, other significant applications are developing scientifically: the treatment of internal organ diseases, the regenerative effects on nervous tissue and the possibility of a beneficial cell-specific cytotoxicity, relevant for oncological cases, are some of these. A high-quality research is therefore crucial for this quickly expanding field of Veterinary Medicine, in order to find the most effective protocols and the ideal doses for each pathological conditions, aiming to always ensure the best and up-todate animal care.

  19. The mechanism of joint capsule thermal modification in an in-vitro sheep model.

    PubMed

    Hayashi, K; Peters, D M; Thabit, G; Hecht, P; Vanderby, R; Fanton, G S; Markel, M D

    2000-01-01

    The purpose of this study was to understand the mechanism responsible for joint capsule shrinkage after nonablative laser application in an in-vitro sheep model. Femoropatellar joint capsular tissue specimens harvested from 20 adult sheep were treated with one of three power settings of a holmium:yttrium-aluminum-garnet laser or served as a control. Laser treatment significantly shortened the tissue and decreased tissue stiffness in all three laser groups, whereas failure strength was not altered significantly by laser treatment. Transmission electron microscopic examination showed swollen collagen fibrils and loss of membrane integrity of fibroblasts. A thermometric study revealed nonablative laser energy caused tissue temperature to rise in the range of 64 degrees C to 100 degrees C. Electrophoresis after trypsin digestion of the tissue revealed significant loss of distinct alpha bands of Type I collagen in laser treated samples, whereas alpha bands were present in laser treated tissue without trypsin digestion. The results of this study support the concept that the primary mechanism responsible for the effect of nonablative laser energy is thermal denaturation of collagen in joint capsular tissue associated with unwinding of the triple helical structure of the collagen molecule.

  20. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. Wemore » simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.« less

  1. Photothermal effects of laser tissue soldering.

    PubMed

    McNally, K M; Sorg, B S; Welch, A J; Dawes, J M; Owen, E R

    1999-04-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5 mg ml(-1) to 0.25 mg ml(-1) was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4 W cm(-2) using a solid protein solder composed of 60% BSA and 0.25 mg ml(-1) ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85+/-5 degrees C with a maximum temperature difference through the 150 microm thick solder strips of about 15 degrees C. Histological examination of the repairs formed using these parameters showed negligible evidence of collateral thermal damage to the underlying tissue. Scanning electron microscopy suggested albumin intertwining within the tissue collagen matrix and subsequent fusion with the collagen as the mechanism for laser tissue soldering. The laser tissue soldering technique is shown to be an effective method for producing repairs with improved tensile strength and minimal collateral thermal damage over conventional laser tissue welding techniques.

  2. Soft tissue effects of the THC:YAG laser on canine vocal cords.

    PubMed

    Kay, S L; Oz, M C; Haber, M; Blitzer, A; Treat, M R; Trokel, S L

    1992-09-01

    Recently, a laser based on a thulium-holmium-chromium (THC) doped Yttrium-aluminum-garnet (YAG) rod has been developed that produces light of 2.15 microns wavelength and can be transmitted through a low OH- silica fiberoptic cable. This wavelength falls on one of the peaks of the energy absorption spectrum of water. Thus, the THC:YAG laser eliminates the disadvantage of a cumbersome delivery system found in the CO2 laser while still providing precise cutting and minimal tissue injury inherent in lasers emitting light absorbed by water. We evaluated the soft tissue effects of this laser on canine vocal cords. Ablative lesions were produced by the THC:YAG laser and histologically examined on postoperative days 1, 7, and 28. Results indicate that the depth of tissue penetration is easily controlled and the healing response to tissue injury is comparable to that of the CO2 laser. The THC:YAG laser should prove to be a superior laser for use in otorhinolaryngology, especially when adapted to a flexible endoscope.

  3. Comparison of four lasers (λ = 650, 808, 980, and 1075 nm) for noninvasive creation of deep subsurface lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.

    2015-07-01

    Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.

  4. Study of photosensitization reaction progress in a 96 well plate with photosensitizer rich condition using Talaporfin sodium

    NASA Astrophysics Data System (ADS)

    Ogawa, Emiyu; Takahashi, Mei; Arai, Tsunenori

    2013-02-01

    To quantitatively investigate photosensitization reaction in vitro against myocardial cells with photosensitizer rich condition in solution using Talaporfin sodium in the well of a 96 well plate, we studied photosensitization reaction progress in this well. We have proposed non-thermal conduction block of myocardium tissue using the photosensitization reaction with laser irradiation shortly after Talaporfin sodium injection. In above situation, the photosensitizer is located outside the myocardial cells in high concentration. To understand interaction of the photosensitization reaction in which the photosensitizer distributes outside cells, the photosensitization reaction progress in the well was studied. Talaporfin sodium (799.69 MW) solution and a 663 nm diode laser were used. The photosensitizer solution concentrations of 12.5-37.5 μM were employed. The photosensitizer fluorescence with 0.29 W/cm2 in irradiance, which was optimized in previous cell death study, was measured during the laser irradiation until 40 J/cm2. The photosensitizer solution absorbance and dissolved oxygen pressure after the laser irradiation were also measured. We found that the photosensitization reaction progress had 2 distinctive phases of different reaction rate: rapid photosensitization reaction consuming dissolved oxygen and gentle photosensitization reaction with oxygen diffusion from the solution-air boundary. The dissolved oxygen pressure and photosensitizer solution absorbance were 30% and 80% of the initial values after the laser irradiation, respectively. Therefore, oxygen was rate-controlling factor of the photosensitization reaction in the well with the photosensitizer rich condition. In the oxygen diffusion phase, the oxygen pressure was maintained around 40 mmHg until the laser irradiation of 40 J/cm2 and it is similar to that of myocardium tissue in vivo. We think that our 96 well plate in vitro system may simulate PDT in myocardial tissue with photosensitization reaction parameters mentioned above.

  5. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed Central

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820

  6. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam-skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer.

  7. Effect of low-level laser treatment of tissue-engineered skin substitutes: contraction of collagen lattices

    NASA Astrophysics Data System (ADS)

    Ho, Gideon; Barbenel, Joseph; Grant, M. Helen

    2009-05-01

    Fibroblast-populated collagen lattices (FPCL) are widely used in tissue-engineered artificial skin substitutes, but their main drawback is that interaction of fibroblasts and matrix causes contraction of the lattice, reducing it to about 20% of its original area. The effect of low-level laser treatment (LLLT) on the behavior of 3T3 fibroblasts seeded in collagen lattices containing 20% chondroitin-6-sulphate was investigated to determine whether LLLT could control the contraction of FPCL. A He-Ne laser was used at 632.8 nm to deliver a 5-mW continuous wave with fluences from 1 to 4 J/cm2. Laser treatment at 3 J/cm2 increased contraction of collagen lattices in the absence of cells but decreased contraction of cell seeded lattices over a 7-day period. The effect was energy dependent and was not observed at 1, 2, or 4 J/cm2. There was no alteration in fibroblast viability, morphology, or mitochondrial membrane potential after any laser treatments, but the distribution of actin fibers within the cells and collagen fibers in the matrices was disturbed at 3 J/cm2. These effects contribute to the decrease in contraction observed. LLLT may offer a means to control contraction of FPCL used as artificial skin substitutes.

  8. Spreading of infectious materials from the laser interaction zone: viruses and bacteria

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.

    1996-12-01

    Actual occupational infections of medical staff is dominated by HBV, HIV and HCV-infections by dermal blood inoculation like needle injuries. What amount of these blood borne infections was possibly done via the aerosol pathway is unknown today. Looking at the laser generated aerodynamic particle sizes and the particle size of human pathogen viruses as circulating or cell fixed units shows common transmission abilities to the human respiratory system. In cell tissue monolayer model systems and contaminated serum systems with virus infections this mechanics were demonstrated as viable. For safety evaluation, the lifetime, spreading behavior and infection potential by viruses and bacterias of contaminated human laser aerosol must be further characterized.

  9. Estimation of risks by chemicals produced during laser pyrolysis of tissues

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Spleiss, Martin

    1995-01-01

    Use of laser systems in minimal invasive surgery results in formation of laser aerosol with volatile organic compounds of possible health risk. By use of currently identified chemical substances an overview on possibly associated risks to human health is given. The class of the different identified alkylnitriles seem to be a laser specific toxicological problem. Other groups of chemicals belong to the Maillard reaction type, the fatty acid pyrolysis type, or even the thermally activated chemolysis. In relation to the available different threshold limit values the possible exposure ranges of identified substances are discussed. A rough estimation results in an exposure range of less than 1/100 for almost all substances with given human threshold limit values without regard of possible interactions. For most identified alkylnitriles, alkenes, and heterocycles no threshold limit values are given for lack of, until now, practical purposes. Pyrolysis of anaesthetized organs with isoflurane gave no hints for additional pyrolysis products by fragment interactions with resulting VOCs. Measurements of pyrolysis gases resulted in detection of small amounts of NO additionally with NO2 formation at plasma status.

  10. Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Liu, Xia

    2014-08-01

    Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.

  11. Microprocessing of human hard tooth tissues surface by mid-infrared erbium lasers radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2015-03-01

    A new method of hard tooth tissues laser treatment is described. The method consists in formation of regular microdefects on tissue surface by mid-infrared erbium laser radiation with propagation ratio M2<2 (Er-laser microprocessing). Proposed method was used for preparation of hard tooth tissues surface before filling for improvement of bond strength between tissues surface and restorative materials, microleakage reduction between tissues surface and restorative materials, and for caries prevention as a result of increasing microhardness and acid resistance of tooth enamel.

  12. Exogenous administration of Substance P enhances wound healing in a novel skin-injury model.

    PubMed

    Delgado, Angel V; McManus, Albert T; Chambers, James P

    2005-04-01

    Soft tissue injury accounts for approximately 44% of all wounds in both the military and civilian populations. Following injury to soft tissue, Substance P (SP) and other neuropeptides are released by cutaneous neurons and modulate the function of immunocompetent and inflammatory cells, as well as epithelial and endothelial cells. The interaction between these components of the nervous system and multiple target cells affecting cutaneous repair is of increasing interest. In this report, we describe the effects of SP on wound repair in a novel, laser-induced, skin-wound model. Gross and histologic examination of laser-induced injury revealed that exogenously administered SP affects wound healing via neurite outgrowth, in addition to adhesion molecule and neurokinin-1 receptor involvement in vivo. All SP effects were decreased by pretreatment with Spantide II, an SP antagonist. The elucidation of SP-mediating mechanisms is crucial to firmly establishing the involvement and interaction of the peripheral nervous system and the immune system in cutaneous repair. Findings presented here suggest that SP participates in the complex network of mediators involved in cutaneous inflammation and wound healing.

  13. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  14. Contact laser microsurgery.

    PubMed

    Jallo, George I; Kothbauer, Karl F; Epstein, Fred J

    2002-07-01

    Lasers are commonly understood as instruments that produce a freestanding light beam that can cut or vaporize tissue. In contrast, a contact laser is an instrument where the laser beam resides entirely within a coated sapphire crystal probe tip. The authors describe the use of the contact laser for a variety of intraspinal procedures. The probe is mounted on a curved handpiece and can be used in the same way as any microsurgical instrument. The laser energy is delivered only at the probe tip and only on contact of the tip with tissue. Different probe sizes and shapes allow for sharp cutting or tissue vaporization with minimal tissue penetration. We have used this laser in 95 operations for dysraphic conditions, and intradural (both intra- and extramedullary) spinal tumors. It was easy to use for the microsurgically trained neurosurgeon. It is safer than a freestanding, noncontact, laser beam. To lyse scar tissue, evaporate lipomatous tissue, perform a precise myelotomy, and dissect, cut and debulk firm and fibrous intradural spinal lesions this instrument is superior to microscissors, suction, or the ultrasonic aspirator. The contact laser is a useful microsurgical instrument for use in neurosurgery. It combines the advantages of lasers with those of microinstruments and avoids most shortcomings of both.

  15. Periodontal and peri-implant wound healing following laser therapy.

    PubMed

    Aoki, Akira; Mizutani, Koji; Schwarz, Frank; Sculean, Anton; Yukna, Raymond A; Takasaki, Aristeo A; Romanos, Georgios E; Taniguchi, Yoichi; Sasaki, Katia M; Zeredo, Jorge L; Koshy, Geena; Coluzzi, Donald J; White, Joel M; Abiko, Yoshimitsu; Ishikawa, Isao; Izumi, Yuichi

    2015-06-01

    Laser irradiation has numerous favorable characteristics, such as ablation or vaporization, hemostasis, biostimulation (photobiomodulation) and microbial inhibition and destruction, which induce various beneficial therapeutic effects and biological responses. Therefore, the use of lasers is considered effective and suitable for treating a variety of inflammatory and infectious oral conditions. The CO2 , neodymium-doped yttrium-aluminium-garnet (Nd:YAG) and diode lasers have mainly been used for periodontal soft-tissue management. With development of the erbium-doped yttrium-aluminium-garnet (Er:YAG) and erbium, chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers, which can be applied not only on soft tissues but also on dental hard tissues, the application of lasers dramatically expanded from periodontal soft-tissue management to hard-tissue treatment. Currently, various periodontal tissues (such as gingiva, tooth roots and bone tissue), as well as titanium implant surfaces, can be treated with lasers, and a variety of dental laser systems are being employed for the management of periodontal and peri-implant diseases. In periodontics, mechanical therapy has conventionally been the mainstream of treatment; however, complete bacterial eradication and/or optimal wound healing may not be necessarily achieved with conventional mechanical therapy alone. Consequently, in addition to chemotherapy consisting of antibiotics and anti-inflammatory agents, phototherapy using lasers and light-emitting diodes has been gradually integrated with mechanical therapy to enhance subsequent wound healing by achieving thorough debridement, decontamination and tissue stimulation. With increasing evidence of benefits, therapies with low- and high-level lasers play an important role in wound healing/tissue regeneration in the treatment of periodontal and peri-implant diseases. This article discusses the outcomes of laser therapy in soft-tissue management, periodontal nonsurgical and surgical treatment, osseous surgery and peri-implant treatment, focusing on postoperative wound healing of periodontal and peri-implant tissues, based on scientific evidence from currently available basic and clinical studies, as well as on case reports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Diffusing, side-firing, and radial delivery laser balloon catheters for creating subsurface thermal lesions in tissue

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung; Fried, Nathaniel M.

    2016-02-01

    Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.

  17. Using synchrotron X-ray phase-contrast micro-computed tomography to study tissue damage by laser irradiation.

    PubMed

    Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter

    2016-11-01

    The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Excimer laser debridement of necrotic erosions of skin without collateral damage

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-07-01

    Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  19. Detection limits of organic compounds achievable with intense, short-pulse lasers.

    PubMed

    Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B

    2015-06-21

    Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

  20. Laser Ablatin of Dental Hard Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  1. Laser therapy in the treatment of urological diseases

    NASA Astrophysics Data System (ADS)

    Nelius, T.; de Riese, W. T.; Reiher, F.; Filleur, S.; Allhoff, E. P.

    2006-02-01

    Applications of lasers (light amplification by stimulated emission of radiation) in various disciplines of medicine including Urology are well developed. Urology is among the medical specialties that apply many different types of laser systems to treat a broad spectrum of clinical conditions ranging from genital, bladder and urethral tumors to the treatment of benign prostate hyperplasia (BPH), urethral strictures, and stones. The specific application of various laser systems depends on the characteristics of the laser itself, delivery media for the beams, laser-tissue interaction and the desired effect. These complex conditions require an intensive and continuous exchange of information between non-medical researchers and physicians to verify "what is currently technically possible and what is medically needed". Only this exchange can lead to the development of new laser systems. While lasers have become the treatment of choice in some conditions, they could not, despite excellent clinical results, replace conventional therapy options in others. Nonetheless, the use and the introduction of lasers of different wavelengths forces urologists to keep step with the fast developing laser technology. This paper reviews current indications for clinical laser applications relevant to urology and the advantages and disadvantages of using lasers for the management of various urological lesions.

  2. Histologic effects of a high-repetition pulsed Nd:YAG laser on intraoral soft tissue

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Yessik, Michael J.; Myers, Terry D.

    1995-05-01

    High-repetition rate, fiberoptic-delivered Nd:YAG lasers have increased oral soft tissue laser applications. This study focused on three parameters: the temperature rise occurring in deeper tissue during excision, the histology of thermal coagulation during excision of oral tissue, and effects of accidental exposure to adjacent hard tissue. Thermocouples were placed 5.0 +/- 0.5 mm in bone below fresh bovine gingiva and at the same depth in tongue; temperatures in the underlying tissue were measured during laser excision. An Nd:YAG laser with 100 microsecond(s) pulse duration was used to excise the tissue using a 200 or 300 micrometers diameter fiber in contact with the tissue. The soft tissue was excised using constant force and rate with laser powers of 1.5, 3, 5, and 10 W, and a variety of pulse rates. The tissue was bioprepared, sectioned and stained with hematoxylin and eosin. The width and depth of the tissue removed as well as lateral and deep thermal coagulation were measured in histologic sections with a measuring microscope (10x). Multifactor randomized ANOVA showed that probe diameter and repetition rates were not significant variables (p

  3. Temperature-controlled two-wavelength laser soldering of tissues.

    PubMed

    Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham

    2011-11-01

    Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.

  4. Laser probes for noninvasive coagulation of subsurface tissues

    NASA Astrophysics Data System (ADS)

    Chung, Chia-Chun; Permpongkosol, Sompol; Varkarakis, Ioannis M.; Lima, Guilherme; Franco, Nicholas; Hayman, Michael H.; Nicol, Theresa; Fried, Nathaniel M.

    2006-02-01

    Previous ex vivo tissue studies utilizing deep laser heating combined with contact cooling of the tissue surface produced noninvasive thermal destruction of subsurface tissue structures in skin and liver samples. This study describes the design and preliminary in vivo testing of two integrated laser/cooling probes for simultaneous Nd:YAG laser irradiation and sapphire contact cooling of liver and skin tissues in an in vivo, acute porcine model for potential use in laparoscopic and endoscopic surgery. Nd:YAG laser radiation with a wavelength of 1.06 μm, power of 20 W, 7.5-mm-diameter spot, 500-ms pulse length, and repetition rate of 0.625 Hz, was delivered to the tissue with a total irradiation time of 16 s. The tissue surface was continuously cooled with a sapphire plate maintained at -5 °C, and with pre- and post-ablation cooling times measuring 120 s and 30 s, resulting in a total operation time of 166 s per a lesion. Thermal lesions were created in liver and skin at a 1-mm depth below the tissue surface and with a 3-4 mm diameter. The laser parameters and lesion dimensions were comparable to previous ex vivo tissue studies. Preliminary in vivo animal studies demonstrate noninvasive creation of subsurface thermal lesions in tissue using Nd:YAG laser irradiation in conjunction with sapphire contact cooling. Chronic wound healing studies will be necessary to optimize the laser and cooling parameters. Potential clinical applications include endoscopic laser treatment of female stress urinary incontinence and thermal coagulation of early stage bladder tumors.

  5. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  6. Raman spectroscopy differentiates squamous cell carcinoma (SCC) from normal skin following treatment with a high-powered CO2 laser.

    PubMed

    Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C

    2014-12-01

    The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the treatment of NMSC is demonstrated since CO2 laser treatment does not hinder the ability of Raman spectroscopy to differentiate normal from diseased tissue. This combined approach could be employed clinically to greatly enhance the speed and effectiveness of NMSC treatment in many cases. © 2014 Wiley Periodicals, Inc.

  7. Supra-threshold epidermis injury from near-infrared laser radiation prior to ablation onset

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Peterson, Amanda M.; Lile, Lily A.; Noojin, Gary D.; Shingledecker, Aurora D.; Stolarski, David J.; Zohner, Justin J.; Kumru, Semih S.; Thomas, Robert J.

    2017-02-01

    With continued advancement of solid-state laser technology, high-energy lasers operating in the near-infrared (NIR) band are being applied in an increasing number of manufacturing techniques and medical treatments. Safety-related investigations of potentially harmful laser interaction with skin are commonplace, consisting of establishing the maximum permissible exposure (MPE) thresholds under various conditions, often utilizing the minimally-visible lesion (MVL) metric as an indication of damage. Likewise, characterization of ablation onset and velocity is of interest for therapeutic and surgical use, and concerns exceptionally high irradiance levels. However, skin injury response between these two exposure ranges is not well understood. This study utilized a 1070-nm Yb-doped, diode-pumped fiber laser to explore the response of excised porcine skin tissue to high-energy exposures within the supra-threshold injury region without inducing ablation. Concurrent high-speed videography was employed to assess the effect on the epidermis, with a dichotomous response determination given for three progressive damage event categories: observable permanent distortion on the surface, formation of an epidermal bubble due to bounded intra-cutaneous water vaporization, and rupture of said bubble during laser exposure. ED50 values were calculated for these categories under various pulse configurations and beam diameters, and logistic regression models predicted injury events with approximately 90% accuracy. The distinction of skin response into categories of increasing degrees of damage expands the current understanding of high-energy laser safety while also underlining the unique biophysical effects during induced water phase change in tissue. These observations could prove useful in augmenting biothermomechanical models of laser exposure in the supra-threshold region.

  8. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser-tissue interactions, therapeutics and diagnostics.

  9. Laser tissue soldering for hypospadias repair: results of a controlled prospective clinical trial.

    PubMed

    Kirsch, A J; Cooper, C S; Gatti, J; Scherz, H C; Canning, D A; Zderic, S A; Snyder, H M

    2001-02-01

    Laser tissue soldering has been shown to provide safe and effective tissue closure by creating an immediate leak-free anastomosis with minimal scar formation. We compared the results of laser tissue soldering and conventional suturing for hypospadias repair. A consecutive group of 138 boys 4 months to 8 years old (mean age 15 months) was divided into a standard suturing (84) and a sutureless laser (54) hypospadias repair group. Urethral repair was defined as simple (Thiersch-Duplay or Snodgrass) and complex (onlay island flap or tube) in 101 and 37 cases, respectively. Laser tissue soldering was performed with 50% human albumin solder doped with 2.5 mg./ml. indocyanine green dye using an 808 nm. diode laser at 0.5 W. In the laser group sutures were used for tissue alignment only. At surgery neourethral and penile length, operative time for neourethral construction and the number of sutures or throws were measured. Postoperatively patients were examined for complications of wound healing, stricture or fistula. Mean patient age, urethral defect severity, type of repair, neourethral length and stenting time plus or minus standard error of mean were not significantly different in the 2 groups. Mean operative time was a fifth as long for laser tissue soldering in simple and complex hypospadias repair compared to controls (1.5 +/- 0.1 and 5.1 +/- 0.3 versus 8.5 +/- 0.8 and 26.7 +/- 1.7 minutes, respectively, p <0.001). The mean number of sutures used for tissue alignment in the laser group for simple and complex repair was significantly less than in controls (3.0 +/- 0.2 and 8.2 +/- 0.6 versus 8.5 +/- 0.8 and 23.2 +/- 1.5, respectively, p <0.001). All patients were followed a mean of 12 months (minimum 6, maximum 22). The complication rate was 4.7% in the laser group and 10.7% in controls with fistula in 2 of 54 cases, and fistula and meatal stenosis in 7 and 2 of 84, respectively. These preliminary results indicate that laser tissue soldering for hypospadias repair may be performed in almost sutureless fashion and more rapidly than conventional suturing. The ease of the laser technique and the lower complication rate in the laser group indicate that laser tissue soldering is an acceptable means of tissue closure in hypospadias repair.

