Science.gov

Sample records for laser triggered single

  1. Infrared laser triggered release of bioactive compounds from single hard shell microcapsules.

    PubMed

    Vöpel, Tobias; Scholz, Rebecca; Davico, Luca; Gross, Magdalena; Büning, Steffen; Kareth, Sabine; Weidner, Eckhard; Ebbinghaus, Simon

    2015-04-25

    Micro composites are commonly characterized in bulk. Here we study the temperature triggered release of a bioactive compound from single isolated microcapsules. We monitor the release process in real-time using a novel thermal microscopy method combining laser-induced heating and fluorescence imaging.

  2. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  3. XI UV Laser Trigger System

    SciTech Connect

    Brickeen, B.K.; Morelli, G.L.; Paiva, R.A.; Powell, C.A.; Sundvold, P.D.

    1999-01-26

    The X1 accelerator project at Sandia National Laboratory/New Mexico utilizes SF6 insulated, multi-stage, UV laser triggered gas switches. A 265 nm UV laser system was designed and built to generate eight simultaneous output pulses of 10 mJ each with a 13 nsec pulse width. A 1061 nm solid-state Nd:Cr:GSGG laser was frequency quadrupled using a two-stage doubling process. The 1061 nm fundamental laser energy was frequency doubled with a KTP crystal to 530 nm, achieving 65% conversion efficiency. The 530 nm output was frequency doubled with KD*P crystal to 265 nm, achieving conversion efficiency of 31%. The 265 nm beam pulse was split into eight parallel channels with a system of partially reflecting mirrors. Low timing jitter and stable energy output were achieved. The entire optical system was packaged into a rugged, o-ring sealed, aluminum structure 10''x19''x2.75''. The size of the electronics was 12''x8''x8''. Subsequent accelerator system requirements dictated a redesign of the triggering system for an output beam with less angular divergence. An unstable, crossed porro prism resonator was designed and incorporated into the system. The beam divergence of the redesigned system was successfully decreased to 0.97 mrad in the UV. The resulting frequency doubling efficiencies were 55% to 530 nm and 25% to 265 nm. The optical output remained at 10 mJ in each channel with an 11 nsec pulse width.

  4. Photoconductive semiconductor switches: Laser Q-switch trigger and switch-trigger laser integration

    SciTech Connect

    Loubriel, G.M.; Mar, A.; Hamil, R.A.; Zutavern, F.J.; Helgeson, W.D.

    1997-12-01

    This report provides a summary of the Pulser In a Chip 9000-Discretionary LDRD. The program began in January of 1997 and concluded in September of 1997. The over-arching goal of this LDRD is to study whether laser diode triggered photoconductive semiconductor switches (PCSS) can be used to activate electro-optic devices such as Q-switches and Pockels cells and to study possible laser diode/switch integration. The PCSS switches we used were high gain GaAs switches because they can be triggered with small amounts of laser light. The specific goals of the LDRD were to demonstrate: (1) that small laser diode arrays that are potential candidates for laser-switch integration will indeed trigger the PCSS switch, and (2) that high gain GaAs switches can be used to trigger optical Q-switches in lasers such as the lasers to be used in the X-1 Advanced Radiation Source and the laser used for direct optical initiation (DOI) of explosives. The technology developed with this LDRD is now the prime candidate for triggering the Q switch in the multiple lasers in the laser trigger system of the X-1 Advanced Radiation Source and may be utilized in other accelerators. As part of the LDRD we developed a commercial supplier. To study laser/switch integration we tested triggering the high gain GaAs switches with: edge emitting laser diodes, vertical cavity surface emitting lasers (VCSELs), and transverse junction stripe (TJS) lasers. The first two types of lasers (edge emitting and VCSELs) did activate the PCSS but are harder to integrate with the PCSS for a compact package. The US lasers, while easier to integrate with the switch, did not trigger the PCSS at the US laser power levels we used. The PCSS was used to activate the Q-switch of the compact laser to be used in the X-1 Advanced Radiation Source.

  5. Laser Trigger For High Speed Camera

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Lin, Chin-Wu; Cheng, Tung

    1987-09-01

    High speed camera coorperated with laser trigger to catch high speed unpredictable events has many applications: such as scoring system for the end game of missile interception, war head explosive study etc. When the event happening in a very short duration, the repetition rate of the laser ranging must be as high as 5K herze and the pulse duration should be less than 10 nsec. In some environment, like inside the aircraft, the abailable space for high speed camera to set up is limited, large film capacity camera could not be used. In order to use the small capacity film, the exact trigger time for the camera are especially important. The target velocity, camera acceleration characteristics, speed regulation, camera size, weight and the ruggedness are all be considered before the laser trigger be designed. Electric temporal gate is used to measure the time of flight ranging datum. The triangular distance measurement principle are also used to get the ranging when the base line i.e. the distance between the laser transmitter and receiver are large enough.

  6. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  7. Investigation of UV Laser Triggered, Nanosecond, Surface Flashover Switches

    SciTech Connect

    Nunnally, W C; Neurath, R; Holmes, C; Sampayan, S; Caporaso, G

    2003-06-03

    Triggered, multi-channel, surface discharges or surface flashover switching have been investigated as a low inductance, low pulse rate switch for conducting large currents. This paper discusses the investigation of UV (355 nm) laser triggered, single channel, low inductance, ns closure and sub-ns jitter switches for applications in switching high dielectric constant, compact pulse forming lines into accelerator loads. The experimental arrangement for evaluating the switch performance and for measuring the high field dielectric constant of the pulse forming lines is presented. Experimental results of delay and jitter measurements versus optical energy on the flashover surface and dc electric field charge.

  8. Single Continuous Near-Infrared Laser-Triggered Photodynamic and Photothermal Ablation of Antibiotic-Resistant Bacteria Using Effective Targeted Copper Sulfide Nanoclusters.

    PubMed

    Dai, Xiaomei; Zhao, Yu; Yu, Yunjian; Chen, Xuelei; Wei, Xiaosong; Zhang, Xinge; Li, Chaoxing

    2017-09-01

    The emergence of antibiotic-resistant bacterial strains has made conventional antibiotic therapies less efficient. The development of a novel nanoantibiotic approach for efficiently ablating such bacterial infections is becoming crucial. Herein, a collection of poly(5-(2-ethyl acrylate)-4-methylthiazole-g-butyl)/copper sulfide nanoclusters (PATA-C4@CuS) was synthesized for efficient capture and effective ablation of levofloxacin-resistant Gram-negative and Gram-positive bacteria upon tissue-penetrable near-infrared (NIR) laser irradiation. In this work, we took advantage of the excellent photothermal and photodynamic properties of copper sulfide nanoparticles (CuSNPs) upon NIR laser irradiation and thiazole derivative as a membrane-targeting cationic ligand toward bacteria. The conjugated nanoclusters could anchor the bacteria to trigger the bacterial aggregation quickly and efficiently kill them. These conjugated nanoclusters could significantly inhibit levofloxacin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens at 5.5 μg/mL under NIR laser irradiation (980 nm, 1.5 W cm(-2), 5 min), which suggested that the heat and reactive oxygen species (ROS) generated from the irradiated CuSNPs attached to bacteria were effective in eliminating and preventing the regrowth of the bacteria. Importantly, the conjugated nanoclusters could promote healing in bacteria-infected rat wounds without nonspecific damage to normal tissue. These findings highlight the promise of the highly versatile multifunctional nanoantibiotics in bacterial infection.

  9. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    SciTech Connect

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T. Reitzenstein, S.; Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  10. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Gaafar, M.; Vaupel, M.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Stolz, W.; Rahimi-Iman, A.; Heindel, T.; Koch, M.; Reitzenstein, S.

    2015-07-01

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g(2)(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  11. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    SciTech Connect

    Arantchouk, L. Larour, J.; Point, G.; Brelet, Y.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-10

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  12. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  13. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  14. Model experiments of laser-triggered lightning

    SciTech Connect

    Shindo, Takatoshi; Aihara, Yoshinori; Miki, Megumu; Suzuki, Toshio )

    1993-01-01

    Experiments to guide electric discharges with a chain of apparently discrete air-breakdown plasmas (plasma channel) produced by a laser were carried out. The electric discharge was guided up to 2m with a high power CO[sub 2] laser focused by a 10-m focal length mirror. Voltage was applied at selected delay times [tau] following laser radiation. The relations between 50% flashover voltage of a gap filled with laser-produced plasmas and delay times [tau], between the guided length and the peak of the applied voltage, were obtained experimentally. The effects of the polarity of an applied voltage and the position of the plasma channel on flashover voltage are described. Development characteristics of the guided discharge were also investigated.

  15. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  16. Myofascial trigger point therapy: laser therapy and dry needling.

    PubMed

    Uemoto, Luciana; Nascimento de Azevedo, Rosany; Almeida Alfaya, Thays; Nunes Jardim Reis, Renata; Depes de Gouvêa, Cresus Vinicius; Cavalcanti Garcia, Marco Antonio

    2013-09-01

    The aim of the present review is to discuss two forms of treatment for myofascial pain: laser therapy and dry needling. Although studies have reported the deactivation of myofascial trigger points with these two methods, clinical trials demonstrating their efficacy are scarce. The literature reports greater efficacy with the use of laser over dry needling. It has been suggested that improvements in microcirculation through the administration of laser therapy may favor the supply of oxygen to the cells under conditions of hypoxia and help remove the waste products of cell metabolism, thereby breaking the vicious cycle of pain, muscle spasm and further pain. While laser therapy is the method of choice for patients with a fear of needles and healthcare professionals inexperienced with the dry needling technique, further controlled studies are still needed to prove the greater efficacy of this method.

  17. High voltage switch triggered by a laser-photocathode subsystem

    SciTech Connect

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  18. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  19. Plasmonic nanoantenna based triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Highly integrated single-photon sources are key components in future quantum-optical circuits. Whereas the probabilistic generation of single photons can routinely be done by now, their triggered generation is a much greater challenge. Here, we describe the triggered generation of single photons in a hybrid plasmonic device. It consists of a lambda-type quantum emitter coupled to a multimode optical nanoantenna. For moderate interaction strengths between the subsystems, the description of the quantum optical evolution can be simplified by an adiabatic elimination of the electromagnetic fields of the nanoantenna modes. This leads to an insightful analysis of the emitter's dynamics, entails the opportunity to understand the physics of the device, and to identify parameter regimes for a desired operation. Even though the approach presented in this work is general, we consider a simple exemplary design of a plasmonic nanoantenna, made of two silver nanorods, suitable for triggered generation of single photons. The investigated device realizes single photons, triggered, potentially at high rates, and using low device volumes.

  20. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  1. Laser Triggered Electron Injection into a Channel Guided Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Filip, C.

    2005-10-01

    Laser-plasma accelerators have demonstrated the generation of narrow energy spread (˜ few %) electron beams with considerable amount of charge (>100 pC). Stability of laser-plasma accelerators, as in the conventional accelerators, requires highly synchronized injection of electrons into the structured accelerating field. The Colliding Pulse Method[1] with pre-formed plasma channel guiding [2] can result in jitter-free injection in a dark-current-free accelerating structure. We report on experimental progress of laser triggered injection of electrons into a laser wakefield, where an intense laser pulse is guided by a pre-formed plasma channel. The experiments use the multi-beam, multi-terawatt Ti:Al2O3 laser at LOASIS facility of LBNL. The ignitor-heater method is used to first produce a pre-formed plasma channel in a hydrogen gas jet. Two counter propagating beams (wakefield driver:100-500mJ-50fs, injector:50-300mJ-50fs) then are focused onto the entrance of the channel. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiment will be presented. [1]G.Fubiani, et al, Phys. Rev. E 70, 016402 (2004). [2]C.G.R. Geddes et al, Nature 431, 538 (2004). This work is supported by DoE under contract DE-AC02-05CH11231.

  2. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  3. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  4. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡

    PubMed Central

    Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.

    2014-01-01

    We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780

  5. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  6. Density and lifetime evaluation of weakly ionized plasma for laser-triggered lightning by means of laser absorption

    NASA Astrophysics Data System (ADS)

    Yamaura, Michiteru

    2006-10-01

    The potential ability of lasers to control lightning can be improved by using a train of pulses with sub-millisecond separations [1-2]. Laser-triggered experiments in a small-scale (10 mm gap) atmospheric discharge facility show that the triggering is dramatically enhanced when a five-pulse train of sub-Joule energy is used instead of a single pulse. This effect increases rapidly as the pulse interval is reduced. In order to evaluate the trigger effect quantitatively, the plasma density produced by a pulsed KrF excimer laser with high repetition rate of kHz order was measured by means of laser absorption [3-4]. It appears that at a sub-millisecond pulse interval, sufficient positive and negative ions survive in subsequent pulses, thus enabling easy deionization. Hence, significant plasma build-up occurs from one pulse to the next. However, this persistence of ions would appear to imply that the rate of recombination (effectively a charge transfer between ions) is considerably lower than previously believed. References [1] M.Yamaura, et al: J.Appl.Phys. 95, 6007 (2004). [2] M.Yamaura,et al : Appl.Phys Lett. 86 131502 (2005). [3] M.Yamaura: J.Appl.Phys.98 043101 (2005) [4] M.Yamaura,et al : Appl.Phys Lett. 88 to be appeared in June (2006)

  7. Triggering GaAs lock-on switches with laser diode arrays

    SciTech Connect

    Loubriel, G.M.; Buttram, M.T.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. ); Rosen, A.; Stabile, P.J. )

    1990-01-01

    Laser diode arrays have been used to trigger GaAs Photoconducting Semiconductor Switches (PCSS) charged to voltages of up to 60 kV and conducting currents of 580 A. The driving forces behind the use of laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays can trigger GaAs at high fields as the result of a new switching mode (lock-on) with very high carrier number gain. We have achieved switching of up to 10 MW in a 60 {Omega} system, with a pulse rise time of 500 ps. At 1.2 MW we have achieved repetition rates of 1 kHz with switch rise time of 500 ps for 10{sup 5} shots. The laser diode array used for these experiments delivers a 166 W pulse. In a single shot mode we have switched 4 kA with a flash lamp pumped laser and 600 A with the 166 W array. 7 refs., 5 figs.

  8. Density and lifetime evaluation of weakly ionized plasma for laser-triggered lightning by means of laser absorption

    NASA Astrophysics Data System (ADS)

    Yamaura, Michiteru

    2007-10-01

    The potential ability of lasers to control lightning can be improved by using a train of pulses with sub-millisecond separations [1-2]. Laser-triggered experiments in a small-scale (10 mm gap) atmospheric discharge facility show that the triggering is dramatically enhanced when a five-pulse train of sub-Joule energy is used instead of a single pulse. This effect increases rapidly as the pulse interval is reduced. It appears that at a sub-millisecond pulse interval, sufficient positive and negative ions survive in subsequent pulses, thus enabling easy deionization. Hence, significant plasma build-up occurs from one pulse to the next. However, this persistence of ions would appear to imply that the rate of recombination (effectively a charge transfer between ions) is considerably lower than previously believed. [1] M. Yamaura: Appl. Phys Lett. 88 251501 (2006). [2] M. Yamaura: J. Appl. Phys. 98 043101 (2005).

  9. Improvement of the atmospheric discharge laser-triggered ability using multiple pulses from a kilohertz KrF laser

    NASA Astrophysics Data System (ADS)

    Yamaura, Michiteru

    2005-08-01

    The potential ability of lasers to control lightning can be improved by using a train of pulses with submillisecond separations. Laser-triggered experiments in a small-scale (10-mm gap) atmospheric discharge facility show that the triggering is dramatically enhanced when a five-pulse train of sub-Joule energy is used instead of a single pulse. This effect increases rapidly as the pulse interval is reduced. It appears that at a submillisecond pulse interval, sufficient positive and negative ions survive in subsequent pulses, thus enabling easy deionization. Hence, significant plasma buildup occurs from one pulse to the next. However, this persistence of ions would appear to imply that the rate of recombination (effectively a charge transfer between ions) is considerably lower than previously believed.

  10. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  11. Triggering GaAs lock-on switches with laser diode arrays

    NASA Astrophysics Data System (ADS)

    Loubriel, G. M.; Helgeson, W. D.; McLaughlin, D. L.; Omalley, M. W.; Zutavern, F. J.; Rosen, A.; Stabile, P. J.

    Many of the applications that require the unique capabilities of Photoconductive Semiconductor Switches (PCSS) demand a compact package. We have been able to demonstrate that GaAs switches operated in the high gain mode called lock-on meet the required electrical switching parameters of several such applications using small switch sizes. The only light source that has enough power to trigger a PCSS and is compatible with a small package is a laser diode. This paper will describe the progress that leads to the triggering of high power PCSS switches with laser diodes. Our goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. These goals are feasible since the switches can be used in parallel or in series. Low light level triggering became possible after the discovery of a high electric field, high gain switching mode in GaAs (and later in InP). At electric fields below 3 kV/cm GaAs switches are activated by creation of, at most, only one conduction electron-valence hole pair per photon absorbed in the sample. This linear mode demands high laser power and, after the light is extinguished, the carriers live for only a few nanoseconds. At higher electric fields GaAs behaves as a light activated Zener diode. The laser light generates carriers as in the linear mode and the field induces gain such that the amount of light required to trigger the switch is reduced by a factor of up to 500. The gain continues until the field across the sample drops to a material dependent lock-on field. At this point the switch will carry as much current as, and for as long as, the circuit can maintain the lock-on field. The gain in the switch allows for the use of laser diodes.

  12. Triggering GaAs lock-on switches with laser diode arrays

    SciTech Connect

    Loubriel, G.M.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. ); Rosen, A.; Stabile, P.J. )

    1990-01-01

    Many of the applications that require the unique capabilities of Photoconductive Semiconductor Switches (PCSS) demand a compact package. We have been able to demonstrate that GaAs switches operated in the high gain mode called lock-on'' meet the required electrical switching parameters of several such applications using small switch sizes. The only light source that has enough power to trigger a PCSS and is compatible with a small package is a laser diode. This paper will describe the progress that leads to the triggering of high power PCSS switches with laser diodes. Our goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. These goals are feasible since the switches can be used in parallel or in series. Low light level triggering became possible after the discovery of a high electric field, high gain switching mode in GaAs (and later in InP). At electric fields below 3 kV/cm GaAs switches are activated by creation of, at most, only one conduction electron- valence hole pair per photon absorbed in the sample. This linear mode demands high laser power and, after the light is extinguished, the carriers live for only a few nanoseconds. At higher electric fields GaAs behaves as a light activated Zener diode. The laser light generates carriers as in the linear mode and the field induces gain such that the amount of light required to trigger the switch is reduced by a factor of up to 500. The gain continues until the field across the sample drops to a material dependent lock-on field. At this point the switch will carry as much current as, and for as long as, the circuit can maintain the lock-on field. The gain in the switch allows for the use of laser diodes. 8 refs., 11 figs.

  13. A Laser-Triggered Mini-Marx for Low-Jitter, High-Voltage Applications

    DTIC Science & Technology

    1999-06-01

    switch in a compact, eight-stage Marx generator. The spark gap is pressurized with a mixture of sulfur hexafluoride and air. The UV (266 nm) laser...remaining, self-breaking spark-gap switches in the Marx , pre-ionizing them. The Marx output is approximately 200 kV into 50 ohms, with a risetime of 2...ns. A single Marx is capable of triggering six 100-kV spark gaps via six 65-ohm cables in parallel, with an overall jitter of (+ or -) 1 ns. A single

  14. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  15. Laser printing single gold nanoparticles.

    PubMed

    Urban, Alexander S; Lutich, Andrey A; Stefani, Fenando D; Feldmann, Jochen

    2010-12-08

    Current colloidal synthesis is able to produce an extensive spectrum of nanoparticles with unique optoelectronic, magnetic, and catalytic properties. In order to exploit them in nanoscale devices, flexible methods are needed for the controlled integration of nanoparticles on surfaces with few-nanometer precision. Current technologies usually involve a combination of molecular self-assembly with surface patterning by diverse lithographic methods like UV, dip-pen, or microcontact printing.(1,2) Here we demonstrate the direct laser printing of individual colloidal nanoparticles by using optical forces for positioning and the van der Waals attraction for binding them to the substrate. As a proof-of-concept, we print single spherical gold nanoparticles with a positioning precision of 50 nm. By analyzing the printing mechanism, we identify the key physical parameters controlling the method, which has the potential for the production of nanoscale devices and circuits with distinct nanoparticles.

  16. Infrared laser pulse triggers increased singlet oxygen production in tumour cells

    PubMed Central

    Sokolovski, S. G.; Zolotovskaya, S. A.; Goltsov, A.; Pourreyron, C.; South, A. P.; Rafailov, E. U.

    2013-01-01

    Photodynamic therapy (PDT) is a technique developed to treat the ever-increasing global incidence of cancer. This technique utilises singlet oxygen (1O2) generation via a laser excited photosensitiser (PS) to kill cancer cells. However, prolonged sensitivity to intensive light (6–8 weeks for lung cancer), relatively low tissue penetration by activating light (630 nm up to 4 mm), and the cost of PS administration can limit progressive PDT applications. The development of quantum-dot laser diodes emitting in the highest absorption region (1268 nm) of triplet oxygen (3O2) presents the possibility of inducing apoptosis in tumour cells through direct 3O2 → 1O2 transition. Here we demonstrate that a single laser pulse triggers dose-dependent 1O2 generation in both normal keratinocytes and tumour cells and show that tumour cells yield the highest 1O2 far beyond the initial laser pulse exposure. Our modelling and experimental results support the development of direct infrared (IR) laser-induced tumour treatment as a promising approach in tumour PDT. PMID:24336590

  17. Single-frequency microchip Nd lasers.

    PubMed

    Zayhowski, J J; Mooradian, A

    1989-01-01

    Optically pumped, single-frequency, Nd-doped, solid-state lasers have been constructed using flat-flat cavities, which were diced from large dielectrically coated wafers of various crystals. For example, a Nd:YAG laser with a cavity length of 730 microm has operated at room temperature in a single longitudinal mode from a threshold of less than 1 mW to greater than 40 times the threshold. Theslope efficiency was greater than 30%. Heterodyne measurements showed an instrument-limited linewidth of 5 kHz. The microchip lasers demonstrate ways to reduce greatly the cost and complexity offabricating small lasers and electro-optic devices.

  18. Dynamics of laser self-triggered plasma shutter for shortening laser pulses

    SciTech Connect

    Xia Changquan; Liu Jiansheng; Deng Aihua; Wang Wentao; Wang Cheng; Li Ruxin; Xu Zhizhan

    2010-12-15

    The dynamics of a solid foil irradiated by a circularly polarized laser pulse in the normal incidence is investigated by performing particle-in-cell simulations. After sufficiently compressed by the light pressure, the foil becomes transparent, with a part of the incident pulse transmitted through, and then it turns opaque again, blocking the tail of the pulse. It is found that the transparency dynamically depends on the motion of the compressed foil and relies on the incident pulse. Thus, the foil can be used to shorten the incident pulse as a self-triggered shutter.

  19. Highly polarized single mode nanobelt laser

    NASA Astrophysics Data System (ADS)

    Xu, P.; Liu, S.; Tang, M.; Xu, X.; Lin, X.; Wu, Z.; ZhuGe, M.; Ren, Z.; Wang, Z.; Liu, X.; Yang, Z.; Raghavan, N.; Yang, Q.

    2017-05-01

    We demonstrate a highly polarized single mode nanobelt laser with a low threshold. Different from the traditional nanobelt lasers, the laser cavity is formed along the lateral direction of the nanobelt and the wavelength is centered at 712.6 nm with a linewidth of about 0.18 nm. The single mode lasing emission is highly polarized with a polarization ratio of about 0.91. Moreover, the threshold is as low as 18 μJ/cm2 which is about an order of magnitude lower than that of the traditional CdSe nanobelt lasers. These low threshold high polarization single mode nanobelt lasers offer great potential as a low cost and energy efficient choice of technology for applications in visible light communications, displays, optical sensing, and environmental monitoring.

  20. Single heterostructure lasers: a UK perspective

    NASA Astrophysics Data System (ADS)

    Selway, Peter

    2012-09-01

    The gallium-aluminium-arsenide single heterostructure laser was the first commercially successful semiconductor laser produced in the UK. This paper presents a personal perspective on the events leading up to volume production and highlights the fascinating physics involved in this device and the impact of this on the task of engineering a robust component which was eventually manufactured for over 20 years.

  1. Multifrequency, single pass free electron laser

    DOEpatents

    Szoke, Abraham; Prosnitz, Donald

    1985-01-01

    A method for simultaneous amplification of laser beams with a sequence of frequencies in a single pass, using a relativistic beam of electrons grouped in a sequence of energies corresponding to the sequence of laser beam frequencies. The method allows electrons to pass from one potential well or "bucket" to another adjacent bucket, thus increasing efficiency of trapping and energy conversion.

  2. Laser triggering of water switches in terrawatt-class pulse power accelerators.

    SciTech Connect

    Woodworth, Joseph Ray; Johnson, David Lee (Titan Pulse Sciences, San Leandro, CA); Wilkins, Frank (Bechtel Nevada, Las Vegas, NV); Van De Valde, David (EG&G Technical Services, Albuquerque, NM); Sarkisov, Gennady Sergeevich; Zameroski, Nathan D.; Starbird, Robert L.

    2005-12-01

    Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

  3. Kinetic simulation studies of laser-triggering in the Z gas switch

    NASA Astrophysics Data System (ADS)

    Welch, D. R.; Rose, D. V.; Thoma, C.; Clark, R. E.; Miller, C.; Madrid, E. A.; Zimmerman, W. R.; Rambo, P. K.; Schwarz, J.; Savage, M.; Atherton, B. W.

    2013-08-01

    Advanced z-pinch accelerators require precise timing of multiple mega-ampere drivers to deliver terawatt power. The triggering of these drivers is now largely initiated by laser ionization of gas switches. In this paper, we discuss detailed fully kinetic simulation of the Z laser-triggered gas switch involving detailed finite-difference time-domain particle-in-cell Monte Carlo modeling of the trigger section of the switch. Other components of the accelerator from the Marx bank through the pulse-forming line are described as circuit elements. The simulations presented here build on a recently developed model of electro-negative gas breakdown and streamer propagation that included photons produced from de-excited neutrals. New effects include multi-photon ionization of the gas in a prescribed laser field. The simulations show the sensitivity of triggering to laser parameters including focal plane within the anode-cathode gap of the trigger section of the switch, intensity at focus, and laser pulse length. Detailed electromagnetic simulations of the trigger section with circuit modeling of the upstream and downstream components are largely in agreement with Z data and demonstrate a new capability.

  4. Kinetic simulation studies of laser-triggering in the Z gas switch

    SciTech Connect

    Welch, D. R.; Rose, D. V.; Thoma, C.; Clark, R. E.; Miller, C.; Madrid, E. A.; Zimmerman, W. R.; Rambo, P. K.; Schwarz, J.; Savage, M.; Atherton, B. W.

    2013-08-15

    Advanced z-pinch accelerators require precise timing of multiple mega-ampere drivers to deliver terawatt power. The triggering of these drivers is now largely initiated by laser ionization of gas switches. In this paper, we discuss detailed fully kinetic simulation of the Z laser-triggered gas switch involving detailed finite-difference time-domain particle-in-cell Monte Carlo modeling of the trigger section of the switch. Other components of the accelerator from the Marx bank through the pulse-forming line are described as circuit elements. The simulations presented here build on a recently developed model of electro-negative gas breakdown and streamer propagation that included photons produced from de-excited neutrals. New effects include multi-photon ionization of the gas in a prescribed laser field. The simulations show the sensitivity of triggering to laser parameters including focal plane within the anode-cathode gap of the trigger section of the switch, intensity at focus, and laser pulse length. Detailed electromagnetic simulations of the trigger section with circuit modeling of the upstream and downstream components are largely in agreement with Z data and demonstrate a new capability.

  5. Optically triggered Cr:YAG Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Hays, Alan; Lei, Jonathan; Schilling, Bradley; Goldberg, Lew

    2011-02-01

    The method of optical triggering using a brass board architecture for a Q-switched Nd:YAG laser by direct bleaching of a Cr:YAG saturable absorber was determined to be effective in reducing the pulse-to-pulse timing jitter. A miniaturized triggering setup was employed to enable the brass board operation of the optically triggered laser. A 3mm wide minilaser diode bar (1024nm) with collimated emission was mounted on a compact heat sink and used to bleach the Cr:YAG saturable absorber from a direction orthogonal to the lasing axis. A compact 300A pulse driver, with <0.5 μs rise time and 3-5 μs duration, was developed for pulsing the 3mm diode bar. These components were combined to demonstrate a compact brassboard implementation of the optically triggered passively Q-switched laser.

  6. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  7. Low-jitter, high-voltage, infrared, laser-triggered, vacuum switch

    SciTech Connect

    Earley, L.M.; Barnes, G.A.

    1991-01-01

    A laser-triggered, high-voltage vacuum switch using a triggering pellet embedded in the cathode has been developed. The switch was constructed with tungsten electrodes and used either KC1 or Poco graphite pellets. An aperture in the anode allowed the laser beam to strike the pellet on the cathode surface. Reliable triggering was achieved with only 200 {mu}J of laser energy at a wavelength of 1064 nm. The switch was operated with an A-K gap voltage ranging from 5- to 30-kV with switching currents up to 15 kA peak. The delay time of the switch vaired from 70 {plus minus} 3 ns at 25 kv to 500 {plus minus} 100 ns at 5 kV. 6 refs., 6 figs., 2 tabs.

  8. Ultrafast laser-triggered emission from hafnium carbide tips

    NASA Astrophysics Data System (ADS)

    Kealhofer, Catherine; Foreman, Seth M.; Gerlich, Stefan; Kasevich, Mark A.

    2012-07-01

    Electron emission from hafnium carbide (HfC) field emission tips induced by a sub-10-fs, 150-MHz repetition rate Ti:sapphire laser is studied. Two-photon emission is observed at low power with a moderate electric bias field applied to the tips. As the bias field and/or laser power is increased, the average current becomes dominated by thermally enhanced field emission due to laser heating: both the low thermal conductivity of HfC and the laser's high repetition rate can lead to a temperature rise of several hundred Kelvin at the tip apex. The contribution of current from a thermal transient at times shorter than the electron-phonon coupling time is considered in the context of the two-temperature model (TTM). Under the conditions of this experiment, the integrated current from the thermal transient is shown to be negligible in comparison with the two-photon emission. A finite element model of the laser heating and thermal conduction supports these conclusions and is also used to compare the nature of thermal effects in HfC, tungsten, and gold tips.

  9. Proton focusing driven by laser triggered Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Wang, W. Q.; Yin, Y.; Zou, D. B.; Yu, T. P.; Ge, Z. Y.; Xu, H.; Zhuo, H. B.; Shao, F. Q.

    2017-03-01

    A mechanism of the acceleration and focusing of quasi-monoenergetic proton beams from a thin arched carbon-hydrogen target irradiated by a relativistic-intensity laser pulse is investigated by multi-dimensional particle-in-cell (PIC) simulations. As an intense linearly polarized laser pulse impinges on the thin target, a considerable number of electrons are evacuated, leading to Coulomb explosion in the excess positive charges left behind. Accompanying with the acceleration, the protons are focused ballistically in the Coulomb field, which is mainly contributed by the carbon ions. It is demonstrated that a quasi-monoenergetic proton bunch with the energy-density as high as 1017 J/m3 is produced by using a laser pulse with the intensity of 1021 W/cm2. An analytical model is proposed to predict the proton energy and the focal position, which is fairly consistent with PIC simulations.

  10. Experimental study on artificially triggered lightning using high power lasers

    SciTech Connect

    Uchida, S.; Shimada, Y.; Yasuda, H.; Yamanaka, C.; Fujita, H.; Izawa, Y.; Yamanaka, T.; Wang, D.; Kawasaki, Z.; Matsu-ura, K.; Ishikubo, Y.; Adachi, M.

    1996-05-01

    A series of laboratory experiments has been conducted to investigate the initiating effects of laser plasma channel on electrical discharge. It was confirmed that the plasma channels reduce the required electrical field strength for electrical discharges to occur by a factor of 6. A field experimental site targeting natural lightning is being prepared. The thunderstorm monitoring system and the laser and optical systems have been developed and tested against various weather conditions. The results from the laboratory experiments and field experiments will be discussed. {copyright} {ital 1996 American Institute of Physics.}

  11. Narrow linewidth single frequency microfiber laser.

    PubMed

    Fan, Wei; Gan, Jiulin; Zhang, Zhishen; Wei, Xiaoming; Xu, Shanhui; Yang, Zhongmin

    2012-10-15

    A compact 2 kHz linewidth single frequency microfiber ring laser is demonstrated. Microfiber, with a diameter of 1.88 μm, which is drawn from an Er(3+)/Yb(3+) co-doped phosphate glass fiber, serves as the gain medium. By using this microfiber, a double-knot resonator with a total length of 1.75 mm is constructed. Based on this resonator, a narrow linewidth single frequency laser with output power higher than 0.95 μW is obtained at the wavelength of 1536.1 nm. The linewidth of this microfiber laser is as narrow as 2 kHz, and the side-mode-suppression ratio is higher than 38 dB.

  12. Measurement of laser power for photo-triggered drug delivery in vivo

    NASA Astrophysics Data System (ADS)

    Wang, R.; Zhang, X. L.; Liu, F.; Zhang, Z. L.; Chen, Y. J.; Zhao, E. M.; Liu, L.

    2016-07-01

    Thus far, despite many investigations have been carried out for photo-triggered drug delivery systems, most of them suffer from an intrinsic drawback of without real-time monitoring mechanism. Incident intensity of light is a feasible parameter to monitor the drug release profiles. However, it is difficult to measure the incident laser power irradiated onto the photo-triggered carriers in drug delivery systems during in vivo therapy. We design an online measurement method based on the fluorescence intensity ratio (FIR) technique through upconversion nanoparticles. FIR value varies with temperature of sample due to the thermal effect induced by the incident laser, which validates the laser power measurement. Effects of rare earth doping concentration, as well as experimental conditions including laser spots and wavelengths on the measurement behavior were also investigated.

  13. Measurement of laser power for photo-triggered drug delivery in vivo

    SciTech Connect

    Wang, R.; Zhang, X. L.; Liu, F.; Zhang, Z. L.; Chen, Y. J.; Zhao, E. M.; Liu, L.

    2016-07-14

    Thus far, despite many investigations have been carried out for photo-triggered drug delivery systems, most of them suffer from an intrinsic drawback of without real-time monitoring mechanism. Incident intensity of light is a feasible parameter to monitor the drug release profiles. However, it is difficult to measure the incident laser power irradiated onto the photo-triggered carriers in drug delivery systems during in vivo therapy. We design an online measurement method based on the fluorescence intensity ratio (FIR) technique through upconversion nanoparticles. FIR value varies with temperature of sample due to the thermal effect induced by the incident laser, which validates the laser power measurement. Effects of rare earth doping concentration, as well as experimental conditions including laser spots and wavelengths on the measurement behavior were also investigated.

  14. Single-mode biological distributed feedback laser.

    PubMed

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli; Kristensen, Anders

    2013-07-21

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two different grating periods are reported.

  15. Investigation of GaAs photoconductive switches triggered by 900nm semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Ma, Deming; Shi, Wei; Ma, Xiangrong; Wang, Xinmei; Pei, Tao

    2008-12-01

    Experiment of a lateral semi-insulating GaAs photoconductive semiconductor switch (SI-GaAs PCSS) with different electrode gaps triggered by 900nm semiconductor laser is reported. With the biased voltage of 0.2KV~3.0KV, the linear electrical pulse is outputted by SI-GaAs PCSS. When laser energy is very low, the semi-insulating GaAs PCSS with 1.5mm electrode gap is triggered by laser pulse, the output electrical pulse samples is instable. When the energy of the laser increases, the amplitude and the width of the electrical pulse also increase. It indicates that a stable electrical pulse is obtained while laser energy is high. With the biased voltage of 2.8kV, the SI-GaAs PCSS with 3mm electrode gap is triggered by laser pulse about 10nJ in 200ns at 900nm. The SI-GaAs PCSS switches a electrical pulse with a voltage up to 80V. The absorption mechanism by Franz-Keldysh effect under high-intensity electric field and EL2 deep level defects is discussed.

  16. Wideband protection filter: single filter for laser damage preventing at wide wavelength range

    NASA Astrophysics Data System (ADS)

    Donval, A.; Nemet, B.; Oron, M.; Oron, R.; Shvartzer, R.; Singer, Lea; Reshef, Clara; Eberle, B.; Bürsing, H.; Ebert, R.

    2007-10-01

    We present a passive, solid-state threshold-triggered Wideband Protection Filter (WPF) that blocks the transmission only if the power exceeds a certain threshold. We demonstrate the protection ability of the WPF against laser threats including protection behavior for single and series of pulses. The WPF can be readily used for protection of detectors, cameras, or eye safety.

  17. Serotonin syndrome triggered by a single dose of suboxone.

    PubMed

    Isenberg, Derek; Wong, Stella C; Curtis, John A

    2008-09-01

    Suboxone (buprenorphine/naloxone) is an oral medication used for the treatment of opiate dependence. Because of its mixed properties at the opiate receptors, buprenorphine has a ceiling on its euphoric effects. We report the first case of serotonin syndrome caused by buprenorphine and review other medications implicated in serotonin syndrome. A 54-year-old man on tricyclic antidepressants took an unprescribed dose of buprenorphine/naloxone. He presented to the emergency department with signs and symptoms of severe serotonin syndrome including clonus, agitation, and altered mental status. His agitation was not controlled with benzodiazepines and was electively intubated. At the recommendation of the toxicology service, cyproheptadine, a serotonin receptor antagonist, was administered with improvement in the patient's symptoms. Emergency physicians should be aware of the potential of buprenorphine/naloxone to trigger serotonin syndrome.

