Science.gov

Sample records for laser vaporization methods

  1. Metal vapor laser and medicine: laser systems, methods, and therapy

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. A.; Soldatov, Anatoly N.; Vusik, M. V.; Cheremisina, O. V.; Kucherova, T. Y.; Voronov, V. I.; Kirilov, Anatoly E.; Polunin, Yu. P.

    2002-03-01

    A copper-vapor laser 'Malakhit' was used to prevent and or treat complications caused by antitumor therapy. Results obtained for 19 adult patients with cancer of the lung, 59 adult patients with cancer of the stomach, and 640 children with malignant and benign tumors are discussed.

  2. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita

    1996-01-01

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  3. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  4. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  5. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  6. Multiwavelength Strontium Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  7. [Study on large-scale regional laser detection methods for water vapor concentration].

    PubMed

    He, Ying; Zhang, Yu-Jun; Wang, Li-Ming; You, Kun; Zhou, Yi; Sun, Xiao-Min; Liu, Zhen-Min

    2013-03-01

    Water vapor is an important meteorological parameter in the atmosphere, TDLAS direct absorption technology combined with open-path monitoring was used in order to achieve large-scale regional atmospheric water vapor concentration detection with high sensitivity, high accuracy and fast response, and to correct the remote sensing data. The large-scale regional laser detection system for water vapor was designed and the absorption line of water vapor molecules near 1.27 microm was chosen as the goal line. The system performance was verified in conjunction with a multiple reflection cell, that the system limit sensitivity was 14.803 mmol.mol-1 in optical path of 40 m. The continuous field experiment in 1,420 m optical path at the Yucheng Integrated Experimental Station, CAS was completed with this system which worked stably. Then the measured data was compared with the data of a gas analyzer LI-7500 in eddy correlation observation system at the same site, and the data consistency was good. A new method for water vapor concentration monitoring in the complex field of non-uniform underlying surface was provided.

  8. Optimization of metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Buchanov, V. V.; Molodykh, E. I.; Tykotskii, V. V.

    1983-03-01

    The method proposed here for performing numerical calculations on a computer in order to predict and optimize the characteristics of metal vapor lasers is based on the use of a universal program for numerical experiments designed expressly for metal vapor lasers and on a simultaneous application of an algorithm for multifactor optimization of the output parameters. The latter, in turn, is based on the complex Boks method (Himmelblau, 1970) and on the Gel'fand-Tsetlin ravine method (Himmelblau, 1970). Calculations carried out for a metal with a copper vapor in neon reveal that for optimization with respect to the geometry of the active zone and the parameters of the electrical circuits (including the voltage pulses and excitation frequency) it is sufficient to use the Boks method. The objective function optimum regarding the concentration of the metal particles and the buffer gas found using this algorithm calls for further refinement; this can be performed efficiently with the Gel'fand-Tsetlin ravine method.

  9. Method and apparatus for convection control of metallic halide vapor density in a metallic halide laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    An apparatus is disclosed in which a reservoir containing copper chloride is heated so that the copper chloride is maintained in a liquid form. The apparatus includes a means for flowing a buffer gas (which in the exemplary embodiment is neon) over the liquid copper chloride to provide a mixture of copper chloride vapor and neon above the liquid copper chloride. A conduit provides fluid communication between the reservoir containing the copper chloride vapor/neon mixture and the laser. The copper chloride vapor density in the laser is related to the liquid copper chloride temperature and the neon flow rate through the reservoir. In accordance with a further feature of the exemplary embodiment, neon is also provided directly to the laser in order to provide a further means of controlling the copper chloride vapor density in the laser.

  10. Solar pumped, alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Ham, David; Defaccio, Mark A.

    1987-09-01

    High power lasers based in space have been considered as sources for power transmission, laser propulsion, materials processing and space defense. The feasibility of such systems is based on the cost per unit power delivered, with detailed studies indicating that light weight has a greater impact on cost than laser efficiency. Solar radiation is a natural source of power for these devices and two methods for conversion of solar radiation to laser radiation can be considered. An indirectly solar pumped laser would first convert the solar radiation to electricity or longer wavelength blackbody radiation which is then used to power the laser. A directly longer wavelength blackbody radiation which is then used to power the laser. A directly pumped solar laser would utilize a portion of te solar spectrum to directly pump the laser medium, eliminating the intervening step and substantially reducing the systems weight and complexity. Detailed comparisons showed a directly pumped laser with an overall efficiency of only 1.5 percent can compete with an indirectly energized solar laser with an overall efficiency of ten percent. With this in mind, a concept for a directly solar pumped laser was developed based on an alkali vapor (sodium) as the laser medium.

  11. Numerical modeling of alkali vapor lasers.

    PubMed

    Shu, Hong; Chen, Ying; Bass, Michael; Monjardin, J Fernando; Deile, Jochen

    2011-10-10

    Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail.

  12. Iron bromide vapor laser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  13. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  14. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  15. Copper vapor lasers - Recent advances

    NASA Astrophysics Data System (ADS)

    Lewis, R. R.; Maldonado, G.; Webb, C. E.

    1989-06-01

    A 100W copper vapor laser is studied for use as an amplifier. The gain is measured with temporal and radial resolution throughout the gain period and the absorption is monitored throughout the interpulse period. Preliminary results are presented. Evidence of upper level coupling in an operating copper laser is also observed. A large population transfer between upper levels in an oven containing copper vapor is only observed in the presence of a very strong U.V. probe beam.

  16. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  17. Comparison of cervical dysplasia treatment with leep-loop method and CO2 laser vaporization

    NASA Astrophysics Data System (ADS)

    Wozniak, Jakub; Rzymski, Pawel; Opala, Tomasz; Wilczak, Maciej; Sajdak, Stefan

    2003-10-01

    There are several methods of treating cervical dysplasia, including surgical and electric conisation, laservaporisation. The aim of our study was to evaluate leep-loop method and laservaporisation wtih CO2 laser. Material consisted of 49 women, 28 underwent leep-loop conisation and 21 lavervaporisation. The effectiveness of laser treatment was 90,4% and with leep-loop 96,4%, but the difference was not statistically significant. Mean time of wound healing and frequency of pain was shorter after laser treatment, but the differences were not statistically significant. Conclusions: Effect treatment with both methods is comparable.