  10. Optical coherence tomography image-guided smart laser knife for surgery.

    PubMed

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental results using tissue phantoms. Lasers Surg. Med. 50:202-212, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  12. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGES

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  13. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  14. A multi-wavelength fiber-optic temperature-controlled laser soldering system for upper aerodigestive tract reconstruction: an animal model.

    PubMed

    Abergel, Avraham; Gabay, Ilan; Fliss, Dan M; Katzir, Abraham; Gil, Ziv

    2011-06-01

    Laser soldering of a thick multilayer organ using conventional CO(2) lasers is ineffective. The purpose of this work was to develop a method for bonding the multilayer tissue of the upper aerodigestive tracts (UADT) without the need of sutures or stapling. Animal model. Academic research laboratory. The authors developed a multi-wavelength laser system, based on 2 fiber-optic lasers applied simultaneously. A highly absorbable CO(2) laser interacts with the muscular layer, and a nonabsorbable GaAs laser interacts with indocyanine-green solid albumin, placed between the mucosa and the muscular layer. The authors used an ex vivo porcine model to examine the capability of this system to effectively correct esophageal tears. The soldered esophagi burst pressure was >175 cm H(2)O (98% success rate) in 88 of the 90 experiments. A conventional CO(2) laser soldering resulted in insufficient bonding (mean burst pressure of 40 ± 7 cm H(2)O, n = 5), while the multi-wavelength laser system provided an ~9-fold tighter seal (359 ± 75.4 cm H(2)O, P < .0001, n = 15). Burst pressures after conventional suturing of the defect was significantly lower (106 ± 65.8 cm H(2)O, P < .001) than in the multi-wavelength laser system. Bonding of the UADT mucosa using a multi-wavelength, temperature-controlled laser soldering system can support significantly higher pressures then conventional CO(2) laser soldering and suture repair. The mean bonding pressure was 3.5-fold higher than the maximal swallowing pressure. Our findings provide a basis for implementation of new surgical tools for repair of esophageal perforations.

  15. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.

    PubMed

    Ogura, Makoto; Sato, Shunichi; Ishihara, Miya; Kawauchi, Satoko; Arai, Tunenori; Matsui, Takemi; Kurita, Akira; Kikuchi, Makoto; Ashida, Hiroshi; Obara, Minoru

    2002-01-01

    We investigated the mechanism and characteristics of porcine myocardium tissue ablation in vitro with nanosecond 1,064- and 532-nm pulsed lasers at laser intensities up to approximately 5.0 GW/cm(2). Particular attention was paid to study the influence of the laser-induced plasma on the ablation characteristics. The applicability of these two lasers to transmyocardial laser revascularization (TMLR) was discussed. Porcine myocardium tissue samples were irradiated with 1,064- and 532-nm, Q-switched Nd:YAG laser pulses, and the ablation depths were measured. The temporal profiles of the laser-induced optical emissions were measured with a biplanar phototube. For the ablated tissue samples, histological analysis was performed with an optical microscope and a polarization microscope. The ablation efficiency at 1,064 nm was higher than that at 532 nm. The ablation threshold at 1,064 nm (approximately 0.8 GW/cm(2)) was lower than that at 532 nm (approximately 1.6 GW/cm(2)), in spite of the lower absorption coefficient being expected at 1,064 nm. For the 1,064-nm laser-ablated tissues, thermal damage was very limited, while damage presumably caused by the mechanical effect was observed in most of the cases. For the 1,064-nm laser ablation, the ablation threshold was equal to the threshold of the laser-induced optical emission (approximately 0.8 GW/cm(2)), while for the 532-nm laser ablation, the optical emission threshold ( approximately 2.4 GW/cm(2)) was higher than the ablation threshold. We considered that for the 1,064-nm laser ablation, the tissue removal was achieved through a photodisruption process at laser intensities of > approximately 0.8 GW/cm(2). At laser intensities of > 3.0 GW/cm(2), however, the ablation efficiency decreased; this can be attributed to the absorption of incoming laser pulses by the plasma. For the 532-nm laser ablation, the tissue removal was achieved through a photothermal process at laser intensities of > approximately 1.6 GW/cm(2). At laser intensities of > 2.4 GW/cm(2), a photodisruption process may also contribute to the tissue removal, in addition to a photothermal process. With regard to the ablation rates, the 1,064-nm laser was more suitable for TMLR than the 532-nm laser. We concluded that the 1,064-nm Q-switched Nd:YAG laser would be a potential candidate for a laser source for TMLR because of possible fiber-based beam delivery, its compact structure, cost effectiveness, and easy maintenance. Animal trials, however, have to be carried out to evaluate the influence of the tissue damage. Copyright 2002 Wiley-Liss, Inc.

  16. Auto-simultaneous laser treatment and Ohshiro's classification of laser treatment

    NASA Astrophysics Data System (ADS)

    Ohshiro, Toshio

    2005-07-01

    When the laser was first applied in medicine and surgery in the late 1960"s and early 1970"s, early adopters reported better wound healing and less postoperative pain with laser procedures compared with the same procedure performed with the cold scalpel or with electrothermy, and multiple surgical effects such as incision, vaporization and hemocoagulation could be achieved with the same laser beam. There was thus an added beneficial component which was associated only with laser surgery. This was first recognized as the `?-effect", was then classified by the author as simultaneous laser therapy, but is now more accurately classified by the author as part of the auto-simultaneous aspect of laser treatment. Indeed, with the dramatic increase of the applications of the laser in surgery and medicine over the last 2 decades there has been a parallel increase in the need for a standardized classification of laser treatment. Some classifications have been machine-based, and thus inaccurate because at appropriate parameters, a `low-power laser" can produce a surgical effect and a `high power laser", a therapeutic one . A more accurate classification based on the tissue reaction is presented, developed by the author. In addition to this, the author has devised a graphical representation of laser surgical and therapeutic beams whereby the laser type, parameters, penetration depth, and tissue reaction can all be shown in a single illustration, which the author has termed the `Laser Apple", due to the typical pattern generated when a laser beam is incident on tissue. Laser/tissue reactions fall into three broad groups. If the photoreaction in the tissue is irreversible, then it is classified as high-reactive level laser treatment (HLLT). If some irreversible damage occurs together with reversible photodamage, as in tissue welding, the author refers to this as mid-reactive level laser treatment (MLLT). If the level of reaction in the target tissue is lower than the cells" survival threshold, then this is low reactive-level laser therapy (LLLT). All three of these classifications can occur simultaneously in the one target, and fall under the umbrella of laser treatment (LT). LT is further subdivided into three main types: mono-type LT (Mo-LT, treatment with a single laser system; multi-type LT (Mu-LT, treatment with multiple laser systems); and concomitant LT (Cc-LT), laser treatment in combination, each of which is further subdivided by tissue reaction to give an accurate, treatment-based categorization of laser treatment. When this effect-based classification is combined with and illustrated by the appropriate laser apple pattern, an accurate and simple method of classifying laser/tissue reactions by the reaction, rather than by the laser used to produce the reaction, is achieved. Examples will be given to illustrate the author"s new approach to this important concept.

  17. In-situ tomographic observation of tissue surface during laser ablation

    NASA Astrophysics Data System (ADS)

    Haruna, Masamitsu; Konoshita, Ryuh; Ohmi, Masato; Kunizawa, Naomi; Miyachi, Mayumi

    2001-07-01

    In laser ablation of tissues, tomography of the tissue surface is necessary for measurement of the crater depth and observation of damage of the surrounding tissue. We demonstrate here OCT images of craters made by UV laser ablation of different tissues. The maximum depth of a crater is found among several OCT images, and then the ablation rate is determined. The conventional OCT of the spatial resolution of 15 μm was used in our experiment, but OCT of the resolution of the order of 1 μm is required because the ablation rate is usually a few microns per pulse. Such a high-resolution OCT is also demonstrated in this paper, where the light source is a halogen lamp. Combination of laser ablation and OCT will lead to in situ tomographic observation of tissue surface during laser ablation, which should allow us to develop new laser surgeries.

  18. Perspectives of powerful laser technique for medicine

    NASA Astrophysics Data System (ADS)

    Konov, Vitali I.; Prokhorov, Alexander M.; Shcherbakov, Ivan A.

    1991-11-01

    The optimum laser-system parameters are being selected for several types of surgical operations using ablation techniques. The choice is based on the specific demands of the operation performed, knowledge of the ablation laws, limitations on laser-beam intensity which come from the necessity to transport high-intensity light through flexible fiber, and the peculiarities of different laser systems. At present it is more expedient to develop laser medical setups oriented to the solution of one task or a limited number of problems. The choice of a concrete installation should be based on the investigation results of interaction of radiation with biological tissues and its transmission through the fiber, the analysis of the level of development of laser and fiber technique, specificity of the operation, and compatibility of laser facilitates and traditional medical equipment. The paper illustrates such an approach by way of several concrete examples and notes the corresponding laser systems, which were developed or are in the developmental stage in the General Physics Institute of the USSR Academy of Sciences and in organizations connected with the Institute.

  19. Immunohistochemical Localization of Periostin in Human Gingiva

    PubMed Central

    Cobo, T.; Obaya, A.; Cal, S.; Solares, L.; Cabo, R.; Vega, J.A.; Cobo, J.

    2015-01-01

    The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered. PMID:26428890

  20. Optimizing fluence and debridement effects on cutaneous resurfacing carbon dioxide laser surgery.

    PubMed

    Weisberg, N K; Kuo, T; Torkian, B; Reinisch, L; Ellis, D L

    1998-10-01

    To develop methods to compare carbon dioxide (CO2) resurfacing lasers, fluence, and debridement effects on tissue shrinkage and histological thermal denaturation. In vitro human or in vivo porcine skin samples received up to 5 passes with scanner or short-pulsed CO2 resurfacing lasers. Fluences ranging from 2.19 to 17.58 J/cm2 (scanner) and 1.11 to 5.56 J/cm2 (short pulsed) were used to determine each laser's threshold energy for clinical effect. Variable amounts of debridement were also studied. Tissue shrinkage was evaluated by using digital photography to measure linear distance change of the treated tissue. Tissue histological studies were evaluated using quantitative computer image analysis. Fluence-independent in vitro tissue shrinkage was seen with the scanned and short-pulsed lasers above threshold fluence levels of 5.9 and 2.5 J/cm2, respectively. Histologically, fluence-independent thermal depths of damage of 77 microns (scanner) and 25 microns (pulsed) were observed. Aggressive debridement of the tissue increased the shrinkage per pass of the laser, and decreased the fluence required for the threshold effect. In vivo experiments confirmed the in vitro results, although the in vivo threshold fluence level was slightly higher and the shrinkage obtained was slightly lower per pass. Our methods allow comparison of different resurfacing lasers' acute effects. We found equivalent laser tissue effects using lower fluences than those currently accepted clinically. This suggests that the morbidity associated with CO2 laser resurfacing may be minimized by lowering levels of tissue input energy and controlling for tissue debridement.

  1. Response of pigmented porcine skin (Sus scrofa domestica) to single 3.8-micron laser radiation pulses

    NASA Astrophysics Data System (ADS)

    Bostick, Anthony C.; Johnson, Thomas E.; Randolph, Donald Q.; Winston, Golda C. H.

    2005-04-01

    Background and purpose: The purpose of this study is to determine the impact of melanin on skin response to single 3.8 micron, eight microsecond laser pulses and the difference in lesion formation thresholds for input into laser safety standards. Williams et al., performed a study examining laser tissue interaction from 3.8-micron lasers in lightly pigmented Yorkshire pigs (Sus scrofa domestica). However, studies performed by Eggleston et al comparing pigmented and lightly pigmented skin with human skin found that the Yucatan mini-pig is a superior model for laser skin exposures. Methods: Five Yucatan mini-pigs under general anesthesia were exposed to 3.8 micron laser pulses ranging from 0.8 J/cm2 to 93 J/cm2. Gross examinations were done acutely and 24 hours after laser exposure. Skin biopsies were then collected at various times post exposure, and histologic examinations were conducted. Results: The 24 hour ED50 was determined to be 4.5 J/cm2 with fiducial limits of 6.2 and 2.2 J/cm2. As deposited energy was increased, the lesion presentation ranged from whitening of the epidermis (4 J/cm2) to whitening with inflammatory centers (14 J/cm2), and at the highest energy levels inflammatory areas were replaced with an epidermal ulcerated central area (>21 J/cm2). Conclusion: Preliminary findings suggest pigmentation or melanin may play a minor role in the mechanism of laser-tissue damage. The ED50 of Yorkshire pigs was 2.6 J/cm2. The ED50 of the Yucatan mini-pig was found to be 3.6 J/cm2, and although it was higher, it is still within the 95% fiducial limits.

  2. Role of ROS-mediated TGF beta activation in laser photobiomodulation

    NASA Astrophysics Data System (ADS)

    Arany, Praveen R.; Chen, Aaron Chih-Hao; Hunt, Tristan; Mooney, David J.; Hamblin, Michael

    2009-02-01

    The ability of laser light to modulate specific biological processes has been well documented but the precise mechanism mediating these photobiological interactions remains an area of intense investigation. We recently published the results of our clinical trial with 30 patients in an oral tooth-extraction wound healing model using a 904nm GaAs laser (Oralaser 1010, Oralia, Konstnaz, Germany), assessing healing parameters using routine histopathology and immunostaining (Arany et al Wound Rep Regen 2007, 15, 866). We observed a better organized healing response in laser irradiated oral tissues that correlated with an increased expression of TGF-beta1 immediately post laser irradiation. Our data suggested the source of latent TGF-beta1 might be from the degranulating platelets in the serum, an abundant source of in vivo latent TGF-beta, in the freshly wounded tissues. Further, we also demonstrated the ability of the low power near-infrared laser irradiation to activate the latent TGF-beta complexes in vitro at varying fluences from 10sec (0.1 J/cm2) to 600secs (6 J/cm2). Using serum we observed two isoforms, namely TGF-beta1 and TGF-beta3, were capable of being activated by laser irradiation using an isoform-specific ELISA and a reporter based (p3TP) assay system. We are presently pursuing the precise photomolecular mechanisms focusing on potential chromophores, wavelength and fluence parameters affecting the Latent TGF-beta activation process in serum. As ROS mediated TGF-beta activation has been previously demonstrated and we are also exploring the role of Laser generated-ROS in this activation process. In summary, we present evidence of a potential molecular mechanism for laser photobiomodulation in its ability to activate latent TGF-beta complexes.

  3. Low-intensity red and infrared lasers on XPA and XPC gene expression

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Ferreira-Machado, S. C.; Geller, M.; Paoli, F.

    2014-09-01

    Laser devices emit monochromatic, coherent, and highly collimated intense beams of light that are useful for a number of biomedical applications. However, for low-intensity lasers, possible adverse effects of laser light on DNA are still controversial. In this work, the expression of XPA and XPC genes in skin and muscle tissue exposed to low-intensity red and infrared lasers was evaluated. Skin and muscle tissue of Wistar rats were exposed to low-intensity red and infrared lasers at different fluences in continuous mode emission. Skin and muscle tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of actin gene expression by quantitative polymerase chain reaction. Data obtained show that laser radiation alters the expression of XPA and XPC mRNA differently in skin and muscle tissue of Wistar rats, depending on physical (fluence and wavelength) and biological (tissue) parameters. Laser light could modify expression of genes related to the nucleotide excision repair pathway at fluences and wavelengths used in clinical protocols.

  4. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  5. [Interaction of oxytocin, laser and electromagnetic radiation on the persistence properties of Staphylococcus aureus].

    PubMed

    Kurlaev, P P; Chernova, O L; Kirgizova, S B

    2000-01-01

    The suppressive action of oxytocin, heliumneon radiation and ultrahigh-frequency electromagnetic waves (UHF-therapy) on the persistence properties of S. aureus has been experimentally established. The effectiveness of the therapeutic actions under study in the treatment of patients with the prognosticated unfavorable course of purulent inflammatory diseases of soft tissues has been shown.

  6. Thermal and molecular investigation of laser tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds between collagen molecules (crosslinks) were formed in tissue when exposed to the commonly used absorbing chromophore indocyanine green (ICG) prior to laser irradiation, which restored the crosslink concentrations to their native levels. Crosslinks were either created or destroyed during exposure to green laser light without any extrinsic materials or chromophores, which may impact the acute and long-term strength and stability of laser welded tissues. Infrared spectroscopy revealed changes in collagen conformation (molecular structure) induced by laser heating as a function of temperature, elucidating the dynamics of the denaturation process.

  7. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.

    PubMed

    Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey

    2018-02-01

    Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Diode laser application in soft tissue oral surgery.

    PubMed

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.

  9. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  10. Laser-enhanced thermal effect of moderate intensity focused ultrasound on bio-tissues

    NASA Astrophysics Data System (ADS)

    Zhao, JinYu; Zhang, ShuYi; Shui, XiuJi; Fan, Li

    2017-09-01

    For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound (HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound (MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.

  11. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    PubMed

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  12. Laser optoacoustic tomography for medical diagnostics: principles

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Esenaliev, Rinat O.; Jacques, Steven L.; Tittel, Frank K.

    1996-04-01

    This paper is to describe principles of laser optoacoustic tomography for medical diagnostics. Two types of imaging modes are presented. The first is the tomography in transmission mode, which utilizes detection of stress transients transmitted from the laser-excited volume toward the depth through thick layers of tissue. The second is the tomography in reflection mode which utilizes detection of stress transients generated in superficial tissue layer and reflected back toward tissue surface. To distinguish the two modes, we have abbreviated them as (1) laser optoacoustic tomography in transmission mode, LOATT, and (2) time-resolved stress detection tomography of light absorption, TRSDTLA, in reflection mode where emphasis is made on high spatial resolution of images. The basis for laser optoacoustic tomography is the time-resolved detection of laser-induced transient stress waves, selectively generated in absorbing tissues of diagnostic interest. Such a technique allows one to visualize absorbed light distribution in turbid biological tissues irradiated by short laser pulses. Laser optoacoustic tomography can be used for detection of tissue pathological changes that result in either increased concentration of various tissue chromophores such as hemoglobin or in development of enhanced microcirculation in diseased tissue. Potential areas of applications are diagnosis of cancer, brain hemorrhages, arterial atherosclerotic plaques, and other diseased tissues. In addition, it can provide feedback information during medical treatments. Both LOATT and TRSDTLA utilize laser excitation of biological tissues and sensitive detection of laser-induced stress waves. Optical selectivity is based upon differences in optical properties of pathologically different tissues. Sensitivity comes from stress generation under irradiation conditions of temporal stress confinement. The use of sensitive wide-band lithium niobate acoustic transducers expands limits of laser optoacoustic tomography. The technology allows us to determine directly temperature distributions in tissues and locate tissues volumes with different absorption. To demonstrate principles of TRSDTLA, experiments were conducted in vivo with mice-model for breast cancer using specially designed front-surface transducers- reflectometers. To present advantages and limitation of LOATT, experiments were performed in phantoms made of gel with polystyrene spheres colored with copper sulfate. Our experimental results and theoretical calculations show that TRSDTLA can be applied for non- invasive histology of layered tissues with in-depth resolution of up to 2 microns. TRSDTLA in acoustic reflection mode is promising for diagnostics of skin and ocular diseases. LOATT in acoustic transmission mode can be applied for detection of small tissue volumes with enhanced absorption located inside organs at the depth of up to 10 cm.

  13. Interstitial Photoacoustic Sensor for the Measurement of Tissue Temperature during Interstitial Laser Phototherapy

    PubMed Central

    Li, Zhifang; Chen, Haiyu; Zhou, Feifan; Li, Hui; Chen, Wei R.

    2015-01-01

    Photothermal therapy is an effective means to induce tumor cell death, since tumor tissue is more sensitive to temperature increases than normal tissue. Biological responses depend on tissue temperature; target tissue temperature needs to be precisely measured and controlled to achieve desired thermal effects. In this work, a unique photoacoustic (PA) sensor is proposed for temperature measurement during interstitial laser phototherapy. A continuous-wave laser light and a pulsed laser light, for photothermal irradiation and photoacoustic temperature measurement, respectively, were delivered to the target tissue through a fiber coupler. During laser irradiation, the PA amplitude was measured. The Grüneisen parameter and the bioheat equation were used to determine the temperature in strategic positions in the target tissue. Our results demonstrate that the interstitial PA amplitude is a linear function of temperature in the range of 22 to 55 °C, as confirmed by thermocouple measurement. Furthermore, by choosing appropriate laser parameters, the maximum temperature surrounding the active diffuse fiber tip in tissue can be controlled in the range of 41 to 55 °C. Thus, this sensor could potentially be used for fast, accurate, and convenient three-dimensional temperature measurement, and for real-time feedback and control of interstitial laser phototherapy in cancer treatment. PMID:25756865

  14. Management of heat in laser tissue welding using NIR cover window material.

    PubMed

    Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R

    2011-12-01

    Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.

  15. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  16. Effects of an erbium, chromium: yttrium, scandium, gallium, garnet laser on mucocutanous soft tissues.

    PubMed

    Rizoiu, I M; Eversole, L R; Kimmel, A I

    1996-10-01

    Lasers are effective tools for soft tissue surgery. The erbium, chromium: yttrium, scandium, gallium, garnet laser is a new system that incorporates an air-water spray. This study evaluates the cutting margins of this laser and compares healing with laser and conventional scalpel and punch biopsy-induced wounds. New Zealand white rabbits were divided into serial sacrifice groups; the tissues were grossly and microscopically analyzed after laser and convential steel surgical wounding. Wound margins were found to show minimal edge coagulation artifact and were 20 to 40 mm in width. Laser wounds showed minimal to no hemorrhage and re-epithelialization and collagenization were found to occur by day 7 in both laser and conventional groups. The new laser system is an effective soft tissue surgical device; wound healing is comparable to that associated with surgical steel wounds. The minimal edge artifact observed with this laser system should allow for the procurement of diagnostic biopsy specimens.

  17. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  18. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs.

    PubMed

    An, Jia; Chua, Chee Kai; Yu, Ting; Li, Huaqiong; Tan, Lay Poh

    2013-04-01

    Nanobiomaterials, a field at the interface of biomaterials and nanotechnologies, when applied to tissue engineering applications, are usually perceived to resemble the cell microenvironment components or as a material strategy to instruct cells and alter cell behaviors. Therefore, they provide a clear understanding of the relationship between nanotechnologies and resulting cellular responses. This review will cover recent advances in nanobiomaterial research for applications in tissue engineering. In particular, recent developments in nanofibrous scaffolds, nanobiomaterial composites, hydrogel systems, laser-fabricated nanostructures and cell-based bioprinting methods to produce scaffolds with nanofeatures for tissue engineering are discussed. As in native niches of cells, where nanofeatures are constantly interacting and influencing cellular behavior, new generations of scaffolds will need to have these features to enable more desirable engineered tissues. Moving forward, tissue engineering will also have to address the issues of complexity and organization in tissues and organs.