  18. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses

    SciTech Connect

    Higuchi, Takuya Hommelhoff, Peter; Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter

    2015-02-02

    We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 10{sup 11 }W/cm{sup 2} triggers photoemission of ∼16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ∼0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.

  19. Design and investigation of a multichannel laser-triggered vacuum switch.

    PubMed

    Fan, Wenfang; He, Zhenghao; Mao, Xiaopo

    2016-03-01

    A laser-triggered vacuum switch (LTVS) is an advanced closing switch with nanosecond delay and jitter. In order to enhance hold-off voltage and extend the service lifetime of an LTVS, we designed a multichannel laser-triggered vacuum switch (MLTVS) utilizing a cone-shaped target electrode placed on the cathode platform. The fabrication and testing of the MLTVS is described in this paper. Experimental results show that the working voltage of the MLTVS with a gap distance of 12 mm is from 30 V to 20 kV. The threshold energy for triggering the switch is 0.4 mJ corresponding to a peak power density of 27.9 MW/cm(2). The triggering lifetime of a spot can reach up to 18,000 shots. In addition, the relationship between triggering lifetime and target materials is analyzed using a field emission scanning electron microscope. A hypothesis of the vacuum gap's triggering mechanism is discussed based on the measured results.

  20. Design and investigation of a multichannel laser-triggered vacuum switch

    SciTech Connect

    Fan, Wenfang He, Zhenghao; Mao, Xiaopo

    2016-03-15

    A laser-triggered vacuum switch (LTVS) is an advanced closing switch with nanosecond delay and jitter. In order to enhance hold-off voltage and extend the service lifetime of an LTVS, we designed a multichannel laser-triggered vacuum switch (MLTVS) utilizing a cone-shaped target electrode placed on the cathode platform. The fabrication and testing of the MLTVS is described in this paper. Experimental results show that the working voltage of the MLTVS with a gap distance of 12 mm is from 30 V to 20 kV. The threshold energy for triggering the switch is 0.4 mJ corresponding to a peak power density of 27.9 MW/cm{sup 2}. The triggering lifetime of a spot can reach up to 18 000 shots. In addition, the relationship between triggering lifetime and target materials is analyzed using a field emission scanning electron microscope. A hypothesis of the vacuum gap’s triggering mechanism is discussed based on the measured results.

  1. Responsiveness of Myofascial Trigger Points to Single and Multiple Trigger Point Release Massages: A Randomized, Placebo Controlled Trial.

    PubMed

    Moraska, Albert F; Schmiege, Sarah J; Mann, John D; Butryn, Nathan; Krutsch, Jason P

    2017-09-01

    This study aimed to assess the effects of single and multiple massage treatments on pressure-pain threshold (PPT) at myofascial trigger points (MTrPs) in people with myofascial pain syndrome expressed as tension-type headache. Individuals (n = 62) with episodic or chronic tension-type headache were randomized to receive 12 twice-weekly 45-min massage or sham ultrasound sessions or wait-list control. Massage focused on trigger point release (ischemic compression) of MTrPs in the bilateral upper trapezius and suboccipital muscles. PPT was measured at MTrPs with a pressure algometer pre and post the first and final (12th) treatments. PPT increased across the study timeframe in all four muscle sites tested for massage, but not sham ultrasound or wait-list groups (P < 0.0001 for suboccipital; P < 0.004 for upper trapezius). Post hoc analysis within the massage group showed (1) an initial, immediate increase in PPT (all P values < 0.05), (2) a cumulative and sustained increase in PPT over baseline (all P values < 0.05), and (3) an additional immediate increase in PPT at the final (12th) massage treatment (all P values < 0.05, except upper trapezius left, P = 0.17). Single and multiple massage applications increase PPT at MTrPs. The pain threshold of MTrPs have a great capacity to increase; even after multiple massage treatments additional gain in PPT was observed. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Understand the contribution of myofascial trigger points to myofascial pain; (2) Describe an effective treatment for decreasing tenderness of a myofascial trigger point; and (3) Discuss the relative values of single vs. multiple massage sessions on increasing pressure-pain thresholds at myofascial trigger points. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for

  2. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  3. Lifetime of high-power GaAs photoconductive semiconductor switch triggered by laser of different power density

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Wei; Shen, Yi; Shi, Jinshui; Zhang, Linwen; Xia, Liansheng

    2015-02-01

    Conduction modes of GaAs photoconductive semiconductor switch (PCSS) and their conditions are expounded. Laser diode and high-power picosecond Nd:YAG lasers are used as triggers for nonlinear mode and quasi-linear mode respectively in high-power conduction experiment. GaAs PCSS`s failure mechanisms and factors influencing lifetime in both modes are analyzed. It is found that the power density of laser at trigger time determines in which mode GaAs PCSS operates. Low-power laser triggers a nonlinear mode conduction in which GaAs PCSS`s lifetime is only 103, while high-power laser triggers a quasi-linear mode conduction in which GaAs PCSS`s lifetime is up to 105. According to the findings, the compact high-power pulsed power system based on mass of GaAs PCSSs demands for miniature high-power laser generators.

  4. Single laser beam measurement of thermal diffusivity.

    PubMed

    Bourgoin, Jean-Philippe; Doiron, Serge; Deveaux, Michel; Haché, Alain

    2008-12-10

    Thermal diffusion properties of interfaces are measured using self-induced surface thermal lensing with a single laser beam. The time evolution of the reflected beam reveals information on heat diffusion away from the interface. Unambiguous correlation between measured signal and thermal diffusivity is shown, theoretically and experimentally, from which calibration curves are obtained. Being simpler and less sensitive to vibrations and misalignments, the technique offers definite advantages over standard two-beam (pump-probe) methods.

  5. Thermally triggered solid-state single-crystal-to-single-crystal structural transformation accompanies property changes.

    PubMed

    Li, Quan-Quan; Ren, Chun-Yan; Huang, Yang-Yang; Li, Jian-Li; Liu, Ping; Liu, Bin; Liu, Yang; Wang, Yao-Yu

    2015-03-16

    The 1D complex [(CuL0.5H2O)⋅H2O]n (1) (H4L = 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid) undergoes an irreversible thermally triggered single-crystal-to-single-crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n (2). This SCSC structural transformation was confirmed by single-crystal X-ray diffraction analysis, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD) patterns, variable-temperature powder X-ray diffraction (VT-PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2, though the initial 1D chain is still retained as in complex 1, accompanied with the Cu-bound H2O removed and new O(carboxyl)-Cu bond forming, the coordination geometries around the Cu(II) ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1-O-C-O-Cu4 bridge. The catalytic results demonstrate that, even though both solid-state materials present high catalytic activity for the synthesis of 2-imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2. In addition, a possible pathway for the SCSC structural transformations is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Directed single molecule diffusion triggered by surface energy gradients.

    PubMed

    Burgos, Pierre; Zhang, Zhenyu; Golestanian, Ramin; Leggett, Graham J; Geoghegan, Mark

    2009-10-27

    We demonstrate the diffusion of single poly(ethylene glycol) molecules on surfaces which change from hydrophilic to hydrophobic over a few micrometers. These gradients in surface energy are shown to drive the molecular diffusion in the direction of the hydrophilic component. The polymer diffusion coefficients on these surfaces are measured by fluorescence correlation spectroscopy and are shown to be elevated by more than an order of magnitude compared to surfaces without the surface energy gradient. Along the gradient, the diffusion is asymmetric, with diffusion coefficients approximately 100 times greater in the direction of the gradient than orthogonal to it. This diffusion can be explained by a Stokes-Einstein treatment of the surface-adsorbed polymer.

  7. Single event effects and laser simulation studies

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H.; Mccarty, K.; Coss, J.; Barnes, C.

    1993-01-01

    The single event upset (SEU) linear energy transfer threshold (LETTH) of radiation hardened 64K Static Random Access Memories (SRAM's) was measured with a picosecond pulsed dye laser system. These results were compared with standard heavy ion accelerator (Brookhaven National Laboratory (BNL)) measurements of the same SRAM's. With heavy ions, the LETTH of the Honeywell HC6364 was 27 MeV-sq cm/mg at 125 C compared with a value of 24 MeV-sq cm/mg obtained with the laser. In the case of the second type of 64K SRAM, the IBM640lCRH no upsets were observed at 125 C with the highest LET ions used at BNL. In contrast, the pulsed dye laser tests indicated a value of 90 MeV-sq cm/mg at room temperature for the SEU-hardened IBM SRAM. No latchups or multiple SEU's were observed on any of the SRAM's even under worst case conditions. The results of this study suggest that the laser can be used as an inexpensive laboratory SEU prescreen tool in certain cases.

  8. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  9. Characteristics of moderate current vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses

    SciTech Connect

    Moorti, A.; Kumbhare, S.R.; Naik, P.A.; Gupta, P.D.; Romanov, I.V.; Korobkin, Yu.V.; Rupasov, A.A.; Shikanov, A.S.

    2005-02-15

    A comparative study of the characteristics of moderate-current ({approx}10 kA), low-energy ({<=}20 J) vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses is performed. Temporal profiles of the x-ray emission, discharge current, and anode voltage measured in vacuum discharge created between a planar titanium cathode and a conical point-tip anode are observed to be quite different for the two regimes of the laser pulse duration. While cathode plasma jet pinching is clearly observed in the discharge created by low-energy ({approx}5 mJ), 27 ps full width at half-maximum (FWHM) laser pulses, a feeble pinching occurred for 4 ns (FWHM) laser pulses only above a threshold energy of {approx}250 mJ. In addition to the multiple K-shell x-ray pulses emitted from the titanium anode up to 100 ns, evidence of a much harder x-ray component (h{nu}>100 keV) is also seen in the discharge triggered by picosecond laser pulses.

  10. UV laser triggering of crowbars used in the Sandia lightning simulator

    NASA Astrophysics Data System (ADS)

    Landry, M. J.; Brigham, W. P.

    The techniques of IR and UV laser triggered switching of gaps were applied to crowbar switching two Marx generators, delivering greater than or equal to 250 to 50 kA in small and large impedance loads. Crowbar switching delays of 0.08 to 0.28 (MU)s were observed if the laser radiation arrived in the crowbar gaps when its voltage was 44% of its maximum applied voltage or at 23 to 68% of its self break voltage. A 5.0 cm crowbar gap with 35 mJ of lambda = 249 nm radiation was successfully triggered when filled with 80 psig of SF6. Electrodes operated with 40 Coulombs of charge for 47 shots without detrimental surface damage.

  11. Laser-Assisted Single Molecule Refolding

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Marshall, Myles; Aleman, Elvin; Lamichhane, Rajan; Rueda, David

    2010-03-01

    In vivo, many RNA molecules can adopt multiple conformations depending on their biological context such as the HIV Dimerization Initiation Sequence (DIS) or the DsrA RNA in bacteria. It is quite common that the initial interaction between the two RNAs takes place via complementary unpaired regions, thus forming a so-called kissing complex. However, the exact kinetic mechanism by which the two RNA molecules reach the dimerized state is still not well understood. To investigate the refolding energy surface of RNA molecules, we have developed new technology based on the combination of single molecule spectroscopy with laser induced temperature jump kinetics, called Laser Assisted Single-molecule Refolding (LASR). LASR enables us to induce folding reactions of otherwise kinetically trapped RNAs at the single molecule level, and to characterize their folding landscape. LASR provides an exciting new approach to study molecular memory effects and kinetically trapped RNAs in general. LASR should be readily applicable to study DNA and protein folding as well.

  12. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy

    PubMed Central

    2016-01-01

    Purpose. To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods. Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results. In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively (p > 0.05). Conclusion. The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser. PMID:28070417

  13. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  14. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  15. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA

    PubMed Central

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.

    2013-01-01

    The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  16. Theory of single-mode laser instabilities

    SciTech Connect

    Hendow, S.T.; Sargent M. III

    1985-01-01

    We use the semiclassical strong-signal theory of the laser to predict and explain the onset of side-mode buildup in lasers with one oscillating mode. Two general categories are considered: one for which the side modes and the oscillating mode all have the same wavelength and the other for which they have different wavelengths. The treatments include an arbitrary amount of inhomogeneous broadening. Our approach unifies the treatments of the side-mode instabilities presented earlier and extends them to handle standing waves in addition to the previously treated running waves. We write the field and the population matrix elements as Fourier series in the adjacent mode beat frequency. This approach has been used extensively in both multimode laser theory and saturation spectroscopy. This technique coincides with linear stability analyses used by others, provided that our beat frequency includes a contribution that is proportional to the Complex side-mode gain. We give a solution that allows for detuned operation along with its simpler, centrally tuned special case. The connection with saturation spectroscopy clearly reveals that the side-mode instabilities require side-mode gain. For the single-wavelength case, nonlinear anomalous dispersion is also required. The side-mode gain and dispersion result from both inhomogeneous broadening and population pulsations. The lowest instability thresholds occur when both of these mechanisms play a role. The approach can also be used to treat instabilities in optical bistability by substituting the appropriate equation of state for the strong-mode intensity and by changing the sign of the absorption coefficient. In homogeneously broadened, standing-wave lasers, we show that multiwavelength instabilities depend strongly on the position of the medium in the cavity.

  17. Tunable continuous wave single-mode dye laser directly pumped by a diode laser

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Suski, M.; Furmann, B.

    2017-04-01

    In this work, a tunable continuous wave single-mode ring dye laser (a modified version of Coherent model CR 699-21), directly optically pumped by an economy-class diode laser, has been set up. The laser was operated on Coumarin 498, and its generation profile covered part of the green spectral region not easily accessible in single-mode operation. The performance of the laser in both broad-band and single-mode operation regimes was studied. It was proved that optical pumping by diode lasers allows one to obtain single-mode operation of dye lasers that is sufficiently stable for high-resolution spectroscopy applications.

  18. Fast ion generation in the cathode plasma jet of a multipicosecond laser-triggered vacuum discharge

    SciTech Connect

    Moorti, A.; Naik, P. A.; Gupta, P. D.

    2010-03-15

    Ion generation in the cathode plasma jet of a moderate-current ({approx}2.3 kA), low-energy ({<=}20 J) vacuum spark discharge triggered by {approx}27 ps, 10 mJ laser pulses is studied using time of flight technique. Fastest ion velocity and velocity corresponding to the peak of the time of flight signals for Al cathode were measured to be {approx}5.25x10{sup 8} cm/s (energy of {approx}143 keV/u) and {approx}8.1x10{sup 7} cm/s (energy of {approx}3.4 keV/u), respectively. Corresponding velocities in the case of ions generated from laser-produced Al plasma (energy of {approx}550 mJ, intensity of {approx}10{sup 14} W/cm{sup 2}) were found to be much smaller, viz., {approx}1.05x10{sup 8} cm/s (energy of {approx}5.75 keV/u) and {approx}2.63x10{sup 7} cm/s (energy of {approx}0.36 keV/u), respectively. Study shows efficient acceleration of ions in a current-carrying cathode plasma jet of a small-energy multipicosecond laser-triggered spark discharge as compared with that in a high-energy multipicosecond laser-produced plasma plume.

  19. Long-Term Outcomes Following a Single Corticosteroid Injection for Trigger Finger

    PubMed Central

    Wojahn, Robert D.; Foeger, Nicholas C.; Gelberman, Richard H.; Calfee, Ryan P.

    2014-01-01

    Background: The outcomes of corticosteroid injection for trigger finger are well documented only with short-term follow-up. The purpose of this investigation was to determine the long-term effectiveness of a single injection and to examine predictors of success up to ten years after injection. Methods: This case series analyzed 366 first-time corticosteroid injections in flexor tendon sheaths from January 2000 to December 2007 with a minimum follow-up duration of five years. Two hundred and forty patients (66%) were female, 161 patients (44%) had multiple trigger fingers, and eighty-eight patients (24%) had diabetes at the time of injection. The primary outcome of treatment failure was defined as subsequent injection or surgical trigger finger release of the affected digit. Medical records were reviewed, and any patients without documented failure or a return office visit in 2012 to 2013 were contacted by telephone regarding symptom recurrence and the need for additional treatment. Kaplan-Meier analyses with log-rank test and Cox regression analysis assessed the effect of baseline patient and disease characteristics on injection success. Results: Forty-five percent of patients demonstrated long-term treatment success after a single injection. In the final regression model, the interaction of sex and the number of trigger fingers was the single predictor of treatment success. Exploring this association revealed a ten-year success rate of 56% for female patients presenting for the first time with a trigger finger compared with 35% in male patients presenting for the first time with a trigger finger, 39% in female patients with multiple trigger fingers, and 37% in male patients with multiple trigger fingers. Eighty-four percent of treatment failures occurred within the first two years following injection. Patient age, symptom type, and undifferentiated diabetes status were not predictive of treatment success. Conclusions: Female patients presenting with their first

  20. Single primer-triggered isothermal amplification for double-stranded DNA detection.

    PubMed

    Ma, Cuiping; Han, Dianang; Deng, Meilian; Wang, Jingfei; Shi, Chao

    2015-01-11

    Here we have devised a new generation of isothermal double-stranded DNA (dsDNA) detection method, termed single primer-triggered isothermal amplification (SAMP). It is very simple only requiring one primer and a few copies of dsDNA in less than an hour are detectable with multiple signal amplification steps.

  1. Single-unit transfusions and hemoglobin trigger: relative impact on red cell utilization.

    PubMed

    Yang, William W; Thakkar, Rajiv N; Gehrie, Eric A; Chen, Weiyun; Frank, Steven M

    2017-05-01

    Patient blood management (PBM) programs can reduce unnecessary transfusions, but the optimal methods used to achieve this effect are unclear. We tested the hypothesis that encouraging single-unit red blood cell (RBC) transfusions in stable patients would have a greater impact on blood use than compliance with a specific hemoglobin (Hb) transfusion trigger alone. We analyzed blood utilization data at three community hospitals without previous PBM efforts before and after implementing a PBM program. Data were analyzed at monthly intervals to determine the relative impact of a "Why give 2 when 1 will do?" campaign promoting single-unit RBC transfusions and simultaneous efforts to promote evidence-based Hb triggers of 7 or 8 g/dL. Univariate and multivariate analyses were used to identify independent effects of these two interventions on overall RBC utilization. Univariate analysis revealed that both the increase in single-unit transfusions (from 38.0% to 70.9%; p < 0.0001) and the decrease in RBC orders with an Hb trigger of at least 8 g/dL (from 45.7% to 25.0%; p < 0.0001) were associated with decreasing RBC utilization. Multivariate analysis showed that the increase in single-unit transfusions was an independent predictor of decreased RBC utilization, but the Hb triggers of both 7 and 8 g/dL were not. Overall, our PBM efforts decreased RBC utilization from 0.254 to 0.185 units/patient (27.2%) across all three hospitals (p = 0.0009). A campaign promoting single-unit RBC transfusions had a greater impact on RBC utilization than did encouraging a restrictive transfusion trigger. © 2016 AABB.

  2. Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Jin, Gang; He, Jun; Wang, Junmin

    2016-07-01

    We investigate single-cesium-atom heating owing to the momentum accumulation process induced by the resonant pulsed excitation in a microscopic optical dipole trap formed by a strongly focused 1064-nm laser beam. The heating depends on the trap frequency, which restricts the maximum repetition rate of the pulsed excitation. We experimentally verify the heating of a single atom and then demonstrate how to suppress it with an optimized pulsed excitation and cooling method. The typical trap lifetime of a single cesium atom is extended from 108 ±6 μ s to 2536 ±31 ms , and the corresponding number of excitations increases from ˜108 to ˜360 000 . In applying this faster cooling method, we use the trapped single cesium atom as a triggered single-photon source at an excitation repetition rate of 10 MHz. The second-order intensity correlations of the emitted single photons are characterized by implementing a Hanbury Brown and Twiss setup, and a clear antibunching effect has been observed.

  3. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  4. Effect of triggered discharge using an excimer laser with high-repetition-rate of the order of kilohertz

    SciTech Connect

    Yamaura, Michiteru; Watanabe, Takashi; Hayashi, Nobuya; Ihara, Satoshi

    2005-03-28

    The triggering ability of the laser-triggered lightning method is improved by using a KrF excimer laser with a high-repetition-rate of the order of kHz order. It is clarified that the effect of a triggered discharge is considerably enhanced when the plasma density is greater than 10{sup 13} cm{sup -3}. Thus far, the laser-triggered lightning method has not been expected to display a triggering ability since one pulse of an excimer laser possesses energy of less than 1 J, and the produced plasma has a low density of 10{sup 12} cm{sup -3}, its plasma density is one order lower than that required for its application in the triggering and guiding of lightning discharge. The enhancement of plasma density achieved by utilizing the accumulation effect of charged particles generated by the high-repetition-rate laser was 10{sup 13} cm{sup -3}. This led to an effective a 50% reduction in the self-breakdown voltage.

  5. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch.

    PubMed

    Shi, Wei; Gui, Huaimeng; Zhang, Lin; Ma, Cheng; Li, Mengxia; Xu, Ming; Wang, Luyi

    2013-07-01

    The effects of trigger laser pulse width on the jitter time of a GaAs photoconductive semiconductor switch (PCSS) is investigated in the experiment. The laser is split into two optical beams by a cross grating to excite two 3 mm gap GaAs PCSSs in parallel at the same time. This work reveals that the jitter time of the GaAs PCSS is reduced as the trigger laser pulse width decreases. Our results overcome a significant obstacle that hinders the testing and theory of GaAs PCSSs in high-time-precision synchronous control.

  6. Semiconductor single crystal external ring resonator cavity laser and gyroscope

    SciTech Connect

    Spitzer, M.P.

    1993-08-31

    A ring laser is described comprising: a semiconductor single crystal external ring resonator cavity having a plurality of reflecting surfaces defined by the planes of the crystal and establishing a closed optical path; and a discrete laser medium disposed in said semiconductor single crystal external ring resonator cavity for generating coherent light in said cavity, wherein said resonator cavity is decoupled from the laser medium.

  7. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Pépin, Henri

    2000-10-01

    Lasers are promising tools for triggering and guiding lightning strikes. In this context, Hydro-Québec and INRS have undertaken a feasibility study of laser triggered lightning using ultrashort laser pulses in Megavolt electrode configurations (3-7 m rod-plane air gap). A sub-Joule sub-picosecond laser beam focussed close to the rod electrode has been found to be able to trigger and guide leader discharges over distances of 3-4 m, lower the leader inception voltage by 50%, increase the leader velocity by a factor of 10. It has also been found that highly ionized filaments generated by the propagation of an ultrashort pulse in air have the ability to guide electric discharges over large distances. The basic physical processes involved in the formation of streamers and in the leader propagation have been observed using time-resolved optical diagnostics, as well as electric field and current probes. The discharge process triggered by the laser pulse has been successfully described using a leader propagation model in presence of the laser plasma channel. Numerical simulations have successfully reproduced the experimental results obtained with and without the ultrashort laser pulse.

  8. Percutaneous Release of Trigger Fingers: Comparing Multiple Digits with Single Digit Involvement

    PubMed Central

    Saremi, Hossein; Hakhamaneshi, Elham; Rabiei, Mohamad Ali Seif

    2016-01-01

    Background: To evaluate safety and efficacy of percutaneous release of trigger finger in multiple digits involvement in comparison with single digit involvement. Method: A number of 100 patients (131 fingers) were treated by percutaneous release and divided into two groups: single digit (group A) and multiple digits (group B). They were followed up for one year. Success rate, pain, complications and duration of analgesic use were studied and then compared in both groups. Results: All patients in both groups were treated successfully without any recurrence in a one-year follow-up. No complication was observed, but postoperative duration of pain was significantly different between the two groups. Period of painkiller use was also different between the two groups. Conclusion: Percutaneous release is a safe and effective treatment for trigger fingers even if multiple digits are involved. It is also safe in thumb and index finger involvement and diabetic patients. PMID:27517066

  9. Single photon ranging system using two wavelengths laser and analysis of precision

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian

    2013-09-01

    The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.

  10. Laser-triggered high-voltage plasma switching with diffractive optics.

    PubMed

    Ekberg, M; Sunesson, A; Bergkvist, M; Gustavsson, A; Isberg, J; Bernhoff, H; Skytt, P; Bengtsson, J; Hård, S; Larsson, M

    2001-06-01

    High-power lasers can be used to induce ionization of gases and thereby enable rapid triggering of electrical discharge devices, potentially faster than any devices based on mechanical or solid-state switching. With diffractive optical elements (DOEs) the laser light can conveniently be directed to positions within the gas so that an electrical discharge between two high-voltage electrodes is triggered reliably and rapidly. Here we report on two different types of DOE used for creating an electrical discharge in pure argon for potential high-voltage applications. One is the diffractive equivalent of a conventional axicon that yields an extended, and continuous, high-intensity focal region between the electrodes. The other is a multiple-focal-distance kinoform--a DOE that is designed to produce a linear array of 20 discrete foci, with high peak intensities, between the electrodes. We show that DOEs enable efficient, rapid switching and may provide increased flexibility in the design of novel electrode configurations.

  11. Spectral compression of single-photon-level laser pulse

    PubMed Central

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  12. Spectral compression of single-photon-level laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  13. Injection seeded single mode alexandrite ring laser for lidar applications

    NASA Technical Reports Server (NTRS)

    Lee, H. Sang; Notari, Anthony

    1992-01-01

    Along with many spectroscopic applications, atmospheric lidar measurements require a tunable, narrow band laser with a very high degree of spectral purity. A standing wave pulsed alexandrite laser tuned by injection seeding with an AlGaAs laser diode has demonstrated high stability. The standing wave cavity, however, poses several difficulties in light of the single mode operation and efficient seeding beam into the cavity. In order to overcome these problems and to operate the high power alexandrite laser in a single axial mode with a high spectral purity, a new ring laser system is being developed. The design features of the ring laser and some measurements of the laser characteristics are presented.

  14. Conformational change and biocatalysis-triggered spectral shift of single Au nanoparticles.

    PubMed

    Zhao, Yun; He, Ya-Kai; Zhang, Jing; Wang, Feng-Bin; Wang, Kang; Xia, Xing-Hua

    2014-05-28

    Spectral shift of localized plasmon resonance scattering of guanine-rich DNA modified single Au nanoparticles is observed under a dark field microscope equipped with a spectrometer. The spectra continuously red-shift with the conformational change of the guanine-rich DNA upon associating with K(+), hemin and the biocatalytic growth of the polymer. The scattering spectrum of single nanoparticles is proved to be sensitive both to a subtle conformational change and the biocatalysis process. 20 mM K(+) or 100 μM H2O2 can trigger a detectable peak shift. The present study paves a new and efficient way to extract chemical information from micro/nanospace.

  15. Laser head for simultaneous optical pumping of several dye lasers. [with single flash lamp

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Mcalexander, B. T. (Inventor)

    1975-01-01

    The invention is a laser head for simultaneous pumping several dye lasers with a single flash lamp. The laser head includes primarily a multi-elliptical cylinder cavity with a single flash lamp placed along the common focal axis of the cavity and with capillary tube dye cells placed along each of the other focal axes of the cavity. The inside surface of the cavity is polished. Hence, the single flash lamp supplies the energy to the several dye cells.

  16. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  17. Low level laser therapy with trigger points technique: a clinical study on 243 patients.

    PubMed

    Simunovic, Z

    1996-08-01

    Among the various methods of application techniques in low level laser therapy (LLLT) (HeNe 632.8 nm visible red or infrared 820-830 nm continuous wave and 904 nm pulsed emission) there are very promising "trigger points" (TPs), i.e., myofascial zones of particular sensibility and of highest projection of focal pain points, due to ischemic conditions. The effect of LLLT and the results obtained after clinical treatment of more than 200 patients (headaches and facial pain, skeletomuscular ailments, myogenic neck pain, shoulder and arm pain, epicondylitis humery, tenosynovitis, low back and radicular pain, Achilles tendinitis) to whom the "trigger points" were applied were better than we had ever expected. According to clinical parameters, it has been observed that the rigidity decreases, the mobility is restored (functional recovery), and the spontaneous or induced pain decreases or even disappears, by movement, too. LLLT improves local microcirculation and it can also improve oxygen supply to hypoxic cells in the TP areas and at the same time it can remove the collected waste products. The normalization of the microcirculation, obtained due to laser applications, interrupts the "circulus vitiosus" of the origin of the pain and its development (Melzak: muscular tension > pain > increased tension > increased pain, etc.). Results measured according to VAS/VRS/PTM: in acute pain, diminished more than 70%; in chronic pain more than 60%. Clinical effectiveness (success or failure) depends on the correctly applied energy dose--over/underdosage produces opposite, negative effects on cellular metabolism. We did not observe any negative effects on the human body and the use of analgesic drugs could be reduced or completely excluded. LLLT suggests that the laser beam can be used as monotherapy or as a supplementary treatment to other therapeutic procedures for pain treatment.

  18. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  19. Single-grating laser pulse stretcher and compressor.

    PubMed

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  20. Discretely tunable single-frequency fibre Bragg grating diode laser

    SciTech Connect

    Duraev, V P; Lutts, G B; Nedelin, E T; Sumarokov, M A; Medvedkov, O I; Vasil'ev, S A

    2007-12-31

    The results of the development of discretely tunable single-frequency semiconductor lasers with the external cavity based on fibre Bragg gratings (FBGs) written in a single-mode fibre are presented. It is shown, in particular, that, by using an external cavity semiconductor laser with the output mirror representing a superposition of several FBGs with different resonance wavelengths, it is possible to obtain lasing at one or several wavelengths simultaneously by varying the injection current and (or) the temperature of the active area of the laser diode. (lasers)

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  3. Investigating MALDI MSI parameters (Part 2) - On the use of a mechanically shuttered trigger system for improved laser energy stability.

    PubMed

    Steven, Rory T; Dexter, Alex; Bunch, Josephine

    2016-07-15

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is now widely used to desorb, ionize and detect molecules from complex samples and tissue sections. The detected ion intensity within MALDI MS and MSI is intimately linked to the laser energy per pulse incident upon the sample during analysis. Laser energy/power stability can be significantly affected by the manner in which the laser is operated. High-repetition rate diode-pumped solid-state (DPSS) lasers are being increasingly adopted to enable high-throughput MALDI MSI analysis. Within this work two different laser-triggering setups are used to demonstrate the effect of laser energy instabilities due to spiking and thermal control phenomena and a setup with a shutter to remove these effects. The effect of non-equilibrium laser operation on MALDI MSI data versus the more stable laser pulse energy of the shutter-triggered system is demonstrated in thin films of α-cyano-4-hydroxycinnamic acid (CHCA) and for imaging of murine brain tissue sections. Significant unwanted variations in absolute and relative detected ion intensity are shown where energy variation is introduced by these phenomena, which return to equilibrium within the setup employed here over timescales relevant to MALDI MS analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Single transverse mode selectively oxidized vertical cavity lasers

    SciTech Connect

    CHOQUETTE,KENT D.

    2000-04-18

    Vertical cavity surface emitting laser (VCSEL) sources have been adopted into Gigabit Ethernet applications in a remarkably short time period. VCSELs are particularly suitable for multimode optical fiber local area networks (LANs), due to their reduced threshold current, circular output beam, and inexpensive and high volume manufacture. Moreover, selectively oxidized VCSELs are nearly ideal LAN sources since the oxide aperture within the laser cavity produces strong electrical and optical confinement which enables high electrical to optical conversion efficiency and minimal modal discrimination allowing emission into multiple transverse optical modes. In addition to the large demand for multimode lasers, VCSELs which emit into a single optical mode are also increasingly sought for emerging applications, which include data communication with single mode optical fiber, bar code scanning, laser printing, optical read/write heads, and modulation spectroscopy. To achieve single mode selectively oxidized VCSELs is a challenging task, since the inherent index confinement within these high performance lasers is very large.

  5. Microwave guiding in air along single femtosecond laser filament

    SciTech Connect

    Ren Yu; Alshershby, Mostafa; Qin Jiang; Hao Zuoqiang; Lin Jingquan

    2013-03-07

    Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.

  6. High power and single mode quantum cascade lasers.

    PubMed

    Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome

    2016-05-16

    We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

  7. Self-seeded single-frequency laser peening method

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2009-08-11

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  8. Self-seeded single-frequency laser peening method

    DOEpatents

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  9. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology

    SciTech Connect

    Tobin, I.; Lunney, J. G.; Juschkin, L.; Sidelnikov, Y.; O'Reilly, F.; Sokell, E.; Sheridan, P.

    2013-05-20

    We compare the extreme ultraviolet emission characteristics of tin and galinstan (atomic %: Ga: 78.35, In: 14.93, Sn: 6.72) between 10 nm and 18 nm in a laser-triggered discharge between liquid metal-coated electrodes. Over this wavelength range, the energy conversion efficiency for galinstan is approximately half that of tin, but the spectrum is less strongly peaked in the 13-15 nm region. The extreme ultraviolet source dimensions were 110 {+-} 25 {mu}m diameter and 500 {+-} 125 {mu}m length. The flatter spectrum, and -19 Degree-Sign C melting point, makes this galinstan discharge a relatively simple high radiance extreme ultraviolet light source for metrology and scientific applications.

  10. Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis

    PubMed Central

    Kerr, Markus C.; Gomez, Guillermo A.; Ferguson, Charles; Tanzer, Maria C.; Murphy, James M.; Yap, Alpha S.; Parton, Robert G.; Huston, Wilhelmina M.; Teasdale, Rohan D

    2017-01-01

    Remarkably little is known about how intracellular pathogens exit the host cell in order to infect new hosts. Pathogenic chlamydiae egress by first rupturing their replicative niche (the inclusion) before rapidly lysing the host cell. Here we apply a laser ablation strategy to specifically disrupt the chlamydial inclusion, thereby uncoupling inclusion rupture from the subsequent cell lysis and allowing us to dissect the molecular events involved in each step. Pharmacological inhibition of host cell calpains inhibits inclusion rupture, but not subsequent cell lysis. Further, we demonstrate that inclusion rupture triggers a rapid necrotic cell death pathway independent of BAK, BAX, RIP1 and caspases. Both processes work sequentially to efficiently liberate the pathogen from the host cytoplasm, promoting secondary infection. These results reconcile the pathogen's known capacity to promote host cell survival and induce cell death. PMID:28281536

  11. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes.

    PubMed

    Xu, Ming; Bian, Kangkang; Ma, Cheng; Jia, Hangjuan; An, Xin; Shi, Wei

    2016-09-15

    In this Letter, we show the synchronization of two 2-mm-gap gallium arsenide (GaAs) photoconductive semiconductor switches (PCSS), which are in parallel and triggered by two laser diodes (LDs) independently. The comparison of the synchronization is measured by varying the bias electric field and optical excitation energy, respectively. An optimum synchronization is achieved as low as 200.5 ps, while the GaAs PCSS are biased at 1.2 kV with optical excitation energy of 1.91 μJ. The simulations demonstrate the relationship between the synchronization, the carriers average drift velocity, and the number of carriers undergoing intervalley scattering.

  12. Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm.

    PubMed

    Hannah, Alexander S; VanderLaan, Donald; Chen, Yun-Sheng; Emelianov, Stanislav Y

    2014-09-01

    Recently, a dual photoacoustic and ultrasound contrast agent-named photoacoustic nanodroplet-has been introduced. Photoacoustic nanodroplets consist of a perfluorocarbon core, surfactant shell, and encapsulated photoabsorber. Upon pulsed laser irradiation the perfluorocarbon converts to gas, inducing a photoacoustic signal from vaporization and subsequent ultrasound contrast from the resulting gas microbubbles. In this work we synthesize nanodroplets which encapsulate gold nanorods with a peak absorption near 1064 nm. Such nanodroplets are optimal for extended photoacoustic imaging depth and contrast, safety and system cost. We characterized the nanodroplets for optical absorption, image contrast and vaporization threshold. We then imaged the particles in an ex vivo porcine tissue sample, reporting contrast enhancement in a biological environment. These 1064 nm triggerable photoacoustic nanodroplets are a robust biomedical tool to enhance image contrast at clinically relevant depths.

  13. Two-color interferometer for the study of laser filamentation triggered electric discharges in air

    SciTech Connect

    Point, Guillaume Brelet, Yohann; Arantchouk, Leonid; Carbonnel, Jérôme; Prade, Bernard; Mysyrowicz, André; Houard, Aurélien

    2014-12-15

    We present a space and time resolved interferometric plasma diagnostic for use on plasmas where neutral-bound electron contribution to the refractive index cannot be neglected. By recording simultaneously the plasma optical index at 532 and 1064 nm, we are able to extract independently the neutral and free electron density profiles. We report a phase resolution of 30 mrad, corresponding to a maximum resolution on the order of 4×10{sup 22} m{sup −3} for the electron density, and of 10{sup 24} m{sup −3} for the neutral density. The interferometer is demonstrated on centimeter-scale sparks triggered by laser filamentation in air with typical currents of a few tens of A.

  14. Cyclohexane triggers staged growth of pure and vertically aligned single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ayala, P.; Grüneis, A.; Grimm, D.; Kramberger, C.; Engelhard, R.; Rümmeli, M.; Schumann, J.; Kaltofen, R.; Büchner, B.; Schaman, C.; Kuzmany, H.; Gemming, T.; Barreiro, A.; Pichler, T.