  18. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  19. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  20. Investigations of Bi vapor laser

    NASA Astrophysics Data System (ADS)

    Soldatov, Anatoly N.; Lugovskoy, Andrey V.; Polunin, Yu. P.; Shumeiko, A. S.

    2002-03-01

    We have studied a self-terminating bismuth-vapor laser at (lambda) equals 472.2 nm with an average output power of 58 mW. Laser action was observed across the entire gas-discharge tube at pulse repetition rates between 3.0 and 5.4 kHz. Laser operation at a moderate buffer-gas pressure (PNe approximately 100 Torr) is shown to be feasible. The pulse repetition rates at which laser action occurs are between 500 Hz and 14 kHz.

  1. Laser-induced fluorescence method of molecular iodine detection in the atmosphere in real time using copper-vapor laser at the wavelength of 510.6 nm

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Shnyrev, S. L.

    2017-06-01

    The method of simultaneously detecting 127I2 and 127I129I in the atmospheric air is proposed. The method is based on exciting fluorescence of the molecules in question by copper-vapor laser radiation at the wavelength of 510.6 nm and registering intensities of their individual fluorescence spectral lines. The values of minimal real-time measured relative concentrations of 127I129I being mixed with 127I2 are approximately 10-6. This method can be used for the ecological monitoring of iodine-129 in the atmosphere.

  2. Atomic vapor laser isotope separation

    SciTech Connect

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  3. Coupling apparatus for a metal vapor laser

    DOEpatents

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  4. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  5. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  6. Solar Pumped, Alkali Vapor Laser.

    DTIC Science & Technology

    1987-09-04

    tempature we extrapolated to higher temperatures by multiplying the cross...for broadband optical pumping. Tempature profiles for both the axial direction and the vertical direction were made utilizing the LIF method explained...laser in the crossed heat .: pi pe oven. .. 1 ;mirro len Lasing was achieved at a minimum tempature in the crossed heat pipe oven of around 400 C

  7. Transurethral bipolar plasmakinetic resection combined with 2 μm continuous wave laser vaporization: a new method for the treatment of large volume benign prostatic hyperplasia.

    PubMed

    Liao, Naikai; Yu, JianJun

    2012-06-01

    The aim of this study was to evaluate the safety and efficiency of transurethral bipolar plasmakinetic resection of the prostate (PKRP) combined with 2 μm laser vaporization in the management of large prostates (>80 mL). The safety and efficiency of transurethral vaporesection of the prostate with benign prostatic hyperplasia (BPH), using a 2 μm laser system, have been verified. However, this method does still not manage large volume prostates efficiently. From October 2009 to June 2010, 120 BPH patients with a median prostatic volume of 106.7 (±16.7) mL (range, 82.5-156.8 mL) were randomized for surgical treatment with PKRP combined with 2 μm laser vaporization (n=58) or PKRP only (n=62). All patients were preoperatively assessed with subjective symptoms score. Preoperative and perioperative parameters at 3-, 6-, and 9-month follow-up were also evaluated. All complications were recorded. PKRP combined with 2 μm laser vaporization was significantly superior to PKRP alone in terms of operative time, irrigation time, catheterization time, hospital stay, and hemoglobin decrease. The blood transfusion and urinary tract infection observed in the PKRP combined with 2 μm laser vaporization group was significantly less than that of the groups that received PKRP only. Both groups were similar with respect to resected tissue weight, transient incontinence, urethral stricture and retrograde ejaculation in the postoperative period. Both groups showed a significant improvement from baseline in terms of International Prostate Symptom Score (IPSS), quality of life (QOL), maximum urinary flow rate (Qmax), and pulmonary vascular resistance unit (PVRU) values. However, no significant difference was found between them. PKRP combined with 2 μm laser vaporization, which combines the advantages of both PKRP and 2 μm laser, is superior for its shorter operation time, less bleeding, and better efficiency. It may be a safer and more effective method for the

  8. Physico-technical background of metal vapor laser systems and their application in oncology

    NASA Astrophysics Data System (ADS)

    Armichev, A. V.; Ivanov, Andrei V.; Kazaryan, Mishik A.

    1996-01-01

    Some results of the copper and gold vapor lasers and of helium-cadmium lasers used in medical practice are presented. The most in medical use copper vapor laser is commonly applied for low-intensity laser therapy and endoscopic surgery. A universal capability of dye lasers oscillating in 600 - 670 red region for excitation of the preparates used in photodynamic therapy is demonstrated. The copper vapor lasers are shown also to effectively coagulate pre- tumor neoplasms. A new method of laser beams shaping fitted to tumor configuration basing on quantum optical systems including image brightness amplifiers is described. Variability of the irradiating beam contrast is displayed, including the contrast inversion. Possibilities of the copper vapor lasers use for tumors drugless phototherapy and the two-step and two-stage methods of the photodynamic therapy are discussed. Some Russian medical systems based on the copper vapor lasers and dye lasers pumped by them are specified in parameters.

  9. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  10. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  11. Metal vapor lasers with increased reliability

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Sabotinov, N. V.; Polunin, Yu. P.; Shumeiko, A. S.; Kostadinov, I. K.; Vasilieva, A. V.; Reimer, I. V.

    2015-12-01

    Results of investigation and development of an excitation pulse generator with magnetic pulse compression by saturation chokes for pumping of active media of CuBr, Sr, and Ca vapor lasers are presented. A high-power IGBT transistor is used as a commutator. The generator can operate at excitation pulse repetition frequencies up to 20 kHz. The total average power for all laser lines of the CuBr laser pumped by this generator is ~6.0 W; it is ~1.3-1.7 W for the Sr and Ca lasers.

  12. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  13. Supersonic electrical-discharge copper vapor laser.

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Nerheim, N. M.; Pivirotto, T. J.

    1972-01-01

    A copper vapor laser, utilizing a pulsed discharge transverse to a supersonic flow of copper vapor, argon, and helium and oscillating at 5106 and 5782 A, has been built and tested. Laser energy densities per pulse of 2.5 microjoules per cu cm have been achieved to date. Laser pulse widths of up to 185 nsec have been obtained with delay times after initiation of the current pulse of 220 to 250 nsec. Both the delay time and pulse width are in good agreement with theoretical predictions. Quenching of the laser pulse is shown to be due to a rapid increase in the rate of equilibration of the lasing levels by electron collisions, and to a decrease in the differential pumping of the lasing levels from the ground state because of a decay in the electron temperature.