  19. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V.

    PubMed

    Chikarakara, Evans; Fitzpatrick, Patricia; Moore, Eric; Levingstone, Tanya; Grehan, Laura; Higginbotham, Clement; Vázquez, Mercedes; Bagga, Komal; Naher, Sumsun; Brabazon, Dermot

    2014-12-29

    The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed. In this work, laser surface melting of titanium alloy Ti-6Al-4V was carried out using a CO2 laser with an argon gas atmosphere. Investigations were carried out to study the influence of laser surface modification on the biocompatibility of Ti-6Al-4V alloy implant material. Surface roughness, microhardness, and phase development were recorded. Initial knowledge of these effects on biocompatibility was gained from examination of the response of fibroblast cell lines, which was followed by examination of the response of osteoblast cell lines which is relevant to the applications of this material in bone repair. Biocompatibility with these cell lines was analysed via Resazurin cell viability assay, DNA cell attachment assay, and alamarBlue metabolic activity assay. Laser treated surfaces were found to preferentially promote cell attachment, higher levels of proliferation, and enhanced bioactivity when compared to untreated control samples. These results demonstrate the tremendous potential of this laser surface melting treatment to significantly improve the biocompatibility of titanium implants in vivo.

  20. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  1. Thermal and molecular investigation of laser tissue welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of themore » welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.« less

  2. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    PubMed

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P < 0.05). A calculated 'output power efficiency per watt' revealed that the 1,318-nm laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P < 0.0001). All three diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P < 0.01). The extend of morphological tissue necrosis was 4.62 mm (1,318 nm), 1.30 mm (1,470 nm), 4.18 mm (980 nm) and 0.84 mm (GreenLight HPS laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  3. Generation of radicals in hard biological tissues under the action of laser radiation

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Bagratashvili, Victor N.; Sobol, Emil N.; Omelchenko, Alexander I.; Lunina, Elena V.; Zhitnev, Yurii N.; Markaryan, Galina L.; Lunin, Valerii V.

    2002-07-01

    The formation of radicals upon UV and IR laser irradiation of some biological tissues and their components was studied by the EPR technique. The radical decay kinetics in body tissue specimens after their irradiation with UV light were described by various models. By the spin trapping technique, it was shown that radicals were not produced during IR laser irradiation of cartilaginous tissue. A change in optical absorption spectra and the dynamics of optical density of cartilaginous tissue, fish scale, and a collagen film under exposure to laser radiation in an air, oxygen, and nitrogen atmosphere was studied.

  4. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  5. Tissue differentiation by diffuse reflectance spectroscopy for automated oral and maxillofacial laser surgery: ex vivo pilot study

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Schmidt, Michael; Douplik, Alexandre

    2010-02-01

    Remote laser surgery lacks of haptic feedback during the laser ablation of tissue. Hence, there is a risk of iatrogenic damage or destruction of anatomical structures like nerves or salivary glands. Diffuse reflectance spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from seven various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the seven tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerves and salivary glands as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating tissues as guidance for oral and maxillofacial laser surgery by means of diffuse reflectance.

  6. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  7. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser.

    PubMed

    Braun, Andreas; Kettner, Moritz; Berthold, Michael; Wenzler, Johannes-Simon; Heymann, Paul Günther Baptist; Frankenberger, Roland

    2018-01-01

    Using a 445-nm semiconductor laser for tissue incision, an effective cut is expected due to the special absorption properties of blue laser light in soft tissues. The aim of the present study was the histological evaluation of tissue samples after incision with a 445-nm diode laser. Forty soft tissue specimens were obtained from pork oral mucosa and mounted on a motorized linear translation stage. The handpiece of a high-frequency surgery device, a 970-nm semiconductor laser, and a 445-nm semiconductor laser were connected to the slide, allowing a constant linear movement (2 mm/s) and the same distance of the working tip to the soft tissue's surface. Four incisions were made each: (I) 970-nm laser with conditioned fiber tip, contact mode at 3-W cw; (II-III): 445-nm laser with non-conditioned fiber tip, contact mode at 2-W cw, and non-contact mode (1 mm) at 2 W; and (IV): high-frequency surgery device with straight working tip, 90° angulation, contact mode at 50 W. Histological analysis was performed after H&E staining of the embedded specimens at 35-fold magnification. The comparison of the incision depths showed a significant difference depending on the laser wavelength and the selected laser parameters. The highest incision depth was achieved with the 445-nm laser contact mode (median depth 0.61 mm, min 0.26, max 1.17, interquartile range 0.58) (p < 0.05) with the lowest amount of soft tissue denaturation (p < 0.05). The lowest incision depth was measured for the high-frequency surgical device (median depth 0.36 mm, min 0.12, max 1.12, interquartile range 0.23) (p < 0.05). Using a 445-nm semiconductor laser, a higher cutting efficiency can be expected when compared with a 970-nm diode laser and high-frequency surgery. Even the 445-nm laser application in non-contact mode shows clinically acceptable incision depths without signs of extensive soft tissue denaturation.

  8. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  9. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  10. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  11. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  12. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    PubMed

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  13. A Miniature Forward-imaging B-scan Optical Coherence Tomography Probe to Guide Real-time Laser Ablation

    PubMed Central

    Li, Zhuoyan; Shen, Jin H.; Kozub, John A.; Prasad, Ratna; Lu, Pengcheng; Joos, Karen M.

    2014-01-01

    Background and Objective Investigations have shown that pulsed lasers tuned to 6.1 μm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions. Study Design/Methods and Materials A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 μm hollow-glass waveguide to permit delivery of 6.1 μm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 μm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues. Results The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 μm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage. Conclusions A combined miniature OCT and laser -delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue. PMID:24648326

  14. 21 CFR 884.4550 - Gynecologic surgical laser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gynecologic surgical laser. 884.4550 Section 884....4550 Gynecologic surgical laser. (a) Identification. A gynecologic surgical laser is a continuous wave carbon dioxide laser designed to destroy tissue thermally or to remove tissue by radiant light energy...

  15. 21 CFR 884.4550 - Gynecologic surgical laser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gynecologic surgical laser. 884.4550 Section 884....4550 Gynecologic surgical laser. (a) Identification. A gynecologic surgical laser is a continuous wave carbon dioxide laser designed to destroy tissue thermally or to remove tissue by radiant light energy...

  16. 21 CFR 884.4550 - Gynecologic surgical laser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gynecologic surgical laser. 884.4550 Section 884....4550 Gynecologic surgical laser. (a) Identification. A gynecologic surgical laser is a continuous wave carbon dioxide laser designed to destroy tissue thermally or to remove tissue by radiant light energy...

  17. 21 CFR 884.4550 - Gynecologic surgical laser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gynecologic surgical laser. 884.4550 Section 884....4550 Gynecologic surgical laser. (a) Identification. A gynecologic surgical laser is a continuous wave carbon dioxide laser designed to destroy tissue thermally or to remove tissue by radiant light energy...

  18. 21 CFR 884.4550 - Gynecologic surgical laser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gynecologic surgical laser. 884.4550 Section 884....4550 Gynecologic surgical laser. (a) Identification. A gynecologic surgical laser is a continuous wave carbon dioxide laser designed to destroy tissue thermally or to remove tissue by radiant light energy...

  19. Subsurface thermal coagulation of tissues using near infrared lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Hung Jack

    Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.

  20. Photo-mediated ultrasound therapy (PUT): a novel method of selectively treating neovascularization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Haonan; Hu, Zi Zhong; Li, Jia; Mordovanakis, Aghapi G.; Yang, Xinmai; Paulus, Yannis M.; Wang, Xueding

    2017-02-01

    Retinal and choroidal neovascularization play a pivotal role in the leading causes of blindness including macular degeneration and diabetic retinopathy (DR). Current therapy by focal laser photocoagulation can damage the normal surrounding cells, such as the photoreceptor inner and outer segments which are adjacent to the retinal pigment epithelium (RPE), due to the use of high laser energy and millisecond pulse duration. Therapies with pharmaceutical agents involve systemic administration of drugs, which can cause adverse effects and patients may become drug-resistant. We have developed a noninvasive photo-mediated ultrasound therapy (PUT) technique as a localized antivascular method, and applied it to remove micro blood vessels in the retina. PUT takes advantage of the high native optical contrast among biological tissues, and has the unique capability to self-target microvessels without causing unwanted damages to the surrounding tissues. This technique promotes cavitation activity in blood vessels by synergistically applying nanosecond laser pulses and ultrasound bursts. Through the interaction between cavitation and blood vessel wall, blood clots in microvessels and vasoconstriction can be induced. As a result, microvessels can be occluded. In comparison with other techniques that involves cavitation, both laser and ultrasound energy needed in PUT is significantly lower, and hence improves the safety in therapy.

  1. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth. Impact of transport kinetics on AFXL-assisted topical MTX delivery: MTX accumulated rapidly in AFXL-processed skin. MTX was detectable in mid-dermis after 15 min. and saturated the skin after 7 h at a ten-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5% of applied MTX before skin saturation, and increased afterwards up to 8.0% at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section. In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.

  2. Effects of pulsed mid-IR lasers on bovine knee joint tissues

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; Pergadia, Vani R.; Duffy, J. T.; Miller, J. M.; van der Veen, Maurits J.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    We investigated the effect of varying Tm:YAG (2.014 micrometers ) and Ho:YAG (2.130 micrometers ) laser parameters on ablation rate and consequent thermal damage. Mid-infrared wavelengths are strongly absorbed by most biological tissues due to the tissue's high water content. The ablation rate of fresh bovine knee joint tissues (fibrous cartilage, hyaline cartilage, and bone) in saline was assessed as a function of radiant exposure (160 - 950 J/cm2), at pulse widths of 200 microsecond(s) ec for Tm:YAG and 250 microsecond(s) ec for Ho:YAG and a repetition rate of 2 Hz. All tissues used in this study could be efficiently ablated using two micron lasers. The mechanism of action is likely related to the formation and collapse of cavitation bubbles, associated with mid-infrared lasers. We concluded that the Tm:YAG and Ho:YAG lasers are capable of effective knee joint tissue ablation.

  3. Surgical effects on soft tissue produced by a 405-nm violet diode laser in vivo

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Kato, J.; Kawai, S.; Hatayama, H.; Uchida, K.; Otsuki, M.; Tagami, J.; Yokoo, S.

    2011-12-01

    This study evaluated the surgical performance of a 405-nm diode laser in vivo, using living rat liver tissue. Tissue was incised by irradiation with the laser at low output power ranging from 1 W (722 W/cm2) to 3 W (2165 W/cm2) on a manual control at a rate of 1 mm/s. As a control, incisions using a stainless scalpel were compared. Immediately after operation, the surface of the incisions was macroscopically observed and histopathologically evaluated by microscopy. Laser-ablated liver tissue was smooth with observable signs of remnant carbonization and easily acquired hemostasis. The thickness of the denatured layer increased in proportion to the output power; the coagulation layer did not thicken accordingly. Bleeding could not be stopped for tissues incised with the stainless scalpel. The 405-nm diode laser thus proved to be effective for ablating soft tissue with high hemostatic ability at low power.

  4. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  5. Quantifying thermal modifications on laser welded skin tissue

    NASA Astrophysics Data System (ADS)

    Tabakoglu, Hasim Ö.; Gülsoy, Murat

    2011-02-01

    Laser tissue welding is a potential medical treatment method especially on closing cuts implemented during any kind of surgery. Photothermal effects of laser on tissue should be quantified in order to determine optimal dosimetry parameters. Polarized light and phase contrast techniques reveal information about extend of thermal change over tissue occurred during laser welding application. Change in collagen structure in skin tissue stained with hematoxilen and eosin samples can be detected. In this study, three different near infrared laser wavelengths (809 nm, 980 nm and 1070 nm) were compared for skin welding efficiency. 1 cm long cuts were treated spot by spot laser application on Wistar rats' dorsal skin, in vivo. In all laser applications, 0.5 W of optical power was delivered to the tissue, 5 s continuously, resulting in 79.61 J/cm2 energy density (15.92 W/cm2 power density) for each spot. The 1st, 4th, 7th, 14th, and 21st days of recovery period were determined as control days, and skin samples needed for histology were removed on these particular days. The stained samples were examined under a light microscope. Images were taken with a CCD camera and examined with imaging software. 809 Nm laser was found to be capable of creating strong full-thickness closure, but thermal damage was evident. The thermal damage from 980 nm laser welding was found to be more tolerable. The results showed that 1070 nm laser welding produced noticeably stronger bonds with minimal scar formation.

  6. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  7. Er:YAG laser for dentistry: basics, actual questions, and perspectives

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1994-12-01

    In recent years the dental use of the Er:YAG has found increasing interest. Most of the papers published so far concentrate on in vitro studies on cavity preparation, including the determination of ablation rates, measurements of temperature increase, microscopical analysis, and studies on the effect of water spray. The results are qualitatively in agreement and reveal a combination of high ablation efficiency and small side effects superior to other laser systems. Quantitative results, however, e.g., on ablation threshold or crater depths, sometimes differ. Some of these differences now can be explained and related to laser parameters or experimental conditions. Besides increasing the understanding on laser tissue interaction, the actual research enlarges the potential applications of the Er:YAG laser, such as for condition of enamel or dentin surfaces to enhance the bonding of composites. With the use of fibers, additional perspectives are given in periodontics and endodontics, e.g., for concrement removal or root canal preparation or sterilization.

  8. Laser in dentistry: An innovative tool in modern dental practice

    PubMed Central

    Verma, Sanjeev Kumar; Maheshwari, Sandhya; Singh, Raj Kumar; Chaudhari, Prabhat Kumar

    2012-01-01

    The term LASER is an acronym for ‘Light Amplification by the Stimulated Emission of Radiation’. As its first application in dentistry by Miaman, in 1960, the laser has seen various hard and soft tissue applications. In the last two decades, there has been an explosion of research studies in laser application. In hard tissue application, the laser is used for caries prevention, bleaching, restorative removal and curing, cavity preparation, dentinal hypersensitivity, growth modulation and for diagnostic purposes, whereas soft tissue application includes wound healing, removal of hyperplastic tissue to uncovering of impacted or partially erupted tooth, photodynamic therapy for malignancies, photostimulation of herpetic lesion. Use of the laser proved to be an effective tool to increase efficiency, specificity, ease, and cost and comfort of the dental treatment. PMID:23833485

  9. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are acoustic transients orshockwaves has notbeendetermined, although itis ourprejudicethatshockwaves are the predominant force under these conditions. It is important to consider the possible effects of pressure transients in evaluating laser-tissue interactions, particularly when using short pulse, high peak power lasers.

  10. Optical coherence tomography (OCT) guided smart laser knife for cancer surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Katta, Nitesh; Mcelroy, Austin; Estrada, Arnold; Milner, Thomas E.

    2017-02-01

    Neurological cancer surgeries require specialized tools that enhance imaging for precise cutting and removal of tissue without damaging adjacent neurological structures. The novel combination of high-resolution fast optical coherence tomography (OCT) alongside short pulsed nanosecond thulium (Tm) lasers offers stark advantages utilizing the superior beam quality, high volumetric tissue removal rates of thulium lasers with minimal residual thermal footprint in the tissue and avoiding damage to delicate sub-surface structures (e.g., nerves and microvessels); which has not been showcased before. A bench-top system is constructed, using a 15W 1940nm nanosecond pulsed Tm fiber laser (500uJ pulse energy, 100ns pulse duration, 30kHz repetition rate) for removing tissue and a swept source laser (1310±70nm, 100kHz sweep rate) is utilized for OCT imaging, forming a combined Tm/OCT system - a smart laser knife. The OCT image-guidance informs the Tm laser for cutting/removal of targeted tissue structures. Tissue phantoms were constructed to demonstrate surgical incision with blood vessel avoidance on the surface where 2mm wide 600um deep cuts are executed around the vessel using OCT to guide the procedure. Cutting up to delicate subsurface blood vessels (2mm deep) is demonstrated while avoiding damage to their walls. A tissue removal rate of 5mm^3/sec is obtained from the bench-top system. We constructed a blow-off model to characterize Tm cut depths taking into account the absorption coefficients and beam delivery systems to compute Arrhenius damage integrals. The model is used to compare predicted tissue removal rate and residual thermal injury with experimental values in response to Tm laser-tissue modification.

  11. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  12. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  13. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  14. The application of diode laser in the treatment of oral soft tissues lesions. A literature review.

    PubMed

    Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan

    2017-07-01

    Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words: Diode laser, soft tissues, oral cavity, oral surgery.

  15. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  16. A diagnostic system for articular cartilage using non-destructive pulsed laser irradiation.

    PubMed

    Sato, Masato; Ishihara, Miya; Kikuchi, Makoto; Mochida, Joji

    2011-07-01

    Osteoarthritis involves dysfunction caused by cartilage degeneration, but objective evaluation methodologies based on the original function of the articular cartilage remain unavailable. Evaluations for osteoarthritis are mostly based simply on patient symptoms or the degree of joint space narrowing on X-ray images. Accurate measurement and quantitative evaluation of the mechanical characteristics of the cartilage is important, and the tissue properties of the original articular cartilage must be clarified to understand the pathological condition in detail and to correctly judge the efficacy of treatment. We have developed new methods to measure some essential properties of cartilage: a photoacoustic measurement method; and time-resolved fluorescence spectroscopy. A nanosecond-pulsed laser, which is completely non-destructive, is focused onto the target cartilage and induces a photoacoustic wave that will propagate with attenuation and is affected by the viscoelasticity of the surrounding cartilage. We also investigated whether pulsed laser irradiation and the measurement of excited autofluorescence allow real-time, non-invasive evaluation of tissue characteristics. The decay time, during which the amplitude of the photoacoustic wave is reduced by a factor of 1/e, represents the key numerical value used to characterize and evaluate the viscoelasticity and rheological behavior of the cartilage. Our findings show that time-resolved laser-induced autofluorescence spectroscopy (TR-LIFS) is useful for evaluating tissue-engineered cartilage. Photoacoustic measurement and TR-LIFS, predicated on the interactions between optics and living organs, is a suitable methodology for diagnosis during arthroscopy, allowing quantitative and multidirectional evaluation of the original function of the cartilage based on a variety of parameters. Copyright © 2011 Wiley-Liss, Inc.

  17. Physical basics of endovenous laser treatment and potential of innovative developments

    NASA Astrophysics Data System (ADS)

    Sroka, R.; Esipova, A.; Schmedt, C. G.

    2017-04-01

    During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.

  18. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  19. Local microcirculation disorders in uterus under laser tissue welding and their influence in the healing process

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Skobelkin, Oleg K.; Fatkullin, Ildar; Terman, Oleg A.; Chizhov, Gennadii; Gabidullina, Rushania

    1994-12-01

    To study the possibility of using Nd:YAG laser to weld the tissues of the uterus experiments in rats and dogs have been conducted. With the biomicroscopy and the laser Doppler flowmetry we have evaluated the microcirculation in the uterus wall under traditional suture and laser welding suture. As a model of the wound, the dissection of serosa and muscles of the organ wall have been used. In laser welding suture we have welded the zone of tissue about 1 mm3 with the laser (power density 270 W/cm2). Histological control has been fulfilled on various phases of the healing process. The investigation of the uterus wall demonstrates that there are zones of microcirculation disorders in tissues: (1) the zone of coagulation of microvessels and adjacent tissues (about 100 micrometers ); (2) the zone of stasis (150 - 200 micrometers ); (3) the zone of reactive-destructive changes of microvessels (300 micrometers ), (4) the zone of malfunctional microcirculatory changes (600 micrometers ). The coagulation of microvessels changes the character of inflammation and the healing process, decreases the exudation phase and the leucocyte infiltration of tissues, and accelerates the capillary growth. In contrast with traditional suture, in the case of laser welding suture the edema and hemorrhagic signs are less expressed. The complete restoration of microcirculation under laser welding suture has been observed by the fourteenth day of the healing process. Under the traditional suture method normalization of tissue nutritious blood flow has been achieved by 21 days.

  20. Optimized path planning for soft tissue resection via laser vaporization

    NASA Astrophysics Data System (ADS)

    Ross, Weston; Cornwell, Neil; Tucker, Matthew; Mann, Brian; Codd, Patrick

    2018-02-01

    Robotic and robotic-assisted surgeries are becoming more prevalent with the promise of improving surgical outcomes through increased precision, reduced operating times, and minimally invasive procedures. The handheld laser scalpel in neurosurgery has been shown to provide a more gentle approach to tissue manipulation on or near critical structures over classical tooling, though difficulties of control have prevented large scale adoption of the tool. This paper presents a novel approach to generating a cutting path for the volumetric resection of tissue using a computer-guided laser scalpel. A soft tissue ablation simulator is developed and used in conjunction with an optimization routine to select parameters which maximize the total resection of target tissue while minimizing the damage to surrounding tissue. The simulator predicts the ablative properties of tissue from an interrogation cut for tuning and simulates the removal of a tumorous tissue embedded on the surface of healthy tissue using a laser scalpel. We demonstrate the ability to control depth and smoothness of cut using genetic algorithms to optimize the ablation parameters and cutting path. The laser power level, cutting rate and spacing between cuts are optimized over multiple surface cuts to achieve the desired resection volumes.

  1. Improved resolution by mounting of tissue sections for laser microdissection.

    PubMed

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  2. Improved resolution by mounting of tissue sections for laser microdissection

    PubMed Central

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-01-01

    Background: Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. Aims: To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Methods: Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10–2000 cells isolated by microdissection from mounted and unmounted tissue. Results: The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. Conclusions: The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted. PMID:12890747

  3. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy - a prospect for tissue specific laser surgery.

    PubMed

    Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian

    2017-10-01

    Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The mechanism of tissue welding using a green laser: revisited

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Bellam, R.; Hezarkhani, E.; Fiebig, T.

    2017-02-01

    A "green" laser (e.g. Nd:YAG, λ = 532 nm) together with the red dye Rose Bengal (RB) have been used for photochemical tissue bonding (PTB). It has been reported that irradiation of RB with light at 532 nm produces free radicals. For tissue bonding with a Nd:YAG laser it has been proposed that the free radicals than crosslink the tissue collagen and lead to the closing of the surgical incisions. RB is also a red solution and it is possible that RB absorbs the photons delivered from the laser and converts them into heat with a measurable local temperature increase. It is possible that the mechanism for PTB is not only caused by free radical formation but also by a temperature increase in the tissue. In the present study we measured the local tissue temperature with a micro thermometer during irradiation with a Nd:YAG laser before and after RB was applied. For the present laser settings "tissue painting" with RB lead to a temperature increase resulting in tissue coagulation and charring. PTB was also studied for RB with a free radical scavenger, vitamin C. No significant difference in bonding strength was found for RB alone and for RB together with a free radical scavenger. In case no RB was applied no tissue bonding occurred. Bonding strength was quantified using the leakage seal test

  5. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode.

    PubMed

    Szewczyk, Mariusz; Jesionek-Kupnicka, Dorota; Lipiński, Marek Ireneusz; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode.