    2008-03-01

    An innovative staged chemical vapor deposition (SCVD) approach providing flexible control over the feedstock type during single wall carbon nanotube (SWNTs) growth is proposed. The efficiency of staged growth by means of a cyclohexane/methane system using thin film catalysts is here illustrated. The mechanism involves the nucleation stage efficiently triggered by cyclohexane, followed by methane assisting a growth stage yielding high purity SWNTs vertically aligned with lengths of several hundred μm. In addition, SCVD also facilitates catalyst free SWNT detachment enabling repeated growth.

  15. A single beam laser tracker as an alignment tool

    SciTech Connect

    Wand, B.T.; LeCocq, C.; Gaydosh, M.; Ruland, R.E.

    1992-07-01

    In December 1991 the Survey and Alignment team of the Stanford Liner Accelerator Center (SLAC) purchased a Chesapeake single beam laser tracker. This paper will discuss first experiences and applications with this new type of an alignment instrument.

  16. Photonic crystal nanocavity laser with a single quantum dot gain.

    PubMed

    Nomura, Masahiro; Kumagai, Naoto; Iwamoto, Satoshi; Ota, Yasutomo; Arakawa, Yasuhiko

    2009-08-31

    We demonstrate a photonic crystal nanocavity laser essentially driven by a self-assembled InAs/GaAs single quantum dot gain. The investigated nanocavities contain only 0.4 quantum dots on an average; an ultra-low density quantum dot sample (1.5 x 10(8) cm(-2)) is used so that a single quantum dot can be isolated from the surrounding quantum dots. Laser oscillation begins at a pump power of 42 nW under resonant condition, while the far-detuning conditions require ~145 nW for lasing. This spectral detuning dependence of laser threshold indicates substantial contribution of the single quantum dot to the total gain. Moreover, photon correlation measurements show a distinct transition from anti-bunching to Poissonian via bunching with the increase of the excitation power, which is also an evidence of laser oscillation using the single quantum dot gain.

  17. Beam Shaped Single Mode Spiral Lasers

    DTIC Science & Technology

    2011-12-31

    directionality; he showed that suitably deformed (Limaçon shaped) resonators can partially circumvent this problem and also achieve higher optical power. He...volume, highly directional light sources possible in the future for many important applications, e.g. photonic integrated circuits, optical ...communications, and medical/biological high-sensitive sensors.Quantum cascade laser, limacon shaped, microcavity semiconductor lasers, ray optics , wave

  18. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    SciTech Connect

    Wei, Wenfu; Li, Xingwen Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-15

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ∼600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  19. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wei, Wenfu; Li, Xingwen; Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-01

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ˜600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  20. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  1. Ring laser having an output at a single frequency

    DOEpatents

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  2. Compact single mode tunable laser using a digital micromirror device.

    PubMed

    Havermeyer, Frank; Ho, Lawrence; Moser, Christophe

    2011-07-18

    The wavelength tuning properties of a tunable external cavity laser based on multiplexed volume holographic gratings and a commercial micromirror device are reported. The 3x3x3 cm(3) laser exhibits single mode operation in single or multi colors between 776 nm and 783 nm with less than 7.5 MHz linewidth, 37 mW output power, 50 μs rise/fall time constant and a maximum switching rate of 0.66 KHz per wavelength. The unique discrete-wavelength-switching features of this laser are also well suited as a source for continuous wave Terahertz generation and three-dimensional metrology.

  3. Stable single-wavelength emission from fully chaotic microcavity lasers

    NASA Astrophysics Data System (ADS)

    Sunada, Satoshi; Fukushima, Takehiro; Shinohara, Susumu; Harayama, Takahisa; Adachi, Masaaki

    2013-07-01

    We experimentally and numerically show that single-wavelength emission can be stably observed for a fully chaotic microcavity laser with a stadium shape under continuous wave condition. The emission pattern is asymmetric with respect to the symmetry axes of the laser cavity, and it cannot be explained by a single cavity mode. On the basis of numerical analysis, we interpret such a lasing as the result of frequency-locking interaction among several low-loss cavity modes. Moreover, we experimentally investigate the optical spectral properties of the laser under pulsed-pumping condition, and discuss the pulse-width dependence on the number of lasing modes.

  4. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    NASA Astrophysics Data System (ADS)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  5. Laser ablation process for single-walled carbon nanotube production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Different types of lasers are now routinely used to prepare single-walled carbon nanotubes. The original method developed by researchers at Rice University used a "double-pulse laser oven" process. Several researchers have used variations of the lasers to include one-laser pulse (green or infrared), different pulse widths (ns to micros as well as continuous wave), and different laser wavelengths (e.g., CO2, or free electron lasers in the near to far infrared). Some of these variations are tried with different combinations and concentrations of metal catalysts, buffer gases (e.g., helium), oven temperatures, flow conditions, and even different porosities of the graphite targets. This article is an attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  6. Laser ablation process for single-walled carbon nanotube production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Different types of lasers are now routinely used to prepare single-walled carbon nanotubes. The original method developed by researchers at Rice University used a "double-pulse laser oven" process. Several researchers have used variations of the lasers to include one-laser pulse (green or infrared), different pulse widths (ns to micros as well as continuous wave), and different laser wavelengths (e.g., CO2, or free electron lasers in the near to far infrared). Some of these variations are tried with different combinations and concentrations of metal catalysts, buffer gases (e.g., helium), oven temperatures, flow conditions, and even different porosities of the graphite targets. This article is an attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  7. Solid state long range surface plasmon polariton single mode lasers

    NASA Astrophysics Data System (ADS)

    Karami Keshmarzi, Elham; Tait, R. Niall; Berini, Pierre

    2013-10-01

    Incorporation of a solid-state gain medium in the cladding of a Long Range Surface Plasmon Polariton (LRSPP) waveguide in order to create a single-mode near-infrared laser source is proposed. LRSPP Bragg gratings based on stepping the width of the metal strip are used to form the laser's cavity. Three laser configurations are presented: The first 2 lasers employ DBRs (Distributed Bragg Reflectors) in ECL (External Cavity Laser) architecture while the third is based on the DFB (Distributed Feedback) configuration. All 3 configurations are thermally tunable by heating the gratings directly by injecting current. The lasers are convenient to fabricate leading to inexpensive sources that could be used in optical integrated circuits or waveguide biosensors.

  8. Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time

    NASA Astrophysics Data System (ADS)

    Tjärnhage, Torbjörn; Gradmark, Per-Åke; Larsson, Anders; Mohammed, Abdelsalam; Landström, Lars; Sagerfors, Eva; Jonsson, Per; Kullander, Fredrik; Andersson, Magnus

    2013-06-01

    Detection of aerosolized biological warfare agents by means of LIBS commonly operate with pulsed lasers running at constant repetition rate, resulting in very low hit rates. In this paper, we present a prototype where the LIBS laser is only fired if a particle is expected in the focal zone. A significantly improved hit rate for detection and classification of μm sized single particles in real-time is achieved. Hit rates of 40% and 70% for NaCl particles of sizes 3 and 7.0 μm, respectively, can be reached in triggered configuration, as compared to 1% and 2% when the laser is un-triggered.

  9. Single-Mode, Distributed Feedback Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  10. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose

    PubMed Central

    Garajova, Sona; Mathieu, Yann; Beccia, Maria Rosa; Bennati-Granier, Chloé; Biaso, Frédéric; Fanuel, Mathieu; Ropartz, David; Guigliarelli, Bruno; Record, Eric; Rogniaux, Hélène; Henrissat, Bernard; Berrin, Jean-Guy

    2016-01-01

    The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, other recycling enzymes must exist. We investigated the ability of AA3_2 flavoenzymes secreted under lignocellulolytic conditions to trigger oxidative cellulose degradation by AA9 LPMOs. Among the flavoenzymes tested, we show that glucose dehydrogenase and aryl-alcohol quinone oxidoreductases are catalytically efficient electron donors for LPMOs. These single-domain flavoenzymes display redox potentials compatible with electron transfer between partners. Our findings extend the array of enzymes which regulate the oxidative degradation of cellulose by lignocellulolytic fungi. PMID:27312718

  11. The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine

    PubMed Central

    Harvey, Christopher D.; Yasuda, Ryohei; Zhong, Haining; Svoboda, Karel

    2009-01-01

    In neurons, individual dendritic spines isolate NMDA receptor-mediated Ca2+ accumulations from the dendrite and other spines. However, it is not known to what extent spines compartmentalize signaling events downstream of Ca2+ influx. We combined two-photon fluorescence lifetime imaging (FLIM) with two-photon glutamate uncaging to image the activity of the small GTPase Ras following NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite. PMID:18556515

  12. Single pulse CARS noise: a comparison between single-mode and multimode pump lasers.

    PubMed

    Snelling, D R; Sawchuk, R A; Mueller, R E

    1985-09-01

    An investigation of single pulse coherent anti-Stokes Raman spectroscopy (CARS) noise, determined by the analysis of broadband nonresonant spectra, is described. It is shown that the use of a single-mode rather than a multimode pump laser leads to a significant reduction of CARS noise (40%), down to the level exhibited by the Stokes spectral profile itself. This reduction in noise is attributed to the minimization of the effects due to random variations in the laser temporal profiles by using temporally smooth single-mode laser pumps. A measurement of detector shot noise is presented and its effect on CARS noise is described. The advantages of using a single-mode pump laser in CARS spectroscopy are discussed.

  13. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  14. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  15. Monolithic all-fiber repetition-rate tunable gain-switched single-frequency Yb-doped fiber laser.

    PubMed

    Hou, Yubin; Zhang, Qian; Qi, Shuxian; Feng, Xian; Wang, Pu

    2016-12-12

    We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

  16. Diffraction-limited circular single spot from phased array lasers

    SciTech Connect

    Tatsuno, K.; Drenten, R.; Poel, C.v.d.; Opschoor, J.; Acket, G. )

    1989-11-01

    Anamorphic prism optics makes it possible to obtain a diffraction-limited ({Sigma}/8) circular single spot from index guided phased array lasers. It served not only for beam shaping but also for astigmatism correction and spatial filtering. The optical path analysis based on the interferometric fringe scanning phase measurements both in the near and far fields indicates that the phased array lasers can be applied to such diffraction-limited precise optical systems as optical disk recording, laser beam printing, or second harmonics generation.

  17. Single step channeling in glass interior by femtosecond laser

    SciTech Connect

    Kongsuwan, Panjawat; Wang Hongliang; Lawrence Yao, Y.

    2012-07-15

    Channeling inside a transparent material, glass, by femtosecond laser was performed by using a single step process rather than hybrid processes that combine the laser irradiation with an additional tool or step to remove the material. Tightly focusing of a single femtosecond laser pulse using proper optical and laser processing parameters could induce the micro-explosion and could create voids inside transparent materials, and the effects of these parameters on the resultant feature geometry and channel length were studied. Understanding of the channel length variation at different locations from the specimen surface could enhance prediction capability. Taking into account of the laser, material, and lens properties, numerical models were developed to predict the absorption volume shape and size at different focusing depths below the surface of a specimen. These models will also be validated with the variation in feature and channel lengths inside the specimen obtained from the experiments. Spacing between adjacent laser pulses and laser parameters was varied to investigate effects of channel overlapping and its influence on long channel formation.

  18. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  19. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  20. Dependence of current rise time on laser-triggered discharge plasma

    NASA Astrophysics Data System (ADS)

    Lim, Soowon; Kamohara, Takashi; Hosseini, S. Hamid R.; Katsuki, Sunao

    2016-07-01

    A powerful, stable extreme ultraviolet (EUV) source is the most important component for EUV lithography and EUV mask inspection. Here, we investigate the characteristics of laser-triggered discharge plasma at three different current rise times, fast, middle and slow. A height-adjustable coaxial birdcage was used to change circuit inductance. The rise time was varied between 30 ns-55 ns with peak current of 10 kA. The time-integrated EUV (at 13.5 nm in 2% bandwidth) intensity for the fast rise time was found to be 55% stronger than that of the slow rise time despite its lower energy. A high-speed Mach-Zehnder interferogram and visible imaging of the pinch plasma were employed to discuss plasma compression processes qualitatively and quantitatively. Also discharge produced debris was investigated using a silicon-crystal witness plate. The fast rise current was found to have advantages such as lower debris, higher EUV intensity, and possibility of suppressing instability in comparison with the slow rise time. As expected, total debris amounts lessened proportionally to the primary charged energy, as found from a comparison of fast and slow rise currents.

  1. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  2. Ultraviolet Laser-induced ignition of RDX single crystal

    NASA Astrophysics Data System (ADS)

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-02-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique.

  3. Stress and Cocaine Trigger Divergent and Cell Type-Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens.

    PubMed

    Khibnik, Lena A; Beaumont, Michael; Doyle, Marie; Heshmati, Mitra; Slesinger, Paul A; Nestler, Eric J; Russo, Scott J

    2016-06-01

    Repeated exposure to cocaine or social stress leads to lasting structural and functional synaptic alterations in medium spiny neurons (MSNs) of nucleus accumbens (NAc). Although cocaine-induced and stress-induced structural changes in dendritic spines have been well documented, few studies have investigated functional consequences of cocaine and stress at the level of single spines. We exposed mice to chronic cocaine or chronic social defeat stress and used two-photon laser scanning microscopy with glutamate photo-uncaging and whole-cell recording to examine synaptic strength at individual spines on two distinct types of NAc MSNs in acute slices after 24 hours of cocaine withdrawal and after chronic social defeat stress. In animals treated with cocaine, average synaptic strength was reduced specifically at large mushroom spines of MSNs expressing dopamine receptor type 1 (D1-MSNs). In contrast, cocaine promoted a rightward shift in the distribution of synaptic weights toward larger synaptic responses in MSNs expressing dopamine receptor type 2 (D2-MSNs). After chronic social defeat stress, resilient animals displayed an upregulation of synaptic strength at large mushroom spines of D1-MSNs and a concomitant downregulation in D2-MSNs. Although susceptible mice did not exhibit a significant overall change in synaptic strength on D1-MSNs or D2-MSNs, we observed a slight leftward shift in cumulative distribution of large synaptic responses in both cell types. This study provides the first functional cell type-specific and spine type-specific comparison of synaptic strength at a single spine level between cocaine-induced and stress-induced neuroadaptations and demonstrates that psychoactive drugs and stress trigger divergent changes in synaptic function in NAc. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Cladded single crystal fibers for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  5. Transient Sub-Poissonian Distribution for Single-Mode Lasers

    NASA Technical Reports Server (NTRS)

    Zang, J. Y.; Gu, Q.; Tian, L. K.

    1996-01-01

    In this paper, the transient photon statistics for single-mode lasers is investigated by making use of the theory of quantum electrodynamics. By taking into account of the transitive time l,we obtain the master equation for Jaynes-Cummings model. The relation between the Mandel factor and the time is obtained by directly solving the master equation. The result shows that a transient phenomenon from the transient super-Poissonian distribution to the transient sub-Poissonian distribution occurs for single-mode lasers. In addition, the influences of the thermal light field and the cavity loss on the transient sub-Poissonian distribution are also studied.

  6. Single-crystal silicon optical fiber by direct laser crystallization

    SciTech Connect

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; Cheng, Hiu Yan; Liu, Wenjun; Poilvert, Nicolas; Xiong, Yihuang; Dabo, Ismaila; Mohney, Suzanne E.; Badding, John V.; Gopalan, Venkatraman

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillary fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.

  7. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  8. Electromotive Triggering and Single Sweep Analysis of Vestibular Evoked Myogenic Potentials (VEMPs).

    PubMed

    Hecker, Dietmar J; Lohscheller, Joerg; Schorn, Bianca; Koch, Klaus Peter; Schick, Bernhard; Dlugaiczyk, Julia

    2014-01-01

    Cervical (c) and ocular (o) vestibular evoked myogenic potentials (VEMPs) provide important tools for measuring otolith function. However, two major drawbacks of this method are encountered in clinical practice. First, recording of oVEMPs is compromised by small n10 amplitudes. Second, VEMP analysis is currently based on the averaging technique, resulting in a loss of information compared to single sweep analysis. Here, we: 1) developed a novel electromotive trigger mechanism for evoking VEMPs by bone-conducted vibration to the forehead and 2) established maximum entropy extraction of complex wavelet transforms for calculation of phase synchronization between VEMP single sweeps. Both c- and oVEMPs were recorded for n=10 healthy individuals. The oVEMP n10 amplitude was consistently higher (right: 24.84±9.71 μV; left: 27.40±14.55 μV) than previously described. Stable VEMP signals were reached after a smaller number of head taps (oVEMPs 6; cVEMPs 11) compared to current recommendations. Phase synchronization vectors and phase shift values were successfully determined for simulated and clinically recorded VEMPs, providing information about the impact of noise and phase jitter on the VEMP signal. Thus, the proposed method constitutes an easy-to-use approach for the fast detection and analysis of VEMPs in clinical practice.

  9. Studying calcium triggered vesicle fusion in a single vesicle-vesicle content/lipid mixing system

    PubMed Central

    Kyoung, Minjoung; Zhang, Yunxiang; Diao, Jiajie; Chu, Steven; Brunger, Axel T.

    2013-01-01

    This Protocol describes a single vesicle-vesicle microscopy system to study Ca2+-triggered vesicle fusion. Donor vesicles contain reconstituted synaptobrevin and synaptotagmin-1. Acceptor vesicles contain reconstituted syntaxin and SNAP-25, and are tethered to a PEG-coated glass surface. Donor vesicles are mixed with the tethered acceptor vesicles and incubated for several minutes at zero Ca2+-concentration, resulting in a collection of single interacting vesicle pairs. The donor vesicles also contain two spectrally distinct fluorophores that allow simultaneous monitoring of temporal changes of the content and membrane. Upon Ca2+-injection into the sample chamber, our system therefore differentiates between hemifusion and complete fusion of interacting vesicle pairs and determines the temporal sequence of these events on a sub-hundred millisecond timescale. Other factors, such as complexin, can be easily added. Our system is unique by monitoring both content and lipid mixing, and by starting from a metastable state of interacting vesicle pairs prior to Ca2+-injection. PMID:23222454

  10. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    SciTech Connect

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-15

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ∼47% at an output power of ∼14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ∼20% at ∼6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  11. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-01

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ˜47% at an output power of ˜14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ˜20% at ˜6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  12. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  13. Dynamic single-mode semiconductor lasers with a distributed reflector

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers.

  14. Lithium niobate miniature lasers and single-crystal fibers

    SciTech Connect

    Cordova-Plaza, A.

    1988-01-01

    LiNbO{sub 3} is a widely used optical material because of its excellent electro-optic and nonlinear properties. By doping LiNbO{sub 3} with an active ion such as Nd, laser oscillation and amplification are added to the panoply of LiNbO{sub 3} device possibilities. Furthermore, by providing LiNbO{sub 3} devices with the waveguide confinement of single-crystal fibers, their performance can be significantly improved. Chapter 1 introduces the subject. Chapter 2 is devoted to miniature continuous-wave Nd:MgO:LiNbO{sub 3} lasers. Important results are the first demonstration of room-temperature, true continuous-wave laser oscillation in Nd-doped LiNbO{sub 3} and the first demonstration of diode-pumped laser action in this material. The Nd:MgO:LiNbO{sub 3} lasers exhibited pump power thresholds (1.9 mW) and slope efficiencies (45%) that are among the state-of-the-art in solid state lasers. Chapter 2 also contains a detailed study on photoconductivity. It explains how the addition of MgO eliminates photorefractive damage. Chapter 3 studies Q-switched laser operation in Nd:MgO:LiNbO{sub 3}. Q-switching consists of generating very intense, nanosecond pulses by rapidly switching the cavity loss.

  15. Dynamic single-mode semiconductor lasers with a distributed reflector

    SciTech Connect

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers. 120 references.

  16. Polyelectrolyte/carbon nanotube composite microcapsules and drug release triggered by laser irradiation

    NASA Astrophysics Data System (ADS)

    Saito, Haruyuki; Kato, Noritaka

    2016-03-01

    The fabrication of stimuli-responsive capsules is one of the hot topics in the research field of drug delivery systems. Near-infrared (NIR) light is one of the promising stimuli, because of its high transparency to biological tissues, and NIR-responsive capsules have been fabricated using various NIR-adsorbing materials. Here, we employed single-walled carbon nanotubes (SWCNTs) as the NIR-adsorbing material, and microcapsules containing SWCNTs were fabricated by a combination of the layer-by-layer and template-assisted methods. The anti-cancer drug was loaded into the capsules, and the release rates in the dark and under NIR laser irradiation were compared. Distinct release was confirmed in the latter case, whereas almost no release was detected in the former case, indicating that the SWCNT molecule is a suitable light absorber for use with optically addressable drug carriers.

  17. Laser Scanner Tests For Single-Event Upsets

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.

    1992-01-01

    Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.

  18. Single Mode Operation of a Tea CO2 Ring Laser

    NASA Astrophysics Data System (ADS)

    Aram, M.; Jelvani, S.; Nazari, M.; Panahibakhsh, S.; Porhasannejad, Z.

    2013-09-01

    The experimental results of studies on a unidirectional single longitudinal mode (SLM) transversely excited atmospheric pressure (TEA) CO2 ring laser with an intra-cavity saturable absorber are reported. A simple and quick procedure to align an experimental setup is also presented, which makes it possible to reduce light losses.

  19. 6.1-MV, 0.79-MA laser-triggered gas switch for multimodule, multiterawatt pulsed-power accelerators

    NASA Astrophysics Data System (ADS)

    Lechien, K. R.; Stygar, W. A.; Savage, M. E.; Wakeland, P. E.; Anaya, V.; Artery, D. S.; Baremore, M. J.; Bliss, D. E.; Chavez, R.; Coombs, G. D.; Corley, J. P.; Jones, P. A.; Kipp, A. K.; Lewis, B. A.; Lott, J. A.; Lynch, J. J.; McKee, G. R.; Ploor, S. D.; Prestwich, K. R.; Roznowski, S. A.; Spencer, D. C.; White, S. D.; Woodworth, J. R.

    2010-03-01

    A 6.1-MV, 0.79-MA laser-triggered gas switch (LTGS) is used to synchronize the 36 modules of the Z machine at Sandia National Laboratories. Each module includes one switch, which serves as the last command-fired switch of the module, and hence is used to determine the time at which each module electrically closes relative to the other modules. The switch is ˜81-cm in length, ˜45-cm in diameter, and is immersed in mineral oil. The outer switch envelope consists of six corrugated monomer-cast acrylic insulators and five contoured stainless-steel rings. The trigger electrodes are fabricated from copper-infused tungsten. The switch is pressurized with several atmospheres of sulfur hexafluoride (SF6), which is turbulently purged within 2 seconds after every shot. Each switch is powered from a 6-MV, 0.78-MJ Marx generator which pulse charges a 24-nF intermediate-store water capacitor in 1.4-μs. Closure of the switch allows power to flow into pulse-forming transmission lines. The power pulse is subsequently compressed by water switches, which results in a total accelerator output power in excess of 70-TW. A previous version of the LTGS performed exceptionally at a 5.4-MV, 0.7-MA level on an engineering test module used for switch development. It exhibited a 1-σ jitter of ˜5ns, a prefire and flashover rate less than 0.1%, and a lifetime in excess of 150 shots. When installed on the Z accelerator, however, the switch exhibited a prefire probability of ˜3%, a flashover probability of ˜7%, and a 15-ns jitter. The difference in performance is attributed to several factors such as higher total charge transfer, exposure to more debris, and more stressful dynamic mechanical loading upon machine discharge. Under these conditions, the replacement lifetime was less than ten shots. Since refurbishment of Z in October 2007, there have been three LTGS design iterations to improve the performance at 6.1-MV. The most recent design exhibits a prefire rate of less than 0.1%, a

  20. Isolation of single Chlamydia-infected cells using laser microdissection.

    PubMed

    Podgorny, Oleg V; Polina, Nadezhda F; Babenko, Vladislav V; Karpova, Irina Y; Kostryukova, Elena S; Govorun, Vadim M; Lazarev, Vassili N

    2015-02-01

    Chlamydia are obligate intracellular parasites of humans and animals that cause a wide range of acute and chronic infections. To elucidate the genetic basis of chlamydial parasitism, several approaches for making genetic modifications to Chlamydia have recently been reported. However, the lack of the available methods for the fast and effective selection of genetically modified bacteria restricts the application of genetic tools. We suggest the use of laser microdissection to isolate of single live Chlamydia-infected cells for the re-cultivation and whole-genome sequencing of single inclusion-derived Chlamydia. To visualise individual infected cells, we made use of the vital labelling of inclusions with the fluorescent Golgi-specific dye BODIPY® FL C5-ceramide. We demonstrated that single Chlamydia-infected cells isolated by laser microdissection and placed onto a host cell monolayer resulted in new cycles of infection. We also demonstrated the successful use of whole-genome sequencing to study the genomic variability of Chlamydia derived from a single inclusion. Our work provides the first evidence of the successful use of laser microdissection for the isolation of single live Chlamydia-infected cells, thus demonstrating that this method can help overcome the barriers to the fast and effective selection of Chlamydia. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  2. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Astrophysics Data System (ADS)

    Ladany, I.

    1992-07-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  3. Single photon laser altimeter data processing, analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  4. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    SciTech Connect

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  5. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10(6). A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  6. Laser-induced microlesion of single dendrites in living mice

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Panteri, R.; Masi, A.; Diana, G.; Buffelli, M.; Keller, F.; Pavone, F. S.

    2007-02-01

    Recently, two-photon microscopy has been used to perform high spatial resolution imaging of spine plasticity in the intact neocortex in living mice. In this work we study the in vivo spine rearrangements after an acute and selective damage. For this purpose, we have used a near-IR femtosecond pulsed laser to combine two-photon microscopy imaging with microdissection operation on fluorescently-labeled neurons. Three-dimensional reconstructions of dendrites expressing fluorescence protein have been performed in the cortex of YFP-H and GFP-M transgenic living mice. Afterwards, single dendrites have been laser-dissected irradiating the structure with a high femtosecond laser energy dose. By using a chronically implanted glass window we performed long-term imaging in the area of the dissected dendrite. We will show that laser ablation can be performed with micrometric precision and without visible collateral damage to nearby neuronal structures. Also, we will evidence the morphological changes of the dendritic branches and dendritic spines after this specific perturbation inside the intact neuronal network. Laser microdissection of selected structures of the neuronal branching in vivo represents a promising tool for neurobiological research.

  7. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  8. Single cell induced optical confinement in biological lasers

    NASA Astrophysics Data System (ADS)

    Karl, M.; Dietrich, C. P.; Schubert, M.; Samuel, I. D. W.; Turnbull, G. A.; Gather, M. C.

    2017-03-01

    Biological single cell lasers have shown great potential for fundamental research and next generation sensing applications. In this study, the potential of fluorescent biological cells as refractive index landscapes and active optical elements is investigated using a combined Fourier- and hyperspectral imaging technique. We show that the refractive index contrast between cell and surrounding leads to 3D confinement of photons inside living cells. The Fourier- and real-space emission characteristics of these biological lasers are closely related and can be predicted from one another. Investigations of the lasing threshold for different energy and momentum position in Fourier-space give insight into the fundamental creation of longitudinal and transverse lasing modes within the cell. These findings corroborate the potential of living biological materials for precision engineering of photonic structures and may pave the way towards low threshold polariton lasing from single cells.

  9. Optofluidic lasers with a single molecular layer of gain.

    PubMed

    Chen, Qiushu; Ritt, Michael; Sivaramakrishnan, Sivaraj; Sun, Yuze; Fan, Xudong

    2014-12-21

    We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA, are used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 10(12) cm(-2), sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface.

  10. Single-mode operation of mushroom structure surface emitting lasers

    SciTech Connect

    Wang, Y.J.; Dziura, T.G.; Wang, S.C. ); Du, G.; Wang, S. )

    1991-01-01

    Mushroom structure vertical cavity surface emitting lasers with a 0.6 {mu}m GaAs active layer sandwiched by two Al{sub 0.6{sup {minus}}}Ga{sub 0.4}As-Al{sub 0.08}Ga{sub 0.92}As multilayers as top and bottom mirrors exhibit 15 mA pulsed threshold current at 880 nm. Single longitudinal and single transverse mode operation was achieved on lasers with a 5 {mu}m diameter active region at current levels near 2 {times} I{sub th}. The light output above threshold current was linearly polarized with a polarization ratio of 25:1.

  11. Optofluidic lasers with a single molecular layer of gain

    PubMed Central

    Chen, Qiushu; Ritt, Michael; Sivaramakrishnan, Sivaraj; Sun, Yuze; Fan, Xudong

    2014-01-01

    We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA are respectively used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 1012/cm2, sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer, but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface. PMID:25312306

  12. Using electric pulse and laser to trigger a sharp and nonvolatile change of lateral photovoltage in nano-carbon film

    SciTech Connect

    Gan, Zhikai; Zhou, Peiqi; Huang, Xu; Mei, Chunlian; Zhang, Ke; Wang, Hui

    2016-03-28

    A greatly enhanced lateral photovoltage (LPV) triggered by electric pulse has been observed in nano-carbon oxide semiconductor (COS) structures. The original maximal output signal of lateral photovoltage achieved in these structures is 9.8 mV. However, by combining the application of a 60 V voltage pulse with laser illumination, the LPV can reach a very high value of 183 mV and the change ratio after 60 V pulse is nearly 1800%. In addition, the states of these light and electric-pulse triggered COSs are permanently changed, showing a non-volatile characteristic. We attribute this phenomenon to the trapping effect of stimulated electrons in COSs. The work suggests an approach for tailoring LPV-based devices by electric pulse and will be useful for the development of electric pulse modulated photodetectors.

  13. Single-particle motional oscillator powered by laser.

    PubMed

    Kaplan, A E

    2009-06-08

    An ion, atom, molecule or macro-particle in a trap can exhibit large motional oscillations due to the Doppler-affected radiation pressure by a laser, blue-detuned from an absorption line of a particle. This oscillator can be nearly thresholdless, but under certain conditions it may exhibit huge hysteretic excitation. Feasible applications include a "Foucault pendulum" in a trap, a rotation sensor, single atom spectroscopy, isotope separation, etc.

  14. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  15. Influence of Laser Power on the Shape of Single Tracks in Scanner Based Laser Wire Cladding

    NASA Astrophysics Data System (ADS)

    Barroi, A.; Gonçalves, D. Albertazzi; Hermsdorf, J.; Kaierle, S.; Overmeyer, L.

    The shape of the cladding tracks is extremely important for producing layers or structures by adding them sequently. This paper shows the influence of the laser power of a diode laser in the range of 500 to 1000 W on the shapes of single tracks in scanner based laser wire cladding. The scanner was used to oscillate the beam perpendiculary to the welding direction. Stainless steel (ER 318 Si) wire with a 0.6 mm diameter was used as deposition material. Height, width, penetration, molten area and weld seam angles of single tracks were obtained from cross-sections at three different positions of each track. The influence of these different positions on the results depends on the traverse speed. The paper discusses this influence in respect to the heat dissipation in the substrate material.

  16. Efficient femtosecond Yb:YAG laser pumped by a single-mode laser diode

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Greborio, Alessandro; Pirzio, Federico; Reali, Giancarlo

    2011-08-01

    Single-mode diodes enable a particularly simple, compact and effective pumping of solid-state laser devices for many specialized applications. We investigated a single-mode, 300-mW laser diode for pumping at 935 nm a Yb:YAG laser passively mode-locked by a semiconductor saturable absorber. Relatively short pulse generation (156 fs), tunable across 1033-1059 nm has been demonstrated. An optical-to-optical efficiency of about 28% has been obtained with 320 fs long pulses. Therefore, contrarily to what previously believed, compact diode-pumped ultrafast Yb:YAG oscillators can reliably and efficiently deliver pulses in the range of ≈ 100-200 fs with few tens of mW, which are very appealing for bio-diagnostics and amplifier seeding applications.

  17. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells.

    PubMed

    O'Donoghue, Geoff P; Pielak, Rafal M; Smoligovets, Alexander A; Lin, Jenny J; Groves, Jay T

    2013-07-03

    T cells discriminate between self and foreign antigenic peptides, displayed on antigen presenting cell surfaces, via the TCR. While the molecular interactions between TCR and its ligands are well characterized in vitro, quantitative measurements of these interactions in living cells are required to accurately resolve the physical mechanisms of TCR signaling. We report direct single molecule measurements of TCR triggering by agonist pMHC in hybrid junctions between live primary T cells and supported lipid membranes. Every pMHC:TCR complex over the entire cell is tracked while simultaneously monitoring the local membrane recruitment of ZAP70, as a readout of TCR triggering. Mean dwell times for pMHC:TCR molecular binding of 5 and 54 s were measured for two different pMHC:TCR systems. Single molecule measurements of the pMHC:TCR:ZAP70 complex indicate that TCR triggering is stoichiometric with agonist pMHC in a 1:1 ratio. Thus any signal amplification must occur downstream of TCR triggering. DOI:http://dx.doi.org/10.7554/eLife.00778.001.

  18. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  19. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process

    NASA Astrophysics Data System (ADS)

    El Cheikh, Hussam; Courant, Bruno; Branchu, Samuel; Hascoët, Jean-Yves; Guillén, Ronald

    2012-03-01

    Direct Laser Fabrication is a promising new manufacturing technology coming from laser cladding process. From a coaxial nozzle, powder is fed through a laser beam on a substrate. The powder melting and solidification processes lead to the fabrication of a part layer by layer. In this work 316L stainless steel powder is used to form laser tracks on a low carbon steel substrate. The layer geometry is an important process characteristic to control the final part of fabrication. This paper presents analytical relationships between the laser tracks geometrical characteristics (width, height, area, penetration depth) and the processing parameters (laser power P, scanning speed V and powder mass flow Qm). Three values of each processing parameters are fixed and so 27 different experiments have been made and analyzed. The validity of these results is discussed studying the correlation coefficient R, the graphical analysis of the residuals and the uncertainty evaluations. Two kinds of models are studied to predict the form and the geometrical characteristics of the single laser tracks cross sections. The first one is an analytical model in which the distribution of the powder in the feed jet is supposed to govern the laser clad geometry. Three distributions are proposed: Gaussian, uniform and polynomial. In the second model the general form of the clad cross section is supposed to be a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored.

  20. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  1. New random trigger-feature for ultrashort-pulsed laser increases throughput, accuracy and quality in micromachining applications

    NASA Astrophysics Data System (ADS)

    Oehler, Andreas; Ammann, Hubert; Benetti, Marco; Wassermann, Dominique; Jaeggi, Beat; Remund, Stefan; Neuenschwander, Beat

    2017-02-01

    For most micromachining applications, the laser focus has to be moved across the workpiece, either by steering the beam or by moving the workpiece. To maximize throughput, this movement should be as fast as possible. However, the required positioning accuracy often limits the obtainable speed. Especially the machining of small and complex features with high precision is constrained by the motion-system's maximum acceleration, limiting the obtainable moving spot velocity to very low values. In general, processing speed can vary widely within the same processing job. To obtain optimum quality at maximum throughput, ideally the pulse energy and the pulse-to-pulse pitch on the workpiece are kept constant. This is only possible if laser-pulses can be randomly triggered, synchronized to the current spot velocity. For ultrafast lasers this is not easily possible, as by design they are usually operated at a fixed pulse repetition rate. The pulse frequency can only be changed by dividing down with integer numbers which leads to a rather coarse frequency grid, especially when applied close to the maximum used operating frequency. This work reports on a new technique allowing random triggering of an ultrafast laser. The resulting timing uncertainty is less than ±25ns, which is negligible for real-world applications, energy stability is <2% rms. The technique allows using acceleration-ramps of the implemented motion system instead of applying additional override moves or skywriting techniques. This can reduce the processing time by up to 40%. Results of applying this technique to different processing geometries and strategies will be presented.

  2. Single mode continous wave GaAs quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Strasser, Gottfried

    2001-03-01

    Quantum cascade lasers (QCLs) are powerful light emitters in the mid infrared. We fabricated GaAs-based first order and second order distributed feedback lasers to achieve single mode emission. The emission wavelength is continuously tunable according to the temperature dependence of the effective refractive index, which shifts the Bragg wavelength. For the continous-wave operation achieved from first order DFB structures the active material consists of 40 periods of an AlAs/GaAs chirped superlattice, grown by solid source molecular beam epitaxy. A double plasmon enhanced waveguide is used for vertical optical confinement, lateral electrical and optical confinement is achieved by deep etched ridges. The Bragg grating is defined by contact lithography and etched into the surface of the top cladding layer, thus avoiding the need of regrowth. Single mode emission at 11.8 microns is observed for pulsed mode operation and for continuous-wave operation. The emission wavelength depends on the laser current, because of the electrical heating in the active material. We derive the effective temperature in the laser cavity from the emission wavelength. We use the measured dependence of the emission wavelength from the heat sink temperature in pulsed-mode operation, where the effective temperature change within a pulse can be neglected and the average heat load is low. Additionally, single mode emission from electrically pumped QCL micro-cavities (circular and deformed cross sections) and monolithic GaAs/AlGaAs QCLs with self-aligned Focused Ion Beam cut coupled cavities are demonstrated. Deep FIB etched Bragg reflectors can be used to increase the reflectivity. This work is supported by the European Project SUPERSMILE.