  14. New Medical Applications Of Metal Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  15. Copper vapor laser development for SILVA

    NASA Astrophysics Data System (ADS)

    Bettinger, Antoine; Neu, M.; Maury, J.; Chatelet, Jacques A.

    1993-05-01

    The recent developments of the components for high power Copper Vapor Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, and extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watt amplifier; the present step concerns development of a 400 Watts class amplifier.

  16. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  17. Transverse-pumped Cs vapor laser

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Shaffer, M. K.; Sell, J.; Knize, R. J.

    2009-02-01

    Scaling of alkali lasers to higher powers requires combining beams of multiple diode laser pump sources. For longitudinal pumping this can be very complicated if more than four beams are to be combined. In this paper we report a first demonstration of a transversely pumped Cs laser with fifteen laser diode arrays. The LDA pump beams were individually collimated with a beam size of about 1 x 4 cm as measured at a 1 m distance from the diodes. All these beams were incident on a cylindrical lens to be focused and coupled through the side slit of a hollow, cylindrical diffuse reflector which contained the Cs vapor cell. We measured the output power and efficiency of the Cs laser for pump powers up to 200 W at different cell temperatures. Although the values of output power and slope efficiency obtained for this laser system were less than those for a longitudinally pumped alkali laser, these recent results can be significantly improved by using a more optimal laser cavity design. The demonstrated operation of Cs laser with transverse pumping opens new possibilities in power scaling of alkali lasers.

  18. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  19. Laser Velocimetry of Chemical Vapor Deposition Flows

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  20. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.

    PubMed

    Flanigan, Paul; Levis, Robert

    2014-01-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  1. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  2. Design and physical features of inductive coaxial copper vapor lasers

    SciTech Connect

    Batenin, V. M.; Kazaryan, M. A.; Karpukhin, V. T.; Lyabin, N. A.; Malikov, M. M.

    2016-11-15

    A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.

  3. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  4. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  5. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  6. Fabrication and laser performance of Yb3+/Al3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Xia, Changming; Zhou, Guiyao; Liu, Jiantao; Wang, Chao; Han, Ying; Zhang, Wei; Yuan, Jinhui

    2015-10-01

    In this paper, the bulk Yb3+/Al3+ co-doped silica glass with 1.3 Yb2O3-2.5Al2O3-96.2SiO2 (wt%) are synthesized by plasma nonchemical vapor deposition method combining solution doping technology, where the inductively coupled plasma is used as the heat source. The influence of different O2/N2 ratios on the fluorescence properties of Yb3+/Al3+ co-doped silica glass are investigated. The large mode area photonic crystal fiber (PCF) is fabricated by using the bulk Yb3+/Al3+ co-doped silica glass as fiber core. The laser performance of Yb3+/Al3+ co-doped photonic crystal fiber is studied.

  7. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  8. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  9. Study of the Characteristics of a Laser Based on the Cr2+-Ion Doped ZnS Polycrystal Obtained by the Method of Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Egorov, A. S.; Savikin, A. P.; Eremeikin, O. N.; Ikonnikov, V. B.; Gavrishchuk, E. M.; Savin, D. V.

    2016-01-01

    We study the lasing characteristics of the Cr2+:ZnS-crystal laser pumped by the pulsed-periodic Tm3+:YLF laser, as well as the lasing polarization properties. The Cr2+:ZnS sample was obtained by chemical vapor deposition of zinc sulfide doped by the chrome ions in the hightemperature isostatic processing. Total efficiency of the pump-power conversion to lasing power at a level of 33% was reached, which corresponds to a laser differential efficiency of about 55% in terms of the absorbed power.

  10. Treatment of genital lesions with diode laser vaporization.

    PubMed

    de Lima, Mário Maciel; de Lima, Mário Maciel; Granja, Fabiana

    2015-05-08

    Genital warts caused by human papillomavirus (HPV) infection are the most common sexually transmitted disease leading to anogential lesions. Although the laser therapy has been shown to be effective in a number of conditions, the use of laser diode vaporization in urological applications and the understanding on its effectiveness as a treatment for various urological conditions is limited. Therefore, the aim of this study was to evaluate the efficacy of diode laser vaporization as a treatment for genital lesions. Patients presenting with genital lesions at the urology outpatient clinic at Coronel Mota Hospital, between March 2008 and October 2014, were enrolled into the study. Data collected included age, gender, duration of the lesion, site of the lesion and numbers of the lesions, length of follow-up, recurrence of lesions after treatment and whether there were any complications. A total of 92 patients were enrolled in the study; 92.4% (n = 85) male; mean age (± SD) 27.92 ± 8.272 years. The patients presented with a total of 296 lesions, with a median of 3 lesions each, including penis (n = 78), urethra (n = 4) lesions, and scrotum (n = 2) lesions. Lesions ranged in size from 0.1 to 0.5 cm(2), most commonly 0.3 cm(2) (n = 38; 41.3%), 0.4 cm(2) (n = 21; 22.8%) or 0.5 cm(2) (n = 20; 21.7%). Patients most commonly reported that they had their lesions for a duration of 12 (n = 29; 31.5%) or 6 months (n = 23; 25.0%). Eighteen patients (19.6%) had a recurrence after their 1(st)/conventional treatment. There were no incidences of post-operative infection or complications from the laser diode vaporization. Laser diode vaporization can be considered as an alternative method for treating genital lesions in urology, with satisfactory results in terms of pain, aesthetic and minimal recurrence.

  11. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    DTIC Science & Technology

    1976-11-01

    Terminating Laser Transitions in Calcium and Strontium. " IEEE J. Quantum Electron. QE-4, 474 (1968). 7. P.Cahuzac, "Raies Laser Infrarouges dans les Vapeurs... Spectroscopy 19. 282(1065). 13. P.A. Rice and D. V. Ragone, "Simultaneous Determination of f Values and Vapor Pressures from Optical Absorption Measurements...approaching 10%6. Beam foil spectroscopy can be included with these more accurate methods if one can be certain that there is no unrecognized

  12. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  13. Method and apparatus for vapor detection

    NASA Technical Reports Server (NTRS)

    Lerner, Melvin (Inventor); Hood, Lyal V. (Inventor); Rommel, Marjorie A. (Inventor); Pettitt, Bruce C. (Inventor); Erikson, Charles M. (Inventor)

    1980-01-01

    The method disclosed herein may be practiced by passing the vapors to be sampled along a path with halogen vapor, preferably chlorine vapor, heating the mixed vapors to halogenate those of the sampled vapors subject to halogenation, removing unreacted halogen vapor, and then sensing the vapors for organic halogenated compounds. The apparatus disclosed herein comprises means for flowing the vapors, both sample and halogen vapors, into a common path, means for heating the mixed vapors to effect the halogenation reaction, means for removing unreacted halogen vapor, and a sensing device for sensing halogenated compounds. By such a method and means, the vapors of low molecular weight hydrocarbons, ketones and alcohols, when present, such as methane, ethane, acetone, ethanol, and the like are converted, at least in part, to halogenated compounds, then the excess halogen removed or trapped, and the resultant vapors of the halogenated compounds sensed or detected. The system is highly sensitive. For example, acetone in a concentration of 30 parts per billion (volume) is readily detected.