  6. Morphology of tracheal scar after resection with CO2-laser and high-frequency cutting loop. A study in normal pigs.

    PubMed

    Vorre, P; Illum, P; Oster, S; Reske-Nielsen, E; Larsen, K B

    1989-01-01

    In 6 pigs a bronchoscopical resection of the tracheal mucosa was performed using CO2-laser on one side, and an electric high-frequency cutting loop (ECL) on the other. The pigs were sacrificed 3 months later. On macroscopic examination the tracheal mucosa appeared almost normal on the laser-resected side, while severe deformation was seen after ECL treatment. Microscopically the respiratory epithelium had regenerated irrespective of the instrument used. After laser resection the subepithelial tissue had a normal width and consisted of collagen fibrils with few vessels and sparse fragmented elastic tissue. The cartilage showed necrosis and pericellular fibrosis. The scar tissue after ECL was a broad cellular and richly vascularized connective tissue. The content of elastic fibres was markedly greater than after laser resection. The cartilage showed small irregular necroses lined by pyknotic nuclei. In neither case had the gland regenerated. Both CO2-laser and ECL caused severe (but not identical) damage to the tissue, clearly visible after 3 months. However, the deformation caused by ECL was not seen at the laser-resected sites, which makes the laser technique seem preferable--where economy permits.

  7. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  8. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    NASA Astrophysics Data System (ADS)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  9. Current Status of Fractional Laser Resurfacing.

    PubMed

    Carniol, Paul J; Hamilton, Mark M; Carniol, Eric T

    2015-01-01

    Fractional lasers were first developed based on observations of lasers designed for hair transplantation. In 2007, ablative fractional laser resurfacing was introduced. The fractionation allowed deeper tissue penetration, leading to greater tissue contraction, collagen production and tissue remodeling. Since then, fractional erbium:YAG resurfacing lasers have also been introduced. These lasers have yielded excellent results in treating photoaging, acne scarring, and dyschromia. With the adjustment of microspot density, pulse duration, number of passes, and fluence, the surgeon can adjust the treatment effects. These lasers have allowed surgeons to treat patients with higher Fitzpatrick skin types (types IV to VI) and greater individualize treatments to various facial subunits. Immunohistochemical analysis has demonstrated remodeling effects of the tissues for several months, producing longer lasting results. Adjuvant treatments are also under investigation, including concomitant face-lift, product deposition, and platelet-rich plasma. Finally, there is a short recovery time from treatment with these lasers, allowing patients to resume regular activities more quickly. Although there is a relatively high safety profile for ablative fractionated lasers, surgeons should be aware of the limitations of specific treatments and the associated risks and complications.

  10. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.

    PubMed

    Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2009-09-01

    Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.

  11. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatova, S A; Kamynin, V A; Ryabova, A V

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinicallymore » acceptable degree of destruction in tissue samples with a minimal carbonisation zone. (laser applications in medicine)« less

  12. Treatment of oral soft tissues benign tumors using laser

    NASA Astrophysics Data System (ADS)

    Crisan, Bogdan; Baciut, Mihaela; Crisan, Liana; Bran, Simion; Rotar, Horatiu; Dinu, Cristian; Moldovan, Iuliu; Baciut, Grigore

    2014-01-01

    The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.

  13. Comparing the 810nm diode laser with conventional surgery in orthodontic soft tissue procedures.

    PubMed

    Ize-Iyamu, I N; Saheeb, B D; Edetanlen, B E

    2013-09-01

    To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to receive conventional surgery or soft tissue diode laser, (wavelength 810 nm). Parameters documented include the type of anaesthesia used, intra and post operative pain, bleeding, the use of scalpel and sutures. The chi-squared test was used to test for significance at 95% confidence level. Probability values (p-values) less than 0.05 were regarded as significant. Only 2(16.7%) of the procedures carried out with the soft tissue laser required infiltration anaesthesia compared to 10 (90.9%) with conventional surgery and this was significant (P<0.001). Post operative pain was significantly reduced in all cases treated with the diode laser (P<0.001). There was also a significant difference (P<0.05) in post operative bleeding in all cases treated with the diode laser. No sutures were used in all soft tissue cases managed with the diode laser and this was significant (P<0.001). There was no statistically significant difference in treatment time in the use of the laser compared with conventional surgery. Orthodontic patients treated with the diode laser required less infiltration anaesthesia, had reduced bleeding during and after surgery, rapid postoperative haemostasis, elimination of the need for sutures and an improved postoperative comfort and healing.

  14. Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7

    PubMed Central

    Prieto, Pilar; Navarro‐Raya, Carmen; Valverde‐Corredor, Antonio; Amyotte, Stefan G.; Dobinson, Katherine F.; Mercado‐Blanco, Jesús

    2009-01-01

    Summary The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae‐infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non‐gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT‐36I) was obtained by Agrobacterium tumefaciens‐mediated transformation. Isolate VDAT‐36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro‐ and micro‐breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive. PMID:21255281

  15. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  16. [Water-cooled laser sealing of lung tissue in an ex-vivo ventilated porcine lung model].

    PubMed

    Tonoyan, T; Prisadov, G; Menges, P; Herrmann, K; Bobrov, P; Linder, A

    2014-06-01

    Laser resections of lung metastases are followed by air leaks from the parenchymal defect. Large surfaces after metastasectomy are closed by sutures or sealants while smaller areas are frequently sealed thermally by cautery or laser. In this study two different techniques of thermal sealing of lung tissue with laser light are investigated. Carbonisation of lung tissue during thermal sealing appears at temperatures higher than 180 °C. Hypothetically this is contraproductive to haemo- as well as to pneumostasis. In this experimental study thermal laser sealing with and without carbonisation is investigated. In one series tissue temperatures higher than 100 °C are avoided by water dropping from the tip of the light guide onto the parenchymal leak. In the other series carbonisation appeared because the laser light was applied in the non-contact mode without tissue cooling. The characteristics of the laser were 40 W, 1350 nm continuous mode. Air leaks (Vt) were measured with a simple and fast technique with high precision. The sealing effect of either series was defined as S = (1-Vt/V0) and the difference of S was statistically examined. The basic values V0 before sealing were about the same in both series. The air leaks Vt after 15, 30 and 45 s of sealing varied significantly in both series (p = 0.03). During simultaneous cooling the sealing effect was increasing with the duration of laser application, while it became worse in the series without cooling. Histological examination of the sealing zone showed only coagulation of the tissue, while ruptured alveolae could be seen more often in the non-cooled sealing area. It could be shown in the ex-vivo lung model that laser sealing of parenchymal leaks is improved by simultaneous cooling during laser application. Non cooled laser sealing seems to heat up the tissue abruptly and create carbonisation followed by multiple ruptures of alveola and small airways. In accordance with our clinical experience this experimental study confirms that laser sealing for pneumostasis after metastasectomy can be improved by simultaneously cooling the resection area when treated with the laser. Georg Thieme Verlag KG Stuttgart · New York.

  17. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery.

    PubMed

    Amini-Nik, Saeid; Kraemer, Darren; Cowan, Michael L; Gunaratne, Keith; Nadesan, Puviindran; Alman, Benjamin A; Miller, R J Dwayne

    2010-09-28

    Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery.

  18. Free-beam and contact laser soft-tissue ablation in urology.

    PubMed

    Tan, Andrew H H; Gilling, Peter J

    2003-10-01

    The ablation of tissue by laser has several applications in urology. Most of the published research has been concerned with the treatment of benign prostatic hyperplasia (BPH). Other applications studied include superficial upper- and lower-tract transitional-cell carcinoma, urethral and ureteral strictures, ureteropelvic junction stenosis, and posterior urethral valves. The attraction of laser ablation for the treatment of BPH lies with the decreased morbidity in comparison with standard transurethral electrocautery resection of the prostate and the ability to remove tissue immediately and therefore allow a more rapid progression to catheter removal and early voiding. The three main laser wavelengths used in urology for tissue ablation are the neodymium:yttrium-aluminum-garnet when used with contact tips or high-density power settings, the potassium-titanyl-phosphate, and the holmium:YAG. This article reviews the published literature on the use of these laser wavelengths in soft-tissue ablation, focusing on the treatment of BPH.

  19. Excimer laser phototherapy for the dissolution of abnormal growth

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1985-02-19

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area. 6 figs.

  20. Excimer laser phototherapy for the dissolution of abnormal growth

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1987-01-01

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290-400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. The glass member may include a laser beam concentrator provided by a lens or cone at the tissue-treatment end to increase the beam energy per unit area and reduce the treatment area.

  1. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  2. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response.

    PubMed

    Stylianou, Andreas; Yova, Dido

    2015-12-01

    Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

  3. Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.

    PubMed

    Hammer, Christian M; Petsch, Corinna; Klenke, Jörg; Skerl, Katrin; Paulsen, Friedrich; Kruse, Friedrich E; Seiler, Theo; Menzel-Severing, Johannes

    2015-06-01

    To assess the suitability of a new 345 nm ultraviolet (UV) femtosecond laser for refractive surgery. Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany. Experimental study. Twenty-five porcine corneas were used for stromal flap or lamellar bed creation (stromal depth, 150 μm) and 15 rabbit corneas for lamellar bed creation near the endothelium. Ultraviolet femtosecond laser cutting-line morphology, gas formation, and keratocyte death rate were evaluated using light and electron microscopy and compared with a standard infrared (IR) femtosecond laser. Endothelial cell survival was examined after application of a laser cut near the endothelium. Flaps created by the UV laser were lifted easily. Gas formation was reduced 4.2-fold compared with the IR laser (P = .001). The keratocyte death rate near the interface was almost doubled; however, the death zone was confined to a region within 38 μm ± 10 (SD) along the cutting line. Histologically and ultrastructurally, a distinct and continuous cutting line was not found after UV femtosecond laser application if flap lifting was omitted and standard energy parameters were used. Instead, a regular pattern of vertical striations, presumably representing self-focusing induced regions of optical tissue breakdown, were identified. Lamellar bed creation with standard energy parameters 50 μm from the endothelium rendered the endothelial cells intact and viable. The new 345 nm femtosecond laser is a candidate for pending in vivo trials and future high-precision flap creation, intrastromal lenticule extraction, and ultrathin Descemet-stripping endothelial keratoplasty. Mr. Klenke and Ms. Skerl were paid employees of Wavelight GmbH when the study was performed. Dr. Seiler is a scientific consultant to Wavelight GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Photobiomodulation in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Rong, Dong-Liang; Huang, Jin; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-01-01

    Laser surgery provides good exposure with clear operating fields and satisfactory preliminary functional results. In contrast to conventional excision, it was found that matrix metalloproteinases and the tissue inhibitors of metalloproteinases -1 mRNA expression is higher, myofibroblasts appeared and disappeared slower in laser excision wounds. It has been suggested that the better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes to recover vocal cord for early glottic tumors and better. In this paper, the role of photobiomodulation in laser surgery will be discussed by the cultured monolayer normal human skin fibroblast model of the photobiomodulation of marginal irradiation of high intensity laser beam, the photobiomodulation related to the irradiated tissue, the biological information model of photobiomodulation and the animal models of laser surgery. Although high intensity laser beam is so intense that it destroys the irradiated cells or tissue, its marginal irradiation intensity is so low that there is photobiomodulation on non-damage cells to modulate the regeneration of partly damaged tissue so that the surgery of laser of different parameters results in different post-surgical recovery. It was concluded that photobiomodulation might play an important role in the long-term effects of laser surgery, which might be used to design laser surgery.

  5. The evaluation of tissue mass loss in the incision line of prostate with benign hyperplasia performed using holmium laser and cutting electrode

    PubMed Central

    Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar

    2014-01-01

    Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088

  6. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  7. Three-Dimensional Printing and Cell Therapy for Wound Repair.

    PubMed

    van Kogelenberg, Sylvia; Yue, Zhilian; Dinoro, Jeremy N; Baker, Christopher S; Wallace, Gordon G

    2018-05-01

    Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.

  8. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials.

    PubMed

    Seifi, Massoud; Matini, Negin-Sadat

    2017-01-01

    Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed.

  10. Selective laser vaporization of polypropylene sutures and mesh

    NASA Astrophysics Data System (ADS)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  11. Laser Surgery of Soft Tissue in Orthodontics: Review of the Clinical Trials

    PubMed Central

    Seifi, Massoud; Matini, Negin-Sadat

    2017-01-01

    Introduction: Recently, a wide variety of procedures have been done by laser application in orthodontics. Apart from the mentioned range of various treatments, laser has become a tool for many soft tissue surgeries as an alternative to conventional scalpel-based technique during orthodontic treatments in the management of soft tissue. Due to scarce information in the latter subject, this study was designed in order to include clinical trials that included soft tissue ablation by laser in orthodontics. Methods: Literature was searched based on PubMed and Google Scholar databases in 5 years (2010-2015) with English language restriction and clinical trial design. Studies that performed soft tissue application of laser during orthodontic treatment were extracted by the authors. Results: Only eight studies met the inclusion criteria. No significant difference was found between laser ablation and conventional scalpel technique in the matter of treatment outcome. However, few issues remained to clarify the differences in the mentioned procedures. Conclusion: Laser performance can be recommended in case of preceding less bleeding and discomfort during surgical procedure. There are still quandaries among clinical application of scalpel-based surgery in aesthetic region with bracket-bonded teeth. Precaution and knowledge regarding the characteristics of laser beam such as wavelength, frequency, power and timing is extremely needed. PMID:29263776

  12. Biological Studies with Laser-Polarized ^129Xe

    NASA Astrophysics Data System (ADS)

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  13. Studies in fiber guided excimer laser surgery for cutting and drilling bone and meniscus.

    PubMed

    Dressel, M; Jahn, R; Neu, W; Jungbluth, K H

    1991-01-01

    Our experiments on transmitting high-power excimer laser pulses through optical fibers and our investigations on excimer laser ablation of hard tissue show the feasibility of using the excimer laser as an additional instrument in general and accident surgery involving minimal invasive surgery. By combining XeCl-excimer lasers and tapered fused silica fibers we obtained output fluences up to 32 J/cm2 and ablation rates of 3 microns/pulse of hard tissue. This enables us to cut bone and cartilage in a period of time which is suitable for clinical operations. Various experiments were carried out on cadavers in order to optimize the parameters of the excimer laser and fibers: e.g., wavelength, pulse duration, energy, repetition rate, fiber core diameter. The surfaces of the cut tissue are comparable to cuts with conventional instruments. No carbonisation was observed. The temperature increase is below 40 degrees C in the tissue surrounding the laser spot. The healing rate of an excimer laser cut is not slower than mechanical treatments; the quality is comparable.

  14. CO(2) Laser Fascia to Dura Soldering for Pig Dural Defect Reconstruction.

    PubMed

    Forer, Boaz; Vasileyev, Tamar; Gil, Ziv; Brosh, Tamar; Kariv, Naam; Katzir, Abraham; Fliss, Dan M

    2007-02-01

    The purposes of this study were to demonstrate that laser soldering is safe and effective for tissue bonding in dural reconstruction and to compare this new reconstruction technique to an established one. A temperature-controlled fiberoptic CO(2) laser system or fibrin glue were used for in vitro dural defect reconstruction in two groups of pigs. The CO(2) laser technique was also used for dural reconstruction in live pigs. The burst pressure of the reconstructed dura by the laser system was significantly higher than that of fibrin glue (mean pressure 258.5 +/- 117.3 cm H(2)O and 76.8 +/- 47.2 cm H(2)O, respectively). There were no postoperative complications and no signs of thermal damage to the dura, fascia, or underlying tissue on histological analysis following the in vivo CO(2) laser experiments. Temperature-controlled laser soldering is an effective technique for dural repair. It creates a strong tissue bonding with no thermal damage to the tissue. The burst pressure of the reconstructed dura done with laser soldering is significantly higher than that of fibrin glue.

  15. Laser biostimulation of wound healing: bioimpedance measurements support histology.

    PubMed

    Solmaz, Hakan; Dervisoglu, Sergulen; Gulsoy, Murat; Ulgen, Yekta

    2016-11-01

    Laser biostimulation in medicine has become widespread supporting the idea of therapeutic effects of photobiomodulation in biological tissues. The aim of this study was to investigate the biostimulation effect of laser irradiation on healing of cutaneous skin wounds, in vivo, by means of bioimpedance measurements and histological examinations. Cutaneous skin wounds on rats were subjected to 635 nm diode laser irradiations at two energy densities of 1 and 3 J/cm 2 separately. Changes in the electrical properties of the wound sites were examined with multi-frequency electrical impedance measurements performed on the 3rd, 7th, 10th, and 14th days following the wounding. Tissue samples were both morphologically and histologically examined to determine the relationship between electrical properties and structure of tissues during healing. Laser irradiations of both energy densities stimulated the wound healing process. In particular, laser irradiation of lower energy density had more evidence especially for the first days of healing process. On the 7th day of healing, 3 J/cm 2 laser-irradiated tissues had significantly smaller wound areas compared to non-irradiated wounds (p < 0.05). The electrical impedance results supported the idea of laser biostimulation on healing of cutaneous skin wounds. Thus, bioimpedance measurements may be considered as a non-invasive supplementary method for following the healing process of laser-irradiated tissues.

  16. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  17. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    PubMed

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  18. Bladder welding in rats using controlled temperature CO2 laser system.

    PubMed

    Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A

    1999-05-01

    Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into tissues.

  19. Selected applications of Er:YAG and CO2 lasers for treatment of benign neoplasms and tumorous lesions in the mouth.

    PubMed

    Błochowiak, Katarzyna; Andrysiak, Piotr; Sidorowicz, Krzysztof; Witmanowski, Henryk; Hędzelek, Wiesław; Sokalski, Jerzy

    2015-10-01

    Benign neoplasms and hyperplastic tumorous lesions are common oral pathologies. These lesions require to be surgically removed by conventional surgery, laser, or electrosurgery. Surgical treatment aims at complete removal of pathological lesions and ensuring proper healing of the tissues to minimize the risk of lesion recurrence. To present possible applications of Er:YAG and CO2 lasers in removal of benign neoplasms and tumorous lesions developing on oral mucosa as well as to specify indications and limitations of these two methods. Temperature-induced injuries due to laser light application, possibility of post-operative histopathological evaluation of the removed tissue, efficacy of the cut and coagulation, healing process and completeness of laser surgeries give rise to our special concern. The main asset of the CO2 laser comparing to Er:YAG laser is an effective coagulation while thermal injury to the tissues is its limitation, especially with multiple passage of the beam and too high power applied. Er:YAG laser application does not exclude histopathological examination of the removed lesion tissue which is its advantage over CO2 laser. Still, insufficient coagulation is a limitation ofits use in the case of richly vascularized lesions.

  20. Wound repair in rat urinary bladder following electrocautery or holmium laser incision

    NASA Astrophysics Data System (ADS)

    Venzi, Giordano; Schmidlin, Franz R.; Gabbiani, Giulio; Delacretaz, Guy P.; Pittet, Brigitte; Leisinger, Hans-Juerg; Iselin, Christoph E.

    1999-06-01

    Woundhealing is a complex phenomenon which varies according the type of tissue but is also depending from the type of tissue injury. Electrocautery mainly induces coagulation necrosis while thermal damages induced by the Holmium laser primarily lead to tissue vaporization which may induce less tissue injury. The aim of this study was to evaluate the healing process of the Holmium laser induced lesions compared to electrocautery induced lesions in urothelial tissue by assessing the inflammatory response and myofibroblast behavior in sequential healing phases. A surgical wound was created in the urinary rat bladder of 32 rats either by electrocautery or by laser (N=16). The inflammatory response, the total lesion depth and the myofibroblast activity during woundhealing was then analyzed on a qualitative basis on days 0/2/4/8. The overall inflammatory response was comparable in both groups up to days two and four. However, at day eight less cellular inflammatory reaction and less myofibroblast activity was found in the specimen of lesions created by the Holmium laser. These results suggest that wound repair may be a less invasive process after Holmium laser than electrocautery.

  1. Confocal microscopy to guide laser ablation of basal cell carinoma: a preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Larson, Bjorg A.; Sierra, Heidy; Chen, Jason; Rajadhyaksha, Milind

    2013-03-01

    Laser ablation may be a promising method for removal of skin lesions, with the potential for better cosmetic outcomes and reduced scarring and infection. An obstacle to implementing laser ablation is that the treatment leaves no tissue for histopathological analysis. Pre-operative and intra-operative mapping of BCCs using confocal microscopy may guide the ablation of the tumor until all tumor is removed. We demonstrate preliminary feasibility of confocal microscopy to guide laser ablation of BCCs in freshly excised tissue from Mohs surgery. A 2940 nm Er:YAG laser provides efficient ablation of tumor with reduced thermal damage to the surrounding tissue.

  2. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  3. In vitro assessment of fiber sweeping speed during Q-switched 532-nm laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop; Kang, Hyun Wook; Ko, Woo Jin; Stinson, Douglas; Choi, Benjamin

    2011-03-01

    Photoselective vaporization of the prostate (PVP) is considered a minimally invasive procedure to treat benign prostatic hyperplasia (BPH). During the PVP, the prostate gland is irradiated by the 532-nm laser and the fiber is swept and dragged along the urethra. In this study the speed of sweeping fiber during the PVP is being investigated. In vitro porcine kidney model was used (N=100) throughout the experiment. A Q-switched 532-nm laser, equipped with sidefiring 750-Um fiber, was employed and set to power levels of 120 and 180 W. The speed of fiber sweeping was the only variable in this study and varied at 0 (i.e. no sweeping), 0.5, 1.0, 1.5, and 2.0 sweep/s. Ablation rate, depth, and coagulation thickness were quantified. Based on the current settings, ablation rate decreased as sweeping speed increased and was maximized between 0 to 1.0 sweep/s for 120-W power level and between 0 to 0.5 sweep/s for 180-W power level. Ablation rate at 180 W was higher than that at 120 W, regardless of sweeping speed. Ablation depth at both 120 and 180 W was maximized at 0 sweep/s and decreased 35% at 0.5 sweep/s. The overall coagulation thickness was less than 1.5 mm and comparable from 0 to 1.5 sweep/s (0.8~0.9 mm) and increased at 2.0 sweep/s (~1.1 mm). This study demonstrated that tissue ablation performance was contingent upon sweeping speed and maximized at slow sweeping speed due to longer laser-tissue interaction time and larger area coverage by the 532-nm light.

  4. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion

    PubMed Central

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-01

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue. PMID:25611388

  5. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion.

    PubMed

    Sárvári, A K; Doan-Xuan, Q-M; Bacsó, Z; Csomós, I; Balajthy, Z; Fésüs, L

    2015-01-22

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and human adipocytes differentiated from either mesenchymal stem cells or a preadipocyte cell line. As observed by time-lapse microscopy, flow, and laser-scanning cytometry, macrophages phagocytosed bites of adipocytes (trogocytosis), which led to their de novo, phagocytosis and NF-κB-dependent synthesis, then release of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1. IL-6 secretion was not accompanied by secretion of other proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-8, except MCP-1. LPS-induced release of TNF-α, IL-8 and MCP-1 was decreased in the presence of the differentiated adipocytes but the IL-6 level did not subside suggesting that phagocytosis-dependent IL-6 secretion may have significant regulatory function in the inflamed adipose tissue.