  3. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  4. Single-shot spectroscopy of broadband Yb fiber laser

    NASA Astrophysics Data System (ADS)

    Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2017-02-01

    We have experimentally reported on a real-time single-shot spectroscopy of a broadband Yb-doped fiber (YDF) laser which based on a nonlinear polarization evolution by using a time-stretched dispersive Fourier transformation technique. We have measured an 8000 consecutive single-shot spectra of mode locking and noise-like pulse (NLP), because our developed broadband YDF oscillator can individually operate the mode locking and NLP by controlling a pump LD power and angle of waveplates. A shot-to-shot spectral fluctuation was observed in NLP. For the investigation of pulse formation dynamics, we have measured the spectral evolution in an initial fluctuations of mode locked broadband YDF laser at an intracavity dispersion of 1500 and 6200 fs2 for the first time. In both case, a build-up time between cw and steady-state mode locking was estimated to be 50 us, the dynamics of spectral evolution between cw and mode locking, however, was completely different. A shot-to-shot strong spectral fluctuation, as can be seen in NLP spectra, was observed in the initial timescale of 20 us at the intracavity dispersion of 1500 fs2. These new findings would impact on understanding the birth of the broadband spectral formation in fiber laser oscillator.

  5. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  6. Tunable single-mode slot waveguide quantum cascade lasers

    SciTech Connect

    Meng, Bo; Tao, Jin; Quan Zeng, Yong; Wu, Sheng; Jie Wang, Qi

    2014-05-19

    We report experimental demonstration of tunable, monolithic, single-mode quantum cascade lasers (QCLs) at ∼10 μm with a two-section etched slot structure. A single-mode tuning range of 77 cm{sup −1} (785 nm), corresponding to ∼7.8% of the relative tuning range, was realized with a ∼20 dB side mode suppression ratio within the whole tuning range. Compared with integrated distributed feedback QCLs, our devices have the advantages of easy fabrication and a broader tuning range. Further theoretical analyses and numerical simulations show that it is possible to achieve a broad continuous tuning range by optimizing the slot structures. The proposed slot-waveguide design could provide an alternative but simple approach to the existing tuning schemes for realizing broadly continuous tunable single-mode QCLs.

  7. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  8. Multiple Isotope Magneto Optical Trap from a single diode laser

    NASA Astrophysics Data System (ADS)

    Gomez, Eduardo; Valenzuela, Victor; Hamzeloui, Saeed; Gutierrez, Monica

    2013-05-01

    We present a simple design for a Dual Isotope Magneto Optical Trap. The system requires a single diode laser, a fiber modulator and a tapered amplifier to trap and completely control both 85Rb and 87Rb. We generate all the frequencies needed for trapping both species using the fiber intensity modulator. All the frequencies are amplified simultaneously with the tapered amplifier. The position and power of each frequency is now controlled independently on the RF rather than on the optical side. This introduces an enormous simplification for laser cooling that often requires an acousto-optic modulator for each frequency. The range of frequency changes is much bigger than what is available with acousto-optic modulators since in our case is determined by the modulator bandwidth (10 GHz). Additional isotopes can be simply added by including additional RF frequencies to the modulator and extra beams for other uses can be produced the same way. Support from CONACYT, PROMEP and UASLP.

  9. Parametric four-wave mixing using a single cw laser.

    PubMed

    Brekke, E; Alderson, L

    2013-06-15

    Four-wave mixing can be used to generate coherent output beams, with frequencies difficult to acquire in commercial lasers. Here, a single narrow external cavity diode laser locked to the two photon 5s-5d transition in rubidium is combined with a tapered amplifier system to produce a high power cw beam at 778 nm and used to generate coherent light at 420 nm through parametric four-wave mixing. This process is analyzed in terms of the intensity and frequency of the incoming beam as well as the atomic density of the sample. The efficiency of the process is currently limited when on resonance due to the absorption of the 420 nm beam, and modifications should allow a significant increase in output power.

  10. Nanoscale heating of laser irradiated single gold nanoparticles in liquid.

    PubMed

    Honda, Mitsuhiro; Saito, Yuika; Smith, Nicholas I; Fujita, Katsumasa; Kawata, Satoshi

    2011-06-20

    Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.

  11. Experimental investigation of thermally induced core laser leakage in large mode area single trench fiber

    NASA Astrophysics Data System (ADS)

    Kong, Lingchao; Huang, Liangjin; Gu, Shaoyi; Leng, Jinyong; Guo, Shaofeng; Zhou, Pu; Xu, Xiaojun; Jiang, Zongfu

    2016-11-01

    We demonstrated a new phenomenon, namely, thermally induced core laser leakage in single trench fiber (STF), for the first time. The STF provides very high loss and power delocalization of higher order mode (HOM) and maintain the effective single mode operation. However these properties are chartered only under low power situations. In this paper we established a 976nm directly pumped high power co-pumping fiber amplifier based on the STF. The maximum output power was 1022W with a slope efficiency of 76%. Further increase the pump power will leads to the output power decrease. Meanwhile a micro second Level noise like power fluctuation was observed. No resonance frequency was observed in frequency domain indicating the mode instability is not triggered. We believe that it is the thermally induced waveguide index profile change due to the excessively heat load in the front section of STF that leads to the failure of HOM suppression and the power of FM was coupled into the HOM. However the heat load in the rear section of STF was relatively low and the HOM leaked into the cladding due to the bending loss. We provide a mitigating method by pumping with pump light of smaller absorption. A maximum power of 1330W was achieved without power decrease via pumping the STF with 905nm and 976nm pump light (same amplifier). To our best knowledge, this is the first demonstration of thermally induced core laser leakage in STF and the pertinent results can provide significant reference for future optimization.

  12. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  13. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  14. Single cell viability and impact of heating by laser absorption.

    PubMed

    Wetzel, Franziska; Rönicke, Susanne; Müller, Karla; Gyger, Markus; Rose, Daniel; Zink, Mareike; Käs, Josef

    2011-09-01

    Optical traps such as tweezers and stretchers are widely used to probe the mechanical properties of cells. Beyond their large range of applications, the use of infrared laser light in optical traps causes significant heating effects in the cell. This study investigated the effect of laser-induced heating on cell viability. Common viability assays are not very sensitive to damages caused in short periods of time or are not practicable for single cell analysis. We used cell spreading, a vital ability of cells, as a new sensitive viability marker. The optical stretcher, a two beam laser trap, was used to simulate heat shocks that cells typically experience during measurements in optical traps. The results show that about 60% of the cells survived heat shocks without vital damage at temperatures of up to 58 ± 2°C for 0.5 s. By varying the duration of the heat shocks, it was shown that 60% of the cells stayed viable when exposed to 48 ± 2°C for 5 s.

  15. Single transverse mode selectively oxidized vertical cavity lasers

    SciTech Connect

    CHOQUETTE,KENT D.; GEIB,KENT M.; BRIGGS,RONALD D.; ALLERMAN,ANDREW A.; HINDI,JANA JO

    2000-04-26

    Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

  16. Automated analysis of single cells using Laser Tweezers Raman Spectroscopy.

    PubMed

    Casabella, S; Scully, P; Goddard, N; Gardner, P

    2016-01-21

    In recent years, significant progress has been made into the label-free detection and discrimination of individual cancer cells using Laser Tweezers Raman Spectroscopy (LTRS). However, the majority of examples reported have involved manual trapping of cells, which is time consuming and may lead to different cell lines being analysed in discrete batches. A simple, low-cost microfluidic flow chamber is introduced which allows single cells to be optically trapped and analysed in an automated fashion, greatly reducing the level of operator input required. Two implementations of the flow chamber are discussed here; a basic single-channel device in which the fluid velocity is controlled manually, and a dual-channel device which permits the automated capture and analysis of multiple cell lines with no operator input. Results are presented for the discrimination of live epithelial prostate cells and lymphocytes, together with a consideration of the consequences of traditional 'batch analysis' typically used for LTRS of live cells.

  17. Laser-induced single point nanowelding of silver nanowires

    NASA Astrophysics Data System (ADS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-03-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  18. Laser-induced single point nanowelding of silver nanowires

    SciTech Connect

    Dai, Shuowei; Li, Qiang Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-03-21

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  19. Single-frequency thulium-doped distributed-feedback fiber laser.

    PubMed

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-07-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a single-frequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors' knowledge, this is the first report of a single-frequency DFB fiber laser that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers.

  20. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  1. Single-shot Laser-assisted Nanofabrication of Plasmonic Nanorings

    NASA Astrophysics Data System (ADS)

    Nepomnyashchii, A. V.; Kuchmizhak, A. A.; Gurbatov, S. O.; Vitrik, O. B.; Kulchin, Yu. N.

    Simple high-performing two-step technique for fabrication different functional plasmonic nanostructures including nanorods, separated and crossed nanorings, as well as more complex hybrid structures on both glass and silicon substrates was proposed. In this technique the noble metal film covering bulk glass or silicon substrates is irradiated by single tightly focused nanosecond laser pulse followed by slow polishing of the fabricated nanostructures by accelerated argon ion (Ar+) beam. Nanosecond laser pulse locally modifies its initial thickness of metal film through the initiation of ultrafast melting and subsequent hydrodynamic processes, while the following Ar+ polishing reveals only the features of its topography - plasmonic structures on the glass/Si substrate. We demonstrate that both the type and lateral size of the resulting functional plasmonic nanostructure are determined by the pulse energy, metal film thickness as well as the optical spot size, while subsequent Ar+ polishing allows varying the height of the resulting nanostructures. The proposed simple two-step high-throughput technique represents the next step towards direct lased-induced fabrication of complex functional plasmonic nanostructures and is well-suited for both large-scale fabrication of ordered arrays comprising hundreds of nanoelements and single nanostructure at a given point on the sample surface.

  2. Laser capture microdissection of single cells from complex tissues.

    PubMed

    Suarez-Quian, C A; Goldstein, S R; Pohida, T; Smith, P D; Peterson, J I; Wellner, E; Ghany, M; Bonner, R F

    1999-02-01

    Laser capture microdissection (LCM) is a new method used to select and procure cell clusters from tissue sections. Once captured, the DNA, RNA or protein can be easily extracted from the isolated cells and analyzed by conventional PCR, reverse transcription (RT)-PCR or polyacrylamide gel electrophoresis, including protein zymography for specific macromolecular changes. In LCM, a thermoplastic polymer coating [ethylene vinyl acetate (EVA)] attached to a rigid support is placed in contact with a tissue section. The EVA polymer over microscopically selected cell clusters is precisely activated by a near-infrared laser pulse and then bonds to the targeted area. Removal of the EVA and its support from the tissue section procures the selected cell aggregates for molecular analysis. This initial NIH LCM approach using a flat transfer EVA film has been recently commercialized and has proven to be an effective routine microdissection technique for subsequent macromolecular analysis in many laboratories around the world. However, reliable and precise capture of individual cells from tissue sections has been difficult to perform with the current LCM instruments. In this report, we describe the capture of individual cells with a new NIH LCM microscope, which epi-irradiates the EVA polymer overlying individual cells with 1-ms laser pulses focused to 6 microns. A computer-controlled arm precisely positions a 40-micron-wide strip of a cylindrical EVA surface onto a sample with a light contact force (ca. 0.1 g). The small contact force and contact area on the film on the sample diminishes nonspecific transfer to negligible levels. By slightly rotating the cylinder to provide a renewable transfer surface, concentration of a distinct cell type on a single cylinder is possible. Using this novel adaptation, we demonstrate the rapid and practical capture of single cells from different types of tissue sections, including immunostained cells.

  3. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    PubMed

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  4. Adaptive Neural Network-Based Event-Triggered Control of Single-Input Single-Output Nonlinear Discrete-Time Systems.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-01-01

    This paper presents a novel adaptive neural network (NN) control of single-input and single-output uncertain nonlinear discrete-time systems under event sampled NN inputs. In this control scheme, the feedback signals are transmitted, and the NN weights are tuned in an aperiodic manner at the event sampled instants. After reviewing the NN approximation property with event sampled inputs, an adaptive state estimator (SE), consisting of linearly parameterized NNs, is utilized to approximate the unknown system dynamics in an event sampled context. The SE is viewed as a model and its approximated dynamics and the state vector, during any two events, are utilized for the event-triggered controller design. An adaptive event-trigger condition is derived by using both the estimated NN weights and a dead-zone operator to determine the event sampling instants. This condition both facilitates the NN approximation and reduces the transmission of feedback signals. The ultimate boundedness of both the NN weight estimation error and the system state vector is demonstrated through the Lyapunov approach. As expected, during an initial online learning phase, events are observed more frequently. Over time with the convergence of the NN weights, the inter-event times increase, thereby lowering the number of triggered events. These claims are illustrated through the simulation results.

  5. High power single lateral mode 1050 nm laser diode bar

    NASA Astrophysics Data System (ADS)

    Liu, Guoli; Li, Jingwei; Fan, Li; Xu, Zuntu; Morales, John; Schleuning, David; Bian, Zhixi; Peters, Michael; Winhold, Heiko; Acklin, Bruno

    2017-02-01

    We present recent development of single lateral mode 1050 nm laser bars. The devices are based on an InGaAs/AlGaAs single quantum well and an asymmetric large optical cavity waveguide structure. By optimizing the AlGaAs composition, doping profiles, and QW thickness, the low internal loss of 0.5 cm-1 and high internal quantum efficiency of 98% are obtained. A standard bar (10% fill factor; 4mm cavity length) reaches 72% peak electro-optical efficiency and 1.0 W/A slope efficiency at 25°C. To achieve high single lateral mode power, the current confinement and optical loss profile in lateral direction are carefully designed and optimized to suppress higher order lateral modes. We demonstrate 1.5W single lateral mode power per emitter from a 19-emitter 10mm bar at 25°C. High electro-optical efficiency are also demonstrated at 25°C from two separate full-bar geometries on conduction cooled packaging: 20 W with <50% electro-optical efficiency from a 19-emitter bar and 50 W with <45% electro-optical efficiency from a 50-emitter bar.

  6. Prolongation of the lifetime of guided discharges triggered in atmospheric air by femtosecond laser filaments up to 130 μs

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Honnorat, B.; Thouin, E.; Point, G.; Mysyrowicz, A.; Houard, A.

    2016-04-01

    The triggering and guiding of electric discharges produced in atmospheric air by a compact 100 kV Marx generator is realized in laboratory using an intense femtosecond laser pulse undergoing filamentation. We describe here an approach allowing extending the lifetime of the discharges by injecting a current with an additional circuit. Laser guiding discharges with a length of 8.5 cm and duration of 130 μs were obtained.

  7. New double constant-fraction trigger circuit for locking on laser pulse trains up to 100 MHz

    SciTech Connect

    Cova, S.; Ripamonti, G.; Lacaita, A. )

    1990-03-01

    We describe a new technique for picosecond synchronization on a 80-MHz mode-locked laser. An implementation of such technique is described, and experimental results are presented. Better than 30-ps FWHM synchronization jitter is demonstrated, with an optical pulse amplitude fluctuation of a decade. Such results confirm that single-photon-timing experiments with picosecond resolution are possible by using high-repetition-rate light pulses (i.e., without any cavity dumper).

  8. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

    SciTech Connect

    Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David; Krompholz, Hermann G.; Vela, Russell; Jorgenson, Roy Eberhardt; Timoshkin, Igor (University of Strathclyde, Glasgow, Scotland); Woodworth, Joseph Ray; Prestwich, Kenneth Randel (Voss Scientific, Albuquerque, NM); Krile, John; Given, Martin (University of Strathclyde, Glasgow, Scotland); McKee, G. Randall; Rosenthal, Stephen Edgar; Struve, Kenneth William; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Benwell, Andrew L. (University of Missouri-Columbia, Columbia, Missouri); Kovaleski, Scott; LeChien, Keith, R.; Johnson, David (Titan Pulse Sciences Division); Fouracre, R.A. (University of Strathclyde, Glasgow, Scotland); Yeckel, Chris (University of Missouri-Columbia, Columbia, Missouri); Wakeland, Peter Eric; Miller, A. R. (Titan Pulse Sciences Division); Hodge, Keith Conquest (Ktech Corporation, Albuquerque, NM); Pasik, Michael Francis; Savage, Mark Edward; Maenchen, John Eric; Curry, Randy D.; Feltz, Greg; Bliss, David Emery; MacGregor, Scott (University of Strathclyde, Glasgow, Scotland); Corley, J. P. (Ktech Corporation, Albuquerque, NM); Anaya, Victor (Ktech Corporation, Albuquerque, NM); Wallace, Zachariah (Ktech Corporation, Albuquerque, NM); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Neuber, Andreas. (Texas Tech University, Lubbock, TX)

    2007-03-01

    In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

  9. ECG-triggering of the laser Doppler signal: an approach for perfusion imaging on the beating calf heart

    NASA Astrophysics Data System (ADS)

    Wardell, Karin; Karlsson, Daniel M.; Loenn, Urban; Traff, Stefan; Casimir-Ahn, Henrik

    2001-06-01

    Laser Doppler perfusion imaging (LDPI) has successfully been used to map the myocardial perfusion on patients undergoing coronary bypass surgery on the arrested heart. The need for intra-operative evaluation of graft function is obvious in routine surgery but even more imperative when adapting new surgical techniques where the procedure is performed on the beating heart. When using LDPI on the beating heart, artifacts originating from the movement of the heart are superimposed on the Doppler signal. We have investigated a method to reduce these artifacts by controlling the sampling sequence with ECG-triggering. The method has been assessed in an animal model on the beating calf heart. After sternotomy, an area covering 1 cm2 was imaged at the anterior wall of the left ventricle. In this area, six perfusion images were captured each of them recorded at fixed, but different time intervals in the cardiac cycle. In addition continuous measurements at one spot was done during 1 - 2 minutes. The signal recorded during pumping action was high compared to measurements performed in the same muscle area during infusion of blood with a syringe pump. Repeated measurements captured at a fixed delay time from the R-peak in the same areas at the same heart frequency showed reproducibility. ECG-triggering of the laser Doppler signal is the first step in our attempts to adapt LDPI to enabling assessment of myocardial perfusion on the beating heart. Further technical achievements and in-vivo investigations are, however, needed and will be performed by our research team in future studies.

  10. Laser-triggered proton acceleration from hydrogenated low-density targets

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Obraztsova, E. A.; Chuvilin, A. L.; Obraztsova, E. D.; Bychenkov, V. Yu.

    2017-06-01

    Synchronized proton acceleration by ultraintense slow light (SASL) in low-density targets has been studied in application to fabricated carbon nanotube films. Proton acceleration from low-density plasma films irradiated by a linearly polarized femtosecond laser pulse of ultrarelativistic intensity was considered as result of both target surface natural contamination by hydrocarbons and artificial volumetric doping of low-density carbon nanotube films. The 3D particle-in-cell simulations confirm the SASL concept [A. V. Brantov et al., Synchronized Ion Acceleration by Ultraintense Slow Light, Phys. Rev. Lett. 116, 085004 (2016), 10.1103/PhysRevLett.116.085004] for proton acceleration by a femtosecond petawatt-class laser pulse from realistic low-density targets with a hydrogen impurity, quantify the characteristics of the accelerated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from contaminated ultrathin solid dense foils.

  11. Bilateral axilla hair removal comparing a single wavelength alexandrite laser with combined multiplexed alexandrite and Nd:YAG laser treatment from a single laser platform.

    PubMed

    Bernstein, Eric F; Basilavecchio, Lisa; Plugis, Jessica

    2012-02-01

    This study compares the efficacy, safety, and side-effect profile of three different firing modes in a single laser emitting both dual-wavelength multiplexed laser pulses and single-wavelength pulses for removing unwanted axillary hair in subjects with Fitzpatrick skin types II-V. Subjects received four laser treatments at 4-6 week intervals. One axilla was treated with the alexandrite laser alone while the contralateral axilla was treated with multiplexed pulses delivering either a 755 nm/1064 nm pulse or a 1064 nm/755 nm pulse. Efficacy was evaluated through blinded hair counts performed on digital photographs taken two and six months following the final treatment. Mean hair clearance percentages were 83%, 81%, and 86% for the alexandrite, alexandrite/YAG sequence, and YAG/alexandrite sequence, respectively. Side effects were minimal and did not differ by treatment. Muliplexed 755 nm/1064 nm and 1,064 nm/755 nm pulses compared favorably with the 755 nm pulses for efficacy and side-effect profile, all being highly efficacious. Further study of the multiplexed pulses in various clinical settings, including refractory hair removal, are indicated.

  12. A comparative study of single and double pulse laser induced breakdown spectroscopy

    SciTech Connect

    Ahmed, Rizwan; Baig, M. Aslam

    2009-08-01

    A comparative study of single and double pulse laser induced breakdown spectroscopy (LIBS) using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers is presented. The double pulse collinear configuration yields more than three hundred times signal enhancement in the singly ionized aluminum lines as compared to the single pulse LIBS spectrum. The effect of interpulse delay between the two laser pulses and the laser pulses energies ratio in the double pulse spectrum are studied. A comparison of variations of plasma parameters along the plume axis in the single and the double pulse has also been studied.

  13. Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2015-07-01

    We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.

  14. Nuclear Collisions Induced by Single-Cycle Laser Pulses:

    NASA Astrophysics Data System (ADS)

    Zhi, Miaochan; Sokolov, Alexei

    2004-10-01

    Fusion occurs when light nuclei of hydrogen (H), deuterium (D), or tritium (T), join together to produce helium, neutrons, and energy. If harnessed on earth, fusion has the potential to provide a clean and virtually unlimited source of energy. The two present techniques for controlled fusion all rely on hot plasma. Thermal motion of the nuclei results in random nuclear collisions, which can be energetic enough to produce fusion when the temperature is high. We propose a ``new method'' which doesn't require preparation and confinement of hot and dense plasma, but works in a molecular gas. It uses the fact that nuclei in a molecule are pre-aligned in front of each other and can be driven into each other by the very strong and ultra-short laser pulse since the nuclei of different masses will acquire different velocities when driven by the same electric field. The nuclei may collide with high kinetic energy needed to overcome the Coulomb Barrier. These collisions may lead to fusion. Realization of this technique will require ultrashort (few-femtosecond, single-cycle) laser pulses with field intensities approaching 10^23W/cm^2. We have performed a classical simulation of nuclear motion under the action of the Coulomb repulsion and a strong laser field. We have also done a simple statistical ensemble calculation. From our results, we can see that collision will occur on a sub-attosecond time scale. On that timescale the nuclei will experience large acceleration and emit zeptosecond bursts of light.

  15. Effect of a single application of pulsed dye laser treatment of port-wine birthmarks on intraocular pressure.

    PubMed

    Quan, Susan Y; Comi, Anne M; Parsa, Cameron F; Irving, Natasha D; Krakowski, Andrew C; Cohen, Bernard A

    2010-09-01

    A new pathophysiologic mechanism has been proposed that indicates that periorbital port-wine birthmarks (PWBs) serve as alternate collateral blood passageways when orbital venous drainage is impaired. The occlusion of such collateral venous channels could, therefore, potentially exacerbate impaired ocular venous flow and trigger the development or worsening of glaucoma in patients with Sturge-Weber syndrome. We investigated to what extent a single application of laser therapy, which occludes only the most superficial portions of a facial PWB, might affect intraocular pressure. Pressures before and after laser treatment were measured to determine pressure difference in 15 patients receiving laser treatment. The greatest pressure differences were observed in patients with a PWB closest to the eye (P = .02). Posttreatment pressures were significantly decreased, relative to pretreatment pressures, only in patients with a PWB on the eyelid compared with patients with a facial PWB not near the eyes (2.33 vs 0.75 mm Hg; P = .004). No correlation was found between change in pressure and patient age, PWB size, or number of previous treatments. A single laser application to a PWB does not appear to show a clinically relevant change in intraocular pressure. Further study is needed longitudinally in a broad range of patients.

  16. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction.

    PubMed

    Horst, Nelly A; Katz, Aviva; Pereman, Idan; Decker, Eva L; Ohad, Nir; Reski, Ralf

    2016-01-18

    Plants characteristically alternate between haploid gametophytic and diploid sporophytic stages. Meiosis and fertilization respectively initiate these two different ontogenies(1). Genes triggering ectopic embryo development on vegetative sporophytic tissues are well described(2,3); however, a genetic control of embryo development from gametophytic tissues remains elusive. Here, in the moss Physcomitrella patens we show that ectopic overexpression of the homeobox gene BELL1 induces embryo formation and subsequently reproductive diploid sporophytes from specific gametophytic cells without fertilization. In line with this, BELL1 loss-of-function mutants have a wild-type phenotype, except that their egg cells are bigger and unable to form embryos. Our results identify BELL1 as a master regulator for the gametophyte-to-sporophyte transition in P. patens and provide mechanistic insights into the evolution of embryos that can generate multicellular diploid sporophytes. This developmental innovation facilitated the colonization of land by plants about 500 million years ago(4) and thus shaped our current ecosystems.

  17. Single-laser, one beam, tetrahedral magneto-optical trap.

    PubMed

    Vangeleyn, Matthieu; Griffin, Paul F; Riis, Erling; Arnold, Aidan S

    2009-08-03

    We have realized a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

  18. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  19. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  20. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  1. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Astaf'eva, N. G.; Meglinski, I. V.

    2014-08-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials.

  2. Silver nanoparticle synthesis: novel route for laser triggering of polyelectrolyte capsules.

    PubMed

    Anandhakumar, S; Vijayalakshmi, S P; Jagadeesh, G; Raichur, Ashok M

    2011-09-01

    We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (M(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 μJ was used and burst release was observed when pulse energy increased to 600 μJ.

  3. Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  4. Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Duerksen, Gary L.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  5. Towards high-power single-cycle THz laser for initiating high-field-sensitive phenomena.

    PubMed

    Ruchert, Clemens; Ardana, Fernando; Trisorio, Alexandre; Vicario, Carlo; Hauri, Christoph P

    2011-01-01

    Powerful THz radiation confined in one field period or less is an adequate tool for triggering nonlinear actions. We show results towards the realization of a tunable high-power THz source based on a laser-driven frequency conversion scheme in plasma and nonlinear crystals. A powerful THz source in combination with the future X-ray Free Electron Laser facility in Switzerland (SwissFEL) holds promise for exciting experiments in a variety of different research areas.

  6. On-chip coherent combining of angled-grating diode lasers toward bar-scale single-mode lasers.

    PubMed

    Zhao, Yunsong; Zhu, Lin

    2012-03-12

    Single mode operation of broad-area diode lasers, which is the key to obtain high power, high brightness sources, is difficult due to highly nonlinear materials and strong coupling between gain and index. Conventional broad-area lasers usually operate with multiple modes and have poor beam quality. Laser bars usually consist of incoherently combined broad-area single emitters placed side by side. In this article, we have demonstrated a novel integrated laser architecture in which Bragg diffraction is used to realize simultaneous modal control and coherent combining of broad-area diode lasers. Our experimental results show that two 100 μm wide, 1.3mm long InP broad-area lasers provide near-diffraction-limited output beam and are coherently combined at the same time without any external optical components. Furthermore, our design can be expanded to a coherently combined broad-area laser array that turns a laser bar into a coherent single mode laser with diffraction-limited beam quality.

  7. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT.

    PubMed

    Mou, Juan; Lin, Tianquan; Huang, Fuqiang; Chen, Hangrong; Shi, Jianlin

    2016-04-01

    Substantially different from traditional combinatorial-treatment of photothermal therapy (PTT) and photodynamic therapy (PDT) by using multi-component nanocomposite under excitation of separate wavelength, a novel single near infrared (NIR) laser-induced multifunctional theranostic nanoplatform has been rationally and successfully constructed by a single component black titania (B-TiO2-x) for effective imaging-guided cancer therapy for the first time. This multifunctional PEGylated B-TiO2-x shows high dispersity/stability in aqueous solution, excellent hemo/histocompatibility and broad absorption ranging from NIR to ultraviolet (UV). Both in vitro and in vivo results well demonstrated that such a novel multifunctional theranostic nanoplaform could achieve high therapeutic efficacy of simultaneous and synergistic PTT/PDT under the guidance of infrared thermal/photoacoustic (PA) dual-modal imaging, which was triggered by a single NIR laser. This research circumvents the conventional obstacles of using multi-component nanocomposites, UV light and high laser power density. Furthermore, negligible side effects to blood and main tissues could be found in 3 months' investigation, facilitating its potential biomedical application.

  8. Single frequency and wavelength stabilized near infrared laser source for water vapor DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Walters, Brooke; Shuman, Tim; Losee, Andrew; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2015-02-01

    Fibertek has demonstrated a single frequency, wavelength stabilized near infrared laser transmitter for NASA airborne water vapor DIAL application. The application required a single-frequency laser transmitter operating at 935 nm near infrared (NIR) region of the water vapor absorption spectrum, capable of being wavelength seeded and locked to a reference laser source and being tuned at least 100 pm across the water absorption spectrum for DIAL on/off measurements. Fibertek is building a laser transmitter system based on the demonstrated results. The laser system will be deployed in a high altitude aircraft (ER-2 or UAV) to autonomously perform remote, long duration and high altitude water vapor measurements.

  9. Single photon triggered dianion formation in TCNQ and F4TCNQ crystals

    PubMed Central

    Ma, Lin; Hu, Peng; Jiang, Hui; Kloc, Christian; Sun, Handong; Soci, Cesare; Voityuk, Alexander A.; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2016-01-01

    Excited state dynamics in two strong organic electron acceptor systems, TCNQ and F4TCNQ single crystals, was studied. After absorption of a single photon, dianions are formed in both crystals on ultrashort timescale: TCNQ τ < 50 fs, F4TCNQ τ = 4 ps. By use of transient absorption spectroscopy, we demonstrate that the dianion formation in F4TCNQ is mediated by the radical anion precursor which is described by a two-step model. Our measurements show the phenomenon that in this quinoid acceptor crystals in the absence of additional donor molecule, it is possible to resolve the two step formation of a doubly charged anion upon absorption of a single low energy photon (2.6 eV). PMID:27346797

  10. Hong-Ou-Mandel interference between triggered and heralded single photons from separate atomic systems

    NASA Astrophysics Data System (ADS)

    Leong, Victor; Kosen, Sandoko; Srivathsan, Bharath; Gulati, Gurpreet Kaur; Cerè, Alessandro; Kurtsiefer, Christian

    2015-06-01

    We present Hong-Ou-Mandel interference of single photons generated via two different physical processes by two independent atomic systems: scattering by a single atom, and parametric generation via four-wave mixing in a cloud of cold atoms. Without any spectral filtering, we observe a visibility of V =62 ±4 % . After correcting for accidental coincidences, we obtain V =93 ±6 % . The observed interference demonstrates the compatibility of the two sources, forming the basis for an efficient quantum interface between different physical systems.

  11. The triggering of steam explosions of single drops of pure and alloyed molten aluminum

    SciTech Connect

    Nelson, L.S.; Fuketa, T.; Eatough, M.J.; Vigil, F.J. )

    1990-06-01

    When a hot liquid (fuel) comes into contact with a cold liquid (coolant), a variety of different fuel/coolant interactions (FCIs) can occur. For certain research on production reactors, the coolant of interest is water (either H{sub 2}O or D{sub 2}O), while the fuel is a molten alloy based mainly on aluminum and uranium. Aluminum-based melts have been shown to be explosive in many experiments performed by the aluminum industry and in several reactor experiments and accidents including NRX, SPERT, BORAX, etc. In the aluminum industry, steam explosions continue to result in property damage, personal injuries, and deaths. It is also known that certain alloying components, notably lithium, can enhance the strength of the explosions as well as the probability of their occurrence. To obtain quantitative information relating to the FCIs that might occur with uranium-aluminum fuel, a laboratory-scale experimental scoping study was begun at Sandia National Laboratories. The overall objective of this research program is to provide an understanding of the mechanism of steam explosions with the melt compositions expected in various hypothetical core meltdown accident scenarios in production reactors. In this program, it has been demonstrated that reproducible triggering of steam explosions with pure and alloyed aluminum can be achieved with both focused and unfocused shock waves generated with underwater electrical discharges.

  12. Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot

    SciTech Connect

    Kane, D.J.; Rodriguez, G.; Taylor, A.J.; Clement, T.S. ||

    1997-04-01

    Frequency-resolved optical gating (FROG) is a technique that produces a spectrogram of an ultrashort laser pulse. The intensity and phase of the ultrashort laser pulse can be determined through solving for the phase of the spectrogram with an iterative, phase-retrieval algorithm. This work presents a new phase-retrieval algorithm that retrieves both the probe and the gate pulses independently by converting the FROG phase-retrieval problem to an eigenvector problem. The new algorithm is robust and general. It is tested theoretically by use of synthetic data sets and experimentally by use of single-shot, polarization-gate FROG. We independently and simultaneously characterize the electric field amplitude and phase of a pulse (probe) that was passed though 200 mm of BK7 glass and the amplitude of an unchanged pulse (gate) from an amplified Ti:sapphire laser. When the effect of the 200 mm of BK7 glass was removed mathematically from the probe, there was good agreement between the measured gate and the calculated, prechirped probe. {copyright} 1997 Optical Society of America

  13. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-07-01

    We report the preparation of narrow-linewidth 637.2 nm laser device by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding optical-optical conversion efficiency is 38.0%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  14. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals

    PubMed Central

    Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos

    2013-01-01

    Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton–bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing. PMID:23974520

  15. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals.

    PubMed

    Grivas, Christos; Li, Chunyong; Andreakou, Peristera; Wang, Pengfei; Ding, Ming; Brambilla, Gilberto; Manna, Liberato; Lagoudakis, Pavlos

    2013-01-01

    Whispering-gallery-mode resonators have been extensively used in conjunction with different materials for the development of a variety of photonic devices. Among the latter, hybrid structures, consisting of dielectric microspheres and colloidal core/shell semiconductor nanocrystals as gain media, have attracted interest for the development of microlasers and studies of cavity quantum electrodynamic effects. Here we demonstrate single-exciton, single-mode, spectrally tuned lasing from ensembles of optical antenna-designed, colloidal core/shell CdSe/CdS quantum rods deposited on silica microspheres. We obtain single-exciton emission by capitalizing on the band structure of the specific core/shell architecture that strongly localizes holes in the core, and the two-dimensional quantum confinement of electrons across the elongated shell. This creates a type-II conduction band alignment driven by coulombic repulsion that eliminates non-radiative multi-exciton Auger recombination processes, thereby inducing a large exciton-bi-exciton energy shift. Their ultra-low thresholds and single-mode, single-exciton emission make these hybrid lasers appealing for various applications, including quantum information processing.

  16. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators.

    PubMed

    Xu, X L; Pai, C-H; Zhang, C J; Li, F; Wan, Y; Wu, Y P; Hua, J F; Lu, W; An, W; Yu, P; Joshi, C; Mori, W B

    2016-07-15

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2k_{0} and about 5k_{0}, where k_{0} is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  17. Daily Stress as a Trigger of Migraine Attacks: Results of Thirteen Single-Subject Studies.

    ERIC Educational Resources Information Center

    Kohler, Thomas; Haimerl, Christianne

    1990-01-01

    Six-month longitudinal study examined whether migraine attacks were preceded by or occurred on stressful days. Every evening, 13 patients completed questionnaires assessing daily stress. Analyses on single-subject level tested when attacks occurred. Increased stress was generally not found for Days 2 and 3 before an attack, but often for Day 1 and…

  18. Daily Stress as a Trigger of Migraine Attacks: Results of Thirteen Single-Subject Studies.

    ERIC Educational Resources Information Center

    Kohler, Thomas; Haimerl, Christianne

    1990-01-01

    Six-month longitudinal study examined whether migraine attacks were preceded by or occurred on stressful days. Every evening, 13 patients completed questionnaires assessing daily stress. Analyses on single-subject level tested when attacks occurred. Increased stress was generally not found for Days 2 and 3 before an attack, but often for Day 1 and…

  19. Single-crystal Rare-earth Doped YAG Fiber Lasers Grown by the Laser-heated Pedestal Growth Technique

    DTIC Science & Technology

    2014-02-04

    thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated pedestal growth...holmium and thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated...Ann Arbor, MI 48109 dSPAWAR System Center, San Diego, CA ABSTRACT High concentrations of the rare-earth elements erbium, holmium and thulium

  20. Single facet slotted Fabry-Perot laser and its application in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Morrissey, Padraic; Lu, Qiao Y.; Cotter, William; Daunt, Chris L. L. M.; O'Callaghan, James; Guo, Wei H.; Han, Wei; Donegan, John F.; Corbett, Brian; Peters, Frank H.

    2012-11-01

    In this paper, a single facet slotted Fabry-Perot (FP) laser is demonstrated to provide tunable, single mode operation and has been monolithically integrated into a photonic integrated circuit (PIC) with semiconductor optical amplifiers and a multimode interference coupler. These lasers are designed by incorporating slots into the ridge of traditional FP cavity lasers to achieve single mode output, integrability and tunability. With the feature size of the slots around 1μm, standard photolithographic techniques can be used in the fabrication of the devices. This provides a time and cost advantage in comparison to ebeam or holographic lithography as used for defining gratings in distributed feedback (DFB) or distrusted Bragg reflector (DBR) lasers, which are typically used in PICs. The competitive integrable single mode laser also enables the PIC to be fabricated using only one epitaxial growth and one etch process as is done with standard FP lasers. This process simplicity can reduce the cost and increase the yield.

  1. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber.

    PubMed

    Geng, Jihong; Wang, Qing; Luo, Tao; Jiang, Shibin; Amzajerdian, Farzin

    2009-11-15

    Single-frequency laser operation near 2 microm has been demonstrated in an all-fiber short-cavity (2-6 cm) distributed feedback laser cavity using both cladding- and core-pump configurations in a newly developed heavily Tm-doped multicomponent silicate glass fiber. Using a single-mode Er-doped fiber laser at 1575 nm as a core-pump source, a 2-cm-long distributed Bragg reflector fiber laser delivers single-frequency output at 1950 nm with laser linewidth less than 3 kHz, which is, to the best of our knowledge, the narrowest linewidth demonstrated to date from any 2 microm single-frequency laser.