  14. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  15. The one year outcome after KTP laser vaporization of the prostate according to the calculated vaporized volume.

    PubMed

    Ku, Ja Hyeon; Cho, Jeong Yeon; Cho, Sung Yong; Kim, Soo Woong; Paick, Jae-Seung

    2009-12-01

    The aim of this study was to develop a new simple method for measuring the vaporized volume and to evaluate the outcome of high-power potassium-titanyl-phosphate (KTP) photoselective laser vaporization. A total of 65 patients, with a mean age of 67.7 yr (range 53 to 85), were included in the primary analysis. The vaporized volume was calculated as the pre-operative volume minus the immediate post-operative volume plus the volume of the defect. For all patients, the subjective and objective parameters improved significantly after surgery. Six and 12 months after surgery, the group with a smaller vaporized volume (<15 g) had a lower reduction of the mean International Prostate Symptom Score (P=0.006 and P=0.004) and quality of life index (P=0.006 and P=0.004) when compared to the group with a greater vaporized volume (>or=15 g). There were no differences in the change of the maximum flow rate and post-void residual based on the vaporized volume. Our findings suggest that the subjective improvement, after a high-power KTP laser vaporization, may be dependent on the vaporized volume obtained after the procedure.

  16. The One Year Outcome after KTP Laser Vaporization of the Prostate According to the Calculated Vaporized Volume

    PubMed Central

    Ku, Ja Hyeon; Cho, Jeong Yeon; Cho, Sung Yong; Kim, Soo Woong

    2009-01-01

    The aim of this study was to develop a new simple method for measuring the vaporized volume and to evaluate the outcome of high-power potassium-titanyl-phosphate (KTP) photoselective laser vaporization. A total of 65 patients, with a mean age of 67.7 yr (range 53 to 85), were included in the primary analysis. The vaporized volume was calculated as the pre-operative volume minus the immediate post-operative volume plus the volume of the defect. For all patients, the subjective and objective parameters improved significantly after surgery. Six and 12 months after surgery, the group with a smaller vaporized volume (<15 g) had a lower reduction of the mean International Prostate Symptom Score (P=0.006 and P=0.004) and quality of life index (P=0.006 and P=0.004) when compared to the group with a greater vaporized volume (≥15 g). There were no differences in the change of the maximum flow rate and post-void residual based on the vaporized volume. Our findings suggest that the subjective improvement, after a high-power KTP laser vaporization, may be dependent on the vaporized volume obtained after the procedure. PMID:19949680

  17. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  18. Runaway electron beam control for longitudinally pumped metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  19. Laser Prostatectomy: Holmium Laser Enucleation and Photoselective Laser Vaporization of the Prostate

    PubMed Central

    Bostanci, Yakup; Kazzazi, Amir; Djavan, Bob

    2013-01-01

    Historically, transurethral resection of the prostate has been the gold standard for the treatment of benign prostatic hyperplasia (BPH). Laser technology has been used to treat BPH for > 15 years. Over the past decade, it has gained wide acceptance by experienced urologists. This review provides an evidence-based update on laser surgery for BPH with a focus on photoselective laser vaporization and holmium laser enucleation of the prostate surgeries and assesses the safety, efficacy, and durability of these techniques. PMID:23671400

  20. PRR performance of Cu- and CuBr-vapor lasers

    NASA Astrophysics Data System (ADS)

    Fedorov, V. F.; Evtushenko, Gennadiy S.; Klimkin, Vladimir M.; Polunin, Yu. P.; Soldatov, Anatoly N.; Sukhanov, Viktor B.

    1998-06-01

    Results obtained from comparative analysis of the pulse repetition rate performance of Cu- and CuBr-vapor lasers operated at high pump pulse repetitions (approximately 100 kHz) are reported. For a CuBr laser with a 8 mm diameter discharge tube the laser pulse repetition rate as high as 270 kHz was realized.

  1. Ex vivo efficacy evaluation of laser vaporization for treatment of benign prostatic hyperplasia using a 300-W high-power laser diode with a wavelength of 980 nm

    PubMed Central

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao

    2014-01-01

    Background and Objective: Laser vaporization of the prostate is considered to be a promising treatment for benign prostatic hyperplasia (BPH), and efficiency of vaporization and hemostasis are both important parameters for such treatment. In this study, we used a high-power laser diode with a wavelength of 980 nm to obtain high vaporization efficiency with good hemostasis. The objective of this study is to evaluate the efficacy of laser vaporization for treatment of BPH in ex vivo experiments using a 300-W high-power laser diode with a wavelength of 980 nm quantitatively. Materials and Methods: An ex vivo experimental setup simulating clinical treatment situation was constructed. Bovine prostate tissue was used as a sample. The power setting was 100, 150, 200, 250, or 300 W, and the irradiation time was 0.5, 1, or 2 s. After laser irradiation, vaporized and coagulated depths were measured. Results: The vaporized depth increased with the laser power and irradiation time, and the results confirmed that the high-power laser diode could efficiently vaporize the prostate tissue. Coagulated depth increased as the laser power became higher. Conclusions: Laser vaporization of prostate tissue using a high-power laser diode with a wavelength of 980 nm represents a promising treatment for BPH; this method exhibits high vaporization efficiency and good hemostasis. However, operators must be aware of the risk of postoperative perforation of the prostatic capsule caused by coagulation of deep regions that cannot be visualized by endoscopic observation. PMID:25368442

  2. Development of high-power copper vapor laser system

    NASA Astrophysics Data System (ADS)