  6. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    PubMed

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  7. Laser micro-dissection and qPCR for identifying specific HPV types responsible for malignancy in penile lesions.

    PubMed

    Lebelo, Ramokone L; Thys, Sofie; Benoy, Ina; Depuydt, Christophe E; Bogers, John-Paul; Bida, Meshack N; Mphahlele, M Jeffrey

    2015-10-01

    The aim of the study was to identify specific human papillomavirus (HPV) type responsible for malignancy in penile tissue samples using laser micro-dissection and TaqMan quantitative real-time PCR (qPCR). The study was based on two pre-malignant and seven malignant penile tissue samples and laser micro-dissection was performed on all. Genotyping was performed on whole tissue sections and laser micro-dissection samples using qPCR. Two whole tissue section samples were HPV negative while seven were HPV positive. In four samples that were single HPV infections with whole tissue section PCR, identical HPV types were confirmed with laser micro-dissection PCR. Clearly confirming that the single HPV type detected is responsible for malignancy. In two samples that had multiple HPV infections with whole tissue section PCR, only one HPV type with the highest viral load was detected with laser micro-dissection PCR, suggesting that the HPV type with the highest viral load is most likely the cause of that particular lesion. HPV 11 and/or HPV 16 were the only types detected with laser micro-dissection PCR in these cases, compared to multiple HPV types (HPV 11, HPV 16, HPV 18, HPV 31, HPV 33, HPV 35, and HPV 39) initially detected with whole tissue section PCR. HPV 11 was associated with verrucous lesions while HPV 16 was associated with squamous cell carcinoma and PIN 3 lesions. This study confirms that laser micro-dissection and qPCR are essential tools in identifying the HPV types responsible for malignancy in penile lesions, particularly in samples with multiple infections. © 2015 Wiley Periodicals, Inc.

  8. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  9. Tissue temperature distribution measurement by MRI and laser immunology for cancer treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yichao; Gnyawali, Surya C.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.

    2007-02-01

    In cancer treatment and immune response enhancement research, Magnetic Resonance Imaging (MRI) is an ideal method for non-invasive, three-dimensional temperature measurement. We used a 7.1-Tesla magnetic resonance imager for ex vivo tissues and small animal to determine temperature distribution of target tissue during laser irradiation. The feasibility of imaging is approved with high spatial resolution and high signal-noise- ratio. Tissue-simulating gel phantom gel, biological tissues, and tumor-bearing animals were used in the experiments for laser treatment and MR imaging. Thermal couple measurement of temperature in target samples was used for system calibration. An 805-nm laser was used to irradiate the samples with a laser power in the range of 1 to 2.5 watts. Using the MRI system and a specially developed processing algorithm, a clear temperature distribution matrix in the target tissue and surrounding tissue was obtained. The temperature profiles show that the selective laser photothermal effect could result in tissue temperature elevation in a range of 10 to 45 °C. The temperature resolution of the measurement was about 0.37°C including the total system error. The spatial resolution was 0.4 mm (128x128 pixels with field of view of 5.5x5.5 cm). The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to achieve optimal thermal effects in cancer treatment.

  10. Application of tissue mesodissection to molecular cancer diagnostics.

    PubMed

    Krizman, David; Adey, Nils; Parry, Robert

    2015-02-01

    To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Soft tissue molding technique in cleft lip and palate patient using laser surgery in combination with orthodontic appliance: A case report.

    PubMed

    Theerasopon, Pornpat; Wangsrimongkol, Tasanee; Sattayut, Sajee

    2017-03-31

    Although surgical treatment protocols for cleft lip and palate patients have been established, many patients still have some soft tissue defects after complete healing from surgical interventions. These are excess soft tissue, high attached fraena and firmed tethering scares. These soft tissue defects resulted shallowing of vestibule, restricted tooth movement, compromised periodontal health and trended to limit the maxillary growth. The aim of this case report was to present a method of correcting soft tissue defects after conventional surgery in cleft lip and palate patient by using combined laser surgery and orthodontic appliance. A bilateral cleft lip and palate patient with a clinical problem of shallow upper anterior vestibule after alveolar bone graft received a vestibular extension by using CO 2 laser with ablation and vaporization techniques at 4 W and continuous wave. A customized orthodontic appliance, called a buccal shield, was placed immediately after surgery and retained for 1 month to 3 months until complete soft tissue healing. The procedures were performed 2 episodes. Both interventions used the same CO 2 laser procedure. The first treatment resulted in partial re-attachment of soft tissue at surgical area. The second laser operation with the proper design of buccal shield providing passive contact with more extended flange resulting in a favorable outcome from 1 year follow up. Then the corrective orthodontic treatment could be continued effectively. The CO 2 laser surgery was a proper treatment for correcting soft tissue defects and the design of buccal shield was a key for success in molding surgical soft tissue.

  12. Photochemical tissue bonding with chitosan adhesive films

    PubMed Central

    2010-01-01

    Background Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase. PMID:20825632

  13. Tracheal anastomosis with the diode laser and fibrin tissue adhesive: an in vitro and in vivo investigation.

    PubMed

    Gleich, L L; Wang, Z; Pankratov, M M; Aretz, H T; Shapshay, S M

    1995-05-01

    Absorbable sutures have been advocated for tracheal anastomosis to reduce fibrosis and foreign body reaction leading to recurrent stenosis. Fibrin tissue adhesive (FTA) and diode laser welding with indocyanine green-dyed fibrinogen were evaluated in tracheal anastomosis to reduce the number of sutures and to improve healing. In vitro studies demonstrated strong anastomoses with a combination of laser welding and FTA with minimal tissue damage. In a controlled in vivo study, circumferential resections of canine tracheas were repaired with laser welding and FTA augmented with a few stay sutures. These anastomoses had less fibrosis and tissue damage than anastomoses in control animals repaired with sutures alone. This study supports investigation of laser welding and FTA in human beings for tracheal anastomosis and other procedures in which suturing may be difficult.

  14. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    PubMed

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this hypothesis. Pulsed lasers with higher peak powers provided better hemostatic effects than CW lasers. The degree of lipolysis depended on wavelength, laser power, and energy density. Subdermal laser irradiation can stimulate collagen deposition in subdermal tissue and reticular dermis.

  15. [Laser microdissection for biology and medicine].

    PubMed

    Podgornyĭ, O V; Lazarev, V N; Govorun, V M

    2012-01-01

    For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.

  16. Simulation of fluorescent measurements in the human skin

    NASA Astrophysics Data System (ADS)

    Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.

    1995-05-01

    Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.

  17. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    PubMed

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  18. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  19. In vitro histological evaluation of the surgical margins made by different laser wavelengths in tongue tissues

    PubMed Central

    Azevedo, Ana-Salvaterra; Ferreira, Fernando; Delgado, Maria-Leonor; Garcês, Fernanda; Carreira, Sofia; Martins, Marco; Suarez-Quintanilla, Juan

    2016-01-01

    Background Lasers have become standard tools for the surgical treatment of oral lesions. The purpose of this study is to determine the surgical margins and histologically evaluate the tissue thermal effects induced by different types of surgical instruments. Material and Methods Cuts were made in pork tongues’ mucosa with different lasers (Er:YAG at 2W with and without air / water spray and at 4W with and without air / water spray; CO2 at 3.5W and 7W in pulsed mode and at 7W in continuous mode; the diode laser at 3.5W and boost 3.5W in pulsed mode; Nd:YAG at 6W, 40Hz and electroscalpel at 5W and conventional scalpel as control. Macroscopic and microscopic morphological changes were evaluated. Results The results of this study showed that the surgical instruments that caused greater tissue damage extension were: the Nd:YAG laser (670.68μm), the diode 3.5W and boost PW (626.82μm), the CO2 7W CW (571.18μm), the CO2 at 7W PW (485.45μm), the diode 3.5W PW (456.15μm), the electroscalpel (409.57μm) and lastly the CO2 laser 3.5W PW (306.19μm) and Er:YAG (74.66μm) laser, regardless of power, mode or air / water spray used. An association between the Tissue Damage Extension and the Degree of Carbonization (r = 0.789; P = 0.01), and an association between the Tissue Damage Extension and Regularity of the Incision were found (r = -, 299; P = 0.01). Conclusions The results of this study suggest that lasers can be used in soft tissues biopsies of the oral cavity, enabling a correct histopathological analysis, as long as the biological effects of each laser type are considered. The Er:YAG laser revealed its potential for biopsies of the oral mucosa ensuring a successful histological evaluation and the CO2 laser at 3,5W in pulsed mode presented itself as the best choice for surgeries with hemostasis. Key words:CO2 laser, diode laser, Er:YAG laser, laser surgery, Nd:YAG laser, oral mucosa, thermal effect. PMID:27703606

  20. Dose control for noncontact laser coagulation of tissue

    NASA Astrophysics Data System (ADS)

    Roggan, Andre; Albrecht, Hansjoerg; Bocher, Thomas; Rygiel, Reiner; Winter, Harald; Mueller, Gerhard J.

    1995-01-01

    Nd:YAG lasers emitting at 1064 nm are often used for coagulation of tissue in a non-contact mode, i.e. the treatment of verrucae, endometriosis, tumor coagulation and hemostasis. During this process an uncontrolled temperature rise of the irradiated area leads to vaporization and, finally, to a carbonization of the tissue surface. To prevent this, a dose controlled system was developed using an on-line regulation of the output laser power. The change of the backscattered intensity (remission) of the primary beam was used as a dose dependent feedback parameter. Its dependence on the temperature was determined with a double integrating sphere system and Monte-Carlo simulations. The remission of the tissue was calculated in slab geometry from diffusion theory and Monte-Carlo simulations. The laser control was realized with a PD-circuit and an A/D-converter, enabling the direct connection to the internal bus of the laser system. Preliminary studies with various tissues revealed the practicability of the system.

  1. Biophotonics in diagnosis and modeling of tissue pathologies

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Drakaki, E.

    2008-12-01

    Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues for diagnosis of ocular diseases.

  2. Numerical analysis for characterization of the gold nanorod mediated-plasmonic heating with temporary NIR laser radiation for superficial breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Bae, Ji Yong; Nam, Ki-Hwan; Jeong, Chan Bae; Kim, Geon-hee; Chang, Ki Soo

    2016-09-01

    Over the last decade, plasmonic photothermal therapy (PPTT) has received significant attention as the new therapeutic strategy for the cancer therapy due to unique characteristics of the gold-nanoparticles. The characterization of the spatiotemporal heating potential for the gold nanorods (GNR) through mimicking PPTT process on the various conditions can help more quantitative approaches to treatment planning. The purpose of this study was to clearly understand the optical-thermal interactions between the laser, GNRs, and bio-tissues, and provide the information in clinical applications to implement the concept of heterogeneity, which can enable the optimization of treatment parameters for superficial breast cancer treatment.

  3. Development of laser diode otolaryngological intracavity procedures and its clinical practice

    NASA Astrophysics Data System (ADS)

    Wang, Qingguo; Mao, Haitao; Bu, Hongjian; Dong, Xingfa; Li, Jikai; Li, Fangzheng; Zhang, Wenqing

    1998-08-01

    Because laser is diffusely reflected by the skin as well as scattered and absorbed by the subcutaneous tissue, the lasing intensity which enters into the tissue through the skin is exponentially attenuated with the increase in the depth. Therefore, when the medium-small energy laser is transmitted to the tissue depth through the skin, the lasing intensity is quite finite. However, a lot of diseases occur in the crooked and narrow tube, sinus or deep tissue, for these diseases, it is difficult to get the curative effect by normal laser radiation. As above, we have developed an otolaryngological intracavity therapeutic apparatus of laser diode. Visible GaAlAs laser diode is adopted on this apparatus, its lasing wavelength is 670 nm. The lasing beam is guided into the crooked and narrow tube, sinus or deep tissue, which passes through the optical fiber and the laser pins of different forms and sizes (such as straight, curved and sidelight etc.). Using the fiber-optic connector the laser pins can be changed conveniently. The lasing output power of laser pin can be adjusted from 0 to 20 mW. The lasing intensity may be modulated which changes the rectangular wave form 0 to 1 kHz. Five hundred patients were suffering from 35 kind of otolaryngological diseases were treated in the period of clinical test. The rate of efficiency (cure or improvement) is 89%. Nobody had the side effect or deteriorated. This apparatus has the best curative effect on the inflammation of the mucosa and shallow tissue, such as auris media dropsy, maxillary sinus inflammation, auris external inflammation, chronic laryngitis, otitis media, tinnitus, vertigo, and so on.

  4. Laser use and safety.

    PubMed

    1992-09-01

    This Guidance Article is an update of an article published in a special issue of Health Devices entitled "Lasers in Medicine--An Introduction" (13[8], June 1984). Although surgical lasers have a good overall safety record, they do expose patients, physicians, and other clinical staff to serious risks. Laser hazards can cause injury, disability, or even death: hospital staff have been burned by misdirected laser beams, technicians and maintenance personnel have received eye injuries while working on lasers and have been exposed to hazardous chemicals while changing laser dyes, and patients have died from injuries resulting from fires ignited by laser energy. Laser accidents most commonly result from misdirection of the laser beam. Direct or reflected radiation can burn skin, hair, or, more seriously, the cornea or retina, causing permanent damage. Misdirected laser energy can also cause ignition of surgical drapes, tracheal tubes, or the patient's hair. Also, a frequent by-product of laser-tissue interactions is laser plume, or smoke. Its acrid smell and particulate matter irritate the eyes, nose, and lungs and cause nausea; it is also a suspected vector for transmitting infectious materials, such as the human papilloma virus (HPV) associated with condyloma (a wartlike lesion) and cervical cancer. The risks are not limited to patients and those directly involved in using and maintaining lasers. Many laser procedures are performed in areas outside the controlled environment of the surgical suite; patients in a waiting area or even passersby could conceivably walk into an accessible laser treatment room, such as a doctor's office, and inadvertently be exposed to a direct or reflected beam.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Microsecond enamel ablation with 10.6μm CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; McDonald, A.; Hand, D. P.; Shephard, J. D.

    2016-02-01

    Lasers have been previously been used for dental applications, however there remain issues with thermally-induced cracking. In this paper we investigate the impact of pulse length on CO2 laser ablation of human dental enamel. Experiments were carried in vitro on molar teeth without any modification to the enamel surface, such as grinding or polishing. In addition to varying the pulse length, we also varied pulse energy and focal position, to determine the most efficient ablation of dental hard tissue and more importantly to minimize or eradicate cracking. The maximum temperature rise during the multi pulse ablation process was monitored using a set of thermocouples embedded into the pulpal chamber. The application of a laser device in dental surgery allows removal of tissue with higher precision, which results in minimal loss of healthy dental tissue. In this study we use an RF discharge excited CO2 laser operating at 10.6μm. The wavelength of 10.6 μm overlaps with a phosphate band (PO3-4) absorption in dental hard tissue hence the CO2 laser radiation has been selected as a potential source for modification of the tissue. This research describes an in-depth analysis of single pulse laser ablation. To determine the parameters that are best suited for the ablation of hard dental tissue without thermal cracking, a range of pulse lengths (10-200 μs), and fluences (0-100 J/cm2) are tested. In addition, different laser focusing approaches are investigated to select the most beneficial way of delivering laser radiation to the surface (divergent/convergent beam). To ensure that these processes do not increase the temperature above the critical threshold and cause the necrosis of the tissue a set of thermocouples was placed into the pulpal chambers. Intermittent laser radiation was investigated with and without application of a water spray to cool down the ablation site and the adjacent area. Results show that the temperature can be kept below the critical threshold either by using water spray or by decreasing the repetition rate. We demonstrate that CO2 laser pulses with pulse lengths in the regime of 10 μs can provide precise enamel tissue removal without introducing any unwanted thermal damage.

  6. Use of the holmium:YAG laser in urology.

    PubMed

    Johnson, D E; Cromeens, D M; Price, R E

    1992-01-01

    The tissue effects of a holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 mu with a maximum power of 15 watts (W) and 10 different energy-pulse settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue in the dog. In addition, various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) were performed in the dog, and a laparoscopic pelvic lymph node dissection was carried out in a pig. Although the Ho:YAG laser has a strong affinity for water, precise tissue ablation was achieved in both the contact and non-contact mode when used endoscopically in a fluid medium to ablate prostatic and vesical tissue. Using the usual parameters for tissue destruction (blanching without charring), the depth of thermal injury in the bladder and ureter was kept superficial. In performing partial nephrectomies, a 2-fold reduction in the zone of coagulative necrosis was demonstrated compared to the use of the continuous wave Neodymium:YAG laser (Nd:YAG). When used through the laparoscope, the Ho:YAG laser provided precise cutting and, combined with electrocautery, allowed the dissection to proceed quickly and smoothly. Hemostatic control was adequate in all surgical procedures. Although the results of these investigations are preliminary, our initial experience with the Ho:YAG laser has been favorable and warrants further investigations.

  7. Effect of laser soldering irradiation on covalent bonds of pure collagen.

    PubMed

    Constantinescu, Mihai A; Alfieri, Alex; Mihalache, George; Stuker, Florian; Ducray, Angélique; Seiler, Rolf W; Frenz, Martin; Reinert, Michael

    2007-03-01

    Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.

  8. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  9. Analysis of laser surgery in non-melanoma skin cancer for optimal tissue removal

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, Félix; Salas-García, Irene; Arce-Diego, José Luis

    2015-02-01

    Laser surgery is a commonly used technique for tissue ablation or the resection of malignant tumors. It presents advantages over conventional non-optical ablation techniques, like a scalpel or electrosurgery, such as the increased precision of the resected volume, minimization of scars and shorter recovery periods. Laser surgery is employed in medical branches such as ophthalmology or dermatology. The application of laser surgery requires the optimal adjustment of laser beam parameters, taking into account the particular patient and lesion. In this work we present a predictive tool for tissue resection in biological tissue after laser surgery, which allows an a priori knowledge of the tissue ablation volume, area and depth. The model employs a Monte Carlo 3D approach for optical propagation and a rate equation for plasma-induced ablation. The tool takes into account characteristics of the specific lesion to be ablated, mainly the geometric, optical and ablation properties. It also considers the parameters of the laser beam, such as the radius, spatial profile, pulse width, total delivered energy or wavelength. The predictive tool is applied to dermatology tumor resection, particularly to different types of non-melanoma skin cancer tumors: basocellular carcinoma, squamous cell carcinoma and infiltrative carcinoma. The ablation volume, area and depth are calculated for healthy skin and for each type of tumor as a function of the laser beam parameters. The tool could be used for laser surgery planning before the clinical application. The laser parameters could be adjusted for optimal resection volume, by personalizing the process to the particular patient and lesion.

  10. Effects of shielded or unshielded laser and electrohydraulic lithotripsy on rabbit bladder.

    PubMed

    Bhatta, K M; Rosen, D I; Flotte, T J; Dretler, S P; Nishioka, N S

    1990-04-01

    The pulsed dye laser and electrohydraulic lithotriptor (EHL) are both effective devices for fragmenting urinary and biliary calculi. Both fragment stones by producing a plasma-mediated shockwave. Recently, a plasma shield consisting of a hollow spring and a metal end cap has been described for use with the laser and EHL devices in an attempt to minimize tissue damage without adversely affecting stone fragmentation rates. The tissue effects produced by a pulsed dye laser and an EHL device with and without plasma shields were examined and compared using rabbit urinary bladders. If blood was present, the unshielded laser perforated the bladder wall in two pulses. However, in the absence of blood, over 100 pulses were needed for the laser to perforate the bladder. A mean of six pulses were required to perforate the bladder wall with a shielded laser. The unshielded EHL perforated the bladder wall in two pulses, whereas, the shielded EHL required a mean of 35 pulses. Microscopically, areas of exposure revealed hemorrhage and tissue ablation. We conclude that all devices examined can produce significant tissue damage when discharged directly onto bladder epithelium.

  11. Possibilities of lasers within NOTES.

    PubMed

    Stepp, Herbert; Sroka, Ronald

    2010-10-01

    Lasers possess unique properties that render them versatile light sources particularly for NOTES. Depending on the laser light sources used, diagnostic as well as therapeutic purposes can be achieved. The diagnostic potential offered by innovative concepts such as new types of ultra-thin endoscopes and optical probes supports the physician with optical information of ultra-high resolution, tissue discrimination and manifold types of fluorescence detection. In addition, the potential 3-D capability promises enhanced recognition of tissue type and pathological status. These diagnostic techniques might enable or at least contribute to accurate and safe procedures within the spatial restrictions inherent with NOTES. The therapeutic potential ranges from induction of phototoxic effects over tissue welding, coagulation and tissue cutting to stone fragmentation. As proven in many therapeutic laser endoscopic treatment concepts, laser surgery is potentially bloodless and transmits the energy without mechanical forces. Specialized NOTES endoscopes will likely incorporate suitable probes for improving diagnostic procedures, laser fibres with advantageous light delivery possibility or innovative laser beam manipulation systems. NOTES training centres may support the propagation of the complex handling and the safety aspects for clinical use to the benefit of the patient.

  12. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes.

    PubMed

    Eissing, Nathalie; Heger, Lukas; Baranska, Anna; Cesnjevar, Robert; Büttner-Herold, Maike; Söder, Stephan; Hartmann, Arndt; Heidkamp, Gordon F; Dudziak, Diana

    2014-09-01

    Confocal laser scanning microscopy is an advanced technique for imaging tissue samples in vitro and in vivo at high optical resolution. The development of new fluorochrome variants do not only make it possible to perform multicolor flow cytometry of single cells, but in combination with high resolution laser scanning systems also to investigate the distribution of cells in lymphoid tissues by confocal immunofluorescence analyses, thus allowing the distinction of various cell populations directly in the tissue. Here, we provide a protocol for the visualization of at least six differently fluorochrome-labeled antibodies at the same time using a conventional confocal laser scanning microscope with four laser lines (405 nm, 488 nm, 555 nm, and 639 nm laser wavelength) in both murine and human tissue samples. We further demonstrate that compensation correction algorithms are not necessary to reduce spillover of fluorochromes into other channels when the used fluorochromes are combined according to their specific emission bands and the varying Stokes shift for co-excited fluorochromes with the same laser line. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A spectroscopic approach to monitor the cut processing in pulsed laser osteotomy.

    PubMed

    Henn, Konrad; Gubaidullin, Gail G; Bongartz, Jens; Wahrburg, Jürgen; Roth, Hubert; Kunkel, Martin

    2013-01-01

    During laser osteotomy surgery, plasma arises at the place of ablation. It was the aim of this study to explore whether a spectroscopic analysis of this plasma would allow identification of the type of tissue that was affected by the laser. In an experimental setup (Rofin SCx10, CO(2) Slab Laser, wavelength 10.6 μm, pulse duration 80 μs, pulse repetition rate 200 Hz, max. output in cw-mode 100 W), the plasma spectra evoked by a pulsed laser, cutting 1-day postmortem pig and cow bones, were recorded. Spectra were compared to the reference spectrum of bone via correlation analysis. Our measurements show a clear differentiation between the plasma spectra when cutting either a bone or a soft tissue. The spectral changes could be detected from one to the next spectrum within 200 ms. Continuous surveillance of plasma spectra allows us to differentiate whether bone or soft tissue is hit by the last laser pulse. With this information, it may be possible to stop the laser when cutting undesired soft tissue and to design an automatic control of the ablation process.