  2. Myocardial tissue ablation by single high-energy laser pulses for ELR and TMR

    NASA Astrophysics Data System (ADS)

    Theisen, Dirk; Brinkmann, Ralf; Stubbe, Hans-Martin; Birngruber, Reginald

    1999-02-01

    The objective of this study is to compare the ablation sites induced by two different laser and application systems for myocardial laser revascularization. One system used was an 800 W CO2 laser, which is clinically established for transmyocardial laser revascularization (TMR). The second system was a self-designed Holmium laser emitting single high energy pulses for the minimal invasive approach of endocardial laser revascularization (ELR), whereby the laser light is transmitted via optical fiber into the left ventricle to ablate the myocardial channels from the inside. The laser energy was applied to Polyacrylamide (PAA) as transparent tissue phantom and in water as blood phantom. The ablation dynamics were investigated by high speed flash photography recording a picture series of a single event. Reperfused ex- vivo porcine hearts were treated to quantify differences in the thermal-mechanical damage ranges by polarization light microscopy. Ablation dynamics in water revealed oscillatory changes of the axial length of the steam bubbles between 3 mm and 12 mm during the CO2 laser pulse. For the Holmium laser pulse a maximal axial and lateral length of 5 mm was observed. The lateral dimensions of the bubbles were maximal 1 mm with the CO2- and 3.5 mm with the Holmium laser system. In PAA bubbles also collapse during the laser pulse which affects the size of the ablated channels. Using 12 J Holmium laser pulses for ablation of PAA, channel depths around 7 mm were found. Single Holmium laser pulses demonstrate ablations comparable in size and thermal- mechanical collateral damage to those achieved with the standard CO2 laser. The results are very encouraging for single pulse ELR and demonstrate the potential of a catheter based minimal invasive procedure for laser heart reperfusion.

  3. Study of the parameters of a single-frequency laser for pumping cesium frequency standards

    SciTech Connect

    Zhuravleva, O V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Mustafin, I R; Simakov, V A; Chernov, R V; Pleshanov, S A

    2008-04-30

    A model for calculating the parameters of a laser diode with an external fibre cavity containing a fibre Bragg grating (FBG) is presented. It is shown that by using this model, it is possible to obtain single-mode lasing by neglecting the spectral burning of carriers. The regions of the laser-diode current and temperature and the FBG temperature in which the laser can be tuned to the D{sub 2} line of cesium are determined experimentally. (lasers and amplifiers)

  4. Single-frequency injection-seeded Q-switched Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Gao, Chunqing; Na, Quanxin; Zhang, Yixuan; Ye, Qing; Gao, Mingwei

    2017-04-01

    An injection-seeded Ho:YAG laser at 2090 nm with changeable pulse repetition frequency (PRF) is demonstrated. Containing a Ho:YAG nonplanar ring oscillator (NPRO) seed, a slave laser, and a single-pass amplifier, the laser delivered single-frequency pulses with energy ranging from 31.4 to 12.7 mJ. The corresponding pulse duration and PRF varied between 102-215 ns and 150-750 Hz, respectively. To the best of our knowledge, this is the highest PRF ever obtained from a single-frequency Ho:YAG laser.

  5. Combined single-pulse holography and time-resolved laser schlieren for flow visualization

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1981-01-01

    A pulsed ruby laser and continuous-wave argon ion laser were used in a combined setup at the Langley Expansion Tube for single pulse holography and time resolved laser schlieren with a common optical axis. The systems can be operated simultaneously for a single run. For a single frame, the pulsed holographic setup offers the options of shadowgraph, Schlieren, and interferometry from the reconstructed hologram as well as the advantage of post-run sensitivity adjustments. For flow establishment studies the time resolved laser Schlieren provides visualization of the flow field every 12.5 microns for up to 80 frames with an exposure time per frame of 5.4 microns.

  6. Dynamics of multiple trapping by a single-beam laser tweezer

    SciTech Connect

    Kaputa, Daniel S.; Kuzmin, Andrey N.; Kachynski, Aliaksandr V.; Cartwright, Alexander N.; Prasad, Paras N

    2005-07-01

    A multiple-trap single-beam scanning laser tweezer system was developed and characterized. Different stationary and mobile multiple-trap modes were generated for polystyrene beads in a water environment. Trapping efficiency and stability were investigated for several dynamic parameters such as transition time between the sites, waiting time on a single site, number of trapping sites, and IR laser power. Optimal parameters for efficient generation of complex arrays and matrices were determined. We demonstrate an example of a single laser beam multiple-trap application by measuring the trap's stiffness in water for our laser tweezer setup.

  7. Combined single-pulse holography and time-resolved laser schlieren for flow visualization

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Goad, W. K.

    1981-06-01

    A pulsed ruby laser and continuous-wave argon ion laser were used in a combined setup at the Langley Expansion Tube for single pulse holography and time resolved laser schlieren with a common optical axis. The systems can be operated simultaneously for a single run. For a single frame, the pulsed holographic setup offers the options of shadowgraph, Schlieren, and interferometry from the reconstructed hologram as well as the advantage of post-run sensitivity adjustments. For flow establishment studies the time resolved laser Schlieren provides visualization of the flow field every 12.5 microns for up to 80 frames with an exposure time per frame of 5.4 microns.

  8. 1.56 µm 1 watt single frequency semiconductor disk laser.

    PubMed

    Rantamäki, Antti; Rautiainen, Jussi; Sirbu, Alexei; Mereuta, Alexandru; Kapon, Eli; Okhotnikov, Oleg G

    2013-01-28

    A single frequency wafer-fused semiconductor disk laser at 1.56 µm with 1 watt of output power and a coherence length over 5 km in fiber is demonstrated. The result represents the highest output power reported for a narrow-line semiconductor disk laser operating at this spectral range. The study shows the promising potential of the wafer fusion technique for power scaling of single frequency vertical-cavity lasers emitting in the 1.3-1.6 µm range.

  9. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy.

    PubMed

    Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun

    2016-03-28

    Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of "gate molecules" for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of "killing three birds with one stone", that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.

  10. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  11. Non-invasive assessment of single motor unit mechanomyographic response and twitch force by spike-triggered averaging.

    PubMed

    Cescon, C; Gazzoni, M; Gobbo, M; Orizio, C; Farina, D

    2004-07-01

    A method for non-invasive assessment of single motor unit (MU) properties from electromyographic (EMG), mechanomyographic (MMG) and force signals is proposed. The method is based on the detection and classification of single MU action potentials from interference multichannel surface EMG signals and on the spike-triggered average of the MMG (detected by an accelerometer) and force signals. The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles were investigated at contraction levels of 2% and 5% of the maximum voluntary contraction (MVC) force. A third contraction was performed by selective activation of a single MU with surface MU action potential visual feedback provided to the subject. At 5% MVC, the mean (+/-standard error) single MU MMG peak-to-peak value was 11.0+/-1.8 mm s(-2) (N= 17) and 32.3+/-6.5 mm s(-2) (N=20) for the FDI and ADM muscles, respectively. The peak of the twitch force was, at the same contraction level, 7.41+/-1.34 mN and 14.42+/-2.92 mN, for the FDI and ADM muscles, respectively. The peak-to-peak value of the MMG was significantly different for the same MU at different contraction levels, indicating a non-linear summation of the single MU contributions. For the FDI muscle, the MMG peak-to-peak value of individual MUs was 21.5+/-7.8 mm s(-2), when such MUs were activated with visual feedback provided to the subject, whereas, for the same MUs, it was 11.8+/-3.8 mm s(-2), when the subject maintained a constant force level of 2% MVC. The method proposed allows the non-invasive assessment of single MU membrane and contractile properties during voluntary contractions.

  12. Markovian Statistical Data Analysis of Single-Event Upsets Triggered by High Intensity Neutrons

    NASA Technical Reports Server (NTRS)

    Lakdawala, Anushka V.; Zhang, Hong; Gonzalex, Oscar R.; Gray, W. Steven

    2006-01-01

    This paper analyzes data from a single-event upset experiment conducted at the Los Alamos National Laboratory. Statistical tools, based on well-known x(sup 2) hypothesis testing theory, are used to determine if sequences of upsets can be modeled as a homogeneous Markov chain of a specific order. The experiment consisted of radiating a new experimental flight control computer (FCC) with a high intensity neutron beam while the FCC controlled a simulation of a Boeing 737. The analyzed data is a sequence of states that indicates when the FCC is under an upset condition.

  13. Markovian Statistical Data Analysis of Single-Event Upsets Triggered by High Intensity Neutrons

    NASA Technical Reports Server (NTRS)

    Lakdawala, Anushka V.; Zhang, Hong; Gonzalex, Oscar R.; Gray, W. Steven

    2006-01-01

    This paper analyzes data from a single-event upset experiment conducted at the Los Alamos National Laboratory. Statistical tools, based on well-known x(sup 2) hypothesis testing theory, are used to determine if sequences of upsets can be modeled as a homogeneous Markov chain of a specific order. The experiment consisted of radiating a new experimental flight control computer (FCC) with a high intensity neutron beam while the FCC controlled a simulation of a Boeing 737. The analyzed data is a sequence of states that indicates when the FCC is under an upset condition.

  14. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    NASA Astrophysics Data System (ADS)

    di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; de Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  15. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    PubMed Central

    Di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; De Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen–Cooper–Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K. PMID:28102222

  16. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    PubMed

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  17. Single longitudinal mode operation of semiconductor laser arrays with etalon feedback

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1987-01-01

    The multiple longitudinal mode output of high-power diode-laser arrays is converted into single mode with 97 percent efficiency by optical feedback from a thin (less than 200-micron thick) etalon external to the laser. The coupled cavities formed by addition of the etalon favor a single longitudinal mode. Single-mode operation is retained at 0.1 MHz pulsed rates. Both the near-field and the far-field patterns of the laser array remain nearly unchanged while the array operates in a single longitudinal mode.

  18. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  19. Interferometric diameter determination of a silicon sphere using a traceable single laser frequency synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Xuejian; Li, Yan; Wei, Haoyun; Yang, Honglei; Yang, Guoce; Zhang, Jitao

    2013-11-01

    To determine the absolute diameter of a silicon sphere for the Avogadro constant project, we present a phase-shifting interferometer based on a flat etalon and a traceable single laser frequency synthesizer. By using an optical frequency comb to calibrate a frequency-tunable diode laser, the single laser frequency synthesizer can produce an arbitrary laser frequency with a relative uncertainty of 9.2 × 10-12 in the range of 4 THz. According to the laser frequency tuning system, the Carré algorithm with arbitrary but equal phase steps is employed to calculate the fractional interference phases. The absolute diameter is obtained by measuring the fractional and integral parts based on the principles of phase-shifting interferometry and frequency-sweeping interferometry, respectively. The uncertainty of a single diameter measurement in air is estimated to be 5 nm, whose uncertainty sources from the laser frequency and the phase-shifting algorithm are negligible.

  20. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation.

    PubMed

    Ivanov, Ivan; Matafonov, Anton; Sun, Mao-Fu; Cheng, Qiufang; Dickeson, S Kent; Verhamme, Ingrid M; Emsley, Jonas; Gailani, David

    2017-03-16

    When blood is exposed to variety of artificial surfaces and biologic substances, the plasma proteins factor XII (FXII) and prekallikrein undergo reciprocal proteolytic conversion to the proteases αFXIIa and α-kallikrein by a process called contact activation. These enzymes contribute to host-defense responses including coagulation, inflammation, and fibrinolysis. The initiating event in contact activation is debated. To test the hypothesis that single-chain FXII expresses activity that could initiate contact activation, we prepared human FXII variants lacking the Arg353 cleavage site required for conversion to αFXIIa (FXII-R353A), or lacking the 3 known cleavage sites at Arg334, Arg343, and Arg353 (FXII-T, for "triple" mutant), and compared their properties to wild-type αFXIIa. In the absence of a surface, FXII-R353A and FXII-T activate prekallikrein and cleave the tripeptide S-2302, demonstrating proteolytic activity. The activity is several orders of magnitude weaker than that of αFXIIa. Polyphosphate, an inducer of contact activation, enhances PK activation by FXII-T, and facilitates FXII-T activation of FXII and FXI. In plasma, FXII-T and FXII-R353A, but not FXII lacking the active site serine residue (FXII-S544A), shortened the clotting time of FXII-deficient plasma and enhanced thrombin generation in a surface-dependent manner. The effect was not as strong as for wild-type FXII. Our results support a model for induction of contact activation in which activity intrinsic to single-chain FXII initiates αFXIIa and α-kallikrein formation on a surface. αFXIIa, with support from α-kallikrein, subsequently accelerates contact activation and is responsible for the full procoagulant activity of FXII.

  1. Optical injection probing of single ZnO tetrapod lasers

    SciTech Connect

    Szarko, Jodi M.; Song, Jae Kyu; Blackledge, Charles Wesley; Swart, Ingmar; Leone, Stephen R.; Li, Shihong; Zhao, Yiping

    2004-11-23

    The properties of zinc oxide (ZnO) nanotetrapod lasers are characterized by a novel ultrafast two-color pump/stimulated emission probe technique. Single legs of tetrapod species are isolated by a microscope objective, pumped by 267 nm pulses, and subjected to a time-delayed 400 nm optical injection pulse, which permits investigation of the ultrafast carrier dynamics in the nanosize materials. With the optical injection pulse included, a large increase in the stimulated emission at 400 nm occurs, which partially depletes the carriers at this wavelength and competes with the normal 390 nm lasing. At the 390 nm lasing wavelengths, the optical injection causes a decrease in the stimulated emission due to the energetic redistribution of the excited carrier depletion, which occurs considerably within the time scale of the subpicosecond duration of the injection pulse. The effects of the optical injection on the spectral gain are employed to probe the lasing dynamics, which shows that the full width at half maximum of the lasing time is 3 ps.

  2. Subtle pH differences trigger single residue motions for moderating conformations of calmodulin.

    PubMed

    Atilgan, Ali Rana; Aykut, Ayse Ozlem; Atilgan, Canan

    2011-10-21

    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca(2+) signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pK(a) calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also

  3. Rapid profiling of laser-induced photochemistry in single microdroplets using mass spectrometry.

    PubMed

    Tracey, Phillip J; Vaughn, Bartholomew S; Roberts, Brendon J; Poad, Berwyck L J; Trevitt, Adam J

    2014-03-18

    Rapid assessment of laser-induced photochemistry in single microdroplets is afforded by on-demand microdroplet generation coupled to a commercial ion-trap mass spectrometer. Single microdroplets (diameter ∼50 μm, 65 pL) fall on a steel needle held at +2 kV where they subsequently form a spray that is directed toward the inlet of an ion-trap mass spectrometer. It is demonstrated that single microdroplet mass spectra are recordable, one at a time, for methanol droplets containing 100 μM 4-iodoaniline. Extending on this, to probe laser-initiated photochemistry in single picoliter volumes, a UV laser pulse is timed to intercept the droplet before hitting the needle. Comparison of laser-on and laser-off mass spectra reveals the laser-initiated photochemical products. We demonstrate the technique by following UV laser initiated chemistry in methanol droplets containing 4-iodoaniline and 3-(iodomethyl)-N,N,N-trimethylbenzenamine and reveal numerous products within a few hundred single droplet experiments over several minutes. This technique allows for rapid detection of laser-initiated photochemistry in single picoliter volumes.

  4. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  5. Dual-channel amplification in a single-mode diode laser for multi-isotope laser cooling

    SciTech Connect

    Booth, James L.; Van Dongen, Janelle; Lebel, Paul; Klappauf, Bruce G.; Madison, Kirk W.

    2007-11-15

    The output from two grating-stabilized external-cavity diode lasers were injected into a single-mode diode laser. Operating at a wavelength of 780 nm, this laser produced {approx}50 mW of power with two main frequency components of the same spectral characteristics of the seed lasers. The power ratio of the amplified components was freely adjustable due to gain saturation, and amplification was observed for frequency differences of the two seed lasers in the range from 73 MHz to 6.6 GHz. This system was used to realize a dual isotope magneto-optic trap (MOT) for rubidium ({sup 85}Rb and {sup 87}Rb). The resulting position and cloud size of the dual isotope MOT was the same as that of the single species MOTs to within {+-}10 and {+-}20 {mu}m, respectively. We also characterized the additional spectral components produced by four wave mixing (FWM) in the diode laser amplifier and utilized a particular FWM sideband to realize hyperfine pumping and subsequent laser trapping of {sup 85}Rb in the absence of a 'repump' laser dedicated to hyperfine pumping.

  6. Reliability of high power diode laser systems based on single emitters

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Reynolds, Mitch; Brown, Aaron; Kennedy, Keith; Bao, Ling; Wang, Jun; Grimshaw, Mike; DeVito, Mark; Karlsen, Scott; Small, Jay; Ebert, Chris; Martinsen, Rob; Haden, Jim

    2011-03-01

    Diode laser modules based on arrays of single emitters offer a number of advantages over bar-based solutions including enhanced reliability, higher brightness, and lower cost per bright watt. This approach has enabled a rapid proliferation of commercially available high-brightness fiber-coupled diode laser modules. Incorporating ever-greater numbers of emitters within a single module offers a direct path for power scaling while simultaneously maintaining high brightness and minimizing overall cost. While reports of long lifetimes for single emitter diode laser technology are widespread, the complex relationship between the standalone chip reliability and package-induced failure modes, as well as the impact of built-in redundancy offered by multiple emitters, are not often discussed. In this work, we present our approach to the modeling of fiber-coupled laser systems based on single-emitter laser diodes.

  7. Stripping off hydrogens in imidazole triggered by the attachment of a single electron.

    PubMed

    Ribar, A; Fink, K; Li, Z; Ptasińska, S; Carmichael, I; Feketeová, L; Denifl, S

    2017-03-01

    Imidazole [C3H4N2] is ubiquitous in nature as an important biological building block of amino acids, purine nucleobases or antibiotics. In the present study, dissociative electron attachment to imidazole shows low energy shape resonances at 1.52 and 2.29 eV leading to the most abundant dehydrogenated anion [imidazole - H](-) through dehydrogenation at the N1 position. All the other anions formed exhibit core excited resonances observed dominantly at similar electron energies of ∼7 and 11 eV, suggesting an initial formation through two temporary negative ion states. Among these anions, multiple dehydrogenation reactions are observed resulting in the loss of 2 up to 4 hydrogens, thus, leading to a complete dehydrogenation of the imidazole molecule, an interesting prototype of complex unimolecular decay induced by the attachment of a single electron. Additionally, the quantum chemical calculations reveal that these multiple dehydrogenation reactions are responsible for the remarkable one electron-induced gas-phase chemistry leading to the opening of the ring. The formation of the observed anions is likely driven by the high positive electron affinity of cyanocarbon molecules supported by quantum chemical calculations. The formation of H(-) showed additional resonance at about 5 eV and dipolar dissociation above ∼14 eV.

  8. Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence

    PubMed Central

    Pasternak, Cécile; Ton-Hoang, Bao; Coste, Geneviève; Bailone, Adriana

    2010-01-01

    Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences. PMID:20090938

  9. Metal oxide hollow nanoparticles formation by a single nanosecond pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Zhen; Hwang, David J.

    2017-10-01

    In this study, the trend of metal oxide hollow nanoparticles formation is experimentally inspected by a single nanosecond pulsed laser ablation of a bulk metal material in water and/or ethanol. Analysis results by transmission electron microscope indicate that the hollow formation can be completed or initiated by a single nanosecond laser pulse, dictated by the diffusive thermo-chemical and/or bubble-assisted assembly mechanisms, depending on the surrounding liquid medium and laser parameters. The results not only provide experimental clues to unveiling complex mechanisms involved with the hollow formation by the multiple laser shots but also will contribute to improving the hollow particle production efficiency.

  10. Monolithic 626 nm single-mode AlGaInP DBR diode laser.

    PubMed

    Blume, G; Nedow, O; Feise, D; Pohl, J; Paschke, K

    2013-09-09

    Single-mode lasers below 630 nm are still realized using complex laser systems. We present distributed Bragg reflector (DBR) ridge waveguide lasers (RWL) based on AlGaInP. When packaged into sealed TO-3 housings and cooled internally to about 0°C the DBR-RWL emit more than 50 mW at a wavelength of 626.0 nm into a nearly diffraction-limited single longitudinal mode with a spectral width below 1 MHz. These new monolithic diode lasers have the potential to drastically miniaturize existing set-ups e.g. for quantum information processing.

  11. Retinal Injuries From Single and Multiple Picosecond Laser Pulses

    DTIC Science & Technology

    1994-04-30

    cell diameter -10 pm) can experience a pressure transient of >22 Kbar when the melanin granules contained within the cells are exposed to these laser...0719 Bolling AFB DC 20332-0001 Dr Walter KozumboF 11. SUPPLEMENTARY NOTES 60iia oontais~u solar -, plates: All D210 Mproduot- ioins ull. be 12 blaokSn...Maximum 200 words) We investigate laser-induced shock waves from melanin particles as a possible cause of retinal injury from ultrashort pulse laser

  12. Single longitudinal mode operation of long, integrated passive cavity InGaAsP lasers

    SciTech Connect

    Matsuda, K.; Fujita, T.; Ohya, J.; Ishino, M.; Sato, H.; Serizawa, H.; Shibata, J.

    1985-06-01

    We propose a new 1.3-..mu..m wavelength InGaAsP laser: the integrated passive cavity (IPC) laser: and demonstrate its device performances compared with conventional lasers fabricated under similar procedures. The long IPC laser (3.55-mm-long passive cavity), as well as the short IPC laser, exhibited single frequency oscillation even just above the threshold, and the maximum ratio of longitudinal main to submode exceeded 30 dB. They also showed favorable effects in the oscillation frequency stabilization.

  13. Laser patterning for the study of MSC cardiogenic differentiation at the single-cell level

    PubMed Central

    Ma, Zhen; Liu, Qiuying; Yang, Huaxiao; Runyan, Raymond B; Eisenberg, Carol A; Xu, Meifeng; Borg, Thomas K; Markwald, Roger; Wang, Yifei; Gao, Bruce Z

    2013-01-01

    Mesenchymal stem cells (MSCs) have been cited as contributors to heart repair through cardiogenic differentiation and multiple cellular interactions, including the paracrine effect, cell fusion, and mechanical and electrical couplings. Due to heart–muscle complexity, progress in the development of knowledge concerning the role of MSCs in cardiac repair is heavily based on MSC–cardiomyocyte coculture. In conventional coculture systems, however, the in vivo cardiac muscle structure, in which rod-shaped cells are connected end-to-end, is not sustained; instead, irregularly shaped cells spread randomly, resulting in randomly distributed cell junctions. Consequently, contact-mediated cell–cell interactions (e.g., the electrical triggering signal and the mechanical contraction wave that propagate through MSC–cardiomyocyte junctions) occur randomly. Thus, the data generated on the beneficial effects of MSCs may be irrelevant to in vivo biological processes. In this study, we explored whether cardiomyocyte alignment, the most important phenotype, is relevant to stem cell cardiogenic differentiation. Here, we report (i) the construction of a laser-patterned, biochip-based, stem cell–cardiomyocyte coculture model with controlled cell alignment; and (ii) single-cell-level data on stem cell cardiogenic differentiation under in vivo-like cardiomyocyte alignment conditions. PMID:24527266

  14. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  15. Passively Q-switched single-frequency 2μm laser used graphene as saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2016-04-01

    A graphene passively Q-switched single frequency Ho:YAG laser was demonstrated. Ho:YAG crystal was resonantly pumped by a 1908 nm diode laser. Twisted-mode single frequency technique was applied to realize single frequency oscillation. The maximum single frequency laser output was 358 mW. Single frequency pulse laser output was achieved by inserting a graphene into the single frequency Ho:YAG laser. The maximum average power of 149 mW was obtained with the pulse repetition rate of 40.45 kHz under 8.32 W of incident pump power.

  16. Peak-detector-hold based circuit for trigger synchronization of the electron beam and wiggler in a free-electron laser experiment

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, A. V.; Mohandas, K. K.; Sathyanarayana, K.; Jain, K. K.

    1999-02-01

    A simple circuit based on the principle of peak detect and hold has been designed, tested, and used for efficient and reliable synchronization of the triggering of the relativistic electron beam and the electromagnet wiggler that are used in a pulsed, millimeter wave free-electron laser experiment. This circuit is found to be reliable in operation and has a jitter of less than 2% for a fixed wiggler current.

  17. Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator

    NASA Astrophysics Data System (ADS)

    Yao, B. Q.; Deng, Yu; Dai, T. Y.; Duan, X. M.; You-Lun, Ju; Wang, Y. Z.

    2015-08-01

    A diode pumped, injection-seeded Q-switched Er:YAG laser at 1645.2 nm is demonstrated. A single frequency Er:YAG monolithic nonplanar ring oscillator (NPRO) laser emitting at 1645.24 nm with a maximum output power of 500 mW is used as a seed laser. The seed laser output is injected into a bow-tie slave laser, obtaining stable single-frequency Q-switched operation of the Er:YAG laser. The maximum single-frequency Q-switched Er:YAG laser output energy is 2.9 mJ at 100 Hz with a pulse duration of 160 ns.

  18. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    NASA Astrophysics Data System (ADS)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  19. Single-pulse perforation of thin transparent dielectrics by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Ganin, Daniil; Lapshin, Konstantin; Obidin, Alexey; Vartapetov, Sergey

    2017-05-01

    The methods of elongation of the effective interaction area (>100 microns) of single femtosecond pulses with transparent dielectrics when focusing in the bulk of material are given. Principal diagrams of transparent materials perforation with single femtosecond laser pulses are proposed. Capability to form cylindrical holes in the transparent dielectrics as a result of material photodegradation subjected to single femtosecond laser pulses was successfully demonstrated. The diameter of through holes made in the polypropylene 50 microns thick film at the energy of femtosecond laser pulses of 5 µJ was 5 µm.

  20. Design and Operation of a Two-Color Interferometer to Measure Plasma and Neutral Gas Densities in a Laser-Triggered Spark Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.; Schmitt-Sody, A.; Lucero, A.

    2014-10-01

    A Mach-Zehnder imaging interferometer, operating with 1064-nm and 532-nm wavelength beams from a short-pulse laser and a frequency-doubled branch, respectively, has been designed and built to simultaneously measure plasma free electron and neutral gas densities profiles within a laser-triggered spark gap switch with a 5-mm gap. The switch will be triggered by focusing a separate 532-nm or 1064-nm laser pulse along the gap's axis to trigger low-jitter breakdown. Illuminating the gap transverse to this axis, the diagnostic will generate interferograms for each wavelength, which will then be numerically converted to phase-shift maps. These will be used to calculate independent line-integrated free electron and neutral density profiles by exploiting their different frequency dispersion curves. The density profiles themselves, then, will be calculated by Abel inversion. Details of the interferometer's design will be presented along with density data obtained using a variety of fill gasses at various pressures. Other switch parameters will be varied as well in order to characterize more fully the performance of the switch.

  1. Design optimization of single-main-amplifier KrF laser-fusion systems

    SciTech Connect

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences.

  2. Cavitation erosion by single laser-produced bubbles

    NASA Astrophysics Data System (ADS)

    Philipp, A.; Lauterborn, W.

    1998-04-01

    In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are recorded with high-speed photography with framing rates of up to one million frames/s. Damage is observed when the bubble is generated at a distance less than twice its maximum radius from a solid boundary ([gamma]=2, where [gamma]=s/Rmax, s is the distance between the boundary and the bubble centre at the moment of formation and Rmax is the maximum bubble radius). The impact of the jet contributes to the damage only at small initial distances ([gamma][less-than-or-eq, slant]0.7). In this region, the impact velocity rises to 83 m s[minus sign]1, corresponding to a water hammer pressure of about 0.1 GPa, whereas at [gamma]>1, the impact velocity is smaller than 25 m s[minus sign]1. The largest erosive force is caused by the collapse of a bubble in direct contact with the boundary, where pressures of up to several GPa act on the material surface. Therefore, it is essential for the damaging effect that bubbles are accelerated towards the boundary during the collapse phases due to Bjerknes forces. The bubble touches the boundary at the moment of second collapse when [gamma]<2 and at the moment of first collapse when [gamma]<1. Indentations on an aluminium specimen are found at the contact locations of the collapsing bubble. In the range [gamma]=1.7 to 2, where the bubble collapses mainly down to a single point, one pit below the bubble centre is observed. At [gamma][less-than-or-eq, slant]1.7, the bubble shape has become toroidal, induced by the jet flow through the bubble centre. Corresponding to the decay of this bubble torus into multiple tiny bubbles each collapsing separately along the

  3. Transverse spatial coherence of a transient nickellike silver soft-x-ray laser pumped by a single picosecond laser pulse.

    PubMed

    Lucianetti, A; Janulewicz, K A; Kroemer, R; Priebe, G; Tümmler, J; Sandner, W; Nickles, P V; Redkorechev, V I

    2004-04-15

    The degree of spatial coherence in the direction perpendicular to the target surface is reported for a transient nickellike silver x-ray laser at 13.9 nm. An x-ray laser plasma column was produced by irradiating a slab silver target with a single shaped picosecond laser pulse with energy less than 3 J. Young's double-slit method was applied to measure the fringe visibility as a function of the slit separation for different target lengths. The diameter of the equivalent incoherent source and the coherence radius of the output radiation were determined as well.

  4. Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG

    NASA Astrophysics Data System (ADS)

    Abdullina, S. R.; Vlasov, A. A.; Lobach, I. A.; Belai, O. V.; Shapiro, D. A.; Babin, S. A.

    2016-07-01

    Single-frequency operation of a 1.03 μm fiber laser with random distributed feedback (RDFB) is demonstrated. The laser cavity is based on a 4 cm long fiber Bragg grating (FBG) consisting of 10 homogeneous subgratings with random phase and amplitude of refractive index modulation inscribed in a polarization maintaining (PM) Yb-doped fiber. Such RDFB laser generates single longitudinal mode with output power up to 25 mW, which is 3.5 times higher than that for a DFB laser based on regular π-shifted FBG of the same length in the same fiber. The single-frequency linewidth is measured to be  <100 kHz in both cases. The observed difference of the DFB and RDFB lasers is confirmed by numerical simulation showing different longitudinal distribution of intra-cavity radiation in these cases, analogous to those in the experiment.

  5. Self-seeded single-frequency solid-state ring laser and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  6. Trigger factors in asthma and chronic obstructive pulmonary disease: a single-centre cross-sectional survey

    PubMed Central

    See, Kay Choong; Phua, Jason; Lim, Tow Keang

    2016-01-01

    INTRODUCTION The presence of trigger factors may help to distinguish asthma from chronic obstructive pulmonary disease (COPD). Knowing and avoiding trigger factors for both asthma and COPD can facilitate the design of comprehensive management programmes that can aid disease control. This study aimed to describe the relative frequency and range of various trigger factors in asthma and COPD. METHODS We conducted a telephone-based survey involving asthma and COPD patients on follow-up at a university hospital in Singapore. RESULTS A total of 779 asthma patients and 129 COPD patients participated in this study. Among these patients, 93.8% of those with asthma and 42.6% of those with COPD had trigger factors (p < 0.001). The median number of trigger factors was greater among asthma patients than among those with COPD (3 vs. 0, p < 0.001). Trigger factors found to be significantly more prevalent among asthma patients compared to those with COPD include tobacco smoke, alcohol, upper respiratory tract infections, incense smoke, perfume, laughter, a dusty environment, air-conditioning, heavy rain, heavy traffic fumes, citrus fruits, gastro-oesophageal reflux, household pets, flowers/pollen, medications and psychological triggers. Trigger factors that were not previously described, such as bathing, fatigue, insufficient sleep, crowded places and overeating, were also reported. CONCLUSION Trigger factors, although found in both groups of patients, were more common among asthma patients. Knowledge of these trigger factors may be useful in distinguishing between the two diseases and optimising disease management. PMID:26768322

  7. 7-W single-mode thulium-doped fibre laser pumped at 1230 nm

    SciTech Connect

    Kravtsov, K S; Bufetov, Igor' A; Medvedkov, O I; Dianov, Evgenii M; Yashkov, M V; Gur'yanov, A N

    2005-07-31

    An efficient thulium-doped fibre laser emitting at {approx}2 {mu}m upon pumping into the long-wavelength {sup 3}H{sub 6} {yields} {sup 3}H{sub 5} absorption band of Tm{sup 3+} ions is developed. The maximum output power of the single-mode thulium laser pumped at 1230 nm was 7 W at 1956 nm for a pump conversion efficiency of 35%. (lasers)

  8. Tunable diode pumped Rb laser with single longitudinal and transverse mode operation

    NASA Astrophysics Data System (ADS)

    Li, Yunfei; Hua, Weihong; Yang, Zining; Wang, Hongyan; Xu, Xiaojun

    2015-12-01

    In this paper, a tunable single frequency Rb laser with TEM00 mode is realized. The linewidth is less than 1 GHz, with tuning range of 5 GHz, and central wavelength drift of less than 95 MHz (0.2 pm). The laser power is 1.4 W, with power fluctuation of less than 2%. Such kinds of tunable DPALs could be potential in applications for laser spectroscopy and quantum optics etc.

  9. Eye safe single aperture laser radar scanners for 3D acquisition

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Nolan, P.; Volfson, L.; Finegan, T. M.

    2016-05-01

    The single aperture implementation of laser radars in combination with beam scanning solutions enables low cost, compact and efficient laser systems for 3D acquisition. The design benefits include the lack of dead zones, improved stability and compact footprint for the system implementation. In our presentation we focus on the scanning solution development for 3D laser radars that is based on all solid state magneto-optic design. The novel solid-state scanner implementation results are presented.

  10. Nanostructuring of single-crystal silicon carbide by picosecond UV laser radiation

    SciTech Connect

    Barmina, E V; Serkov, A A; Shafeev, G A

    2013-12-31

    Surface nanostructures are produced on single-crystal 4H-SiC by laser ablation in water using a Nd : YAG laser (355-nm wavelength, 10-ps pulse duration) as a radiation source. The morphology of the nanostructured surface and the nanostructure size distribution are examined in relation to the energy density of the incident laser beam. The potential of the described process for improving the luminosity of light-emitting diodes on silicon carbide substrates is discussed. (letters)

  11. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  12. Experimental comparison of perfusion imaging systems using multi-exposure laser speckle, single-exposure laser speckle, and full-field laser Doppler

    NASA Astrophysics Data System (ADS)

    Thompson, Oliver; Bakker, Jimmy; Kloeze, Carla; Hondebrink, Erwin; Steenbergen, Wiendelt

    2012-03-01

    A variety of laser Doppler and laser speckle contrast systems have been constructed by various groups and companies, for commercial sale and for research. All rely on the same physical phenomenon - the dynamic laser speckle pattern generated by illuminating tissue with coherent light - but differ in details of system design, operation and analysis. We present a comparison between measurements made with three systems: a multi-exposure laser speckle contrast system built at Industrial Research Ltd, a commercial single-exposure laser speckle contrast system developed by Perimed AB (PSI NR) and the full-field laser Doppler camera built by the University of Twente (TOPCam). We compare the response to changing flows of all three systems. The systems are found to produce similar results for a variety of in-vivo and in-vitro measurements. Multi-exposure speckle contrast shows some advantages in information gained and insensitivity to static speckle, at the cost of increased complexity and measurement time.

  13. Diffractive Combiner of Single-Mode Pump Laser-Diode Beams

    NASA Technical Reports Server (NTRS)

    Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak

    2007-01-01

    An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.

  14. Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest

    NASA Astrophysics Data System (ADS)

    Li, Z. S.; Afzelius, M.; Zetterberg, J.; Aldén, M.

    2004-10-01

    We report on the applications of a single-longitudinal-mode (SLM) pulsed alexandrite laser system for diagnostics of parameters of flow/combustion interest. The laser system is characterized by its narrow linewidth, high peak power, and broad tunablity. The absolute frequency of the laser output was monitored by a wavelength diagnostic system, which included a high-resolution confocal etalon and a molecular iodine laser-induced fluorescence (LIF) detection system. Different nonlinear frequency conversion schemes were used to cover a large frequency range from the infrared to the deep UV. The versatility of the laser system for flow/combustion diagnostics is demonstrated in three applications, namely filtered Rayleigh scattering, high-resolution Doppler-free two-photon LIF of CO, and infrared LIF and polarization spectroscopy of CO2. The potential impacts of using this SLM laser system in laser flow/combustion diagnostic applications are discussed.

  15. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  16. Single versus double femtosecond laser pass for incomplete laser in situ keratomileusis flap in contralateral eyes: visual and optical outcomes.