    Kimura, Hironobu; Aoki, Nobutada; Kobayashi, Noriyasu; Konagai, Chikara; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    A high power copper vapor laser (CVL) system in master oscillator power amplifier configuration has been developed for laser isotope separation program in Japan. Maximum output power of 650 W has been successfully achieved with 9- cm diameter and 350 cm discharge length amplifier. Also MOPA output power of 2.4 kW has been demonstrated in small master oscillator with 4 cm bore and 4 stage power amplifier with 9 cm bore configuration. The authors developed a thermal calculation code to maintain an optimum copper vapor density throughout a large volume and a new thermal insulation structure design method has been proposed to combine two different heat insulators to make longitudinal temperature distribution of the laser tube as flat as possible. A CVL discharge circuit has been improved by applying an excellent magnetic switch which prove a approximately 90 kV-4000 A pulse to a CVL at 4.4 kHz repetition rate. This paper reports such CVL design methods together with the performance of the designed high power CVL system.

  3. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  4. Computer simulated rate processes in copper vapor lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. C.

    1980-01-01

    A computer model for metal vapor lasers has been developed which places emphasis on the change of excited state populations of the lasant through inelastic collisions and radiative interaction. Also included are an energy equation for the pumping electrons and rate equations for laser photon densities. Presented are results of calculations for copper vapor with a neon buffer over a range of conditions. General agreement with experiments was obtained.

  5. Computer simulated rate processes in copper vapor lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. C.

    1980-01-01

    A computer model for metal vapor lasers has been developed which places emphasis on the change of excited state populations of the lasant through inelastic collisions and radiative interaction. Also included are an energy equation for the pumping electrons and rate equations for laser photon densities. Presented are results of calculations for copper vapor with a neon buffer over a range of conditions. General agreement with experiments was obtained.

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  7. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  8. Modern copper and gold vapor laser setups used in oncology

    NASA Astrophysics Data System (ADS)

    Kolobkov, I. S.; Klimenko, V. I.; Lyabin, N. A.; Paramonova, G. M.; Chursin, A. D.; Kazaryan, A. M.; Kazaryan, M. A.; Morozova, E. A.; Lepekhin, N. M.; Priseko, Yu. S.; Philipov, V. G.; Shakhzadeyan, A. M.

    2005-08-01

    The results of development and a setup of an industrial laser based on self-limited transitions of metal atoms are presented. The main technical characteristics of self-heating sealed-off active laser elements based on copper and gold vapor, as well as on the vapor mixture of copper and gold of the "KULON" series are presented. We also present the results of lifetime tests of copper vapor active elements and those obtained during standard tests together with the technical parameters of most powerful laser elements of this series. The developed industrial laser is manufactured in the form of a monoblock with overall dimensions 1250 x 330 x 190 mm and weight not exceeding 46 kg. Air cooling is forced. Such laser setups are designed for technological and medical applications.

  9. Water vapor isotopes measurements at Mauna Loa, Hawaii: Comparison of laser spectroscopy and remote sensing with traditional methods, and the need for ongoing monitoring

    NASA Astrophysics Data System (ADS)

    Galewsky, J.; Noone, D.; Sharp, Z.; Worden, J.

    2009-04-01

    The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link water sources to regional sinks, and thus proves useful in understanding large scale atmospheric humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and

  10. Water vapor isotopes measurements at Mauna Loa, Hawaii: Comparison of laser spectroscopy and remote sensing with traditional methods, and the need for ongoing monitoring

    NASA Astrophysics Data System (ADS)

    Noone, D.; Galewsky, J.; Sharp, Z.; Worden, J.

    2008-12-01

    The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link the water sources to regional sinks, and thus proves useful in understanding the large scale humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and

  11. Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure

    PubMed Central

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-01-01

    Femtosecond laser vaporization-based mass spectrometry can be used to measure protein conformation in vitro at atmospheric pressure. Cytochrome c and lysozyme are vaporized from the condensed phase into the gas phase intact when exposed to an intense (1013 W/cm2), nonresonant (800 nm), ultrafast (75 fs) laser pulse. Electrospray postionization time-of-flight mass spectrometry reveals that the vaporized protein maintains the solution-phase conformation through measurement of the charge-state distribution and the collision-induced dissociation channels. PMID:21746908

  12. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  13. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  14. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapor equilibration laser spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hendry, M. J.; Schmeling, E.; Wassenaar, L. I.; Barbour, S. L.; Pratt, D.

    2015-06-01

    A method to measure the δ2H and δ18O composition of pore waters in saturated and unsaturated geologic core samples using direct vapor equilibration and laser spectroscopy (DVE-LS) was first described in 2008, and has since been widely adopted by others. Here, we describe a number of important methodological improvements and limitations encountered in routine application of DVE-LS over several years. Generally, good comparative agreement and accuracy is obtained between core pore water isotopic data obtained using DVE-LS and that measured on water squeezed from the same core. In complex hydrogeologic settings, high-resolution DVE-LS depth profiles provide greater spatial resolution of isotopic profiles compared to long-screened or nested piezometers. When fluid is used during drilling and coring (e.g., water rotary or wet sonic drill methods), spiking the drill fluid with 2H can be conducted to identify core contamination. DVE-LS analyses yield accurate formational isotopic data for fine-textured core (e.g., clay, shale) samples, but are less effective for cores obtained from saturated permeable (e.g., sand, gravels) geologic media or on chip samples that are easily contaminated by wet rotary drilling fluid. Data obtained from DVE-LS analyses of core samples collected using wet (contamination by drill water) and dry sonic (water loss by heating) methods were also problematic. Accurate DVE-LS results can be obtained on core samples with gravimetric water contents < 5 % by increasing the sample size tested. Inexpensive Ziploc™ gas sampling bags were determined to be as good as, if not better, than other, more expensive bags. Sample storage in gas tight sample bags provides acceptable results for up to 10 days of storage; however, measureable water loss and evaporitic isotopic enrichment occurs for samples stored for up to 6 months. With appropriate care taken during sample collection and storage, the DVE-LS approach for obtaining high resolution pore water

  15. Vaporization chambers and associated methods

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  16. Development of a strontium vapor laser with pulse repetition frequency up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.; Polunin, Yu. P.; Vasilieva, A. V.; Chebotarev, G. D.; Latush, E. L.; Fesenko, A. A.