  14. Temperature dynamics of soft tissues during diode laser cutting by different types of fiber opto-thermal converters

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Smirnov, Sergey N.; Semyashkina, Yulia V.

    2017-03-01

    The results of in vitro study of the soft tissue temperature dynamics during 980 nm diode laser cutting by different types (CLEAR, FILM, VOLUMETRIC) of fiber opto-thermal converters (FOTC) are presented. It was found that the use of CLEAR fiber end (tip) at the laser power below 8.5 W doesn't lead to the soft tissue (chicken meat) destruction. The chicken meat destruction (cutting) begins when irradiated by 8.5 W laser radiation for approximately 9.0 s. At the power of 9.0 W this time decreases up to 7.0 s, at 9.5 W - to 6.0 s, at 10.0 W - to 3.5 s. The moment of soft tissue cutting start correlates with the moment of black layer (absorber) formation at the fiber end and appearance of visually identifiable laser cut walls on the photos; the temperature in this case rapidly increases up to 850 °C. It was determined that the FILM FOTC begins to cut the soft tissue immediately after exposure of laser radiation with power of 4.0 W, the temperature in this case reaches 900 °C. It was determined that the VOLUMETRIC FOTC begins to cut the tissue immediately after exposure at the power of 1.0 W, the temperature in this case reaches 600 °C. VOLUMETRIC FOTC can produce more effective cuts of the soft tissue at the laser power of 4.0 W, in this case, the temperature is above 1200 °C.

  15. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.

  16. Femtosecond laser three-dimensional micro- and nanofabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugioka, Koji, E-mail: ksugioka@riken.jp; Cheng, Ya, E-mail: ya.cheng@siom.ac.cn

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement ofmore » the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.« less

  17. CTE:YAG laser applications in dentistry

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  18. Laser welding in penetrating keratoplasty and cataract surgery of pediatric patients: early results

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Pini, Roberto; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Capozzi, Paolo; Valente, Paola; Buzzonetti, Luca

    2013-03-01

    Diode laser welding of ocular tissues is a procedure that enables minimally invasive closure of a corneal wound. This procedure is based on a photothermal effect: a water solution of Indocyanine Green (ICG) is inserted in the surgical wound, in order to stain the corneal tissue walls. The stained tissue is then irradiated with a low power infrared diode laser, delivering laser light through a 300-μm core diameter optical fiber. This procedure enables an immediate closure of the wounds: it is thus possible to reduce or to substitute the use of surgical threads. This is of particular interest in children, because the immediate closure improves refractive outcome and anti-amblyopic effect; moreover this procedure avoids several general anaesthesia for suture management. In this work, we present the first use of diode laser welding procedure in paediatric patients. 5 selected patients underwent cataract surgery (Group 1), while 4 underwent fs-laserassisted penetrating keratoplasty (Group 2). In Group 1 the conventional surgery procedure was performed, while no stitches were used for the closure of the surgical wounds: these were laser welded and immediately closed. In Group 2 the donor button was sutured upon the recipient by 8 single stitches, instead of 16 single stitches or a running suture. The laser welding procedure was performed in order to join the donor tissue to the recipient bed. Objective observations in the follow up study evidenced a perfect adhesion of the laser welded tissues, no collateral effects and an optimal restoration of the treated tissues.

  19. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study.

    PubMed

    Salvatore, Stefano; Leone Roberti Maggiore, Umberto; Athanasiou, Stavros; Origoni, Massimo; Candiani, Massimo; Calligaro, Alberto; Zerbinati, Nicola

    2015-08-01

    Microablative fractional CO2 laser has been proven to determine tissue remodeling with neoformation of collagen and elastic fibers on atrophic skin. The aim of our study is to evaluate the effects of microablative fractional CO2 laser on postmenopausal women with vulvovaginal atrophy using an ex vivo model. This is a prospective ex vivo cohort trial. Consecutive postmenopausal women with vulvovaginal atrophy managed with pelvic organ prolapse surgical operation were enrolled. After fascial plication, the redundant vaginal edge on one side was treated with CO2 laser (SmartXide2; DEKA Laser, Florence, Italy). Five different CO2 laser setup protocols were tested. The contralateral part of the vaginal wall was always used as control. Excessive vagina was trimmed and sent for histological evaluation to compare treated and nontreated tissues. Microscopic and ultrastructural aspects of the collagenic and elastic components of the matrix were studied, and a specific image analysis with computerized morphometry was performed. We also considered the fine cytological aspects of connective tissue proper cells, particularly fibroblasts. During the study period, five women were enrolled, and 10 vaginal specimens were finally retrieved. Four different settings of CO2 laser were compared. Protocols were tested twice each to confirm histological findings. Treatment protocols were compared according to histological findings, particularly in maximal depth and connective changes achieved. All procedures were uneventful for participants. This study shows that microablative fractional CO2 laser can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue.

  20. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive beam makes the laser superior to all conventional destructive instruments. 4)|The coagulative properties of certain chromophoric lasers has allowed a new attack on certain vascular tumors and malformations of the brain and spinal cord which had been operated only with trepidation or not at all. Early reports are sobering but encouraging. 5)|Finally, the use of the laser with tissue photosensitization, albeit it in its infancy, offers great promise. This is particularly true in the case of primary brain cancer, where the infiltration of tumorous tissue among normal pathways precludes the classical oncologic surgery practice of resection of a "safe margin". The ability to track and destroy these cells, without affecting adjacent cells, may be the greatest single contribution of the laser to neurosurgery in the future. The present applications of the laser are relatively crude by comparison with what is expected. Endoscopic laser surgery, both vascular and subarachnoid, will diminish morbidity and improve results. From the exotic treatment of aneurysms and arteriovenous malformations of the brain to the mundane care of herniated disks of the spine, it is anticipated that the laser will play an important role. The use of a laser, coupled with computerized imagining devices, will allow increasing precision in arrival to and treatment of deep seated lesions of the brain, brainstem, and spinal cord. The use of different wavelengths, perhaps in the X-ray and ultraviolet spectra, will allow increasing precision with decreasing invasion. Manipulation of wavelength, time, and treatment area will allow subcellular surgery, perhaps in the treatment of personality disorders and movement disorders as well as epilepsy. Tissue welding will allow heightened regenerative and recuperative powers to be exploited. The possibility of laser biostimulation must also be considered. In short, it appears that the future of the laser in neurosurgery is limited only by the imagination of the surgeons. Certainly, the opportunity to exploit new wavelengths offered by the FEL is the key to the future.

  1. In vivo soft tissue differentiation by diffuse reflectance spectroscopy: preliminary results

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael; Douplik, Alexandre

    Remote laser surgery does not provide haptic feedback to operate layer by layer and preserve vulnerable anatomical structures like nerve tissue or blood vessels. The aim of this study is identification of soft tissue in vivo by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Various soft tissues can be identified by diffuse reflectance spectroscopy in vivo. The results may set the base for a feedback system to prevent nerve damage during oral and maxillofacial laser surgery.

  2. LASERS IN MEDICINE: Laser diagnostics of biofractals

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.

    1999-12-01

    An optical approach to the problem of modelling and diagnostics of the structures of biofractal formations was considered in relation to human bone tissue. A model was proposed for the optical properties of this tissue, including three levels of fractal organisation: microcrystalline, macrocrystalline, and architectural. The studies were based on laser coherent polarimetry ensuring the retrieval of the fullest information about the optical and polarisation properties of bone tissue. A method was developed for contactless noninvasive diagnostics of the orientational and mineralogical structure of bone tissue considered as a biofractal.

  3. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  4. Dynamic thermal effects of epidermal melanin and plasmonic nanoparticles during photoacoustic breast imaging

    NASA Astrophysics Data System (ADS)

    Ghassemi, Pejhman; Wang, Quanzeng; Pfefer, T. Joshua

    2016-03-01

    Photoacoustic Tomography (PAT) employs high-power near-infrared (near-IR) laser pulses to generate structural and functional information on tissue chromophores up to several centimeters below the surface. Such insights may facilitate detection of breast cancer - the most common cancer in women. PAT mammography has been the subject of extensive research, including techniques based on exogenous agents for PAT contrast enhancement and molecular specificity. However, photothermal safety risks of PAT due to strong chromophores such as epidermal melanin and plasmonic nanoparticles have not been rigorously studied. We have used computational and experimental approaches to elucidate highly dynamic optical-thermal processes during PAT. A Monte Carlo model was used to simulate light propagation at 800 and 1064 nm in a multi-layer breast tissue geometry with different epidermal pigmentation levels and a tumorsimulating inclusion incorporating nanoparticles. Energy deposition results were then used in a bioheat transfer model to simulate temperature transients. Experimental measurements involved multi-layer hydrogel phantoms with inclusions incorporating gold nanoparticles. Phantom optical properties were measured using the inverse adding-doubling technique. Thermal imaging was performed as phantoms were irradiated with 5 ns near-IR pulses. Scenarios using 10 Hz laser irradiation of breast tissue containing various nanoparticle concentrations were implemented experimentally and computationally. Laser exposure levels were based on ANSI/IEC limits. Surface temperature measurements were compared to corresponding simulation data. In general, the effect of highly pigmented skin on temperature rise was significant, whereas unexpectedly small levels of temperature rise during nanoparticle irradiation were attributed to rapid photodegradation. Results provide key initial insights into light-tissue interactions impacting the safety and effectiveness of PAT.

  5. Blue Laser Light Increases Perfusion of a Skin Flap Via Release of Nitric Oxide from Hemoglobin

    PubMed Central

    Mittermayr, Rainer; Osipov, Anatoly; Piskernik, Christina; Haindl, Susanne; Dungel, Peter; Weber, Carina; Vladimirov, Yuri A; Redl, Heinz; Kozlov, Andrey V

    2007-01-01

    It has recently been shown that nitrosyl complexes of hemoglobin (NO-Hb) are sensitive to low-level blue laser irradiation, suggesting that laser irradiation can facilitate the release of biologically active nitric oxide (NO), which can affect tissue perfusion. The aim of this study was to evaluate the therapeutic value of blue laser irradiation for local tissue perfusion after surgical intervention. Blood was withdrawn from a rat, exposed to NO and infused back to the same rat or used for in vitro experiments. In vitro, an increase of NO-Hb levels (electron paramagnetic resonance spectroscopy) up to 15 μM in rat blood did not result in the release of detectable amounts of NO (NO selective electrode). Blue laser irradiation of NO-Hb in blood caused decomposition of NO-Hb complexes and release of free NO. Systemic infusion of NO-Hb in rats affected neither systemic circulation (mean arterial pressure) nor local tissue perfusion (Doppler blood flow imaging system). In contrast, a clear enhancement of local tissue perfusion was observed in epigastric flap when elevated NO-Hb levels in blood were combined with local He-Cd laser irradiation focused on the left epigastric artery. The enhancement of regional tissue perfusion was not accompanied by any detectable changes in systemic circulation. This study demonstrates that blue laser irradiation improves local tissue perfusion in a controlled manner stimulating NO release from NO-Hb complexes. PMID:17515954

  6. Critical temperature transitions in laser-mediated cartilage reshaping

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  7. An "All-laser" Endothelial Transplant.

    PubMed

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-07-06

    The "all laser" assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in the surgery room with optical coherence tomography (OCT), in order to correctly design the donor tissue dimensions. A femtosecond laser is used to cut the donor cornea. The recipient eye is prepared by manual stripping of the descemetic membrane. The donor endothelium is inserted into a Busin-injector, the peripheral inner side is stained with a proper chromophore (a water solution of Indocyanine Green) and then it is pulled in the anterior chamber. The transplanted tissue is placed in the final and correct location and then diode laser welding is induced from outside the eyeball. The procedure has been performed on more than 15 patients evidencing an improvement in surgery performances, with a good recovery of visual acuity and a reduced donor lenticule dislocation event.

  8. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  9. Ultrasound Guidance and Monitoring of Laser-Based Fat Removal

    PubMed Central

    Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.

    2009-01-01

    Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554

  10. Evidence-based dentistry on laser paediatric dentistry: review and outlook.

    PubMed

    Olivi, G; Genovese, M D; Caprioglio, C

    2009-03-01

    The goal of paediatric dentistry is to provide preventive education to parents and patients as well as interception and therapy of dental diseases in a minimally invasive way using a stress-free approach. Different laser wavelengths are used for different applications following these minimally invasive concepts: argon, KTP, diode, Nd:YAG, and CO2 lasers are used for soft tissue applications and the erbium family is used for both soft and hard tissue procedures. This paper offers a revision and a discussion of the international literature, showing also some clinical procedures. related to these scientific studies. Soft tissues laser applications in Pediatric Dentistry include application in oral surgery as well as in periodontics and orthodontics. Laser applications on hard tissues include caries prevention and detection and application for sealing of pits and fissures. Also application for cavity preparation, carious removal and pulp therapy are discussed.

  11. Lasers in oral surgery and implantology

    NASA Astrophysics Data System (ADS)

    Vescovi, Paolo

    2016-03-01

    The usefulness of laser for oral hard tissue procedure such as caries treatment, impacted teeth extraction, periodontal therapy, peri-implantitis management, sinus lifting is reported by several Authors [1]. Conventionally, mechanical rotary instruments and hand instruments are employed for bone surgery. Rotary instruments have better accessibility and cutting efficiency, but there is a risk of excessive heating of bone tissue and caution must be exercised to avoid the bur becoming entangled with surrounding soft tissues and the reflected flap. The main clinical advantages of the lasers are represented by minimal patient discomfort, good recovery with decreased or absent post-operative pain. In the last ten years are described in the international literature great advantages of Laser Surgery and Low Level Laser Therapy (LLLT) performed with different wavelength in addition to traditional surgical techniques to improve bone and soft tissue healing and for pain and infection control.

  12. Erbium lasers in dentistry.

    PubMed

    van As, Glenn

    2004-10-01

    Erbium hard tissue lasers have the capability to prepare enamel, dentin, caries, cementum, and bone in addition to cutting soft tissue. The ability of hard tissue lasers to reduce or eliminate vibrations, the audible whine of drills, microfractures, and some of the discomfort that many patients fear and commonly associate with high-speed handpieces is impressive. In addition, these lasers can be used with a reduced amount of local anesthetic for many procedures. Today, these instruments have evolved from their initial use for all classes of cavity preparations to their ability for removing soft tissue, their usefulness in the disinfection of bacteria within endodontic canals, and most recently, as an alternative to the high speed handpiece for the removal of bone in oral and maxillofacial surgery. In addition, recent research has centered on the value of the erbium family of laser wavelengths in periodontics, including the removal of calculus.

  13. Optical-thermal light-tissue interactions during photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gould, Taylor; Wang, Quanzeng; Pfefer, T. Joshua

    2014-03-01

    Photoacoustic imaging (PAI) has grown rapidly as a biomedical imaging technique in recent years, with key applications in cancer diagnosis and oximetry. In spite of these advances, the literature provides little insight into thermal tissue interactions involved in PAI. To elucidate these basic phenomena, we have developed, validated, and implemented a three-dimensional numerical model of tissue photothermal (PT) response to repetitive laser pulses. The model calculates energy deposition, fluence distributions, transient temperature and damage profiles in breast tissue with blood vessels and generalized perfusion. A parametric evaluation of these outputs vs. vessel diameter and depth, optical beam diameter, wavelength, and irradiance, was performed. For a constant radiant exposure level, increasing beam diameter led to a significant increase in subsurface heat generation rate. Increasing vessel diameter resulted in two competing effects - reduced mean energy deposition in the vessel due to light attenuation and greater thermal superpositioning due to reduced thermal relaxation. Maximum temperatures occurred either at the surface or in subsurface regions of the dermis, depending on vessel geometry and position. Results are discussed in terms of established exposure limits and levels used in prior studies. While additional experimental and numerical study is needed, numerical modeling represents a powerful tool for elucidating the effect of PA imaging devices on biological tissue.

  14. Preliminary investigations on the utility of an erbium, chromium YSGG laser.

    PubMed

    Eversole, L R; Rizoiu, I M

    1995-12-01

    A variety of laser systems are under investigation as potential tools in dentistry. Most of these systems have been shown to be efficacious for soft tissue surgery of the mucous membranes; however, cutting bone and dental hard tissues has only recently been possible. In this report from the University of California at Los Angeles School of Dentistry, a review of laser applications in dentistry is discussed. The utility of a new laser system using an erbium YSGG medium with air water spray to cut soft tissues, bone, enamel and dentin is under investigation and preliminary research findings are presented.

  15. White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake

    NASA Astrophysics Data System (ADS)

    Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike

    2018-05-01

    We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.

  16. Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds

    PubMed Central

    Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842

  17. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  18. Carbon dioxide laser ablation with immediate autografting in a full-thickness porcine burn model.

    PubMed Central

    Glatter, R D; Goldberg, J S; Schomacker, K T; Compton, C C; Flotte, T J; Bua, D P; Greaves, K W; Nishioka, N S; Sheridan, R L

    1998-01-01

    OBJECTIVE: To compare the long-term clinical and histologic outcome of immediate autografting of full-thickness burn wounds ablated with a high-power continuous-wave CO2 laser to sharply débrided wounds in a porcine model. SUMMARY BACKGROUND DATA: Continuous-wave CO2 lasers have performed poorly as tools for burn excision because the large amount of thermal damage to viable subeschar tissues precluded successful autografting. However, a new technique, in which a high-power laser is rapidly scanned over the eschar, results in eschar vaporization without significant damage to underlying viable tissues, allowing successful immediate autografting. METHODS: Full-thickness paravertebral burn wounds measuring 36 cm2 were created on 11 farm swine. Wounds were ablated to adipose tissue 48 hours later using either a surgical blade or a 150-Watt continuous-wave CO2 laser deflected by an x-y galvanometric scanner that translated the beam over the tissue surface, removing 200 microm of tissue per scan. Both sites were immediately autografted and serially evaluated clinically and histologically for 180 days. RESULTS: The laser-treated sites were nearly bloodless. The mean residual thermal damage was 0.18+/-0.05 mm. The mean graft take was 96+/-11% in manual sites and 93+/-8% in laser sites. On postoperative day 7, the thickness of granulation tissue at the graft-wound bed interface was greater in laser-debrided sites. By postoperative day 180, the manual and laser sites were histologically identical. Vancouver scar assessment revealed no differences in scarring at postoperative day 180. CONCLUSIONS: Long-term scarring, based on Vancouver scar assessments and histologic evaluation, was equivalent at 6 months in laser-ablated and sharply excised sites. Should this technology become practical, the potential clinical implications include a reduction in surgical blood loss without sacrifice of immediate engraftment rates or long-term outcome. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:9712572

  19. Ultrafast laser machining of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Carter, R. M.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-07-01

    The use of ultrafast lasers (pulsed lasers with pulse lengths of a few picoseconds or less) offers the possibility for minimally invasive removal of soft ophthalmic tissue. The potential for using pico- and femtosecond pulses for modification of scleral tissue has been reported elsewhere [1-6] and has resulted in the introduction of new, minimally invasive, procedures into clinical practice [3, 5-10]. Our research is focused on finding optimal parameters for picosecond laser machining of scleral tissue without introducing any unwanted collateral damage to the tissue. Experiments were carried out on hydrated porcine sclera in vitro, which has similar collagen organization, histology and water content (~70%) to human tissue. In this paper we present a 2D finite element ablation model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. The use of a scan head allows flexibility in designing various scanning patterns. We show that picosecond pulses are capable of modifying scleral tissue without introducing collateral damage. This offers a possible route for minimally invasive sclerostomy. Many scanning patterns including single line ablation, square and circular cavity removal were tested.

  20. Buying a Laser - Tips and Pearls

    PubMed Central

    Aurangabadkar, Sanjeev J; Mysore, Venkataram; Ahmed, E Suhail

    2014-01-01

    Lasers and aesthetic procedures have transformed dermatology practice. They have aided in the treatment of hitherto untreatable conditions and allowed better financial remuneration to the physician. The availability of a variety of laser devices of different makes, specifications and pricing has lead to confusion and dilemma in the mind of the buying physician. There are presently no guidelines available for buying a laser. Since purchase of a laser involves large investments, careful consideration to laser specifications, training, costing, warranty, availability of spares, and reliability of service are important prerequisites. This article describes various factors that are needed to be considered and also attempts to lay down criteria to be assessed while buying a laser system that will be useful to physicians before investing in a laser machine. Practice points Meticulous planning of the type of machine, specifications, financial aspects, maintenance and warranties is important.It is wise to sign a contract or agreement between the buyer and seller before purchase of a laser which covers key aspects of installation, after sales service and maintenance of the machine.Adequate training is essential; understanding laser physics and laser-tissue interaction goes a long way in getting the best out of the machine.The credibility of the dealer and company should be ascertained in order to be assured of after-sales service.Buying used machines, sharing of equipment to offset high initial investments is a good option but even more care is required to ensure proper functioning and maintenance. PMID:25136218

  1. Buying a laser - tips and pearls.

    PubMed

    Aurangabadkar, Sanjeev J; Mysore, Venkataram; Ahmed, E Suhail

    2014-04-01

    Lasers and aesthetic procedures have transformed dermatology practice. They have aided in the treatment of hitherto untreatable conditions and allowed better financial remuneration to the physician. The availability of a variety of laser devices of different makes, specifications and pricing has lead to confusion and dilemma in the mind of the buying physician. There are presently no guidelines available for buying a laser. Since purchase of a laser involves large investments, careful consideration to laser specifications, training, costing, warranty, availability of spares, and reliability of service are important prerequisites. This article describes various factors that are needed to be considered and also attempts to lay down criteria to be assessed while buying a laser system that will be useful to physicians before investing in a laser machine. Meticulous planning of the type of machine, specifications, financial aspects, maintenance and warranties is important.It is wise to sign a contract or agreement between the buyer and seller before purchase of a laser which covers key aspects of installation, after sales service and maintenance of the machine.Adequate training is essential; understanding laser physics and laser-tissue interaction goes a long way in getting the best out of the machine.The credibility of the dealer and company should be ascertained in order to be assured of after-sales service.Buying used machines, sharing of equipment to offset high initial investments is a good option but even more care is required to ensure proper functioning and maintenance.

  2. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    NASA Astrophysics Data System (ADS)

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo

    2017-02-01

    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  3. Fire ignition during laser surgery in pet rodents

    PubMed Central

    2012-01-01

    Background Laser surgery is an attractive alternative to other means of section device in terms of tissue inflammation and interaction, which has been extensively used in human and veterinary medicine. Although accidental ignition during laser surgeries is sporadically reported in human medical literature, to the authors’ knowledge this is the first report regarding laser-dependent fire ignition during surgery in veterinary medicine. Case presentation Two rodents, a 13-month old, 27-gram, male pet mouse (Mus musculus) and a 1-year old, female Russian hamster (Phodopus sungorus), underwent surgical removal of masses with diode laser. During the surgical procedures fires ignited from the face masks. The mouse presented severe burns on the head and both forelimbs, it was hospitalized and approximately 2 months after surgery burns were resolved. The hamster presented severe burns on the face and the proximal regions of the body. At 72 hours from the accident the hamster was euthanized. Conclusion The present report suggests that fire ignition is a potential life-threatening complication of laser surgery in non-intubated rodents maintained under volatile anesthesia. High oxygen concentrations, the presence of combustible, and the narrowness of the surgical field with the face mask during laser surgery on rodents are risk factors for fire ignition. PMID:23009047

  4. Versatile tissue lasers based on high-Q Fabry-Pérot microcavities.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Zhang, Tingting; Wang, Wenjie; Fan, Xudong

    2017-01-31

    Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in an extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual staining were achieved with a threshold of only ∼10 μJ mm -2 . Additionally, we investigated how the tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. Lasing emission from FITC conjugates (FITC-phalloidin) that specifically target F-actin in muscle tissues was also realized. It is further found that, despite the large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.