    PubMed

    Muñoz, Gonzalo; Albarrán-Diego, César; Ferrer-Blasco, Teresa; Javaloy, Jaime; García-Lázaro, Santiago

    2012-01-01

    To evaluate visual acuity, refractive outcomes, and anterior corneal higher-order aberrations (HOAs) after myopic laser in situ keratomileusis (LASIK) with uneventful single femtosecond laser pass versus double pass performed for intraoperative suction loss. Private refractive surgery center, Valencia, Spain. Cohort study. After the LASIK flap was created with a single pass of an Intralase femtosecond laser in 1 eye and a double pass in the fellow eye, the ablation was performed with a Visx S2 laser. At 12 months, the refraction, uncorrected (UDVA) and corrected (CDVA) distance visual acuities, and anterior corneal HOAs were measured with 4.0 mm and 6.0 mm pupils. The study enrolled 42 eyes (21 patients). Twelve months postoperatively, there were no statistically significant differences in any parameter studied including residual spherical equivalent (mean -0.05 diopter [D] ± 0.25 [SD] single pass; -0.03 ± 0.19 D double pass; P=.75), UDVA (mean 0.008 ± 0.057 logMAR single pass; 0.011 ± 0.046 logMAR double pass; P=.89), CDVA (mean -0.010 ± 0.040 logMAR single pass; -0.007 ± 0.037 logMAR double pass; P=.74), or anterior corneal HOAs. No eye lost 1 line of CDVA. Visual acuity, refractive outcomes, and anterior corneal HOAs were comparable between eyes after uneventful femtosecond laser single pass or double pass after suction loss affecting the pupillary area. A new femtosecond laser pass performed immediately after incomplete flap due to intraoperative suction loss provided good visual and optical outcomes. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Use of a single parameter track and trigger chart and the perceived barriers and facilitators to escalation of a deteriorating ward patient: a mixed methods study.

    PubMed

    Smith, Duncan J; Aitken, Leanne M

    2016-01-01

    To investigate nurses' use of a single parameter track and trigger chart to inform implementation of the National Early Warning Scoring tool. To report the characteristics of patients with triggers, the frequency of different triggers, and the time taken to repeat observations. To explore the barriers and facilitators perceived by nursing staff relating to patient monitoring. Sub-optimal care of the deteriorating patient has been described for almost two decades. Organisations have responded by implementing strategies that improve monitoring and facilitate a timely response to patient deterioration. While these systems have been widely adopted the evidence-base to support their use is inconsistent. A mixed method service evaluation was carried out in an acute University hospital. Physiological triggers (n = 263) and characteristics of triggering patients (n = 74) were recorded from surgical and medical wards. Descriptive statistics were displayed. Questionnaires were distributed (n = 105) to student nurses, health care assistants and registered nurses. Themes and sub-themes were identified from content analysis. Hypotension was the most frequent abnormality. There was variability in the time to repeat observations following a trigger. A high proportion of triggers were identified in older patients, as was a trend of longer time intervals between trigger and repeat observations. Nurses reported a number of barriers and facilitators to monitoring patients including: 'workload', 'equipment', 'interactions between staff' and 'interactions with patients'. This study identified a number of barriers and facilitators to monitoring and escalation of abnormal vital signs, highlighting the complexity of the process and the need for a system-wide approach to a deteriorating patient. The trend of longer delays following a trigger in older patients has not been identified previously and could reflect a knowledge gap of the physiological changes and response to acute illness in

  18. Single shot Hugoniot of cyclohexane using a spatially resolved laser driven shock wave

    NASA Astrophysics Data System (ADS)

    Bolme, C. A.; McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Funk, D. J.

    2008-11-01

    To develop a more efficient method of determining pressure dependent material response to shock loading, we used the spatial energy distribution of a shock generating laser beam to create a range of nearly one-dimensional stresses in a single laser shot. Ultrafast dynamic ellipsometry was used to measure the Hugoniot and shocked refractive index of cyclohexane subject to this shock loading.

  19. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  20. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  1. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser

    NASA Astrophysics Data System (ADS)

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  2. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity.

    PubMed

    Jiang, Man; Xu, Haiyang; Zhou, Pu; Zhao, Guomin; Gu, Xijia

    2016-08-01

    We report the design of an all-fiber, linearly polarized Yb-doped fiber laser at 1064 nm with a narrow linewidth and high output power required by the master oscillator of the amplifier for high-power spectral beam combining. The laser has achieved linearly polarized output with a polarization extinction ratio of 23 dB, a narrow linewidth of ≤52  pm, and an output power of 32.7 W. Such performance was obtained by the cavity design that incorporated a wavelength-shifted PM fiber Bragg grating pair and single-mode-multimode-single-mode structure.

  3. Detection of zinc and lead in water using evaporative preconcentration and single-particle laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Järvinen, Samu T.; Saarela, Jaakko; Toivonen, Juha

    2013-08-01

    A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.

  4. Two-color monochromatic x-ray imaging with a single short-pulse laser

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Daykin, T.; McLean, H. S.; Chen, H.; Patel, P. K.; Ping, Y.; Pérez, F.

    2017-06-01

    Simultaneous monochromatic crystal imaging at 4.5 and 8.0 keV with x-rays produced by a single short-pulse laser is presented. A layered target consisting of thin foils of titanium and copper glued together is irradiated by the 50 TW Leopard short-pulse laser housed at the Nevada Terawatt Facility. Laser-accelerated MeV fast electrons transmitting through the target induce Kα fluorescence from both foils. Two energy-selective curved crystals in the imaging diagnostic form separate monochromatic images on a single imaging detector. The experiment demonstrates simultaneous two-color monochromatic imaging of the foils on a single detector as well as Kα x-ray production at two different photon energies with a single laser beam. Application of the diagnostic technique to x-ray radiography of a high density plasma is also presented.

  5. Gravitational Wave Detection with Single-Laser Atom Interferometers

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  6. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser.

    PubMed

    Yang, Changsheng; Zhao, Qilai; Feng, Zhouming; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui

    2016-12-26

    A spectrally clean kHz-linewidth single-polarization single-frequency distributed Bragg reflector Yb-doped phosphate fiber (YPF) laser at 1120 nm (> 1100 nm) for the first time is demonstrated. By enhancing the reflectivity of output fiber Bragg grating and optimizing the length of YPF to implement the effective ASE suppression and single-longitudinal-mode long-wavelength lasing, a stable output power of over 62 mW is achieved from a 31-mm-long highly YPF with a linewidth of 5.7 kHz. The signal to noise ratio of > 67 dB, the polarization extinction ratio of > 25 dB, and the relative intensity noise of < -150 dB/Hz for the frequencies above 10.0 MHz are obtained in such single-frequency fiber laser. This narrow linewidth fiber laser is an ideal laser source to generate the coherent single-frequency 560 nm light via frequency doubling for biochemical analysis application.

  7. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly.

    PubMed

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-08-25

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2'-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2'-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly.

  8. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly

    PubMed Central

    Arai, Taiga; Ishiguro, Kensuke; Kimura, Satoshi; Sakaguchi, Yuriko; Suzuki, Takeo; Suzuki, Tsutomu

    2015-01-01

    Ribosome biogenesis requires multiple assembly factors. In Escherichia coli, deletion of RlmE, the methyltransferase responsible for the 2′-O-methyluridine modification at position 2552 (Um2552) in helix 92 of the 23S rRNA, results in slow growth and accumulation of the 45S particle. We demonstrate that the 45S particle that accumulates in ΔrlmE is a genuine precursor that can be assembled into the 50S subunit. Indeed, 50S formation from the 45S precursor could be promoted by RlmE-mediated Um2552 formation in vitro. Ribosomal protein L36 (encoded by rpmJ) was completely absent from the 45S precursor in ΔrlmE, and we observed a strong genetic interaction between rlmE and rpmJ. Structural probing of 23S rRNA and high-salt stripping of 45S components revealed that RlmE-mediated methylation promotes interdomain interactions via the association between helices 92 and 71, stabilized by the single 2′-O-methylation of Um2552, in concert with the incorporation of L36, triggering late steps of 50S subunit assembly. PMID:26261349

  9. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation

    PubMed Central

    Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff

    2013-01-01

    During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI: http://dx.doi.org/10.7554/eLife.01008.001 PMID:24015360

  10. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  11. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  12. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  13. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  14. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    NASA Astrophysics Data System (ADS)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  15. Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser

    NASA Astrophysics Data System (ADS)

    Ludewig, P.; Knaub, N.; Hossain, N.; Reinhard, S.; Nattermann, L.; Marko, I. P.; Jin, S. R.; Hild, K.; Chatterjee, S.; Stolz, W.; Sweeney, S. J.; Volz, K.

    2013-06-01

    The Ga(AsBi) material system opens opportunities in the field of high efficiency infrared laser diodes. We report on the growth, structural investigations, and lasing properties of dilute bismide Ga(AsBi)/(AlGa)As single quantum well lasers with 2.2% Bi grown by metal organic vapor phase epitaxy on GaAs (001) substrates. Electrically injected laser operation at room temperature is achieved with a threshold current density of 1.56 kA/cm2 at an emission wavelength of ˜947 nm. These results from broad area devices show great promise for developing efficient IR laser diodes based on this emerging materials system.

  16. Progress in single quantum well structures for high power laser device applications

    NASA Astrophysics Data System (ADS)

    Waters, R. G.; Tihanyi, P. L.; Hill, D. S.; Soltz, B. A.

    1988-01-01

    Recent advances made toward performance optimization of (Al)GaAs quantum well lasers are described. Topics covered include: laser reliability for broad-area devices emitting less than 300 mW and its relation to the epitaxial structure and operating current density; parametric crystal growth studies and the implications for device efficiency; realization of 57 percent cw power conversion efficiency in an oxide-defined device; progress in dry-etching technology including array fabrication and development of device-quality laser facets suitable for integration. Finally, work in the high-power regime is discussed. This includes broad-area, single-emitter lasers emitting 6W cw.

  17. Use of proper cavity loss for a stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Zhuang, Yuan-Hong; Tsai, Ning; Chow, Chi-Wai; Chen, Jing-Heng

    2017-06-01

    A stable and selectable erbium-doped fiber (EDF) ring laser configuration with single-longitudinal-mode (SLM) output is proposed and demonstrated in this paper. In the proposed laser scheme, a proper cavity loss is utilized for significant suppression of the side mode. In the experiment, the different coupling ratios required to produce various cavity losses in the proposed fiber laser are analyzed. Here, to reach the wavelength selection, several fiber Bragg gratings (FBGs) and an optical tunable bandpass filter (OTBF) in the C-band range are employed for demonstration. In addition, the output performance with respect to stability and SLM in the proposed EDF ring laser are also investigated simultaneously.

  18. Selection of CO laser single nanosecond pulse by electro-optic CdTe shutter

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kinyaevskiy, I. O.; Klimachev, Yu. M.; Kotkov, A. A.; Kozlov, A. Yu.; Kryuchkov, D. S.

    2017-09-01

    To select a single laser pulse from a train of nanosecond pulses emitted by a mode-locked CO laser with wavelengths from ∼5 to 6 μm, an electro-optic shutter based on CdTe Pockels cell was developed. A contrast between the selected pulse and unselected laser emission was equal to 20 and twice as much decreased in a CO laser power amplifier. To increase the contrast, a feasibility of applying a narrow-gap semiconductor as a saturable absorber is discussed.

  19. Acoustic and flexural excitation of a floating structure by a single laser pulse.

    PubMed

    Philp, W R; Podlesak, M; Pierce, S G

    1996-12-20

    The acoustic and flexural vibrations of a small-scale floating structure following irradiation by a pulsed Nd:glass laser are compared with a radiated underwater sound field. A single subablative laser pulse of 600-μs duration was used both to bend and shock the floating structure at the irradiation site. The laser pulse caused the structure to flex at a frequency of approximately 1 kHz whereas relaxation oscillations in the laser output simultaneously excited ultrasonic Lamb waves within the material bulk. We present results to illustrate the broad bandwidth provided by this unusual form of excitation.

  20. Frequency noise suppression of a single mode laser with an unbalanced fiber interferometer for subnanometer interferometry.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-12

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency.

  1. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    PubMed Central

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-01-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules. PMID:27795976

  2. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  3. Single-longitudinal-mode erbium-doped fiber laser with multiple linear cavity

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ren, Wenhua; Jian, Shuisheng

    2008-12-01

    An improved stable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-linear short cavity is demonstrated. Three fiber Bragg gratings (FBGs) with the same parameters directly written in a homemade photosensitive EDF (PEDF) in a single step are used as the wavelength-selective and mode-selective component in a 14 cm long linear laser cavity. The optical signal-to-noise ratio (OSNR) is over 50 dB. The amplitude variation in nearly one hour is less than 0.3 dB. The proposed laser has the advantages such as simple fabrication and compact all-optical fiber configuration.

  4. Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.

    PubMed

    Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi

    2005-09-05

    Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.

  5. Cell perforation mediated by plasmonic bubbles generated by a single near infrared femtosecond laser pulse.

    PubMed

    Boutopoulos, Christos; Bergeron, Eric; Meunier, Michel

    2016-01-01

    We report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation. AuNP clustering increased drastically the bubble generation efficiency, thus enabling an effective laser treatment using low energy dose in the NIR optical therapeutical window.

  6. Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode

    NASA Technical Reports Server (NTRS)

    Philipp-Rutz, E. M.

    1975-01-01

    Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.

  7. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  8. Stability of short, single-mode erbium-doped fiber lasers.

    PubMed

    Svalgaard, M; Gilbert, S L

    1997-07-20

    We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-mum helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz(1/2) rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication.

  9. Power-scalable system of phase-locked single-mode diode lasers.

    PubMed

    Bartelt-Berger, L; Brauch, U; Giesen, A; Huegel, H; Opower, H

    1999-09-20

    The direct use of diode lasers for high-power applications in material processing is limited to applications with relatively low beam quality and power density requirements. To achieve high beam quality one must use single-mode diode lasers, however with the drawback of relatively low optical output powers from these components. To realize a high-power system while conserving the high beam quality of the individual emitters requires coherent coupling of the emitters. Such a power-scalable system consisting of 19 slave lasers that are injection locked by one master laser has been built and investigated, with low-power diode lasers used for system demonstration. The optical power of the 19 injection-locked lasers is coupled into polarization-maintaining single-mode fibers and geometrically superimposed by a lens array and a focusing lens. The phase of each emitter is controlled by a simple electronic phase-control loop. The coherence of each slave laser is stabilized by computer control of the laser current and guarantees a stable degree of coherence of the whole system of 0.7. An enhancement factor of 13.2 in peak power density compared with that which was achievable with the incoherent superposition of the diode lasers was observed.

  10. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    SciTech Connect

    Peng, H.; Wu, Z. H.; Zhang, Z. M.; Zuo, Y. L.; Zhou, K. N.; Su, J. Q.

    2016-07-15

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflected front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.

  11. High-power thulium fiber laser Q switched with single-layer graphene.

    PubMed

    Tang, Yulong; Yu, Xuechao; Li, Xiaohui; Yan, Zhiyu; Wang, Qi Jie

    2014-02-01

    We report high-power 2 μm Tm3+ fiber lasers passively Q switched by double-piece single-layer graphene transferred onto a glass plate. Through manipulating intracavity laser beam size and increasing pump ratios, an average power of 5.2 W is directly achieved from the laser oscillator with an optical-to-optical slope efficiency of 26%. The laser pulse energy can be as high as ∼18  μJ, comparable to that from actively Q-switched fiber lasers. The narrowest pulse width is 320 ns, and the pulse repetition rate can be tuned from tens of kilohertz to 280 kHz by changing the pump power. To the best of our knowledge, this is the highest average power and pulse energy, as well as the narrowest pulse width, from graphene-based Q-switched 2 μm fiber lasers.

  12. Experimental study into single-longitudinal-mode Tm,Ho:YVO4 lasers

    NASA Astrophysics Data System (ADS)

    Dai, Tong-Yu; Han, Liu; Yao, Bao-Quan; Ju, You-Lun; Yu, Kuai-Kuai; Wang, Yue-Zhu

    2015-11-01

    The single-longitudinal-mode (SLM) Tm,Ho:YVO4 lasers were achieved by microchip configuration and double Fabry-Perot structure at room temperature. In the case of the microchip configuration laser, the maximum SLM power up to 17 mW was obtained on 2052.4 nm at 15 °C. In order to improve the output power of the SLM laser, it was implemented that the configuration of double Fabry-Perot etalons was used into the study of Tm,Ho:YVO4 lasers. Utilizing such configuration, the laser generated up to 95 mW output power in SLM at the wavelength of 2051.3 nm. With the angle of the Fabry-Perot etalons varied, the wavelength of the SLM laser could be turned from 2050.4 nm to 2051.3 nm, corresponding to a turning frequency of -64 GHz.

  13. Direct Laser Acceleration of 28 keV Electrons at a Single Dielectric Grating

    NASA Astrophysics Data System (ADS)

    Breuer, John; Hommelhoff, Peter

    Direct laser acceleration exploiting the large optical field strength of short laser pulses and the proximity of a dielectric structure can support high acceleration gradients and may therefore lead to much smaller accelerators, with potential application in table-top free electron lasers. We report a proof-of-concept experiment demonstrating direct laser acceleration of non-relativistic 28 keV electrons derived from a conventional scanning electron microscope column at a single fused-silica grating. The electrons pass the grating as closely as 50 nm and interact with the third spatial harmonic, which is excited by 100 fs Titanium:sapphire laser pulses with a peak electric field of 2.85 GV/m. The observed maximum acceleration gradient of 25 MeV/m is already comparable to state- of-the-art RF structures. This work represents the first demonstration of scalable laser acceleration and of the inverse Smith-Purcell effect in the optical regime.

  14. Single shot ultrafast dynamic ellipsometry of laser-driven shocks in single crystal explosives and thin films of metals

    NASA Astrophysics Data System (ADS)

    Whitley, Von; McGrane, Shawn; Moore, David; Eakins, Dan; Bolme, Cynthia

    2009-06-01

    Ultrafast dynamic ellipsometry (UDE) was used to measure the shock conditions of single-crystal energetic materials and metal thin films. Explosive crystals are coated with aluminum, which through frustrated laser ablation acts as a shock drive layer. UDE data on shocked explosives and different potential metal drive layers will be reported and experimental considerations will be discussed.

  15. A cold atom pyramidal gravimeter with a single laser beam

    NASA Astrophysics Data System (ADS)

    Bodart, Q.; Merlet, S.; Malossi, N.; Dos Santos, F. Pereira; Bouyer, P.; Landragin, A.

    2010-03-01

    We demonstrate a scheme for realizing a compact cold atom gravimeter. The use of a hollow pyramidal configuration allows to achieve all functions: trapping, interferometer and detection with a unique laser beam leading to a drastic reduction in complexity and volume. In particular, we demonstrate a relative sensitivity to acceleration of gravity (g) of 1.7×10-7 at one second, with a moderate laser power of 50 mW. This simple geometry combined to such a high sensitivity opens wide perspectives for practical applications.

  16. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    NASA Astrophysics Data System (ADS)

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-12-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system.

  17. Dual-wavelength single-frequency laser emission in asymmetric coupled microdisks

    PubMed Central

    Wang, Haotian; Liu, Sheng; Chen, Lin; Shen, Deyuan; Wu, Xiang

    2016-01-01

    The gain and loss in a microcavity laser play an important role for the modulation of laser spectrum. We show that dual-wavelength single mode lasing can be achieved in an asymmetric coupled system consisted of two size-mismatched microdisks. The amount of eigenmodes in this coupled-microdisk system is reduced relying on the Vernier effect. Then a single mode is selected to lase by controlling the gain branching in the supermodes. The supermodes are formed by the coupling between different transverse whispering-gallery modes (WGMs). When the gain/loss status between the two mirodisks is changed through selectively pumping process, the modulated gain branching for various supermodes leads to the switchable single-frequency laser emission. The results obtained in this work will provide the further understand for the spectral modulation mechanism in the coupled microcavity laser system. PMID:27905506

  18. Inversed Vernier effect based single-mode laser emission in coupled microdisks.

    PubMed

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-09-02

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.

  19. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    NASA Astrophysics Data System (ADS)

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-09-01

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser.

  20. Inversed Vernier effect based single-mode laser emission in coupled microdisks

    PubMed Central

    Li, Meng; Zhang, Nan; Wang, Kaiyang; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Recently, on-chip single-mode laser emissions in coupled microdisks have attracted considerable research attention due to their wide applications. While most of single-mode lasers in coupled microdisks or microrings have been qualitatively explained by either Vernier effect or inversed Vernier effect, none of them have been experimentally confirmed. Here, we studied the mechanism of single-mode laser operation in coupled microdisks. We found that the mode numbers had been significantly reduced to nearly single-mode within a large pumping power range from threshold to gain saturation. The detail laser spectra showed that the largest gain and the first lasing peak were mainly generated by one disk and the laser intensity was proportional to the wavelength detuning of two set of modes. The corresponding theoretical analysis showed that the experimental observations were dominated by internal coupling within one cavity, which was similar to the recently explored inversed Vernier effect in two coupled microrings. We believe our finding will be important for understanding the previous experimental findings and the development of on-chip single-mode laser. PMID:26330218

  1. Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoran; Chen, Yinyin; Cheng, Ziyong; Deng, Kerong; Ma, Ping'an; Hou, Zhiyao; Liu, Bei; Huang, Shanshan; Jin, Dayong; Lin, Jun

    2016-03-01

    Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation owing to the temperature-sensitive property of the polymer and the photothermal effect of HAuNs. The HAuNs-p(OEGMA-co-MEMA)-Ce6-DOX nanocomposites with 650 nm laser radiation show effective inhibition of cancer cells in vitro and enhanced anti-tumor efficacy in vivo. In contrast, control groups without laser radiation show little cytotoxicity. The nanocomposite demonstrates a way of ``killing three birds with one stone'', that is, chemotherapy, photothermal and photodynamic therapy are triggered simultaneously by the 650 nm laser stimulation. Therefore, the nanocomposites show the great advantages of multi-modal synergistic effects for cancer therapy by a remote-controlled laser stimulus.Combining multi-model treatments within one single system has attracted great interest for the purpose of synergistic therapy. In this paper, hollow gold nanospheres (HAuNs) coated with a temperature-sensitive polymer, poly(oligo(ethylene oxide) methacrylate-co-2-(2-methoxyethoxy)ethyl methacrylate) (p(OEGMA-co-MEMA)), co-loaded with DOX and a photosensitizer Chlorin e6 (Ce6) were successfully synthesized. As high as 58% DOX and 6% Ce6 by weight could be loaded onto the HAuNs-p(OEGMA-co-MEMA) nanocomposites. The grafting polymer brushes outside the HAuNs play the role of ``gate molecules'' for controlled drug release by 650 nm laser radiation

  2. Single shot thermometry using laser induced thermal grating

    NASA Astrophysics Data System (ADS)

    Qu, Pubo; Guan, Xiaowei; Zhang, Zhenrong; Wang, Sheng; Li, Guohua; Ye, Jingfeng; Hu, Zhiyun

    2015-05-01

    With the concern of environmental protection and reducing the fossil fuel consumption, combustion processes need to be more efficient and less contaminable. Therefore, the ability to obtain important thermophysical parameters is crucial to combustion research and combustor design. Traditional surveying techniques were difficult to apply in a confined space, especially the physically intrusions of detectors can alter the combustion processes. Laser-based diagnostic techniques, like CARS, SVRS, PLIF and TDLAS, allow the in situ, non-intrusive, spatially and temporally resolved measurements of combustion parameters in hostile environments. We report here a new non-intrusive optical diagnostic technique, based on laser-induced thermal grating. Thermal gratings generated in NO2/N2 binary mixtures, arise from the nonlinear interaction between the medium and the light radiation from the interference of two pulsed, frequency-doubled Nd:YAG lasers (532 nm). This leads to the formation of a dynamic grating through the resonant absorption and the subsequent collisional relaxation. By the temporally resolved detection of a continuous wave, frequency-doubled Nd:YVO4 probe laser beam (671 nm) diffracted by LITG. The temporal behavior of the signal is a function of the local temperature and other properties of gas, various parameters of the target gas can be extracted by analyzing the signal. The accurate singleshot temperature measurements were carried out at different test conditions using a stainless steel pressurized cell, data averaged on 100 laser shots were compared with simultaneously recorded thermocouple data, and the results were consistent with each other. The LITG signal is shown to grow with increasing the gas pressure and is spatially coherent, which makes the LITG thermometry technique a promising candidate in high pressure environments.

  3. Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level

    DTIC Science & Technology

    2009-04-27

    Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...primarily in a single-longitudinal mode (SLM) up to a bias voltage of 3.7 V and a multi-lodgitudinal mode ( MLM ) at higher voltages. It was mounted in a

  4. Opto-injection into single living cells by femtosecond near-infrared laser

    NASA Astrophysics Data System (ADS)

    Peng, Cheng

    This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.

  5. [INVITED] On the mechanisms of single-pulse laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.

    2017-02-01

    Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the "soft" mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the "hard" mode (at higher laser fluencies) are observed. In the "soft" single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the "soft" mode. In the "hard" mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the "hard" mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the "soft" mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.

  6. Fourier synthesis with single-mode pulses from a multimode laser.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Podivilov, Evgeniy V; Fotiadi, Andrei A; Babin, Sergey A

    2015-08-01

    Short pulses are generated by mode-locking techniques: amplitude modulation in time domain or frequency modulation in frequency domain. Direct Fourier synthesis of radiation from several single-frequency sources offers an opportunity to generate arbitrary waveforms. Here we report on a new technique of short-pulse synthesis in the Fourier domain. Instead of independent laser sources, we use a single multimode laser with retrieval of its individual cavity modes into a time sequence coherently combined in an external cavity. Combination of 20 consequent single-mode pulses has been performed, demonstrating a new way for arbitrary waveforms synthesis.

  7. Analysis of thermal effects in a pulsed laser diode end pumped single-ended composite Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Xinyu; Wu, Jing; Wu, Chunting; Sun, Hongtao; Yu, Yongji; Jin, Guangyong

    2015-04-01

    By studying the theory of heat conduction, we established the transient heat conduction equation for a pulsed laser diode (LD) end pumped thulium doped laser. Combined with the actual working environment of a pulsed LD end pumped single-ended composite Tm:YAG rod, the expressions of transient temperature distribution and the time-varying thermal focal length were obtained by the integral transform method and the method of separation of variables. Under 240 mJ pump energy and repetition rates of 80, 90, and 100 Hz, thermal effects in the pulsed LD end pumped single-ended composite Tm:YAG rod were simulated, and the thermal lens focal length of the single-ended composite Tm:YAG rod was measured in experiments. The theoretical analysis was verified by the comparison between the theoretical results and the experimental results.

  8. Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy.

    PubMed

    Tan, Xiaoxiao; Wang, Jinping; Pang, Xiaojuan; Liu, Li; Sun, Qi; You, Qing; Tan, Fengping; Li, Nan

    2016-12-28

    Photoacoustic (PA)/near-infrared fluorescence (NIRF) dual-modal imaging-guided phototherapy has been wide explored very recently. However, the development of high-efficiency and simplified-performed theranostic system for amplifying imaging-guided photothermal therapy/photodynamic therapy (PTT/PDT) is still a great challenge. Herein, a single-light-triggered indocyanine green (ICG)-loaded PEGylation silver nanoparticle core/polyaniline shell (Ag@PANI) nanocomposites (ICG-Ag@PANI) for PA/NIRF imaging-guided enhanced PTT/PDT synergistic effect has been successfully constructed. In this study, the synthesized Ag@PANI nanocomposites are utilized not only as the promising photothermal agent but also as potential nanovehicles for loading photosensitizer ICG via π-π stacking and hydrophobic interaction. The as-prepared ICG-Ag@PANI possesses many superior properties such as strong optical absorption in the near-infrared (NIR) region, enhanced photostability of ICG, as well as outstanding NIR laser-induced local hyperthermia and reactive oxygen species (ROS) generation. In the in vivo study, PA/NIRF dual-modal imaging confirms the accumulation and distribution of ICG-Ag@PANI in the tumor region via enhanced permeability and retention (EPR) effect. Moreover, the PTT effect of ICG-Ag@PANI rapidly raised the tumor temperature to 56.8 °C within 5 min. It is also demonstrated that the cytotoxic ROS generation ability of ICG is well maintained after being loaded onto Ag@PANI nanocomposites. Remarkably, in comparison with PTT or PDT alone, the single 808 nm NIR laser-triggered combined PTT/PDT therapy exhibits enhanced HeLa cells lethality in vitro and tumor growth inhibition in vivo.

  9. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    NASA Astrophysics Data System (ADS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  10. Single-mode and high power waveguide lasers fabricated by ion-exchange.

    PubMed

    Della Valle, G; Festa, A; Sorbello, G; Ennser, K; Cassagnetes, C; Barbier, D; Taccheo, S

    2008-08-04

    We report on a single-end diode-pumped waveguide laser providing output power in excess of 20 mW with 17% slope efficiency in robust single longitudinal and transverse mode operation at 1533.5 nm. The active medium was an Er:Yb-doped waveguide only 9-mm long fabricated by Ag-Na ion-exchange in a phosphate glass. The overall cavity length including butt-coupled fiber-Bragg-grating mirrors was <60 mm. We also report on high power waveguide lasers providing more than 160 mW output power and 46% slope efficiency in multimode operation. Feasibility of high power single mode waveguide lasers based on ion-exchange technology in phosphate glasses is also experimentally investigated by using a 50-mm long active waveguide specially designed for efficient single-end pumping.

  11. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter.

    PubMed

    Payne, Geoffrey S; deSouza, Nandita M; Messiou, Christina; Leach, Martin O

    2015-04-01

    Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as

  12. A single-frequency double-pulse Ho:YLF laser for CO2-lidar

    NASA Astrophysics Data System (ADS)

    Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.

    2016-03-01

    A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.

  13. Intracavity Microfluidic Laser Device for Single Cell Analysis

    NASA Astrophysics Data System (ADS)

    Gourley, Paul

    2015-03-01

    An intracavity microfluidic laser device has been developed to study bioparticles ranging in size from 50 nm to 20 μm (virons to organelles to whole cells). The versatile device can be operated used in several modes including static or flowing fluids, with or without molecular labels, and microscopic imaging and/or spectroscopy. It enables advantageous new ways to perform analyses of bioparticles for applications including cell biology, detection of disease and pathogens, environmental monitoring, pharmaceuticals, agriculture, and food processing. This talk will briefly summarize the physics of the device including its laser optics, fluid dynamics, and intracavity light interaction with cells. The talk will then focus on results of a study of mitochondria in normal and cancer liver cells. The study examines the transformation of intracellular and isolated mitochondria from the normal to disease state. The results highlight the unique utility of the device to rapidly assess biophysical changes arising from altered biomolecular states of cells and organelles.

  14. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  15. Simultaneous ion beam profile scan using a single laser source

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Long, C.; Huang, C.; Dickson, R.; Aleksandrov, A.

    2013-01-01

    We report on the world’s first experiment of a simultaneous profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed and brought to operational level of application at the superconducting linac of the Spallation Neutron Source accelerator complex. The laser wire profile scanner is based on a photodetachment process and therefore can be conducted on a 1-MW neutron production H- beam in a nonintrusive manner. The new simultaneous profile scanning system allows one to simultaneously measure profiles of the H- beam at nine different locations of the linac with high speed and accuracy, and therefore provides a unique tool for accelerator tuning and physics study. This paper describes the design, optical system and software platform developments, and measurement results of the simultaneous profile scanning system.

  16. Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases

    SciTech Connect

    Hoshi, Y.; Yoshida, H.

    2009-09-15

    We examined laser-triggered discharge (LTD) under asymmetric electric fields in air. Upon introducing a virtual gas with npd (n=2.8-3) instead of pd in Paschen's law [Ann. Phys. Chem. 37, 69 (1889)], the results of LTD in air coincided with the Paschen curve. A Paschen curve similar to those of inert gases, i.e., Ne and He, can be obtained even in air. This implies that in LTD, the number of gas molecules between electrodes appears to be n times higher than that in air. In LTD in air, the gamma effect is presumed to be significant, similar to in inert gases.

  17. LASERS: High-power single-mode laser diodes based on carbon-doped quantum-well InGaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Petrovskii, A. V.; Sukharev, A. V.; Uspenskii, Mikhail B.; Shishkin, Viktor A.

    2009-01-01

    Emission parameters of single-mode laser diodes based on InGaAs/GaAs/AlGaAs heterostructures doped with carbon and grown by using the metallorganic vapour phase epitaxy (MOVPE) technique are studied. The obtained results show that maintaining a certain doping profile ensuring optimisation of series resistance and internal optical losses during all fabrication stages of the active element of a diode laser, provides for enhancement of the laser efficiency. Based on laser heterostructures studied in this paper, highly efficient single-transverse-mode laser diodes emitting 300 mW at 980 nm have been manufactured.

  18. Amplification of ps-pulses from freely triggerable gain-switched laser diodes at 1062 nm and second harmonic generation in periodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Riecke, Sina M.; Lauritsen, Kristian; Erdmann, Rainer

    2011-03-01

    We present a compact frequency-doubled laser source with fundamental wavelength operation at 1062 nm. A freely triggerable seed diode laser delivers sub-100 ps pulses in the picojoule range at variable repetition rates up to 80 MHz. After amplification in a Ytterbium-doped fiber amplifier, the average power exceeds 380mW at 40 MHz, which corresponds to 9.5 nJ pulses and about 75W of peak power. The output beam is then focussed into periodically poled lithium niobate for second harmonic generation (SHG). In this way, green picosecond pulses with an energy of up to 2 nJ at 40MHz are generated. The pulse energy and pulse shape of the second harmonic pulses are systematically studied for various repetition rates, allowing conclusions on the amplifier performance under different operating conditions.

  19. Ultrafast single-shot imaging of laser-produced plasmas via spatial division and routing

    NASA Astrophysics Data System (ADS)

    Yeola, Sarang; Kuk, Donghoon; Kim, Ki-Yong

    2017-01-01

    We have developed a single-shot imaging camera, which can capture ultrafast events occurring on femtosecond and picosecond time scales. The working principle of this camera relies on spatial division and routing of femtosecond laser pulses. Here we have employed simple optics such as mirrors to produce multiple, time-delayed laser pulses and to project time-evolving images onto separate standard cameras. This spatial division and routing method has been tested with a femtosecond amplified laser in visualizing the evolution of laser-induced ionization in air and ablation in solids in single-shots. The number of frames is currently limited to 4 but can be increased further to N x N by using 3D printed optics for spatial division and routing. Work supported by the National Science Foundation (NSF) under Award No. 1351455.

  20. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  1. 633-nm single-mode laser diode module with PM fiber output

    NASA Astrophysics Data System (ADS)

    Blume, G.; Jedrzejczyk, D.; Pohl, J.; Feise, D.; Sahm, A.; Eppich, B.; Nölleke, C.; Leisching, P.; Paschke, K.

    2017-02-01

    Several holographic and interferometric applications would benefit significantly from a diode laser based coherent light source near 633 nm. For this purpose a laser diode based on an AlGaAs/AlGaInP structure for emission in the red spectral range was developed. The laser chip features a ridge waveguide and a DBR surface grating at the rear side with a peak reflectivity at 633 nm. The laser was mounted in a butterfly-style package for temperature stabilization. The beam emitted by the laser diode was shaped with two cylindrical micro-lenses and passed through a custom-built CdMnTebased micro-optical isolator. The beam behind the isolator was coupled into a polarization maintaining (PM) single-mode fiber using an aspherical lens. The optical output power of the fiber was about 1.7 mW at 100 mA.

  2. Ablation and analysis of small cell populations and single cells by consecutive laser pulses

    NASA Astrophysics Data System (ADS)

    Shrestha, Bindesh; Nemes, Peter; Vertes, Akos

    2010-10-01

    Laser ablation of single cells through a sharpened optical fiber is used for the detection of metabolites by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Ablation of the same Allium cepa epidermal cell by consecutive pulses indicates the rupture of the cell wall by the second shot. Intracellular sucrose heterogeneity is detected by subsequent laser pulses pointing to rupturing the vacuolar membrane by the third exposure. Ion production by bursts of laser pulses shows that the drying of ruptured A. cepa cells occurs in ˜50 s at low pulse rates (10 pulses/s bursts) and significantly faster at high pulse rates (100 pulses/s bursts). These results point to the competing role of cytoplasm ejection and evaporative drying in diminishing the LAESI-MS signal in ˜50 s or 100 laser pulses, whichever occurs first.

  3. High power single-longitudinal-mode cyan laser at 500.8 nm

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.

    2012-05-01

    An all-solid-state single-longitudinal-mode (SLM) laser at 500.8 nm with 830 mW output power has been demonstrated for the first time. By using a new resonator for doubly resonant, Nd:GdVO4 and Nd:YAG were pumped by two laser diode arrays coupled by optical fiber, respectively. In the two sub-cavities, SLM wavelengths of 1064 and 946 nm were induced by using the twisted-mode technique and then mixed into SLM 500.8 nm laser with sum-frequency technology. The SLM 500.8 nm laser output of 830 mW was obtained at the incident pump power of 20 W for Nd:GdVO4 and 23 W for Nd:YAG. The experimental results showed that the intracavity sum-frequency mixing by twisted-mode technique is an effective method for SLM 500.8 nm laser.

  4. Resistive switching behavior in single crystal SrTiO3 annealed by laser

    NASA Astrophysics Data System (ADS)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Yuan, Ye; Zhou, Shengqiang; Ou, Xin; Zhang, Wanli

    2016-12-01

    Single crystal SrTiO3 (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm2, 0.6 J/cm2 and 0.8 J/cm2, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  5. Single-mode 140 nm swept light source realized by using SSG-DBR lasers

    NASA Astrophysics Data System (ADS)

    Fujiwara, N.; Yoshimura, R.; Kato, K.; Ishii, H.; Kano, F.; Kawaguchi, Y.; Kondo, Y.; Ohbayashi, K.; Oohashi, H.