    2010-09-01

    The problem of obtaining high pulse repetition frequencies in metal vapor lasers is urgent from the viewpoint of laser application to various technologies, increase of productivity of industrial laser systems, study of transient processes, etc. In addition, the high pulse repetition frequency provides large average laser radiation power in spite of a rather low energy extracted from a single lasing pulse. In this work, the possibility of increasing the pulse repetition frequency of a laser on self-terminated strontium ion transitions was investigated. The double pulse method was used to demonstrate experimentally that a pulse repetition frequency of ~1 MHz could be achieved at wavelengths of 1.03 and 1.09 μm of the strontium vapor laser. To explain the results obtained, the kinetics of the active medium was modeled using the self-consistent mathematical model of a He- Sr+ laser.

  17. Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.

    2010-12-01

    Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the

  18. Efficiency of charging circuit for metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Tatur, V. V.; Vybornov, P. V.

    2004-05-01

    Results are presented of investigation of characteristics of charging circuit for metal vapor lasers that is used for stabilization of power contribution into gas discharge tube. The circuit is shown for voltage stabilization on a reservoir capacitor that is used in transistor laser excitation source. The technical and exploitation advantages of this circuit are described.

  19. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  20. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  1. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  2. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    NASA Astrophysics Data System (ADS)

    Xuyue, Wang; Qingxuan, Meng; Renke, Kang; Wenji, Xu; Dongming, Guo; Lianji, Wang

    2011-05-01

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-melt ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 μm of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.

  3. Microcomponents manufacturing for precise devices by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  4. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  5. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    NASA Astrophysics Data System (ADS)

    Butt, D. P.; Wantuck, P. J.; Rehse, S. J.; Wallace, T. C., Sr.

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U(x)Zr(1-x)C(y) in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U(x)Zr(1-x)C(y) is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  6. Solar-powered alkali metal vapor lasers

    NASA Technical Reports Server (NTRS)

    Blount, Charles E.

    1989-01-01

    The emission spectrum of the A(1 Sigma u +) - X(1 Sigma g +) band of Na2 has been recorded following excitation by monochromatic radiation in the region of X-A and X-B absorption. The spectral profile has been investigated as a function of excitation wavelength, sodium vapor temperature and buffer gas pressure. Additionally, gain measurements were made for the satellite of the A-X band as a function of the sodium vapor temperature and buffer gas pressure.

  7. Exploratory laser experiments. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Experiments are described which were undertaken to explore the application of various dye laser methods for generating laser pulses which could be tuned over H2O absorption lines in the visible and near infrared. Specific topics discussed include: operation of a long pulse dye laser with a tunable, narrow band output at high energies near the 5915 A water vapor absorption bands; assembly and operation of a short duration dye laser near the 5915 A water vapor absorption bands; construction of a dye laser to be pumped to operate in the red and near infrared; and preliminary studies of the beam divergence of the output of the a laser-pumped system. Results are summarized.

  8. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  9. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  10. Multimode-diode-pumped gas (alkali-vapor) laser.

    PubMed

    Page, Ralph H; Beach, Raymond J; Kanz, V Keith; Krupke, William F

    2006-02-01

    We report what we believe to be the first demonstration of a multimode-diode-pumped gas laser: Rb vapor operating on the 795 nm D1 resonance transition. Peak output of approximately 1 W was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  11. Carbon dioxide laser vaporization of facial siliconomas: flash in the pan or way of the future?

    PubMed

    Chui, Christopher Hoe Kong; Fong, Poh Him

    2008-03-01

    In 1988, Becker first described the "laser silicone flash" encountered while using the CO2 laser to remove breast siliconosis, but no subsequent use of the CO2 laser to remove siliconomas has been reported since. To our knowledge, lasers have not been described to treat facial silicone granulomas. Three cases of facial silicone granuloma (cheek, upper eyelids, and chin) were treated using the technique of CO2 laser vaporization.We describe a novel and effective method to remove facial siliconomas. This technique could avoid the need for radical resection of functional facial tissues such as nerves. Tiny globules of injected silicone in the face were vaporized without any untoward effects. Whether larger siliconomas can be treated in the same way remains to be seen and is an area of potential study.

  12. Contamination spike simulation and measurement in a clean metal vapor laser

    SciTech Connect

    Lin, C.E. ); Yang, C.Y. )

    1990-04-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure.

  13. New applications of copper vapor lasers in micromachining

    SciTech Connect

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-11-09

    We have developed a copper vapor laser based micromachinig system using advanced beam quality control and precision wavefront tilting technologies. Precision microdrilling has been demonstrated through percussion drilling and trepanning using this system. With a 30-W copper vapor from running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250-W copper vapor laser have also been demonstrated with good result. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  14. Method for laser machining explosives and ordnance

    DOEpatents

    Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.

    2003-05-06

    Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.

  15. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  16. Rubidium vapor laser pumped by two laser diode arrays.

    PubMed

    Zhdanov, Boris V; Stooke, Adam; Boyadjian, Gregory; Voci, Adam; Knize, R J

    2008-03-01

    Scaling of alkali lasers to higher powers requires using multiple diode lasers for pumping. The first (to our knowledge) results of a cw rubidium laser pumped by two laser diode arrays are presented. A slope efficiency of 53%, total optical efficiency of 46%, and output power of 17 W have been demonstrated.

  17. Nd:Glass-Raman laser for water vapor dial

    NASA Technical Reports Server (NTRS)

    Kagann, R. H.; Petheram, J. C.; Rosenberg, A.

    1986-01-01

    A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown.

  18. Laser vaporization in treatment of superficial endometriosis of the uterine cervix

    NASA Astrophysics Data System (ADS)

    Wozniak, Jakub; Wilczak, Maciej; Opala, Tomasz; Pisarska-Krawczyk, Magdalena; Cwojdzinski, Marek; Pisarski, Tadeusz

    1996-03-01

    The study shows the treatment of superficial endometriosis of the uterine cervix in 79 patients. After first vaporization 74 patients were cured successfully. In two cases the laser procedure should be repeated and in 3 women the operation should be performed for the third time. All patients are still under control in our department and there is no recurrence observed. Carbon- dioxide laser vaporization under colposcopic control is an efficient method of treatment of superficial endometriosis of the uterine cervix that requires no anaesthesia. The healing process after laser procedures is fast and without complications. The number of recurrences is low. Use of carbon-dioxide laser under colposcopic control because of precise destruction of lesions, fast healing and a low number of recurrences seems to be the method of choice.