  5. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    PubMed

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p < 0.05). Highest temperature increase could be observed in the 1-mm thickness group for enamel. Evaluating the 1-mm group for dentine, a significantly lower temperature increase could be measured (p < 0.05) with lowest values in the 3-mm group (p < 0.05). A time delay for temperature increase during the ablation process depending on the material thickness was observed for both hard tissues (p < 0.05). Employing the USPL system to remove dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  6. Effects of pressure rise on cw laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.

    1991-06-01

    The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.

  7. [The first experience with the concurrent effect of YAG-neodymium and YAG-erbium laser on experimental animal tissues and the possibility of its use in surgery].

    PubMed

    Roshal', L M; Gorbatova, N E; Livshits, Iu L; Parkhomenko, Iu G; Osiko, V V; Danileĭko, Iu K; Sidorin, A V; Tylaĭkova, T B; Ivanov, A D

    1991-08-01

    To guarantee the necessary rate of cutting live tissues with adequate hemostasis along the line of the incision, the authors studied isolated and joint effect of radiations of AIG-neodymium and AIG-erbium lasers on the tissues of laboratory animals. The possibility of accomplishing intraoperative hemostasis on the parenchymal organs was studied in experiments with AIG-neodymium laser. A good dissection effect in cutting various tissues was produced in the second series of experiments with AIG-erbium laser. The simultaneous action of AIG-neodymium and AIG-erbium beams converged at one point on the surface of the biological object was studied in the third series of experiments. It was found that the effect ensures a good dissection of tissues with sufficient hemostasis. The results of dynamic morphological studies are shown. The possibility of using the device in surgery is discussed.

  8. Quasi-resonance enhancement of laser-induced-fluorescence diagnosis of endometriosis

    NASA Astrophysics Data System (ADS)

    Hill, Ralph H., Jr.; Vancaillie, Thierry G.

    1990-05-01

    Endometriosis, a common disease in women in the reproductive age group, is defined pathologically by the presence of endometrial tissue (inner lining of the uterus) outside the uterus. The displaced tissue is histologically identical to endometrium. In addition to being a highly prevalent disease, this disease is associated with many distressing and debilitating symptoms. Motivated by the need to improve diagnosis by endoscopic imaging instrumentation, we have previously used several drugs to cause selective laser-induced fluorescence of active surgically induced endometriosis in the rabbit model in vivo using ultraviolet-wavelength (351.1 and 363.8 nm) excitation from an argon-ion laser. In the present study we have investigated methods of enhancing differentiation between normal and abnormal tissue by using other excitation wavelengths. In addition to an enhanced capability for detecting abnormal tissue, there are several other advantages associated with using visible-wavelength excitation, such as deeper penetration into the tissue, as well as increased equipment performance, reliability, versatility, and availability. The disadvantage is that because only wavelengths longer than the excitation wavelength can be used for detection, some of the spectral information is lost. Because human endomeiriosis samples were somewhat limited in quantity, as well as specimen size, we used normal ovarian tissue for the laser-induced-fluorescence differentiation-enhancement studies. Positive enhancement of the laser-induced- fluorescence differentiation was found in human ovarian tissue in vitro utilizing 514.5-nm excitation from an argonion laser. Additionally, preliminary verification of this concept was accomplished in active surgically induced endometriosis in the rabbit model in vivo with visible argon-ion laser excitation of two tetracycline-based drugs. Future experiments with other drug treatments and excitation/detection parameters are planned.

  9. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  10. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants.

    PubMed

    Gautam, Vibhav; Sarkar, Ananda K

    2015-04-01

    Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.

  11. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    NASA Astrophysics Data System (ADS)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  12. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    PubMed

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser irradiation of periodontal tissue leads to metabolic activation, which ultimately increases the rate of tooth movement. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Hard tooth tissue removal by short and long Er:YAG or Er,Cr:YSGG mid-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Dostálová, T.; Remeš, M.; Šulc, J.; Němec, M.; Fibrich, M.

    2017-02-01

    Hard dental tissue removal by laser radiation is an alternative treatment to conventional dental-drilling procedures. The advantages of this therapy are fast and localized treatment of hard dental tissue and painlessness. The most effective systems for those purposes are Er-lasers generating radiation at wavelengths of around 3 μm. The aim of this study was qualitative and quantitative examination of human dentin and ivory tissue removal by pulsed free-running (FR) and Q-switched (QSW) Er:YAG and Er,Cr:YSGG laser radiations. From the obtained results it follows that generally Er:YAG laser has lower threshold for the tissue removal in both FR and QSW regimes. Furthermore, the FR Er:YAG and Er,Cr:YSGG radiation can be effective for both dentin and ivory ablation and can prepare smooth cavities without side effects. The QSW regime is useful preferably for precise ablation of a starting tooth defect and for the part of the tooth very close to the gum. This regime is excellent for micro-preparation or for tooth treatment of children.

  14. Incisional effects of 1940 nm thulium fiber laser on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Güney, Melike; Tunç, Burcu; Gülsoy, Murat

    2013-02-01

    Lasers of different wavelengths are being used in oral surgery for incision and excision purposes with minimal bleeding and pain. Among these wavelengths, those close to 2μ yield more desirable results on oral soft tissue due to their strong absorption by water. The emission of 1940 nm Thulium fiber laser is well absorbed by water which makes it a promising tool for oral soft tissue surgery. This study was conducted to investigate the potential of thulium fiber laser as an incisional and excisional oral surgical tool. Ovine tongue has been used as the target tissue due to its similarities to human oral tissues. Laser light obtained from a 1940 nm Thulium fiber laser was applied in contact mode onto ovine tongue completely submerged in saline solution in vitro, via a 600)μm fiber moved with a velocity of 0.5 mm /s to form incisions. There were a total of 9 groups determined by the power (2,5-3- 3,5 W), and number of passes (1-3-5). The samples were stained with HE for microscopic evaluation of depth of ablation and extent of coagulation. The depth of incisions produced with 1940 nm Thulium fiber laser increased with increasing power and number of passes, however an increase in the width of the coagulation zone was also observed.

  15. Excimer laser phototherapy for the dissolution of vascular obstruction

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1984-01-09

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. 2 figures.

  16. Linear lesions in heart tissue using diffused laser radiation

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Lardo, Albert C.; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.

    2000-05-01

    Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.

  17. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; de Fátima Zanirato Lizarelli, Rosane; Salvador Bagnato, Vanderlei

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788+/-0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  18. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    PubMed

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  20. Method for estimating optimal spectral and energy parameters of laser irradiation in photodynamic therapy of biological tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisenko, S A; Kugeiko, M M

    We have solved the problem of layer-by-layer laser-light dosimetry in biological tissues and of selecting an individual therapeutic dose in laser therapy. A method is proposed for real-time monitoring of the radiation density in tissue layers in vivo, concentrations of its endogenous (natural) and exogenous (specially administered) chromophores, as well as in-depth distributions of the spectrum of light action on these chromophores. As the background information use is made of the spectrum of diffuse light reflected from a patient's tissue, measured by a fibre-optic spectrophotometer. The measured spectrum is quantitatively analysed by the method of approximating functions for fluxes ofmore » light multiply scattered in tissue and by a semi-analytical method for calculating the in-depth distribution of the light flux in a multi-layered medium. We have shown the possibility of employing the developed method for monitoring photosensitizer and oxyhaemoglobin concentrations in tissue, light power absorbed by chromophores in tissue layers at different depths and laser-induced changes in the tissue morphology (vascular volume content and ratios of various forms of haemoglobin) during photodynamic therapy. (biophotonics)« less

  1. Endodontic applications of a short pulsed FR Nd:YAG dental laser: photovaporization of extruded pulpal tissue following traumatic fractures of two maxillary central incisors--a clinical trial repor

    NASA Astrophysics Data System (ADS)

    Gregg, Robert H., II

    1992-06-01

    Historically, many techniques have been attempted in the search for a satisfactory and consistent treatment of inflamed, painful, hyperemic pulpal tissue. Present techniques attempting to achieve profound local anesthesia in such tissue, have not been satisfactory. Local anesthesia techniques acceptable to the patient with painful hyperemic pulpal tissue, has eluded previous technology. The subsequent treatment of hyperemic tissue without sufficient anesthesia primarily involves undesirable invasive mechanical/surgical procedures. Described in this clinical trial is a technique using free running (FR) pulsed, Nd:YAG laser energy to ablate soft tooth pulpal tissue--a technique employed after conventional endodontic methods failed. A free running pulsed, FR Nd:YAG dental laser was successfully used at 20 pulses per second and 1.25 watts to photovaporize endodontic pulpal tissue (pulpectomy) to allow a conventional endodontic file to extirpate the remaining soft tissue remnants and access the root apex. Also described in this paper is the 'hot-tip' effect of contact fiber laser surgery. This clinical trial achieved the immediate, short term objective of endodontic soft tissue removal via photovaporization, without pain reported by the patient. The pulsed FR Nd:YAG dental laser used as described in this clinical report appears to be a very safe and very effective technique; offers a treatment alternative to traditional therapy that suggests high patient acceptance; and is significantly less stressful for the doctor and staff than traditional treatment options. Long-term, controlled scientific and clinical studies are necessary to establish the safety and efficacy of both the helium-neon energy for visualization and the low-watt pulsed FR Nd:YAG energy for photovaporization of soft endodontic pulpal tissue within the root canal. Research is especially needed to understand the effects of a low-watt, pulsed FR, Nd:YAG laser on the activity of osteoclasts and odontoclasts and identify risks for developing external and/or internal resorption after intracanal application of pulsed FR Nd:YAG laser energy.

  2. Experimental investigation on light propagation through apple tissue structures

    NASA Astrophysics Data System (ADS)

    Askoura, Mohamed Lamine; Piron, Vianney; Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Madieta, Emmanuel; Mehinagic, Emira

    2015-07-01

    The interaction of light with biological materials, such as fruits and vegetables, is a complex process which involves both absorption, and scattering events at different scales. Measuring the optical properties of a fruit allows understanding the physical and chemical characteristics. In this paper, an optical bench based on the use of a continuous laser source and a CCD camera was developed to study the light diffusion inside apple tissue structures. The method refers to the well-known steady-state spatially resolved method. First, the optoelectronics system was tested with a tissue phantom in order to show the optimal sensing range required to obtain the best estimated optical properties. Second, experimental results were obtained using peeled and unpeeled apples as interrogated tissues. The data were confronted with a diffusion model in order to extract the optical properties at two wavelengths of 633, and 852 nm. To better understand the effect of the apple tissue structures, investigations into the propagation of light through a half cut apple were also performed.

  3. Potential applications of Erbium:YAG laser in periodontics.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2004-08-01

    Since lasers were introduced for the treatment of oral diseases, there has been considerable advancement in technology. As a result, numerous laser systems are currently available for oral use. Neodymium:Yttrium-Aluminum:Garnet (Nd:YAG), carbon dioxide (CO(2)) laser and the semiconductor Diode lasers have already been approved by the US Food and Drug Administration for soft tissue treatment in oral cavity. The Erbium:YAG (Er:YAG) laser was approved in 1997 for hard tissue treatment in dentistry and recent studies have reported positive results. This suggests that the Er:YAG laser system is a promising apparatus, which will be able to revolutionize and improve dental practice, in particular periodontal treatment. In this mini-review, we would like to describe the positive characteristics of the Er:YAG laser which indicate its potential as a new treatment modality in periodontics. Recent findings are summarized briefly to evaluate the potential of the Er:YAG laser for clinical application in periodontics. The Er:YAG laser possesses suitable characteristics for oral soft and hard tissue ablation. Recently, it has been applied for effective elimination of granulation tissue, gingival melanin pigmentation and gingival discoloration. Contouring and cutting of bone with minimal damage and even or faster healing can also be performed with this laser. In addition, irradiation with the Er:YAG laser has a bactericidal effect with reduction of lipopolysaccharide, high ability of plaque and calculus removal, with the effect limited to a very thin layer of the surface and is effective for implant maintenance. The Er:YAG laser seems to be an effective tool for periodontal therapy, however, further clinical and basic investigations are required to confirm its clinical application. Copyright Blackwell Munksgaard, 2004

  4. ArF excimer laser debrides burns without destruction of viable tissue: A pilot study.

    PubMed

    Prasad, Atulya; Sawicka, Katarzyna M; Pablo, Kelly B; Macri, Lauren K; Felsenstein, Jerome; Wynne, James J; Clark, Richard A F

    2018-05-01

    Recent evidence indicates that early removal of eschar by tangential debridement can promote healing. Laser debridement can be used for debridement of areas that prove challenging for debridement using tangential excision. In particular, irradiation with an ArF excimer laser ablates desiccated eschar and is self-terminating, preserving hydrated or viable tissue. Thermal burns were created on the flanks of two outbred, female Yorkshire pigs using aluminum bars heated to 70°C and applied for different lengths of time. Three days after injury, burns were debrided using an ArF excimer laser (193nm). Tissue was harvested immediately after debridement and 7days after debridement (10days after burn). Data from a pilot study demonstrates that ArF excimer laser irradiation removes burn eschar and promotes healing at 10days after burn. ArF excimer laser debridement is self-terminating and preserves underlying and adjacent perfused tissue. Potentially, this modality would be ideal for the complex curvilinear structures of the body. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  5. Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Girkin, John M.; Burns, David; Dawson, Martin D.

    1999-06-01

    We report on the development of practical and user friendly lasers for multiphoton imaging of biological material. The laser developed for the work is a laser diode pumped Cr:LiSAF source modelocked using a saturable Bragg reflector as the passive modelocking element. For this system we routinely obtain 100 fs pulses at a repetition rate 200 MHz with an average output power of 20 mW. The laser has a single operator control and is particularly suitable for use by non-laser specialists. We have used the source developed to image a range of biologically significant samples. The initial work has centered on the imaging of intact human dental tissue. The first two-photon images of dental tissue are reported showing the development of early dental disease from depths up to 500 micrometers into the tooth. These results demonstrate the detection of carious lesions before the more conventional techniques currently used by dental practitioners. Work on other living intact biological tissue is also reported, in particular plants containing a genetically bred fluorescent marker to enable the examination of complete and intact living plant tissue.

  6. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  8. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs.

    PubMed

    Schiavon, Marco; Marulli, Giuseppe; Zuin, Andrea; Lunardi, Francesca; Villoresi, Paolo; Bonora, Stefano; Calabrese, Fiorella; Rea, Federico

    2013-05-01

    Alveolar air leaks represent a challenging problem in thoracic surgery, leading to increased patient morbidity and prolonged hospitalization. Several methods have been used, but no ideal technique exists yet. We investigated the lung-sealing capacity of an experimental kit for laser tissue welding. The kit is composed of a semiconductor laser system applied on a protein substrate associated with a chromophore that increases absorption. In vitro tests on porcine lung tissue were done to define ideal laser parameters (power 100 Å, frequency 50 Hz, pulse duration 400 µs) and protein substrate dilution (50%). For in vivo tests, through a left thoracotomy, 14 pigs received two different lung damages: a linear incision and a circular incision. Protein substrate applied on damaged areas was treated with laser to obtain a layer that reconstituted the integrity of the visceral pleura. Air leaks were intraoperatively evaluated by water submersion test with an airway pressure of 20 cmH2O. Animals were sacrificed at postoperative days 0 and 7 to study early and late pathological features. After applying laser treatment, no air leaks were seen in all proofs except in 2 cases in which a second application was required. At time 0, pathological damage mostly consisted of superficial alveolar necrotic tissue covered by protein membrane. At time 7, a complete recovery of lung lesions by fibrous scar with slight inflammatory reaction of adjacent lung tissue was seen. This experimental study demonstrated the effectiveness of laser tissue welding applied to seal air leaks after lung surgery. Further studies are needed to verify acceptability for human application.

  9. Evaluation of laser radiation regimes at thermal tissue destruction

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly; Kazaryan, Mishik A.; Molodykh, E. I.; Shchetinkina, T. A.

    1996-01-01

    The existing methods of laser destruction of biotissues, widely spread in surgery and coagulation action, are based on local heat emission in the tissues after light absorption. Here we present the results of the simulation of tissues heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined and the main parameters are: (1) coefficients of heatconductivity and capacitance of blood and tissue, (2) blood and tissue density, (3) total metabolic energy, (4) volume coefficient accounting for heat-exchange between tissue and blood, and (5) blood circulation velocity. The power of laser radiation was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the process connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on microsamples and on test animals. It was demonstrated, in particular, that liver tissue coagulation regime is achieved at 10 W laser power during 25 s. The coagulation radius of 0.7 cm with the given tumor radius of 0.5 cm corresponds to the real clinical situation in case of metastasis liver affection.

  10. Evaluating the interaction of a tracheobronchial stent in an ovine in-vivo model.

    PubMed

    McGrath, Donnacha J; Thiebes, Anja Lena; Cornelissen, Christian G; O'Brien, Barry; Jockenhoevel, Stefan; Bruzzi, Mark; McHugh, Peter E

    2018-04-01

    Tracheobronchial stents are used to restore patency to stenosed airways. However, these devices are associated with many complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. Of these, granulation tissue formation is the complication that most frequently requires costly secondary interventions. In this study a biomechanical lung modelling framework recently developed by the authors to capture the lung in-vivo stress state under physiological loading is employed in conjunction with ovine pre-clinical stenting results and device experimental data to evaluate the effect of stent interaction on granulation tissue formation. Stenting is simulated using a validated model of a prototype covered laser-cut tracheobronchial stent in a semi-specific biomechanical lung model, and physiological loading is performed. Two computational methods are then used to predict possible granulation tissue formation: the standard method which utilises the increase in maximum principal stress change, and a newly proposed method which compares the change in contact pressure over a respiratory cycle. These computational predictions of granulation tissue formation are then compared to pre-clinical stenting observations after a 6-week implantation period. Experimental results of the pre-clinical stent implantation showed signs of granulation tissue formation both proximally and distally, with a greater proximal reaction. The standard method failed to show a correlation with the experimental results. However, the contact change method showed an apparent correlation with granulation tissue formation. These results suggest that this new method could be used as a tool to improve future device designs.

  11. Corneal tissue ablation using 6.1 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  12. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    PubMed

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  13. Effect of laser polarization and pulse energy on therapeutic, femtosecond laser-induced second harmonic generation in corneal tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Ilev, Ilko K.

    2016-03-01

    Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (e.g. cataract surgery), and keratoplasty (cornea transplant), now employ therapeutic infrared femtosecond lasers (FSLs) for their extreme precision, low energy delivered into tissue and advanced ablation characteristics. Although the widely exploited applications of FSLs in medical therapeutics offer significant benefits, FSLs must generate very high intensities in order to achieve optical breakdown, the predominant tissue ablative mechanism, which can also stimulate nonlinear optical effects such as harmonic generation, an effect that generates coherent visible and UV light in the case of second- (SHG) and third-harmonic generation (THG), respectively. In order to improve the understanding of HG in corneal tissue, the effect of FSL polarization and pulse energy were investigated. FSL stimulated SHG intensity in corneal tissue was measured as the laser polarization was rotated 360 degrees. Further, the pulse energy at the SHG wavelength were measured for single FSL pulses as the pulse energy at the fundamental wavelength was varied through a range of clinically relevant values. The results of this study revealed SHG intensity oscillated with laser polarization, having a variation greater than 20%. This relationship seems to due to the intrinsic anisotropy of collagen fibril hyperpolarizability, not related to tissue birefringence. SHG pulse energy measurements showed an increase in SHG pulse energy with increasing FSL pulse energy, however conversion efficiency decreased. This may be related to the dynamic relationship between optical breakdown leading to tissue destruction and HG evolution.

  14. Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).

  15. Laser evaporation of the prostate: preliminary findings in canines

    NASA Astrophysics Data System (ADS)

    Kuntzman, R. S.; Malek, Reza S.; Barrett, David M.; Bostwick, David G.

    1996-05-01

    Purpose: We evaluated the ability of KTP laser to evaporate prostatic tissue in vivo and compared the results with historical Nd:YAG treated controls. Methods: Five dogs underwent anterograde transurethral evaporation of the prostate (TUEP) with KTP laser at 38 watts and were sacrificed 48 hours after surgery. Results: All procedures were hemostatic and without complications. Laser evaporation produced cavities within the prostate ranging from 2.5 to 3.2 cm in diameter (average equals 2.9 cm) that were free of necrotic tissue. Conclusions: Preliminary findings in this initial canine study of laser evaporation of the prostate, show that KTP laser produces large spherical cavities within the prostate in a hemostatic fashion. These cavities are free of necrotic tissue. In addition, these cavities are comparable in size to those that have been observed 4 to 8 weeks following Nd:YAG VLAP and are significantly larger than the acute cavities produced by Nd:YAG TUEP.

  16. Advanced Mass Spectrometry Technologies for the Study of Microbial Pathogenesis

    PubMed Central

    Moore, Jessica L.; Caprioli, Richard M.; Skaar, Eric P.

    2014-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been successfully applied to the field of microbial pathogenesis with promising results, principally in diagnostic microbiology to rapidly identify bacteria based on the molecular profiles of small cell populations. Direct profiling of molecules from serum and tissue samples by MALDI MS providesa means to study the pathogen-host interaction and to discover potential markers of infection. Systematic molecular profiling across tissue sections represents a new imaging modality, enabling regiospecific molecular measurements to be made in situ, in both two- and three-dimensional analyses. Herein, we briefly summarize work that employs MALDI MS to study the pathogenesis of microbial infection. PMID:24997399

  17. Screening spectroscopy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Yermolenko, S. B.; Voloshynskyy, D. I.; Fedoruk, O. S.

    2015-11-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the state of prostate cancer and choosing the best personal treatment. The objects of study were selected venous blood plasma of patient with prostate cancer, histological sections of rat prostate gland in the postoperative period. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5-25 microns) dry residue of plasma by spectral diagnostic technique of thin histological sections of biological tissues.

  18. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology. Moreover, our striped-illumination approach is able to improve the resolution of any laser-scanning-microscope, including confocal microscopes, by simply choosing an appropriate detector. PMID:23251402

  19. Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap – Molecular Mechanisms

    PubMed Central

    Littlechild, Stacy L.; Zhang, Yuntao; Tomich, John M.; Conrad, Gary W.