    2008-02-01

    We demonstrate a single-mode and fast wavelength swept light source by using Superestrucuture grating distributed Bragg reflector (SSG-DBR) lasers for use in optical frequency-domain reflectometry optical coherence tomography. The SSG-DBR lasers provide single-mode operation resulting in high coherency. Response of the wavelength tuning is very fast; several nanoseconds, but there was an unintentional wavelength drift resulting from a thermal drift due to injecting tuning current. The dri1ft unfortunately requires long time to converge; more than a few milliseconds. For suppressing the wavelength drift, we introduced Thermal Drift Compensation mesa (TDC) parallel to the laser mesa with the spacing of 20 μm. By controlling TDC current to satisfy the total electric power injected into both the laser mesa and the TDC mesa, the thermal drift can be suppressed. In the present work, we fabricated 4 wavelength's kinds of SSG-DBR laser, which covers respective wavelength band; S-band (1496-1529 nm), C-band (1529-1564 nm), L --band (1564-1601 nm), and L +-band (1601-1639). We set the frequency channel of each laser with the spacing 6.25 GHz and 700 channels. The total frequency channel number is 2800 channels (700 ch × 4 lasers). We simultaneously operated the 4 lasers with a time interval of 500 ns/channel. A wavelength tuning range of more than 140 nm was achieved within 350 μs. The output power was controlled to be 10 mW for all channels. A single-mode, accurate, wide, and fast wavelength sweep was demonstrated with the SSG-DBR lasers having TDC mesa structure for the first time.

  6. Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold.

    PubMed

    Parsanasab, Gholam-Mohammad; Moshkani, Mojtaba; Gharavi, Alireza

    2015-04-06

    We have demonstrated an optically pumped polymer microring laser fabricated by two photon polymerization (TPP) of SU-8. The gain medium is an organic dye (Rhodamine B) doped in SU-8, and the laser cavity is a double coupled microring structure. Single mode lasing was obtained from the two coupled rings each with 30 µm and 29 µm radii using Vernier effect. Low laser threshold of 0.4 µJ/mm(2) is achieved using 1 µm wide polymer waveguides and the quality factor is greater than 10(4) at 612.4 nm wavelength. The lasing remained stable with pump energies from threshold to energies as high as 125 times the threshold.

  7. Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014231 TITLE: Two-Photon Laser Micro - Nano Fabrication; Understanding...758 @ 2003 Materials Research Society LL4.6 Two-Photon Laser Micro - Nano Fabrication; Understanding from Single-Voxel Level Satoshi Kawatal and Hong...spatial resolution by the radical quenching effect [8, 9], improvement of fabrication efficiency by using 3D vector scanning [9], 3D micro -diagnosis by

  8. Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design

    NASA Astrophysics Data System (ADS)

    Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen

    2016-11-01

    852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.

  9. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  10. Injection chaining of diode-pumped single-frequency ring lasers for free-space communication

    NASA Technical Reports Server (NTRS)

    Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.

    1991-01-01

    A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.

  11. Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Matilainen, Ville-Pekka; Piili, Heidi; Salminen, Antti; Nyrhilä, Olli

    Laser additive manufacturing (LAM) is a fabrication technology that enables production of complex parts from metallic materials with mechanical properties comparable to conventionally manufactured parts. In the LAM process, parts are manufactured by melting metallic powder layer-by-layer with a laser beam. This manufacturing technology is nowadays called powder bed fusion (PBF) according to the ASTM F2792-12a standard. This strategy involves several different independent and dependent thermal cycles, all of which have an influence on the final properties of the manufactured part. The quality of PBF parts depends strongly on the characteristics of each single laser-melted track and each single layer. This study consequently concentrates on investigating the effects of process parameters such as laser power on single track and layer formation and laser-material interaction phenomena occurring during the PBF process. Experimental tests were done with two different machines: a modified research machine based on an EOS EOSINT M-series system and an EOS EOSINT M280 system. The material used was EOS stainless steel 17-4 PH. Process monitoring was done with an active illuminated high speed camera system. After microscopy analysis, it was concluded that a keyhole can form during laser additive manufacturing of stainless steel. It was noted that heat input has an important effect on the likelihood of keyhole formation. The threshold intensity value for keyhole formation of 106 W/cm2 was exceeded in all manufactured single tracks. Laser interaction time was found to have an effect on penetration depth and keyhole formation, since the penetration depth increased with increased laser interaction time. It was also concluded that active illuminated high speed camera systems are suitable for monitoring of the manufacturing process and facilitate process control.

  12. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Varkentina, N.; Sanner, N.; Lebugle, M.; Sentis, M.; Utéza, O.

    2013-11-01

    Ablation of fused silica by a single femtosecond laser pulse of 500 fs pulse duration is investigated from the perspective of efficiency of incident photons to remove matter. We measure the reflected and transmitted fractions of the incident pulse energy as a function of fluence, allowing us to recover the evolution of absorption at the material surface. At the ablation threshold fluence, 25% of incident energy is absorbed. At high fluences, this ratio saturates around 70% due to the appearance of a self-triggered plasma mirror (or shielding) effect. By using the energy balance retrieved experimentally and measurements of the ablated volume, we show that the amount of absorbed energy is far above the bonding energy of fused silica at rest and also above the energy barrier to ablate the material under non-equilibrium thermodynamic conditions. Our results emphasize the crucial role of transient plasma properties during the laser pulse and suggest that the major part of the absorbed energy has been used to heat the plasma formed at the surface of the material. A fluence range yielding an efficient and high quality ablation is also defined, which makes the results relevant for femtosecond micromachining processes.

  13. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  14. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    PubMed Central

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-01-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature. PMID:28000788

  15. AlxGa1-xAs Single-Quantum-Well Surface-Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Kim, Jae H.

    1992-01-01

    Surface-emitting solid-state laser contains edge-emitting Al0.08Ga0.92As single-quantum-well (SQW) active layer sandwiched between graded-index-of-refraction separate-confinement-heterostructure (GRINSCH) layers of AlxGa1-xAs, includes etched 90 degree mirrors and 45 degree facets to direct edge-emitted beam perpendicular to top surface. Laser resembles those described in "Pseudomorphic-InxGa1-xAs Surface-Emitting Lasers" (NPO-18243). Suitable for incorporation into optoelectronic integrated circuits for photonic computing; e.g., optoelectronic neural networks.

  16. Non-Hermitian engineering of single mode two dimensional laser arrays

    PubMed Central

    Teimourpour, Mohammad H.; Ge, Li; Christodoulides, Demetrios N.; El-Ganainy, Ramy

    2016-01-01

    A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and lossy pseudo-isospectral chains of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays. PMID:27698355

  17. Narrow linewidth single-mode semiconductor laser development for coherent detection lidar

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou; Ksendzov, Alexander; Menzies, Robert T.; Maker, Paul D.; Muller, Richard E.; Manfra, M. J.; Turner, George W.

    2003-01-01

    High power, tunable, single mode, narrow linewidth semiconductor lasers in the 2.05-(micro)m wavelength region are needed to develop semiconductor laser reference oscillators for optical remote sensing from Earth orbit. 2.05-I1/4m narrow linewidth monolithic distributed feedback (DFB) and distributed Bragg reflector (DBR) with the external grating ridge waveguide lasers fabricated from epitaxially grown InGaAs/InGaAsP/InP and in InGaAsSb/AlGaAsSb/GaSb heterostructures are reported.

  18. Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite

    NASA Astrophysics Data System (ADS)

    Krüger, J.; Kautek, W.; Newesely, H.

    Laser microdrilling of healthy human enamel and dentine using 300 fs pulses at a wavelength of 615 nm and 3 Hz repetition rate leads to an enhanced structuring quality in comparison with nanosecond-laser results. Microcracking and damage to neighboring tissue can be reduced. Ablation threshold fluences for 100 laser pulses of 0.3 Jcm-2 (human dentine), 0.6 Jcm-2 (human enamel) and 0.8 Jcm-2 (single crystalline fluoroapatite) could be determined. Ablation depths per pulse below 1 μm were observed.

  19. Narrow linewidth single-mode semiconductor laser development for coherent detection lidar

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou; Ksendzov, Alexander; Menzies, Robert T.; Maker, Paul D.; Muller, Richard E.; Manfra, M. J.; Turner, George W.

    2003-01-01

    High power, tunable, single mode, narrow linewidth semiconductor lasers in the 2.05-(micro)m wavelength region are needed to develop semiconductor laser reference oscillators for optical remote sensing from Earth orbit. 2.05-I1/4m narrow linewidth monolithic distributed feedback (DFB) and distributed Bragg reflector (DBR) with the external grating ridge waveguide lasers fabricated from epitaxially grown InGaAs/InGaAsP/InP and in InGaAsSb/AlGaAsSb/GaSb heterostructures are reported.

  20. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    NASA Astrophysics Data System (ADS)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  1. Process of stopping atoms with the Zeeman tuning technique with a single laser

    SciTech Connect

    Firmino, M.E.; Faria Leite, C.A.; Zilio, S.C.; Bagnato, V.S. )

    1990-04-01

    We report an observation of atoms stopped by laser light in an experiment using the Zeeman tuning technique. In contrast to previous experiments using the same technique, we are able to stop the atoms outside the slower solenoid using a single laser. The deceleration process is monitored through the measurement of the fluorescence along the deceleration path in such a way that the slower laser is also used for diagnosis. This technique also permits the realization of a few interesting observations on the process such as the position where the atoms stop scattering photons.

  2. Single Molecule Analysis of Laser Localized Interstrand Crosslinks

    PubMed Central

    Huang, Jing; Gali, Himabindu; Paramasivam, Manikandan; Muniandy, Parameswary; Gichimu, Julia; Bellani, Marina A.; Seidman, Michael M.

    2016-01-01

    DNA interstrand crosslinks (ICLs) block unwinding of the double helix, and have always been regarded as major challenges to replication and transcription. Compounds that form these lesions are very toxic and are frequently used in cancer chemotherapy. We have developed two strategies, both based on immunofluorescence (IF), for studying cellular responses to ICLs. The basis of each is psoralen, a photoactive (by long wave ultraviolet light, UVA) DNA crosslinking agent, to which we have linked an antigen tag. In the one approach, we have taken advantage of DNA fiber and immuno-quantum dot technologies for visualizing the encounter of replication forks with ICLs induced by exposure to UVA lamps. In the other, psoralen ICLs are introduced into nuclei in live cells in regions of interest defined by a UVA laser. The antigen tag can be displayed by conventional IF, as can the recruitment and accumulation of DNA damage response proteins to the laser localized ICLs. However, substantial difference between the technologies creates considerable uncertainty as to whether conclusions from one approach are applicable to those of the other. In this report, we have employed the fiber/quantum dot methodology to determine lesion density and spacing on individual DNA molecules carrying laser localized ICLs. We have performed the same measurements on DNA fibers with ICLs induced by exposure of psoralen to UVA lamps. Remarkably, we find little difference in the adduct distribution on fibers prepared from cells exposed to the different treatment protocols. Furthermore, there is considerable similarity in patterns of replication in the vicinity of the ICLs introduced by the two techniques. PMID:27242893

  3. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    PubMed Central

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730

  4. Single-frequency, injection-seeded Er:YAG laser based on a bow-tie ring slave resonator

    SciTech Connect

    Yao, B Q; Deng, Yu; Dai, T Y; Duan, X M; Ju You-Lun; Wang, Y Z

    2015-08-31

    A diode pumped, injection-seeded Q-switched Er:YAG laser at 1645.2 nm is demonstrated. A single frequency Er:YAG monolithic nonplanar ring oscillator (NPRO) laser emitting at 1645.24 nm with a maximum output power of 500 mW is used as a seed laser. The seed laser output is injected into a bow-tie slave laser, obtaining stable single-frequency Q-switched operation of the Er:YAG laser. The maximum single-frequency Q-switched Er:YAG laser output energy is 2.9 mJ at 100 Hz with a pulse duration of 160 ns. (lasers)

  5. Single linearly polarized, widely and freely tunable two wavelengths Yb3+-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Dongfeng; Wang, Chinhua

    2010-01-01

    We report a novel single linearly polarized, widely, freely and continuously tunable two wavelengths Yb3+-doped fiber laser. The laser generates stable arbitrary two wavelengths output between 1003.1 and 1080.7 nm peak wavelengths simultaneously with a 346.0 mW CW power by using polarization beam splitting (PBS) for separation of two wavelengths. Each lasing line shows a single polarization with a polarization extinction ratio of >20 dB under different pump levels. The central and the interval of the two wavelengths can be tuned smoothly and independently in the entire gain region of >70 nm of PM Yb3+-doped single mode fiber. Strongly enhanced polarization-hole burning (PHB) phenomena in polarization maintain (PM) Yb3+-doped fiber was observed in the tunable two wavelengths Yb3+-doped fiber laser.

  6. Laser-Heated Floating Zone Production of Single-Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Westfall, Leonard

    1996-01-01

    This report describes how a laser-heated floating zone apparatus can be used to investigate single-crystal fibers of various compositions. A feedrod with a stoichiometric composition of high-purity powders was connected to a pedestal and fed into a laser scan where it combined with a single-crystal fiber seed. A molten zone was formed at this junction. As the feedrod was continuously fed into the laser scan, a single-crystal fiber of a prescribed orientation was withdrawn from the melt. The resultant fibers, whose diameters ranged from 100 to 250 gm, could then be evaluated on the basis of their growth behavior, physical properties, mechanical properties, and fiber perfection.

  7. On-chip interference of single photons from an embedded quantum dot and an external laser

    SciTech Connect

    Prtljaga, N. Bentham, C.; O'Hara, J.; Royall, B.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M.; Clarke, E.

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.

  8. Application of a single laser Doppler system to the measurement of atmospheric winds

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Huffaker, R. M.

    1974-01-01

    The feasibility of employing a single laser Doppler velocimeter (LDV) system to remotely measure one-, two-, and three-dimensional velocity components in atmospheric flow fields is presented. A focused continuous wave CO2 laser emitting at the 10.6 mu wavelength is used as the laser source. Scan configurations employed by the LDV system were single-point, two-point, conical, and spiral conical. Test results are presented, which include favorable comparisons of velocity components measured by conventional anemometry and the LDV system. The feasibility using a single-beam LDV employing a conical scan technique for measuring two- and three-dimensional mean winds. Measurements to 300 m in dense fogs showed the ability of the LDV system to operate in dense fogs.

  9. Dynamics of optical breakdown in air induced by single and double nanosecond laser pulses

    SciTech Connect

    Mahdieh, Mohammad Hossein Akbari Jafarabadi, Marzieh

    2015-12-15

    In this paper, an optical breakdown in air induced by single and double nanosecond laser pulses was studied. A high power Nd:YAG laser beam was used for producing optical breakdown plasma in the air. The dynamics of breakdown plasma were studied using an optical probe beam. A portion of the laser beam was used, as the probe beam and was aligned to propagate (perpendicular to the pump beam) through the breakdown region. The transmission of the probe beam (through the breakdown region) was temporally measured for both single and double pulse irradiations. The results were used to describe the evolution of the induced plasma in both conditions. These results show that the plasma formation time and its absorptivity are strongly dependent on the single or double pulse configurations.

  10. Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W

    NASA Astrophysics Data System (ADS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Forouhar, Siamak

    2014-10-01

    We report on single-mode distributed-feedback quantum cascade lasers emitting at 4.8 μm with continuous-wave threshold power consumption as low as 0.76 W at 20 °C and 0.98 W at 50 °C. Following growth of the laser active region and semiconductor cladding layers by a single molecular beam epitaxy process, devices with 4-μm-wide ridges and vertical sidewall gratings were fabricated using plasma etching and standard dielectric and metal deposition processes. In terms of mode stability, output power, and efficiency, we show that lasers with 1-mm cavity length and high-reflectivity back-facet coatings can match the performance of buried heterostructure devices, but with the advantage of requiring only a single epitaxial growth step.

  11. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  12. On-chip interference of single photons from an embedded quantum dot and an external laser

    NASA Astrophysics Data System (ADS)

    Prtljaga, N.; Bentham, C.; O'Hara, J.; Royall, B.; Clarke, E.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M.

    2016-06-01

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.

  13. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  14. UV-Triggered Self-Healing of a Single Robust SiO2 Microcapsule Based on Cationic Polymerization for Potential Application in Aerospace Coatings.

    PubMed

    Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan

    2016-08-17

    UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.

  15. Tree height growth measurement with single-scan airborne, static terrestrial and mobile laser scanning.

    PubMed

    Lin, Yi; Hyyppä, Juha; Kukko, Antero; Jaakkola, Anttoni; Kaartinen, Harri

    2012-01-01

    This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: "Can the new technique characterize the height growth for each individual tree?" and "Can this technique refine the minimum growth-discernable temporal interval further?" To solve these two puzzles, the sampling principles of the three laser scanning modes were first examined, and their error sources against the task of tree-top capturing were also analyzed. Next, the three-year growths of 58 Nordic maple trees (Crimson King) for test were intermittently surveyed with one type of laser scanning each time and then analyzed by statistics. The evaluations show that the height growth of each individual tree still cannot be reliably characterized even by single-scan terrestrial laser scanning, and statistical analysis is necessary in this scenario. After Gaussian regression, it is found that the minimum temporal interval with distinguishable tree height growths can be refined into one month based on terrestrial laser scanning, far better than the two years deduced in the previous works based on airborne laser scanning. The associated mean growth was detected to be about 0.12 m. Moreover, the parameter of tree height generally under-estimated by airborne and even mobile laser scanning can be relatively revised by means of introducing static terrestrial laser scanning data. Overall, the effectiveness of the proposed technique is primarily validated.

  16. Multipoint laser Doppler vibrometry with single detector: principles, implementations, and signal analyses.

    PubMed

    Fu, Y; Guo, M; Phua, P B

    2011-04-01

    A 20-point laser Doppler vibrometer with single photodetector is presented for noncontact dynamic measurement. A 5×4 beam array with various frequency shifts is generated by a 1.55 μm distributed feedback laser and four acousto-optic devices, and illuminating different points on vibrating objects. The reflected beams are coupled into a single-mode fiber by a pigtailed collimator and interfere with a reference beam. The signal output from a high-speed photodetector is amplified and then digitized by a high-speed analog-to-digital converter with a sampling rate of 1 gigasample per second (1 GS/s). Several methods are introduced to avoid the cross talk among different frequencies and extract the vibration information of 20 points from a one-dimensional signal. Two signal processing algorithms based on Fourier transform and windowed Fourier transform are illustrated to extract the vibration signals at different points. The experimental results are compared with that from a commercial single-point laser vibrometer. The results show simultaneous vibration measurement can be realized on multiple points using a single laser source and a single photodetector. © 2011 Optical Society of America

  17. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  18. Fluence-dependent effects of low-level laser therapy in myofascial trigger spots on modulation of biochemicals associated with pain in a rabbit model.

    PubMed

    Hsieh, Yueh-Ling; Hong, Chang-Zern; Chou, Li-Wei; Yang, Shun-An; Yang, Chen-Chia

    2015-01-01

    Evidence strongly supports that low-level laser therapy (LLLT) is an effective physical modality for the treatment of pain associated with myofascial trigger points (MTrP). However, the effect of laser fluence (energy intensity in J/cm(2)) on biochemical regulation related to pain is unclear. To better understand the biochemical mechanisms modulated by high- and low-fluence LLLT at myofascial trigger spots (MTrSs; similar to human MTrPs) in skeletal muscles of rabbits, the levels of β-endorphin (β-ep), substance P (SP), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) were investigated in this study. New Zealand rabbits (2.5-3.0 kg in weight) were used in this study. High-fluence LLLT (27 J/cm(2)), low-fluence LLLT (4.5 J/cm(2)), or sham operations were applied on MTrSs of biceps femoris of rabbits for five sessions (one session per day). Effects of LLLT at two different fluences on biceps femoris, dorsal root ganglion (DRG), and serum were determined by β-ep, SP, TNF-α, and COX-2 immunoassays. LLLT irradiation with fluences of 4.5 and 27 J/cm(2) at MTrSs can significantly reduce SP level in DRG. LLLT with lower fluence of 4.5 J/cm(2) exerted lower levels of TNF-α and COX-2 expression in laser-treated muscle, but LLLT with higher fluence of 27 J/cm(2) elevated the levels of β-ep in serum, DRG, and muscle. This study demonstrated fluence-dependent biochemical effects of LLLT in an animal model on management of myofascial pain. The findings can contribute to the development of dosage guideline for LLLT for treating MTrP-induced pain.

  19. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  20. Comparison of a single treatment with Q-switched ruby laser and Q-switched Nd:YAG laser in removing black-blue Chinese tattoos.

    PubMed

    Lin, Tong; Jia, Gaorong; Rong, Huizhen; Li, Jianming; Zhou, Zhanchao

    2009-12-01

    Black and blue are two popular colors in Chinese tattooing. Two Q-switched lasers, ruby and Nd:YAG, are effective for tattoo removal. No reference with regard to a comparison of the effects and adverse reactions in Chinese individuals has been made in the literature. To compare a single treatment of black-blue tattoos with the Q-switched ruby laser and Q-switched Nd:YAG (1064 nm) laser. A total of 35 Chinese patients with black-blue tattoos at the laser center of the Institute of Dermatology, Chinese Academy of Medical Sciences were enrolled into a self-control study. Tattoos were split into two parts or two nearby tattoos on the same body part were used; one side was treated with the Q-switched ruby laser and the other with the Q-switched Nd:YAG laser. Immediate response, treatment outcome and adverse effects were compared. The statistical significance level was set at p< 0.05. Edema and exudation were more common immediately after ruby laser treatment (p< 0.05). The Q-switched Nd:YAG laser had a significant difference in tattoo lightening versus the Q-switched ruby laser after a single treatment (p<0.05). There was no significant difference in adverse effects between the two lasers. The Q-switched Nd:YAG laser is more effective at tattoo lightening for Chinese individuals. Its immediate response after treatment is slighter than the Q-switched ruby laser.

  1. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    SciTech Connect

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  2. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.

    2016-06-01

    The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  3. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.

    PubMed

    Kim, Moosung; Hwang, David J; Jeon, Hojeong; Hiromatsu, Kuniaki; Grigoropoulos, Costas P

    2009-01-21

    We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.

  4. Wavelength tunable single freqeuncy bistability erbium-doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Qian, Sheng; Zhou, Xuefang; Qi, Yongmin; Li, Qiliang

    2008-11-01

    In this paper, a tunable single-frequency fiber laser is designed. For narrow linewidth and single frequency operation, a length of 2.75m unpumped EDF as a saturable absorber is used. The FBG combined with the unpumped EDF provides narrow frequency selection. Counter propagating beams in the unpumped EDF form a standing wave that results in periodic spatial hole burning. This creates a narrower bandwidth absorption grating than the FBG. The output laser wavelength can be changed from 1530nm to 1570nm by the FBG. The 3dB spectrum width of output laser is 0.08nm and the side mode suppression ratio is 55dB. The maximum output power exceeds 12mW, and the stability is less than +/-0.005dB. A nice single-frequency laser is observed. From the relationship of the pump power and output power, it is obvious that the optical bistability switchable phenomena is showed in output characteristics. The bistability switchable phenomena is caused by the saturable absorber in the ring cavity. A 10Gb/s codes rate is used in the fiber laser transmission experiment. The high speed optical signal is transmitted in long distance without regeneration. The eye diagrams of optical transmission are measured, the performance of long haul transmission with high speed modulation is perfect.

  5. Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Recently, double-clad crystalline fiber waveguides (CFWs), consisting of single crystalline or ceramic RE3+:YAG cores of square cross section and inner claddings of either undoped or laser-inactive-ion-doped YAG and outer claddings of sapphire, have been successfully demonstrated. These waveguides, manufactured by an Adhesive-Free Bonding (AFB®) technique, can be precisely engineered and fabricated with predictable beam propagation behavior. In this work, with high power laser designs in mind, minimum thicknesses for inner cladding are derived for different core cross sections and refractive index differences between the core and inner cladding and sapphire as outer cladding material for common laser core dopants such as Nd3+, Yb3+, Er3+, Tm3+ and Ho3+. All designs are intended to use high NA high power laser diode pumping to obtain high power intrinsically single transverse mode laser output. The obtained data are applicable to any crystalline fiber waveguide design, regardless of fabrication technique. As an example, a CFW with 40 μm × 40 μm 4% Tm:YAG core, 5% Yb:YAG inner cladding, and sapphire outer cladding was calculated to be intrinsically single transverse mode, with the minimum inner cladding width of 21.7 μm determined by the effective index technique [1].

  6. Mode coupling in hybrid square-rectangular lasers for single mode operation

    SciTech Connect

    Ma, Xiu-Wen; Huang, Yong-Zhen Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  7. Mode coupling in hybrid square-rectangular lasers for single mode operation

    NASA Astrophysics Data System (ADS)

    Ma, Xiu-Wen; Huang, Yong-Zhen; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong

    2016-08-01

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  8. Studies with Laser Cooled Atoms and Single Molecules

    DTIC Science & Technology

    2007-09-01

    between soda lime glass slides. The bond-setting time can be tailored to allow time for precision optical alignment. We also extended our previous single...pulse separation of lOOms. Factors that lead to this progress include (i) an atomic fountain , which leads to more accurate control of the photon-atom...This method achieves 100% successful bonding rates between soda lime glass slides. The bond-setting time and be can tailored to allow time for

  9. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  10. Formation of ultracold molecules induced by a high-power single-frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colín-Rodríguez, Ricardo; Ventura da Silva, Paulo Cesar; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis Gustavo

    2017-02-01

    The influence of a high-power single-frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto-optical trap. We find evidence for the formation of ground-state 85Rb2 molecules in low vibrational levels (v≤slant 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances, only four times smaller than that observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around the conventional 1064 nm wavelength.

  11. Hybrid Brillouin/thulium multiwavelength fiber laser with switchable single- and double-Brillouin-frequency spacing.

    PubMed

    Hu, Kai; Kabakova, Irina V; Lefrancois, Simon; Hudson, Darren D; He, Sailing; Eggleton, Benjamin J

    2014-12-29

    We demonstrate a multiwavelength laser at 2 µm based on a hybrid gain scheme consisting of a Brillouin gain medium and a thulium-doped fiber. The laser has switchable frequency spacing, corresponding to the single and double Brillouin frequency shifts. In the 20 dB bandwidth, seven lasing channels with a frequency spacing of 0.1 nm (7.62 GHz) and eleven channels with a double-spacing of 0.2 nm (15.24 GHz) are obtained. A wavelength tunability of 1.3 nm is realized for both laser configurations by shifting the pump wavelength. Strong four wave mixing is observed in the double-spacing laser resulting in an improved performance: larger number of channels and better temporal stability.

  12. Frequency Noise Suppression of a Single Mode Laser with an Unbalanced Fiber Interferometer for Subnanometer Interferometry

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Číp, Ondřej

    2015-01-01

    We present a method of noise suppression of laser diodes by an unbalanced Michelson fiber interferometer. The unstabilized laser source is represented by compact planar waveguide external cavity laser module, ORIONTM (Redfern Integrated Optics, Inc.), working at 1540.57 nm with a 1.5-kHz linewidth. We built up the unbalanced Michelson interferometer with a 2.09 km-long arm based on the standard telecommunication single-mode fiber (SMF-28) spool to suppress the frequency noise by the servo-loop control by 20 dB to 40 dB within the Fourier frequency range, remaining the tuning range of the laser frequency. PMID:25587980

  13. High efficiency single frequency 355 nm all-solid-state UV laser

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-05-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions.

  14. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  15. Intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The intraband optical absorption in GaAs/Ga0.7Al0.3As two-dimensional single quantum ring is investigated. Considering the combined effects of hydrostatic pressure and intense laser field the energy of the ground and few excited states has been found using the effective mass approximation and exact diagonalization technique. The energies of these states and the corresponding threshold energy of the intraband optical transitions are examined as a function of hydrostatic pressure for the different values of the laser field parameter. We also investigated the dependencies of the intraband optical absorption coefficient as a function of incident photon energy for different values of hydrostatic pressure and laser field parameter. It is found that the effects of hydrostatic pressure and intense laser field lead to redshift and blueshift of the intraband optical spectrum respectively.

  16. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon

    PubMed Central

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-01

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc. PMID:26727551

  17. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  18. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon.

    PubMed

    Zhao, Deyin; Liu, Shihchia; Yang, Hongjun; Ma, Zhenqiang; Reuterskiöld-Hedlund, Carl; Hammar, Mattias; Zhou, Weidong

    2016-01-04

    We report here an optically pumped hybrid III-V/Si photoic crystal surface emitting laser (PCSEL), consisting of a heterogeneously integrated III-V InGaAsP quantum well heterostructure gain medium, printed on a patterned defect-free Si photonic crystal (PC) bandedge cavity. Single mode lasing was achieved for a large area laser, with a side-mode suppression ratio of 28 dB, for lasing operation temperature ~ 200 K. Two types of lasers were demonstrated operating at different temperatures. Detailed modal analysis reveals the lasing mode matches with the estimated lasing gain threshold conditions. Our demonstration promises a hybrid laser sources on Si towards three-dimensional (3D) integrated Si photonics for on-chip wavelength-division multiplex (3D WDM) systems for a wide range of volume photonic/electronic applications in computing, communication, sensing, imaging, etc.

  19. Laser interactions with embedded Ca metal nanoparticles in single crystal CaF{sub 2}

    SciTech Connect

    Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T.

    2005-04-01

    Single crystal calcium fluoride (CaF{sub 2}) is an important material for vacuum-ultraviolet optics. Nevertheless, prolonged exposure to energetic radiation can color the material by producing calcium metal nanoparticles. We compare the effectiveness of laser conditioning treatments at wavelengths ranging from the near infrared to the deep ultraviolet in removing this coloration. Treatments at 157, 532, and 1064 nm can significantly reduce the visible coloration due to nanoparticles. In contrast, irradiation at 248 nm has little effect at fluences below the damage threshold for the material employed in this work. We present evidence that the effect of laser irradiation on coloration is principally thermal and is largely confined to the first 50 ns after each laser pulse. We attribute the wavelength dependence of the bleaching process to the wavelength dependence associated with Mie absorption by metal nanoparticles. The consequences of these observations with regard to laser conditioning processes in bulk optical materials are discussed.

  20. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  1. Optimization of probe-laser focal offsets for single-particle tracking.

    PubMed

    Chang, Ai-Tang; Chang, Yi-Ren; Chi, Sien; Hsu, Long

    2012-08-10

    In optical tweezers applications, tracking a trapped particle is essential for force measurement. One of the most popular techniques for single-particle tracking is achieved by analyzing the forward and backward light pattern, scattered by the target particle trapped by a trap laser beam, of an additional probe-laser beam with different wavelength whose focus is slightly apart from the trapping center. However, the optimized focal offset has never been discussed. In this paper, we investigate the tracking range and sensitivity as a function of the focal offset between the trapping and the probe-laser beams. As a result, the optimized focal offsets are a 3.3-fold radius ahead and a 2.0-fold radius behind the trapping laser focus in the forward tracking and the backward tracking, respectively. The experimental result agrees well with a theoretical prediction using the Mie scattering theory.

  2. Desktop cutting of paper using a single-emitter laser diode and inkjet printing

    NASA Astrophysics Data System (ADS)

    Acher, Olivier; Pages, Hubert; Enguehard, Franck; Piombini, Herve

    2005-03-01

    Laser cutting of paper is widely used in the paper conversion industry. CO2 lasers are well suited for this type of applications. Desktop printing is a large market both for digital photography, document management and graphics applications, but it still lacks advanced cutting and scoring ability, and CO2 lasers seem costly to be integrated in mass-market printers. For that reason, mass-scalable and low-cost semiconductor laser diodes would be very advantageous to add paper cutting and scoring features in desktop printers. However, common paper can not be cut properly using visible or Near Infrared (NIR) laser diode since it has a very poor absorption at these wavelengths. We report here an innovative solution to achieve paper cutting or scoring using a 1 W single emitter NIR laser diode, within an inkjet printer. A special ink that absorbs the NIR light, and that penetrates all through the paper, is first disposed on the lines to be cut. Then, the laser diode goes along the lines to be cut. We show that a cutting speed of 2m/min can be achieved on 80g/m2 conventional paper. The influence of the optical properties of the ink on the cutting speed are discussed, as well as focussing issues. In particular, we show that invisible inks are suitable, and very clear-cut edges can be obtained. The perspective of this technique are discussed.

  3. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser.

    PubMed

    Jensen, Ole Bjarlin; Andersen, Peter E; Sumpf, Bernd; Hasler, Karl-Heinz; Erbert, Götz; Petersen, Paul Michael

    2009-04-13

    More than 1.5 W of green light at 531 nm is generated by single-pass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments.

  4. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers

  5. Nozzle design yielding interferometrically flat fluid jets for use in single-mode dye lasers

    SciTech Connect

    Haerri, H.; Leutwyler, S.; Schumacher, E.

    1982-12-01

    Fundamentals and design principles are presented for the generation of interferometrically flat jets of viscous fluids. The jet quality is optically analyzed and nozzle performance investigated in cw single-mode dye laser operation. A nozzle providing a dye jet with an optically flat area of 9 mm/sup 2/ is described. It produces a single-mode bandwidth of approx.5 MHz without any active stabilization.

  6. Method for characterizing single photon detectors in saturation regime by cw laser.

    PubMed

    Oh, Jungmi; Antonelli, Cristian; Tur, Moshe; Brodsky, Misha

    2010-03-15

    We derive an analytical expression for the count probability of a single photon detector for a wide range of input optical power that includes afterpulsing effects. We confirm the validity of the expression by fitting it to the data obtained from a saturated commercial Single Photon Detector by illuminating it with a cw laser. Detector efficiency and afterpulsing probability extracted from the fits agree with the manufacture specs for low repetition frequencies.

  7. Ferromagnetic GaAs structures with single Mn delta-layer fabricated using laser deposition.

    PubMed

    Danilov, Yuri A; Vikhrova, Olga V; Kudrin, Alexey V; Zvonkov, Boris N

    2012-06-01

    The new technique combining metal-organic chemical vapor epitaxy with laser ablation of solid targets was used for fabrication of ferromagnetic GaAs structures with single Mn delta-doped layer. The structures demonstrated anomalous Hall effect, planar Hall effect, negative and anisotropic magnetoresistance in temperature range of 10-35 K. In GaAs structures with only single Mn delta-layer (without additional 2D hole gas channel or quantum well) ferromagnetism was observed for the first time.

  8. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  9. Overlapping single photons on coherent states with two independent laser sources: a proposal

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.; Alvarez-Estrada, Ramon F.

    2016-10-01

    Some very interesting pure non-Gaussian states in quantum optics have already been produced experimentally (with one pulsed laser): the single-photon-added coherent states, among others. Important interference phenomena by superposing beams from two independent masers or lasers have been investigated earlier experimentally and theoretically. By pursuing on both subjects altogether, we propose a possible new experiment to generate single-photon-added coherent states, by employing two independent laser sources, both in continuous regime and having approximately equal frequencies and coherence times tc: we expect that such generations could occur during times of the order of tc/3 (possibly, a bit shorter). This expectation follows from a fully quantized multimode analysis of the temporal mode structure, which extends previous studies of parametric down conversion and balanced homodyne detection

  10. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  11. Polarized three-photon-pumped laser in a single MOF microcrystal.

    PubMed

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-03-17

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host-guest composite metal-organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications.

  12. Single-shot soft x-ray laser linewidth measurement using a grating interferometer.

    PubMed

    Wang, Y; Yin, L; Wang, S; Marconi, M C; Dunn, J; Gullikson, E; Rocca, J J

    2013-12-01

    The linewidth of a 14.7 nm wavelength Ni-like Pd soft x-ray laser was measured in a single shot using a soft x-ray diffraction grating interferometer. The instrument uses the time delay introduced by the gratings across the beam to measure the temporal coherence. The spectral linewidth of the 4d1S0-4p1P1 Ni-like Pd lasing line was measured to be Δλ/λ=3×10(-5) from the Fourier transform of the fringe visibility. This single shot linewidth measurement technique provides a rapid and accurate way to determine the temporal coherence of soft x-ray lasers that can contribute to the development of femtosecond plasma-based soft x-ray lasers.

  13. A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser.

    PubMed

    Mo, Shupei; Xu, Shanhui; Huang, Xiang; Zhang, Weinan; Feng, Zhouming; Chen, Dongdan; Yang, Tong; Yang, Zhongming

    2013-05-20

    We present the demonstration of a compact linearly polarized low noise narrow-linewidth single-frequency fiber laser at 1014 nm. The compact fiber laser is based on a 5-mm-long homemade Yb(3+)-doped phosphate fiber. Over 164 mW stable continuous-wave single transverse and longitudinal mode lasing at 1014 nm has been achieved. The measured relative intensity noise is less than -135 dB/Hz at frequencies of over 2.5 MHz. The signal-to-noise ratio of the laser is larger than 70 dB, and the linewidth is less than 7 kHz, while the obtained linear polarization extinction ratio is higher than 30 dB.

  14. Polarized three-photon-pumped laser in a single MOF microcrystal

    NASA Astrophysics Data System (ADS)

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-03-01

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host-guest composite metal-organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications.