  19. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  20. Corona Charged Polypropylene Films Irradiated by CO2 and CuBr Vapor Lasers

    SciTech Connect

    Yovcheva, T. A.; Eftimov, T. A.; Viraneva, A. P.; Mekishev, G. A.; Yanev, V. C.; Avramova, I. A.

    2007-04-23

    The influence of CuBr vapor (Cu-Br) and CO2 laser radiation on polypropylene corona electrets is investigated in the present paper. The surface potential was measured before (V0) and after (Virr) irradiation using the method of the vibrating electrode with compensation. The sample surfaces were characterized by XPS.

  1. Corona Charged Polypropylene Films Irradiated by CO2 and CuBr Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Yovcheva, T. A.; Eftimov, T. A.; Viraneva, A. P.; Mekishev, G. A.; Yanev, V. C.; Avramova, I. A.

    2007-04-01

    The influence of CuBr vapor (Cu-Br) and CO2 laser radiation on polypropylene corona electrets is investigated in the present paper. The surface potential was measured before (V0) and after (Virr) irradiation using the method of the vibrating electrode with compensation. The sample surfaces were characterized by XPS.

  2. Isotope separation using metallic vapor lasers

    NASA Technical Reports Server (NTRS)

    Russell, G. R.; Chen, C. J.; Harstad, K. G. (Inventor)

    1977-01-01

    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation.

  3. Modeling of pulsed Cs vapor lasers in transversely pumped configuration

    NASA Astrophysics Data System (ADS)

    Zi, Fei; Zhang, Xian; Ma, Xiaoxiao; Huang, Kaikai; Lu, Xuanhui

    2017-06-01

    By means of combining the transverse differential equation of pump intensity and the longitudinal differential equation of laser power, an optical model for transversely pumped diode-pumped alkali vapor lasers (DPALs) is established. The spatial distributions of both radius and intensities are considered in the model for pump and laser beams. The simulation results are in good agreement with the experiment ones as compared to the reported pulsed transversely pumped Cs DPALs. Influences of pump power, temperature, cell length, and beam waist on output performance are investigated, which suggests a set of parameters for efficient DPAL operation. In particular, the optimal ratio of the beam waist between the laser and pump beam is demonstrated to be 0.81, which can increase the laser power by 85% larger than the current experimental result.

  4. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    SciTech Connect

    Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

    1993-09-01

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  5. Water vapor absorption of carbon dioxide laser radiation

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  6. Laser vaporization for the synthesis of nanoparticles and polymers containing metal particulates

    NASA Astrophysics Data System (ADS)

    Samy El-Shall, M.

    1996-10-01

    The application of laser ablation has been widely used for the synthesis and characterization of nanomaterials and film deposition. Of particular interest are the combinations of laser ablation techniques with other chemical and physical processes to synthesize new materials with novel properties. In this paper, we specifically address two areas of materials chemistry which promise far-reaching progress for the development of novel materials with unusual properties. The first area deals with the synthesis of polymeric materials containing ultrafine metal particles. This has been achieved by combining recent advances in laser vaporization/ionization of metals with the very fast propagation rates characteristic of ionic polymerization. In the experiments, laser vaporization of metal targets is used to generate ultrafine metal particles and cations which are capable of catalyzing the cationic polymerization of isobutylene. High molecular weight polymers containing submicron metal particles have been obtained. This method can lead to the generation of new polymeric materials with unique properties. In the second area, combination of laser vaporization of metals with gas phase chemical reactions followed by controlled condensation from the vapor phase is used to synthesize nanoscale metal oxide, carbide and nitride particles with controlled sizes and compositions. The microscale structures of the SiO 2 and Al 2O 3 particles exhibit interesting web-like morphology with a significant volume of voids. Raman, IR, XPS, mass spectrometric and electron microscopic studies of these particles will be presented. These materials may have special applications in catalysis and as reinforcing agents for liquid polymers.

  7. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  8. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  9. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  10. Small-sized dichroic atomic vapor laser lock.

    PubMed

    Lee, Changmin; Iwata, G Z; Corsini, E; Higbie, J M; Knappe, S; Ledbetter, M P; Budker, D

    2011-04-01

    Two, lightweight diode laser frequency stabilization systems designed for experiments in the field are described. A significant reduction in size and weight in both models supports the further miniaturization of measurement devices in the field. Similar to a previous design, magnetic field lines are contained within a magnetic shield enclosing permanent magnets and a Rb cell, so that these dichroic atomic vapor laser lock (DAVLL) systems may be used for magnetically sensitive instruments. The mini-DAVLL system (49 mm long) uses a vapor cell (20 mm long) and does not require cell heaters. An even smaller micro-DAVLL system (9 mm long) uses a microfabricated cell (3 mm square) and requires heaters. These new systems show no degradation in performance with regard to previous designs while considerably reducing dimensions. © 2011 American Institute of Physics

  11. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  12. Metal Organic-Chemical Vapor Deposition fabrication of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Thomas, C.

    1980-08-01

    The metal organic chemical vapor deposition (MO-CVD) process was studied and implemented in detail. Single crystal GaAs, and Ga(x)Al(1-x)As films were grown on GaAs by depositing metal organic alkyl gallium compounds in the presence of an arsine mixture. The metal organic chemical vapor deposition process allowed formation of the semiconductor compound directly on the heated substrate in only one hot temperature zone. With MO-CVD, semiconductor films can be efficiently produced by a more economical, less complicated process which will lend itself more easily than past fabrication procedures, to high quantity, high quality reproduction techniques of semiconductor lasers. Clearly MO-CVD is of interest to the communication industry where semiconductor lasers are used extensively in fiber optic communication systems, and similarly to the solar energy business where GaAs substrates are used as photoelectric cells.

  13. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  14. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  15. Micromachining of a piezocomposite transducer using a copper vapor laser.

    PubMed

    Farlow, R; Galbraith, W; Knowles, M; Hayward, G

    2001-05-01

    A 1-3 piezocomposite transducer with front face dimensions of 2 x 2 mm has been micromachined using a copper vapor laser. The device consists of PZT5A piezoceramic pillars with a 65-micron pitch suspended in a low viscosity thermosetting polymer. The kerf width is 13 microns, and the transducer thickness is 170 microns, making the device suitable for ultrasonic reception at frequencies close to 10 MHz.