    2012-01-01

    Purpose. Tissue glue containing fibrinogen (FIB) and riboflavin (RF), upon exposure to long wavelength ultraviolet light (UVA, 365 nM) has been proposed potentially to solve long-standing problems presented by corneal wound and epithelial ingrowth side-effects from laser-assisted in situ keratomileuis (LASIK). Data presented in a previous study demonstrated an ability of FIB + RF + UVA to adhere two stromal surfaces; however, to our knowledge no molecular mechanisms have been proposed to account for interactions occurring between corneal extracellular matrix (ECM) and tissue glue molecules. Here, we document several covalent and noncovalent interactions between these classes of macromolecules. Methods. SDS-PAGE and Western blot techniques were used to identify covalent interactions between tissue glue molecules and corneal ECM molecules in either the presence or absence of RF and UVA, in vitro and ex vivo. Surface plasmon resonance (SPR) was used to characterize noncovalent interactions, and obtain ka, kd, and KD binding affinity values. Results. SDS-PAGE and Western blot analyses indicated that covalent interactions occurred between neighboring FIB molecules, as well as between FIB and collagen type I (Coll-I) proteins (in vitro and ex vivo). These interactions occurred only in the presence of RF and UVA. SPR data demonstrated the ability of FIB to bind noncovalently to corneal stroma molecules, Coll-I, decorin, dermatan sulfate, and corneal basement membrane molecules, laminin and heparan sulfate – only in the presence of Zn2+. Conclusions. Covalent and (zinc-mediated) noncovalent mechanisms involving FIB and stromal ECM molecules contribute to the adhesion created by FIB + RF + UVA. PMID:22879413

  20. A novel culture device for the evaluation of three-dimensional extracellular matrix materials.

    PubMed

    Akhyari, Payam; Ziegler, Heiko; Gwanmesia, Patricia; Barth, Mareike; Schilp, Soeren; Huelsmann, Joern; Hoffmann, Stefanie; Bosch, Julia; Kögler, Gesine; Lichtenberg, Artur

    2014-09-01

    Cell-matrix interactions in a three-dimensional (3D) extracellular matrix (ECM) are of fundamental importance in living tissue, and their in vitro reconstruction in bioartificial structures represents a core target of contemporary tissue engineering concepts. For a detailed analysis of cell-matrix interaction under highly controlled conditions, we developed a novel ECM evaluation culture device (EECD) that allows for a precisely defined surface-seeding of 3D ECM scaffolds, irrespective of their natural geometry. The effectiveness of EECD was evaluated in the context of heart valve tissue engineering. Detergent decellularized pulmonary cusps were mounted in EECD and seeded with endothelial cells (ECs) to study EC adhesion, morphology and function on a 3D ECM after 3, 24, 48 and 96 h. Standard EC monolayers served as controls. Exclusive top-surface-seeding of 3D ECM by viable ECs was demonstrated by laser scanning microscopy (LSM), resulting in a confluent re-endothelialization of the ECM after 96 h. Cell viability and protein expression, as demonstrated by MTS assay and western blot analysis (endothelial nitric oxide synthase, von Willebrand factor), were preserved at maintained levels over time. In conclusion, EECD proves as a highly effective system for a controlled repopulation and in vitro analysis of cell-ECM interactions in 3D ECM. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Repair strength dependence on solder protein concentration: a study in laser tissue-welding.

    PubMed

    Lauto, A

    1998-01-01

    A novel laser-activated solid solder has been coupled with a diode laser to investigate the dependence of the solder protein concentration on the tensile strength of the soldered tissues. The uncertainty of laser welding, due to the fluid glue, was overcome using the solid solder. Sixty-two severed rat tibial nerves and vas deferens were repaired using rectangular protein bands with two different albumin concentrations (58% and 68% by weight). The laser power (90 mW and 140 mW), dose (12.9 +/- 0.7 J/mg, mean +/- s.d.), and solder dimensions (thickness = 0.15 +/- 0.01 mm, surface area = 7.8 +/- 0.4 mm2) were kept constant during the operations. The laser welds with high protein solder concentration were significantly (P < 0.05) stronger (28 +/- 3.5 g) than the welds with low protein solder concentration (23 +/- 5 g). The average tensile strength of the laser soldered tissues increased as the protein solder concentration increased.

  2. Optimal parameters for laser tissue soldering: II. Premixed versus separate dye-solder techniques.

    PubMed

    McNally, K M; Sorg, B S; Chan, E K; Welch, A J; Dawes, J M; Owen, E R

    2000-01-01

    Laser tissue soldering by using an indocyanine green (ICG)-doped protein solder applied topically to the tissue surface and denatured with a diode laser was investigated in Part I of this study. The depth of light absorption was predominantly determined by the concentration of the ICG dye added to the solder. This study builds on that work with an in vitro investigation of the effects of limiting the zone of heat generation to the solder-tissue interface to determine whether more stable solder-tissue fusion can be achieved. An alternative laser tissue soldering technique was investigated, which increased light absorption at the vital solder-tissue interface. A thin layer of ICG dye was smeared over the surface to be treated, the protein solder was then placed directly on top of the dye, and the solder was denatured with an 808-nm diode laser. Because laser light at approximately 800 nm is absorbed primarily by the ICG dye, this thin layer of ICG solution restricted the heat source to the space between the solder and the tissue surfaces. A tensile strength analysis was conducted to compare the separate dye-solder technique with conventional techniques of laser tissue soldering for which a premixed dye-solder is applied directly to the tissue surface. The effect of hydration on bond stability of repairs formed by using both techniques was also investigated using tensile strength and scanning electron microscopy analysis. Equivalent results in terms of tensile strength were obtained for the premixed dye-solder technique using protein solders containing 0.25 mg/ml ICG (liquid solder, 220 +/- 35 N/cm(2); solid solder, 602 +/- 32 N/cm(2)) and for the separate dye-solder technique (liquid solder, 228 +/- 41 N/cm(2); solid solder, 578 +/- 29 N/cm(2)). The tensile strength of native bovine thoracic aorta was 596 +/- 31 N/cm(2). Repairs created by using the separate dye-solder technique were more stable during hydration than their premixed dye-solder counterparts. The conventional premixed dye-solder was simpler and approximately twice as fast to apply. The separate dye-solder technique, however, increased the shelf-life of the solder, because the dye was mixed at the time of the experiment, thus conserving its spectral absorbency properties. Two laser-assisted tissue soldering techniques have been evaluated for repairing aorta incisions in vitro. The advantages and disadvantages of each of these techniques are discussed. Copyright 2000 Wiley-Liss, Inc.

  3. The effects of photodynamic laser therapy in the treatment of marginal chronic periodontitis

    NASA Astrophysics Data System (ADS)

    Chifor, Radu; Badea, Iulia; Avram, Ramona; Chifor, Ioana; Badea, Mîndra Eugenia

    2016-03-01

    The aim of this study was to assess the effects of the antimicrobial photodynamic laser therapy performed during the treatment of deep periodontal disease by using 40 MHz high frequency ultrasonography. The periodontal data recorded during the clinical examination before each treatment session were compared with volumetric changes of the gingiva measured on periodontal ultrasound images. The results show a significant decrease of gingival tissue inflammation proved both by a significant decrease of bleeding on probing as well as by a decrease of the gingival tissues volume on sites where the laser therapy was performed. Periodontal tissues that benefit of laser therapy besides classical non-surgical treatment showed a significant clinical improvement of periodontal status. Based on these findings we were able to conclude that the antimicrobial photodynamic laser therapy applied on marginal periodontium has important anti-inflamatory effect. The periodontal ultrasonography is a method which can provide useful data for assessing the volume changes of gingival tissues, allowing a precise monitoring of marginal periodontitis.

  4. Effects of an Er, Cr:YSGG laser on canine oral hard tissues

    NASA Astrophysics Data System (ADS)

    Rizoiu, Ioana-Mihaela; Kimmel, Andrew I.; Eversole, Lewis R.

    1996-12-01

    Beagle dogs were utilized to assess the biologic effects of an Er, Cr:YSGG hard tissue cutting laser and results were compared with conventional mechanical preparations of enamel and dentin. Intraoperative pulpal temperature fluctuations were recorded with thermocouples. The laser cuts failed to induce inflammation in the pulps except in teeth with intentional pulp exposures for both methods. No increase in temperature was detected with the laser. It is concluded that this laser system may be safely employed for tooth preparations without causing adverse pulpal effects.

  5. Circadian Profiling of Amino Acids in the SCN and Cerebral Cortex by Laser Capture Microdissection-Mass Spectrometry.

    PubMed

    Fustin, Jean-Michel; Karakawa, Sachise; Okamura, Hitoshi

    2017-12-01

    The suprachiasmatic nucleus (SCN) is an extremely robust self-sustained oscillator, containing virtually the same molecular clock present in other tissues in the body but, in addition, endowed with tight intercellular coupling dependent on multiple neurotransmitter systems that allow the SCN to function as the "master clock." Several studies on the circadian SCN transcriptome have been published and compared with the transcriptome of other tissues, but the recent focus shift toward the circadian metabolome and the importance of small molecules for circadian timekeeping has so far been limited to macroscopic tissues such as the liver. Here, we report the successful use of laser capture microdissection coupled with liquid chromatography/tandem mass spectrometry for the circadian profiling of SCN amino acids. Among 18 amino acids detected, 10 (55.5%) showed significant variations, particularly marked for proline, lysine, and histidine, with higher levels during the subjective day. Moreover, we compared SCN and cortical amino acid levels between wild-type and Bmal1-deficient animals, either in the whole body or specifically in the liver. Interestingly, lack of Bmal1 in the whole body led to a significant increase in most amino acids in the SCN but not in the cerebral cortex. In contrast, deletion of Bmal1 in the liver mostly affected cortical amino acid levels during the subjective day. This study demonstrates that laser capture microdissection can be used for the isolation of microscopic brain structures for metabolomic purposes and reveals interactions between liver and SCN amino acid metabolism.

  6. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    PubMed

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  7. Advances and Perspectives on Tissue Repair and Healing

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Marques, Aparecida M. C.; de Sousa, Ana Paula C.; Aciole, Jouber M. S.; Soares, Luiz G. P.

    2011-08-01

    Wound healing involves local and systemic responses that reflect the etiology of the lesion, type of tissue, systemic condition and others. Despite being essentially the same for different wounds, the pattern of healing may change due to intrinsic and/or extrinsic factors. The type of tissue has also to be considered. Several therapeutic approaches have been used to improve healing including phototherapies such as Laser, LEDs and Lamps. Their effects on soft and mineralized tissues are well reported. The choice of appropriated parameters is essential for the results of the treatment and includes wavelength, power density, energy, duration and frequency of application and others. We studied the effects of different types of light on the healing of both soft and mineralized tissues using different models. We found that the use of Laser and polarized light are effective on improving the healing of diabetic and undernourished animals. We also found that Laser light is capable of improving the healing of drug-induced impairment and on increasing the survival rate of flaps on both diabetic and non-diabetic animals. We have also studied and shown the influence of the laser parameters on the healing of surgical and laser wounds. Lately we verified the positive effect of LEDs on healing. We used Laser/LED light for improving bone healing in conditions such as in dental implants, autologous grafts, biomaterials and fractures. From these reports and our own experience we have no doubt whatsoever that the use of phototherapies, carried out with appropriate parameters, promotes quicker tissue repair.

  8. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  9. Laser balloon angioplasty: effect of tissue temperature on weld strength of human postmortem intima-media separations.

    PubMed

    Jenkins, R D; Sinclair, I N; Anand, R; Kalil, A G; Schoen, F J; Spears, J R

    1988-01-01

    Dehiscence of portions of atheromatous plaques fractured during percutaneous transluminal coronary angioplasty may contribute to both abrupt reclosure and gradual restenosis. Laser balloon angioplasty has been shown to be effective in welding human plaque-arterial wall separations in vitro by heating tissues with a Nd:YAG laser during balloon inflation. To define the potentially useful therapeutic range of tissue temperature required to achieve thermal welds, 220 1-cm diameter discs of human postmortem atheromatous aortic tissue, the intimal plaque of which had been separated from the media, were exposed to 3-25 watts of Nd:YAG laser radiation delivered over a 12-mm2 nominal spot size for 20 seconds via a 400-micron core optical fiber. As measured with a thermistor, adventitial temperature reflected the temperature at the plaque-media junction to within 10 degrees C. The degree of tissue temperature elevation was related to delivered energy, while effective tissue penetration increased to maximum depth of 3 mm at the highest power density. Strength of tissue welds was defined as the force required to shear opposing layers of welded segments. Adventitial tissue temperatures below 80 degrees C were not associated with appreciable welds, while equilibrium temperatures between 95 degrees C and 140 degrees C were consistently associated with effective mean weld strengths, which increased linearly from 25 to 110 g, respectively. Temperatures greater than 150 degrees C were associated with rapid tissue dehydration and charring. These data suggest that the therapeutic range of tissue temperature that provides effective thermal fusion of intima-media separations is broad and that the depth and degree of thermal coagulation can be controlled by manipulation of laser energy delivery.

  10. Laser tumor treatment in oral and maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Neukam, F. W.; Stelzle, F.

    Cancer treatment is an integral part of oral and maxillofacial surgery. Oral cancer in particular is a highly prevalent neoplasm. Standard treatment for most of the tumors is radical surgery combined with stage-based neo-/adjuvant therapy. Laser surgery has become a reliable treatment option for oral cancer as well as for precancerous lesions. Widely used lasers in oral and maxillofacial tumor surgery are the CO2 laser, the Er:YAG laser, the Nd:YAG laser and the KTM laser. The use of lasers in tumor surgery has several advantages: remote application, precise cutting, hemostasis, low cicatrization, reduced postoperative pain and swelling, can be combined with endoscopic, microscopic and robotic surgery. However, laser surgery has some major drawbacks: In contrast to conventional incisions with scalpels, the surgeon gets no feedback during laser ablation. There is no depth sensation and no tissue specificity with a laser incision, increasing the risk of iatrogenic damage to nerves and major blood vessels. Future prospects may solve these problems by means of an optical feedback mechanism that provides a tissue-specific laser ablation. First attempts have been made to perform remote optical tissue differentiation. Additionally, real time optical tumor detection during laser surgery would allow for a very precise and straight forward cancer resection, enhancing organ preservation and hence the quality of life for patients with cancer in the head and neck region.

  11. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  12. Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, M.; Amendt, P.A.; London, R.A.

    1997-03-04

    Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less

  13. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  14. Effects Of Continuous Argon Laser Irradiation On Canine And Autopsied Human Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Ben-Shachar, Giora; Sivakoff, Mark; Bernard, Steven L.; Dahms, Beverly B.; Riemenschneider, Thomas A.

    1984-10-01

    In eight human formalin preserved cardiac specimens, various cardiac and vascular obstructions were relieved by argon laser irradiation. Interatrial communication was also produced by a transar'rial approach in a live dog. In-vivo fresh canine cardiac tissues required power density of at feast 80, 90, and 110 watts/cm2 for vaporization of myocardial, vascular and valvular tissues respectively. The fiber tip to tissue distance (effective irradiation distance) for effective vaporization was less than I mm for vascular and valvular tissues and less than 4 mm for myocardium. Light microscopy showed four zones of histological damage common to all tissues - central crater surrounded by layers of charring, vacuolization and coagulation necorsis. Myocardium showed additionally a layer of normal appearing muscle cells (skip area) surrounded by a peripheral coagulation halo. Laser irradiation effects on valvular tissue showed the most lateral extension of coagulation necrosis. It is concluded that palliation and treatment of certain congenital heart defects by laser irradiation is anatomi-cally feasible and may be safe for in vivo application when low power output and short exposure time are used from a very short irradiation distance.

  15. The Structure Of Intact Side Tissue Loss Based On FTIR Spectroscopic Measurements

    NASA Astrophysics Data System (ADS)

    Hussain, N.; Al-Hadithi, K. O.; Jaafar, M. S.

    2009-09-01

    Laser applications in dentistry were strongly evolved during the last three decades. Among those applications are laser ablation of dental hard tissue, caries inhibition treatments by localized surface heating, and surface conditioning for bonding. In addition, infra-red lasers are ideally suited for the selective and precise removal of carious dental hard tissue while minimizing the healthy tissue loss. In the present study we applied laser spectroscopy technique FTIR for the study of the structure of intact side tissue of teeth. The aim of the recent work is to study the effect of race and sex (genealogy) on the structure of intact side tissue loss. Our sample consists of twenty Malay females' teeth where the FTIR has been applied. The data show a decrease in the amounts of main substances (like Hydroxyapatite crystals ([Ca5(PO4)3(OH)4], CaF2) than those in healthy teeth. The measured spectra represent the enamel with the characteristic peaks due to the phosphate group in carbonated, hydroxyapatite at 1000 cm-1 and two small peaks near 1500 cm-1 due to the carbonate group. The data explains the effect of the several factors on the intact side tissue loss.

  16. EDITORIAL: Recent developments in biomedical optics

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Hebden, Jeremy C.; Tuchin, Valery V.

    2004-04-01

    The rapid growth in laser and photonic technology has resulted in new tools being proposed and developed for use in the medical and biological sciences. Specifically, a discipline known as biomedical optics has emerged which is providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. New laser sources, detectors and measurement techniques are yielding powerful new methods for the study of diseases on all scales, from single molecules, to specific tissues and whole organs. For example, novel laser microscopes permit spectroscopic and force measurements to be performed on single protein molecules; new optical devices provide information on molecular dynamics and structure to perform `optical biopsy' non-invasively and almost instantaneously; and optical coherence tomography and diffuse optical tomography allow visualization of specific tissues and organs. Using genetic promoters to derive luciferase expression, bioluminescence methods can generate molecular light switches, which serve as functional indicator lights reporting cellular conditions and responses in living animals. This technique could allow rapid assessment of and response to the effects of anti-tumour drugs, antibiotics, or antiviral drugs. This issue of Physics in Medicine and Biology highlights recent research in biomedical optics, and is based on invited contributions to the International Conference on Advanced Laser Technology (Focused on Biomedical Optics) held at Cranfield University at Silsoe on 19--23 September 2003. This meeting included sessions devoted to: diffuse optical imaging and spectroscopy; optical coherence tomography and coherent domain techniques; optical sensing and applications in life science; microscopic, spectroscopic and opto-acoustic imaging; therapeutic and diagnostic applications; and laser interaction with organic and inorganic materials. Twenty-one papers are included in this special issue. The first paper gives an overview on the current status of scanning laser ophthalmoscopy and its role in bioscience and medicine, while the second paper describes the current problems in tissue engineering and the potential role for optical coherence tomography. The following seven papers present and discuss latest developments in infrared spectroscopy and diffuse optical tomography for medical diagnostics. Eight further papers report recent advances in optical coherence tomography, covering new and evolving methods and instrumentation, theoretical and numerical modelling, and its clinical applications. The remaining papers cover miscellaneous topics in biomedical optics, including new developments in opto-acoustic imaging techniques, laser speckle imaging of blood flow in microcirculations, and potential of hollow-core photonic-crystal fibres for laser dentistry. We thank all the authors for their valuable contributions and their prompt responses to reviewers' comments. We are also very grateful to the reviewers for their hard work and their considerable efforts to meet tight deadlines.

  17. Noninvasive imaging analysis of biological tissue associated with laser thermal injury.

    PubMed

    Chang, Cheng-Jen; Yu, De-Yi; Hsiao, Yen-Chang; Ho, Kuang-Hua

    2017-04-01

    The purpose of our study is to use a noninvasive tomographic imaging technique with high spatial resolution to characterize and monitor biological tissue responses associated with laser thermal injury. Optical doppler tomography (ODT) combines laser doppler flowmetry (LDF) with optical coherence tomography (OCT) to obtain high resolution tomographic velocity and structural images of static and moving constituents in highly scattering biological tissues. A SurgiLase XJ150 carbon dioxide (CO 2 ) laser using a continuous mode of 3 watts (W) was used to create first, second or third degree burns on anesthetized Sprague-Dawley rats. Additional parameters for laser thermal injury were assessed as well. The rationale for using ODT in the evaluation of laser thermal injury offers a means of constructing a high resolution tomographic image of the structure and perfusion of laser damaged skin. In the velocity images, the blood flow is coded at 1300 μm/s and 0 velocity, 1000 μm/s and 0 velocity, 700 μm/s and 0 velocity adjacent to the first, second, and third degree injuries, respectively. ODT produces exceptional spatial resolution while having a non-invasive way of measurement, therefore, ODT is an accurate measuring method for high-resolution fluid flow velocity and structural images for biological tissue with laser thermal injury. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  18. Effects of diode laser welding with dye-enhanced glue on tensile strength of sutures commonly used in urology.

    PubMed

    Kirsch, A J; Chang, D T; Kayton, M L; Libutti, S K; Connor, J P; Hensle, T W

    1996-01-01

    Tissue welding using laser-activated protein solders may soon become an alternative to sutured tissue approximation. In most cases, approximating sutures are used both to align tissue edges and provide added tensile strength. Collateral thermal injury, however, may cause disruption of tissue alignment and weaken the tensile strength of sutures. The objective of this study was to evaluate the effect of laser welding on the tensile strength of suture materials used in urologic surgery. Eleven types of sutures were exposed to diode laser energy (power density = 15.9 W/cm2) for 10, 30, and 60 seconds. Each suture was compared with and without the addition of dye-enhanced albumin-based solder. After exposure, each suture material was strained (2"/min) until ultimate breakage on a tensometer and compared to untreated sutures using ANOVA. The strength of undyed sutures were not significantly affected; however, violet and green-dyed sutures were in general weakened by laser exposure in the presence of dye-enhanced glue. Laser activation of the smallest caliber, dyed sutures (7-0) in the presence of glue caused the most significant loss of tensile strength of all sutures tested. These results indicate that the thermal effects of laser welding using our technique decrease the tensile strength of dyed sutures. A thermally resistant suture material (undyed or clear) may prevent disruption of wounds closed by laser welding techniques.

  19. Role of temperature dependence of optical properties in laser irradiation of biological tissue

    NASA Astrophysics Data System (ADS)

    Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.

    1992-08-01

    Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.

  20. Expression of DMP-1 in the human pulp tissue using low level laser therapy

    NASA Astrophysics Data System (ADS)

    Lourenço Neto, Natalino; Teixeira Marques, Nádia Carolina; Fernandes, Ana Paula; Oliveira Rodini, Camila; Cruvinel Silva, Thiago; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2015-09-01

    This study aimed to evaluate the effects of low-level laser therapy (LLLT) on DMP-1 expression in pulp tissue repair of human primary teeth. Twenty mandibular primary molars were randomly assigned into the following groups: Group I—Buckley’s Formocresol (FC); Group II—Calcium Hydroxide (CH); Group III—LLLT + CH and Group IV—LLLT + Zinc oxide/Eugenol. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Descriptive analysis was performed on the dentin pulp complex. Histopathological assessment showed internal resorption in group FC. Groups CH and LLLT + CH provided better pulpal repair due to the absence of inflammation and the formation of hard tissue barrier. These two groups presented odontoblastic layer expressing DMP-1. According to this study, low level laser therapy preceding the use of calcium hydroxide exhibited satisfactory bio-inductive activity on pulp tissue repair of human primary teeth. However, other histological and cellular studies are needed to confirm the laser tissue action and efficacy.

Top