  15. Single- and dual-wavelength switchable linear polarized Yb(3+)-doped double-clad fiber laser.

    PubMed

    Liu, Guanxiu; Feng, Dejun

    2015-05-10

    A single- and dual-wavelength switchable linear polarized Yb-doped double-clad fiber laser is proposed, in which the resonance cavity was composed of a fiber Bragg grating fabricated in a polarization-maintaining fiber and a dichromatic mirror with high reflectivity. The polarization hole burning is enhanced through selective polarization feedback by the polarization-maintaining fiber Bragg grating. The switchover of single and dual wavelengths is realized by tuning the rotation angle of a cubic polarization beam splitter that is inserted between the dichromatic mirror and the collimator in the cavity. The laser features wavelengths of 1070.08 and 1070.39 nm, output power of 1.0 W, signal to noise ratio of 45 dB, and slope efficiency of 34%, as well as a very narrow linewidth of 0.022 nm. The polarization characteristics are analyzed by measuring the laser power transmitted through a Glan-Thomson polarizer during rotation.

  16. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    PubMed Central

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175

  17. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    NASA Astrophysics Data System (ADS)

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.

  18. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  19. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  20. Tunable single frequency fiber laser based on FP-LD injection locking.

    PubMed

    Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou

    2013-05-20

    We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.

  1. Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-micrometers

    NASA Technical Reports Server (NTRS)

    Geng, Jihong; Wu, Jianfeng; Jiang, Shibin; Yu, Jirong

    2007-01-01

    We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2 micrometers, which generated from a 2-cm long piece of highly Tm(3+)-doped germanate glass fiber pumped at 800nm.

  2. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    ScienceCinema

    Wieman, Carl

    2016-07-12

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  3. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    SciTech Connect

    Wieman, Carl

    2008-08-30

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  4. Single orbital angular momentum mode emission from vertical cavity surface emitting laser by optical feedback

    NASA Astrophysics Data System (ADS)

    Toda, Y.; Moriya, H.; Shigematsu, K.; Yamane, K.; Morita, R.; Awaji, Y.

    2017-04-01

    Single angular momentum (OAM) mode emissions from a vertical cavity surface emitting laser (VCSEL) were demonstrated by an external optical feedback using computer generated holograms, which are optimized on the OAM modal gain of the free-running VCSEL. Side-mode suppression ratio of more than 23 dB was achieved for the OAM modes with l = +/-1.

  5. A novel single frequency stabilized Fabry-Perot laser diode at 1590 nm for gas sensing

    NASA Astrophysics Data System (ADS)

    Weldon, Vincent; Boylan, Karl; Corbett, Brian; McDonald, David; O'Gorman, James

    2002-09-01

    A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of λ=1590 nm for H 2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H 2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588≤ λ≤1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm.m.Hz -1/2 was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.

  6. Oceanic inherent optical properties: proposed single laser lidar and retrieval theory.

    PubMed

    Hoge, Frank E

    2005-12-01

    It is suggested that an economical airborne lidar having a single laser can retrieve the three principal inherent optical properties of the ocean. Only three time-resolved backscattering receiver channels are required: (i) elastic (on-wavelength), (ii) inelastic (water Raman), and (iii) inelastic [chromophoric dissolved organic matter (CDOM) fluorescence channel to remove the CDOM fluorescence interference from the Raman channel].

  7. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  8. Optimal tattoo removal in a single laser session based on the method of repeated exposures.

    PubMed

    Kossida, Theodora; Rigopoulos, Dimitrios; Katsambas, Andreas; Anderson, R Rox

    2012-02-01

    Unwanted tattoos are treated with Q-switched lasers. Despite a series of treatments, efficacy is limited. We compared a single Q-switched laser treatment pass with 4 treatment passes separated by 20 minutes. Eighteen tattoos on 12 adults were divided in half and randomized. One half received a single treatment pass (the "conventional" method) with a Q-switched alexandrite laser (5.5 J/cm(2), 755 nm, 100-nanosecond pulse duration, 3-mm spot size), and the other half received 4 treatment passes with an interval of 20 minutes between passes (the "R20" method). Tattoo lightening was compared 3 months later, by blinded evaluation of photographs. Biopsy specimens obtained before and immediately after treatment on both halves were also compared in blinded fashion. Immediate whitening reaction occurred on the first treatment pass, with little or no whitening on subsequent passes. Three months later, treatment with the R20 method was much more effective than conventional single-pass laser treatment (P <.01; all tattoos favored the R20 method). Despite greater epidermal injury with the R20 method, neither method caused adverse events or scarring. Light microscopy showed greater dispersion of tattoo ink with the R20 method. This prospective study involved a small number of subjects. The R20 method is much more effective than conventional laser tattoo treatment, removing most tattoos in a single treatment session. New laser device technology is not required to practice this method. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Broad-area laser diode with stable single-mode output and wavelength stabilization

    NASA Astrophysics Data System (ADS)

    Nappez, Thomas; Ghibaudo, Elise; Rondeau, Philippe; Schlotterbeck, Jean-Pierre; Broquin, Jean-Emmanuel

    2012-01-01

    High power single-mode pump laser diodes operating around 980nm are key components for Erbium-doped devices. Much effort is still currently devoted to improve both their wavelength stability and their achievable output power, while maintaining a stable single-mode operation. Usually, the emission wavelength is stabilized by an external Fiber Bragg Grating (FBG). This configuration requires free-space optics between the laser diode output facet and the fiber or a lensed fiber to ensure an efficient coupling efficiency. This constraint increases fabrication costs, dimensions and mechanical instabilities. Moreover, the maximum achievable output power is limited because a high optical power density can damage the laser facets. To increase the achievable output power, a solution consists in using Broad-Area Laser Diodes (BALD), which are multimode emitters that are composed of large active ribbons with width of some hundreds of micrometers. The objective is then to improve the beam quality by locking the BALD emission on its transverse fundamental mode. We propose in this article to insert an integrated adiabatic transition between the multimode laser and a single-mode FBG. This taper, made by ion-exchange in glass, provides a coupling efficiency of -22.0dB from the multimode laser emission to the single-mode fiber. An optical feedback of -34dB demonstrates the stabilization of the BALD spectrum at the Bragg wavelength. The spectrum of the device is characterized by a maximum side-mode suppression ratio of 35dB, a RMS spectral width of (0.16 +/- 0.04) nm and a frequency shift with current of -12GHz/100mA.

  10. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues

    PubMed Central

    Frumkin, Dan; Wasserstrom, Adam; Itzkovitz, Shalev; Harmelin, Alon; Rechavi, Gideon; Shapiro, Ehud

    2008-01-01

    Background Whole genome amplification (WGA) and laser assisted micro-dissection represent two recently developed technologies that can greatly advance biological and medical research. WGA allows the analysis of multiple genomic loci from a single genome and has been performed on single cells from cell suspensions and from enzymatically-digested tissues. Laser micro-dissection makes it possible to isolate specific single cells from heterogeneous tissues. Results Here we applied for the first time WGA on laser micro-dissected single cells from stained tissue sections, and developed a protocol for sequentially performing the two procedures. The combined procedure allows correlating the cell's genome with its natural morphology and precise anatomical position. From each cell we amplified 122 genomic and mitochondrial loci. In cells obtained from fresh tissue sections, 64.5% of alleles successfully amplified to ~700000 copies each, and mitochondrial DNA was amplified successfully in all cells. Multiplex PCR amplification and analysis of cells from pre-stored sections yielded significantly poorer results. Sequencing and capillary electrophoresis of WGA products allowed detection of slippage mutations in microsatellites (MS), and point mutations in P53. Conclusion Comprehensive genomic analysis of single cells from stained tissue sections opens new research opportunities for cell lineage and depth analyses, genome-wide mutation surveys, and other single cell assays. PMID:18284708

  11. Diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser at 2.06 μm.

    PubMed

    Zhang, Xinlu; Zhang, Su; Xiao, Nana; Cui, Jinhui; Zhao, Jiaqun; Li, Li

    2014-03-10

    We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.

  12. Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

    DOE PAGES

    Backus, Sterling; Colorado State Univ., Fort Collins, CO; Kirchner, Matt; ...

    2017-05-18

    We demonstrate a direct diode-pumped Kerr Lens Modelocked Ti:sapphire laser producing 13 fs pulses with 1.85 nJ energy at 78 MHz (145 mW) using a single laser diode pump. We also present a similar laser using three spectrally combined diodes, generating >300 mW output power with >50 nm bandwidth. We discuss the use of far-from TEM00 pump laser sources, and their effect on the Kerr lens modelocking process.

  13. Optical refractive synchronization: bidirectional information transport over a single wavelength/single laser for distances > 100 Km: analysis and measurement

    NASA Astrophysics Data System (ADS)

    Palmer, James R.

    1999-11-01

    The direction of this paper is to describe the experiments and analytical techniques used by SilkRoad, Inc. for sending 40 GHz of bandwidth, incorporating an eclectic body of data, over a single laser - single fiber over > 100Km of optical fiber using the same wavelength in both directions. The paper will outline the various basic tenets of Optical Refractive Synchronization and the subsequent use of Ellipsometric Phase, based on these tenets, that allows a compilation of CATV, voice, video and SONET data to be transported in both directions without interference between the otpical signals going in both directions over the single fiber. The second portion of the paper will describe the test setup and measurement techniques that were used to validate the analytical models. Pictures of the Spectrum Analyzer data and the subsequent recovery of the eclectic information is then provided for all of the signals that have been transported.

  14. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s

  15. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s

  16. Dynamic triggering

    USGS Publications Warehouse

    Hill, David P.; Prejean, Stephanie; Schubert, Gerald

    2015-01-01

    Dynamic stresses propagating as seismic waves from large earthquakes trigger a spectrum of responses at global distances. In addition to locally triggered earthquakes in a variety of tectonic environments, dynamic stresses trigger tectonic (nonvolcanic) tremor in the brittle–plastic transition zone along major plate-boundary faults, activity changes in hydrothermal and volcanic systems, and, in hydrologic domains, changes in spring discharge, water well levels, soil liquefaction, and the eruption of mud volcanoes. Surface waves with periods of 15–200 s are the most effective triggering agents; body-wave trigger is less frequent. Triggering dynamic stresses can be < 1 kPa.

  17. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  18. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  19. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode.

    PubMed

    Zhdanov, B V; Venus, G; Smirnov, V; Glebov, L; Knize, R J

    2015-08-01

    This paper presents results of cooperative efforts on development of a continuous wave Cs diode pumped alkali laser with moderate output power, which can be considered as a prototype of the commercial device. The developed system operates at 895 nm with output power about 4 W and slope efficiency 28%. Measured turn on time of this system from the standby mode is about a minute.

  20. Compact deep UV laser system at 222.5 nm by single-pass frequency doubling of high-power GaN diode laser emission

    NASA Astrophysics Data System (ADS)

    Ruhnke, Norman; Müller, André; Eppich, Bernd; Güther, Reiner; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2016-03-01

    Deep ultraviolet (DUV) lasers emitting below 300 nm are of great interest for many applications, for instance in medical diagnostics or for detecting biological agents. Established DUV lasers, e.g. gas lasers or frequency quadrupled solid-state lasers, are relatively bulky and have high power consumptions. A compact and reliable laser diode based system emitting in the DUV could help to address applications in environments where a portable and robust light source with low power consumption is needed. In this work, a compact DUV laser system based on single-pass frequency doubling of highpower GaN diode laser emission is presented. A commercially available high-power GaN laser diode from OSRAM Opto Semiconductors serves as a pump source. The laser diode is spectrally stabilized in an external cavity diode laser (ECDL) setup in Littrow configuration. The ECDL system reaches a maximum optical output power of 700 mW, maintaining narrowband emission below 60 pm (FWHM) at 445 nm over the entire operating range. By direct single pass frequency doubling in a BBO crystal with a length of 7.5 mm a maximum DUV output power of 16 μW at a wavelength of 222.5 nm is generated. The presented concept enables compact and efficient diode laser based light sources emitting in the DUV spectral range that are potentially suitable for in situ applications where a small footprint and low power consumption is essential.

  1. An Efficient Single Frequency Ho:YLF Laser for IPDA Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, J.; Bai, Y.; Wong, T.; Reithmeier, K.; Petros, M.

    2016-01-01

    A highly efficient, versatile, single frequency 2-micron pulsed laser can be used in a pulsed Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution measurements to investigate sources and sinks of CO2. For a direct detection IPDA lidar, the desired 2 ?m Ho:YLF laser should generate 30-40 mJ pulses at the repetition rate of 100 to 200 Hz, with short pulse length (<100 ns) and better than 2% wall plug efficiency. A Tm fiber laser in-band pumped Ho:YLF laser has been developed to meet this technical challenge. This Ho:YLF laser is designed in a four mirror ring resonator with bow tie configuration, which helps to obtain high beam quality. It is end-pumped by a 40 W linearly polarized Tm fiber laser at 1.94µm. The resonator length is 1.10 meters with output coupler reflectivity at 45%. The laser crystal size is 3 x 3 x 60 mm (w, h, l) with a doping concentration of 0.5% Holmium. The laser beam and pump beam are mode-matched in the active medium. Thus, the pump and laser beams have the same confocal parameters. Mode-matching is also helpful for operating the laser in a single transverse mode. The laser beam waist is slightly less than 0.5 mm at the center of the laser crystal. Based on quasi-four level modeling, pump absorption and saturation depend on laser intensity. Laser amplification and saturation also depend on the pump intensity in the crystal. The laser is injection seeded to obtain the single frequency required by an IPDA lidar measurement. The seed beam is entered into the resonator through an output coupler. The laser is mounted on a water cooled optical bench for stable and reliable operation. The size of the optical bench is 22.16 x 9.20 x 1.25 inches. It is stiffened so that the laser can be operated in any orientation of the optical bench. This packaged Ho:YLF laser is designed for either mobile trailer or airborne platform operation. The engineering prototype Ho:YLF laser has

  2. Femtosecond laser ablation with single and two-photon excitation for MEMS

    NASA Astrophysics Data System (ADS)

    Elbandrawy, Mohamed Abdelfattah Kottb Ahmad

    There is an increasing interest in femtosecond laser micromachining of materials because of the femtosecond laser's unique high peak power, ultrashort pulse width, negligible heat conductivity process during the laser pulse, and the minimal heat affected zone, which is in the same order of magnitude of the ablated submicron spot. There are some obstacles in reaching optimal and reliable micromachining parameters. One of these obstacles is the lack of understanding of the nature of the interaction and related physical processes. These processes include amorphization, melting, re-crystallization, nucleated-vaporization, and ablation. The focus of this Dissertation was to study the laser-matter interaction with single and two-photon excitation for optical micro-electro-mechanical system (OMEMS) applications. The laser pulse interaction mechanism was studied by performing a series of experiments including self-imaging experiments, two-photon absorption measurements, and micromachining processes characterizations. As a result of the self-imaging experiment, it was found for both Si and GaP that the material surface reflectivity increased twice as much during the action of the laser pulse. The generation of electron-hole plasma of 10 22cm-3 density was assigned to be responsible for the reflectivity jump. The Drude damping time of the generated plasma was determined to be 0.35 fs for silicon and 0.27 fs for gallium phosphate. Additionally, a precise measurement of the two-photon absorption (TPA) coefficient (beta) was done. The TPA coefficient was found to be 0.2 cm/GW. Experimental results were in good agreement with the theoretical expectations up to a point at which the ablation started kicking off and the plasma absorption took place. In case of a single pulse interaction with silicon, self-assembled nano-filaments of a few tens of microns' length and about 100 nm width were observed for the first time with the femtosecond single pulse interaction. The filaments were

  3. Efficient potassium gadolinium tungstate Raman lasers generating single or multiple wavelengths spanning the green to red

    NASA Astrophysics Data System (ADS)

    Mildren, Richard P.; Pask, H. M.; McKay, T.; Piper, J. A.

    2005-01-01

    We review our recent studies into external cavity and intracavity potassium gadolinium tungstate Raman lasers generating output wavelengths in the range 555 nm to 669 nm. We have characterised the performance external cavity Raman lasers pumped by Q-switched 532 nm pump lasers at 5-10 kHz pulse repetition rates generating either single output wavelengths or multiple wavelengths simultaneously. Single output wavelengths are obtained with slope efficiencies up to 68% and maximum output powers ~0.5 W. Simultaneous output at 5 wavelengths (eg., 532 nm, 559 nm, 589 nm, 622 nm and 658 nm) is demonstrated with ~100 mW output power for at least 3 lines. Using the intracavity Raman laser scheme, we demonstrate a 0.3-1.8 W laser that is "user switchable" amongst wavelengths spanning the green to red eg., 532 nm - 555 nm - 579 nm - 606 nm, the wavelengths corresponding to frequency sums and mixing of Stokes and fundamental intra-cavity fields.

  4. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    PubMed Central

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  5. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  6. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study.

    PubMed

    Vachiramon, Vasanop; Anusaksathien, Pattarin; Kanokrungsee, Silada; Chanprapaph, Kumutnart

    2016-01-01

    Objective. Keratosis pilaris (KP) is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2) laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians' global assessment (p = 0.02). Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution.

  7. Direct-writing lithography using laser diode beam focused with single elliptical microlens

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun

    2015-10-01

    A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.

  8. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S.

    2016-01-01

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. PMID:27659906

  9. Eyesafe diffraction-limited single-frequency 1-ns pulsewidth Er:YAG laser transmitter

    NASA Astrophysics Data System (ADS)

    Stoneman, Robert C.; Hartman, Ross; Schneider, Eric A.; Garvin, Charles G.; Henderson, Sammy W.

    2007-04-01

    We report an eyesafe diffraction-limited single-frequency 1617 nm Er:YAG laser transmitter for coherent laser radar applications. The transmitter utilizes a master oscillator/power amplifier architecture, enabling the production of high peak power output. The pulsed oscillator is Q-switched and cavity-dumped, resulting in a 1.1 ns pulsewidth. The pulsed oscillator is injection-seeded by a commercial 1617 nm CW distributed feedback laser diode, resulting in single longitudinal mode output. The oscillator and amplifier are directly pumped into the Er:YAG laser upper state by commercial diode-pumped CW 1533 nm Yb,Er-doped fiber lasers. The injection-seeded pulsed oscillator produces an average output power of 2.2 W at 10 kHz pulse repetition frequency (PRF) with a pulsewidth of 1.1 ns (0.20 MW peak power) with a beam quality 1.1 times the diffraction limit. The oscillator has a slope efficiency of 47% in the CW mode, and a conversion efficiency of 85% from CW mode to injection-seeded pulsed mode. The power amplifier produces 20 W in the CW mode with an optical-to-optical conversion efficiency of 34% and a beam quality 1.1 times the diffraction limit, and 6.5 W in the pulsed mode at 10 kHz PRF with 1.1 ns pulsewidth (0.59 MW peak power).

  10. Single-walled carbon nanotube passively mode-locked O-band Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Steinberg, D.; Saito, L. A. M.; Rosa, H. G.; Thoroh de Souza, E. A.

    2016-05-01

    We present a detailed analysis of a nanosecond-pulse single-walled carbon nanotube (SWCNT) passively mode-locked O-band Raman fiber lasers. As gain medium, single mode fiber (SMF) and highly nonlinear Raman gain were used at three different experimental setups. By incorporating 1.0 nm mean diameter SWCNT as saturable absorbers (SA) at 2.3 km SMF long-length gain medium setup, soliton-like spectrum followed by nanosecond high chirped pulse was observed at cavity fundamental repetition rate. In order to shorter the chirped pulse, intracavity anomalous dispersion was introduced with normal dispersion shift fiber (DSF) lengths and pulse duration decreased from 4.20 to 2.30 ns. By using highly nonlinear Raman gain medium in the O-band Raman laser configuration, the laser generated clean and well-defined nanosecond high chirped pulses, achieving pulse duration as short as 2.30 ns with 230 m gain medium length. Also, we could estimate the picosecond pulse duration region as a function of gain medium length of this laser and compared with SMF pulse shortening curve. As results, the lasers presented similar tendencies, indicating a strong influence of nonlinearities and dispersion in the pulse duration shortening.

  11. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    PubMed

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  12. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study

    PubMed Central

    Vachiramon, Vasanop; Anusaksathien, Pattarin; Kanokrungsee, Silada; Chanprapaph, Kumutnart

    2016-01-01

    Objective. Keratosis pilaris (KP) is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2) laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians' global assessment (p = 0.02). Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution. PMID:27247936

  13. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity.

    PubMed

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-03-11

    We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M(2) = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO(3) crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO(3) crystal. The optical to optical conversion efficiency exceeds 30%.

  14. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    PubMed

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  15. The use of low-level laser therapy (LLLT) in the treatment of trigger points that are associated with rotator cuff tendonitis

    NASA Astrophysics Data System (ADS)

    Al-Shenqiti, A.; Oldham, J.

    2003-12-01

    The purpose of this study was to investigate the efficacy of LLLT in the treatment of trigger points (TrPs) that are associated with rotator cuff tendonitis. A double-blind randomized controlled trail was conducted. Sixty patients were randomly allocated to one of two groups: sham or laser therapy. The laser (Excel, Omega Universal Technologies Ltd, London, UK) parameters used were a wavelength of 820 nm, a power output of 100 mW, a frequency of 5000 Hz (modulated) and energy density of 32 J/cm2. The two groups received a course of 12 treatment sessions for four weeks (3 sessions per week). Pain, functional activities (as measured using the Shoulder Pain and Disability Index, SPADI), pressure pain threshold (PPT) and range of motion (ROM) were assessed pre and post treatment, with a three month follow-up assessment. Significant improvements in pain (p < 0.001) were observed for the laser group (6 cm median improvement on a 10 cm VAS) compared to the sham group (2 cm median improvement) immediately post treatment. The improvements in the laser group continued post treatment with a 7 cm median improvement observed at three month follow-up. Similar between group differences were observed for ROM (p < 0.01), functional activities (p <= 0.001) and PPT (p <= 0.05). The findings of the current study suggested that LLLT is effective in treating patients with TrPs associated with rotator cuff tendonitis, when using the parameters described. However, the mechanism of its action is not yet clear, and will require further investigation.

  16. Noninvasive Laser Probing of Ultrashort Single Electron Bunches for Accelerator And Light Source Development

    SciTech Connect

    Bolton, P.R.; /SLAC

    2007-06-11

    Companion development of ultrafast electron beam diagnostics capable of noninvasively resolving single bunch detail is essential for the development of high energy, high brightness accelerator facilities and associated beam-based light source applications. Existing conventional accelerators can exhibit timing-jitter down to the 100 femtosecond level which exceeds their single bunch duration capability. At the other extreme, in relatively jitterless environments, laser-plasma wakefield accelerators (LWFA) can generate single electron bunches of duration estimated to be of order 10 femtoseconds making this setting a valuable testbed for development of broadband electron bunch diagnostics. Characteristics of electro-optic schemes and laser-induced reflectance are discussed with emphasis on temporal resolution.

  17. Efficient extension of the trapping lifetime of single atoms in an optical tweezer by laser cooling

    NASA Astrophysics Data System (ADS)

    He, Jun; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2011-08-01

    Optical tweezers have become powerful tools for the confinement and manipulation of neutral atoms, molecules, mesoscopic biological molecules and living cells. In our experiment, a single caesium atom was prepared in a large-magnetic-gradient magneto-optical trap (MOT). It was then efficiently transferred back and forth between the MOT and a 1064 nm microscopic optical tweezer. The atomic transfer between the MOT and the tweezer can be employed to measure the trapping lifetime and the energy distribution of the single atom in the tweezer. In order to extend the trapping lifetime, laser cooling is used to decrease the atom's kinetic energy. The trapping lifetime was extended from ~75 to ~130 s by applying a 10 ms laser cooling phase just after the single atom is transferred into the tweezer.

  18. In vivo micro-lesion of single dendrite with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Masi, A.; Diana, G.; Buffelli, M.; Pavone, F. S.

    2007-07-01

    Recently, two-photon microscopy has been used for high spatial resolution imaging of the intact neocortex in living rodents. In this work we used near-IR femtosecond laser pulses for a combination of two-photon microscopy and microdissection on fluorescently-labeled neuronal structures in living mice. Three-dimensional reconstructions of dendrites expressing the green fluorescence protein were made in the cortex of GFP-M and YFP-H transgenic mice. Afterwards, single dendrites were laser-dissected irradiating the structure with a high femtosecond laser energy dose. We report that laser dissection can be performed with micrometric precision and without any visible collateral damage of the surrounding neuronal structures. After laser irradiation, one part of the severed dendrite underwent degeneration and disappeared within 5 hours. Using a chronically implanted glass window, we performed long-term imaging in the area of the dissected dendrite. Images of the long-term morphological changes in the neuronal network after dendritic lesioning will be provided. Laser microdissection of selected structures of the neuronal branching in vivo represents a promising tool for neurobiological research.

  19. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  20. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  1. Transversely diode-pumped Q-switched Nd : YAG laser with injection of radiation from a single-frequency semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Duraev, V. P.; Kalinov, V. S.; Kostik, O. E.; Lantsov, K. I.; Lepchenkov, K. V.; Mashko, V. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Teplyashin, L. L.

    2016-10-01

    A Q-switched Nd : YAG laser with a high-power transverse diode pumping and injection of seed radiation generated by a single-frequency semiconductor laser is described. The threshold seed radiation power at which the Q-switched Nd : YAG switches to the single-frequency mode is 0.44 {\\text{mW}} (radiation intensity 5.6 × 10-2 {\\text{W}} {\\text{cm}}-2). With increasing injection power, the spectral and power characteristics of the Q-switched laser almost do not change at a constant excitation of its active medium. The spectral linewidth of the Q-switched Nd : YAG laser with injection from a TLD-1060-14BF single-frequency semiconductor laser module does not exceed 90 {\\text{MHz}} (wavelength 1064 {\\text{nm}}).

  2. Laser-Aided Direct Writing of Nickel-Based Single-Crystal Super Alloy (N5)

    NASA Astrophysics Data System (ADS)

    Wang, Yichen; Choi, Jeongyoung; Mazumder, Jyoti

    2016-12-01

    This communication reports direct writing of René N5 nickel-based Super alloy. N5 powder was deposited on (100) single-crystal substrate of René N5, for epitaxial growth, using laser and induction heating with a specially designed closed-loop thermal control system. A thin wall (1 mm width) of René N5 single crystal of 22.1 mm (including 3 mm SX substrate) in height was successfully deposited within 100 layers. SEM and EBSD characterized the single-crystal nature of the deposit.

  3. Fabrication of erbium-ytterbium distributed multi-wavelength fiber lasers by writing the superstructured fiber Bragg grating resonator in a single writing laser scan

    NASA Astrophysics Data System (ADS)

    Brochu, Guillaume; LaRochelle, Sophie

    2007-06-01

    We present an alternative method to fabricate multi-wavelength distributed-feedback fiber lasers made of superstructured chirped fiber Bragg gratings in a single writing laser scan with a custom period-profiled phase mask and a tailored amplitude apodization profile produced by phase mask dithering. This method simplifies the fabrication process and increases the yield of samples having the right number of laser lines and a small frequency error with respect to a reference grid.

  4. Nanosecond Pulsed Laser Processing of Ion Implanted Single Crystal Silicon Carbide Thin Layers

    NASA Astrophysics Data System (ADS)

    Özel, Tuğrul; Thepsonthi, Thanongsak; Amarasinghe, Voshadhi P.; Celler, George K.

    The attractiveness of single crystal SiC in a variety of high power, high voltage, and high temperature device applications such as electric vehicles and jet engines is counteracted by the very high cost of substrates. Precision cutting of multiple micrometre thick SiC layers and transferring them to lower cost substrates would drive the cost down and allow expanding the use of single crystal SiC. In this study, laser beam processing has been utilized to exfoliate thin layers from a surface of single crystal SiC that was prepared with hydrogen and boron ion implantation. The layer thickness of 1 μm has been achieved by ion implantation that formed voids and microcracks under the surface at a layer of 150 nm thick. High energy laser pulses provided the layer removal and its transfer to bonded Si substrate has been shown. Exfoliated surfaces and topography have been evaluated with Scanning Electron Microscopy. Furthermore, thermal modelling of pulse laser irradiation of implanted multi-layer SiC material has been conducted and temperature profiles are obtained at different peak pulse intensity settings to optimize exfoliation process parameters. It was found that laser exfoliation mechanism can be further improved by higher optical absorptance of defect rich layer obtained with boron ion implantation.

  5. An integrated parity-time symmetric wavelength-tunable single-mode microring laser.

    PubMed

    Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping

    2017-05-12

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.

  6. Single-pulse excimer laser nanostructuring of silicon: A heat transfer problem and surface morphology

    SciTech Connect

    Eizenkop, Julia; Avrutsky, Ivan; Georgiev, Daniel G.; Chaudchary, Vipin

    2008-05-01

    We present computer modeling along with experimental data on the formation of sharp conical tips on silicon-based three-layer structures that consist of a single-crystal Si layer on a 1 {mu}m layer of silica on a bulk Si substrate. The upper Si layers with thicknesses in the range of 0.8-4.1 {mu}m were irradiated by single pulses from a KrF excimer laser focused onto a spot several micrometers in diameter. The computer simulation includes two-dimensional time-dependent heat transfer and phase transformations in Si films that result from the laser irradiation (the Stefan problem). After the laser pulse, the molten material self-cools and resolidifies, forming a sharp conical structure, the height of which can exceed 1 {mu}m depending on the irradiation conditions. We also performed computer simulations for experiments involving single-pulse irradiation of bulk silicon, reported by other groups. We discuss conditions under which different types of structures (cones versus hollows) emerge. We confirm a correlation between the presence of the lateral resolidification condition after the laser pulse and the presence of conical structures on a solidified surface.

  7. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation.

    PubMed

    Seo, Eun Ha; Lee, Chung-Sung; Na, Kun

    2015-12-30

    Nanoparticles with "smart" stimuli-responsive materials and multiple therapeutic strategies in a single delivery platform have emerged for highly efficient cancer therapy. Here, photomediated reactive oxygen species (ROS)-generable nanoparticles are designed that can trigger drug release and endo/lysosomal escape upon attenuated single light irradiation, simultaneously, for synergistic chemo-photodynamic ablation. In this study, the self-ROS-generable nanoparticles (SRNs) are prepared from the polymer based on polysaccharide, chlorin e6 as ROS generator and lipoic acid as ROS scavenger covalently conjugated pullulan with anticancer drug (doxorubicin, DOX) through self-assembly, and can disassemble via the ROS-mediated reduction of lipoyl group in response to low level exogenous single light switch. After cellular internalization in hepatic cancer through asialoglycoprotein receptor (ASGPR, as pullulan receptor)-mediated endocytosis, once irradiated, SRNs are able to produce ROS that can simultaneously induce drug release triggering and endo/lysosomal escape of DOX into cytoplasm as well as directly photodynamic therapy for highly efficient chemo-photodynamic cancer therapy. This promising delivery system, which has huge potential in biomedical applications, may be optimal for smart delivery platform.

  8. High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser.

    PubMed

    Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard

    2014-09-22

    Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.

  9. High Energy, Single-Mode, All-Solid-State Nd:YAG Laser

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd

    2006-01-01

    In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.

  10. A single-photon counting detector for increased sensitivity in two-photon laser scanning microscopy

    PubMed Central

    Benninger, Richard K.P.; Ashby, William J.; Ring, Elisabeth A.; Piston, David W.

    2009-01-01

    We present the use and characterization of a photon counting detector for increased sensitivity at low signal levels in fluorescence laser scanning microscopy (LSM). Conventional LSM PMT detectors utilize analog current integration and thus suffer from excessive noise at low signal levels, introduced during current measurement. In this letter we describe the implementation of a fast single-photon counting (SPC) detector on a conventional two-photon laser scanning microscope and detail its use in imaging low fluorescence intensities. We show that for a low photon flux, the SPC detector is shot-noise limited and thus provides increased detection sensitivity compared to analog current integration. PMID:19079484

  11. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Yan, X. Q.; Mourou, G.; Wheeler, J. A.; Bin, J. H.; Schreiber, J.; Tajima, T.

    2016-04-01

    Prompted by the possibility to produce high energy, single-cycle laser pulses with tens of Petawatt (PW) power, we have investigated laser-matter interactions in the few optical cycle and ultra relativistic intensity regimes. A particularly interesting instability-free regime for ion production was revealed leading to the efficient coherent generation of short (femtosecond; 10 - 15 s ) monoenergetic ion bunches with a peak energy greater than GeV. Of paramount importance, the interaction is absent of the Rayleigh Taylor Instabilities and hole boring that plague techniques such as target normal sheath acceleration and radiation pressure acceleration.

  12. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser.

    PubMed

    Keyvaninia, Shahram; Roelkens, Gunther; Van Thourhout, Dries; Jany, Christophe; Lamponi, Marco; Le Liepvre, Alban; Lelarge, Francois; Make, Dalila; Duan, Guang-Hua; Bordel, Damien; Fedeli, Jean-Marc

    2013-02-11

    A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz.

  13. Injection seeded single-frequency pulsed Nd:YAG laser resonated by an intracavity phase modulator.

    PubMed

    Zhang, Junxuan; Zhu, Xiaolei; Zang, Huaguo; Ma, Xiuhua; Yin, Suyong; Li, Shiguang; Chen, Weibiao

    2014-11-01

    A reliable single frequency Q-switched Nd:YAG laser is developed by using a lithium niobate crystal as the intracavity phase modulator. Successful injection seeding is performed by adopting an electro-optic crystal in an effectively simplified cavity arrangement. The laser is capable of producing 4.8 mJ pulse-energy at 400 Hz repetition rate with nearly Fourier-transform-limited spectral linewidth. The pulse duration is approximately 25 ns, and the beam quality factor M2 is less than 1.3.

  14. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  15. Fast random number generation with spontaneous emission noise of a single-mode semiconductor laser

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Zhang, Mingjiang; Liu, Yi; Li, Pu; Yi, Xiaogang; Zhang, Mingtao; Wang, Yuncai

    2016-11-01

    We experimentally demonstrate a 12.5 Gb s-1 random number generator based on measuring the spontaneous emission noise of a single-mode semiconductor laser. The spontaneous emission of light is quantum mechanical in nature and is an inborn physical entropy source of true randomness. By combining a high-speed analog-to-digital converter and off-line processing, random numbers are extracted from the spontaneous emission with the verified randomness. The generator is simple, robust, and with no need of accurately tuning the comparison threshold. The use of semiconductor lasers makes it particularly compatible with the delivery of random numbers in optical networks.

  16. Effects of ultraviolet nanosecond laser irradiation on structural modification and optical transmission of single layer graphene

    NASA Astrophysics Data System (ADS)

    Li, Chunhong; Kang, Xiaoli; Zhu, Qihua; Zheng, Wanguo

    2017-03-01

    Structural modifications and optical transmission change of single layer graphene (SLG) on transparent SiO2 substrate induced by nanosecond 355 nm laser irradiation were systematically studied by scanning electron microscopy (SEM), laser-excited Raman, X-ray photon spectroscopy (XPS) and UV-vis transmission spectra. In this study, to avoid damage to graphene, the selected irradiation fluence was set to be smaller than the laser damage threshold of SLG. Laser-driven formation of nano-dots, carbon clusters and spherical carbon morphologies were clearly presented using SEM magnification images, and the formation mechanism of such structures were discussed. Raman spectra revealed formation of D' peak and the continuously increasing of ID/IG intensity ratio with the concurrent increase of laser fluence, indicating the increase in amount of structural defects and disordering in SLG. XPS results disclosed that the oxygen content in SLG increases with laser fluence. The formation and relative content increase of Cdbnd O, Csbnd Osbnd C and Osbnd Cdbnd O bonds in SLG induced by laser irradiation were also revealed by XPS. Laser-driven micro-structure modifications of crystalline graphene to nano-crystalline graphene and photo-chemical reactions between graphene and O2 and H2O in air environment were suggested to be responsible for the Raman and XPS revealed modifications in SLG. It is worthy to point out that the above mentioned structural modifications only caused a slight decrease (<2% @ 550 nm) in the optical transmittance of SLG. These results may provide more selections for the batch processing of large scale graphene aiming at modifying its structure and thus taiorling its properties.

  17. Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation

    NASA Astrophysics Data System (ADS)

    Van der Sande, Guy; Coomans, Werner; Gelens, Lendert

    2014-05-01

    Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also

  18. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Line width of a single longitudinal mode emitted by an AlGaAs heterojunction laser

    NASA Astrophysics Data System (ADS)

    Bogatov, Alexandr P.; Eliseev, P. G.; Luk'yanov, S. A.; Pak, G. T.; Petrakova, T. V.

    1988-11-01

    A nonmonotonic dependence of the emission line width on the power was observed for a single longitudinal mode of an AlGaAs heterojunction laser. This behavior could be due to the dependence of the waveguide coefficient of the amplitude-phase coupling on the nature of operation of the laser.

  19. Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses

    SciTech Connect

    Mignolet, Benoit; Curchod, Basile F. E.; Martinez, Todd J.

    2016-11-17

    Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments “on-the-fly,” from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. As a result, we then show the ability of XFAIMS to model the dynamics in polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO).

  20. Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses

    DOE PAGES

    Mignolet, Benoit; Curchod, Basile F. E.; Martinez, Todd J.

    2016-11-17

    Attoscience is an emerging field where attosecond pulses or few cycle IR pulses are used to pump and probe the correlated electron-nuclear motion of molecules. We present the trajectory-guided eXternal Field Ab Initio Multiple Spawning (XFAIMS) method that models such experiments “on-the-fly,” from laser pulse excitation to fragmentation or nonadiabatic relaxation to the ground electronic state. For the photoexcitation of the LiH molecule, we show that XFAIMS gives results in close agreement with numerically exact quantum dynamics simulations, both for atto- and femtosecond laser pulses. As a result, we then show the ability of XFAIMS to model the dynamics inmore » polyatomic molecules by studying the effect of nuclear motion on the photoexcitation of a sulfine (H2CSO).« less