  16. Copper-vapor laser in medical practice: gynecology

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir V.; Zazulya, O. I.; Zemskov, Konstantin I.

    1993-10-01

    About 100 patients were treated for cervical erosion, cervical leukoplakia, and vulval warts in the Gynecology Department of the adult polyclinic of the Zelenograd Center of Medicine. Copper vapor laser (CVL) was used with output average power up to 4 W in two lines (510 nm, 578 nm). Pulse repetition rate was about 10 kHz, pulselength approximately 20 - 40 ns. Four to twelve procedures were sufficient to recover.

  17. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  18. 250W diode laser for low pressure Rb vapor pumping

    NASA Astrophysics Data System (ADS)

    Podvyaznyy, A.; Venus, G.; Smirnov, V.; Mokhun, O.; Koulechov, V.; Hostutler, D.; Glebov, L.

    2010-02-01

    The diode pumped alkali vapor lasers operating at subatmospheric pressure require developing of a new generation of high-power laser diode sources with about 10 GHz wide emission spectrum. The latest achievements in the technology of volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass opened new opportunities for the design and fabrication of compact external cavity laser diodes, diode bars and stacks with reflecting VBGs as output couplers. We present a diode laser system providing up to 250 W output power and emission spectral width of 20 pm (FWHM) at the wavelength of 780 nm. The stability and position of an emission wavelength is determined by the resonant wavelength of a VBG which is controlled by temperature. Stability of an emitting wavelength is within 5 pm. Thermal tuning of the wavelength provides maximum overlapping of emitting line with absorption spectrum of a Rb (rubidium)- cell. The designed system consists of 7 modules tuned to the same wavelength corresponding to D2 spectral line of Rb87 or Rb85 and coupled to a single output fiber. Analogous systems could be used for other Rb isotopes spectral lines as well as for lasers based on other alkali metal vapors (Cs and K) or any agents with narrow absorption lines.

  19. Laser device and method

    SciTech Connect

    Myers, J. D.

    1985-06-25

    A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.

  20. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  1. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  2. Experimental and computer-modeled results of titanium sapphire lasers pumped by copper vapor lasers

    NASA Astrophysics Data System (ADS)

    Knowles, Martyn R. H.; Webb, Colin E.; Naylor, Graham A.

    1991-07-01

    The absorption band of titanium sapphire is excellently matched to the 510.6 nm and 578.2 nm emission lines of the copper vapor laser (CVL). The availability of high power and high repetition rate output from CVLs allows the generation of high average power tunable radiation from these crystals at the repetition rate of the pump. Such lasers fulfill the rapid data collection requirement of many spectroscopic applications such as resonance ionization mass spectrometry. A computer model of the absorption of CVL radiation in the crystal which incorporates the polarization and beam quality of the pump laser is used to map the gain distribution in the crystal so enabling parameters such as crystal doping level and length to be optimized. Gain switched analysis of the titanium sapphire laser predicts threshold, slope efficiency, pulse width and pulse build up time which are in good agreement with observed values. Thermal effects have also been computed. The experimental pump energy for threshold is typically 25 (mu) J and the slope efficiency for broadband lasing is greater than 20% with output powers up to 750 mW. The shortest pulse width and build-up time observed are 24 ns and 60 ns, respectively, for a resonator with a 0.85 m round-trip length. Tuning methods and resonator designs are also reviewed.

  3. Chemical vapor synthesis of nanocrystalline perovskites using laser flash evaporation of low volatility solid precursors.

    PubMed

    Winterer, Markus; Srdic, Vladimir V; Djenadic, Ruzica; Kompch, Alexander; Weirich, Thomas E

    2007-12-01

    One key requirement for the production of multinary oxide films by chemical vapor deposition (CVD) or nanocrystalline multinary oxides particles by chemical vapor synthesis (CVS) is the availability of precursors with high vapor pressure. This is especially the case for CVS where much higher production rates are required compared to thin films prepared by CVD. However, elements, which form low valent cations such as alkaline earth metals, are typically only available as solid precursors of low volatility, e.g., in form of beta-diketonates. This study describes laser flash evaporation as precursor delivery method for CVS of nanocrystalline perovskites. Laser flash evaporation exploits the nonequilibrium evaporation of solid metal organic precursors of low vapor pressure by absorption of the infrared radiation of a CO(2) laser. It is shown that stoichiometric, nanocrystalline particles consisting of SrZrO(3) and SrTiO(3) can be formed from corresponding mixtures of beta-diketonates which are evaporated nonselectively and with high rates by laser flash evaporation.

  4. Chemical vapor synthesis of nanocrystalline perovskites using laser flash evaporation of low volatility solid precursors

    NASA Astrophysics Data System (ADS)

    Winterer, Markus; Srdic, Vladimir V.; Djenadic, Ruzica; Kompch, Alexander; Weirich, Thomas E.

    2007-12-01

    One key requirement for the production of multinary oxide films by chemical vapor deposition (CVD) or nanocrystalline multinary oxides particles by chemical vapor synthesis (CVS) is the availability of precursors with high vapor pressure. This is especially the case for CVS where much higher production rates are required compared to thin films prepared by CVD. However, elements, which form low valent cations such as alkaline earth metals, are typically only available as solid precursors of low volatility, e.g., in form of β-diketonates. This study describes laser flash evaporation as precursor delivery method for CVS of nanocrystalline perovskites. Laser flash evaporation exploits the nonequilibrium evaporation of solid metal organic precursors of low vapor pressure by absorption of the infrared radiation of a CO2 laser. It is shown that stoichiometric, nanocrystalline particles consisting of SrZrO3 and SrTiO3 can be formed from corresponding mixtures of β-diketonates which are evaporated nonselectively and with high rates by laser flash evaporation.

  5. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOEpatents

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  6. Scaling of strontium-vapor laser active volume

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Polunin, Yu. P.

    2008-01-01

    Variations in the energy performance of a self-terminating Sr-vapor laser (SrVL) are examined. The active laser volume is varied between 20 and 650 cm 3. A linear relation is revealed between the average power delivered by the SrVL and its active volume. The SrVL efficiency is found to increase with active volume and to be comparable with that of a copper-vapor laser for an active volume V = 650 cm 3 (0.45 %). As the volume is increased, the total lasing pulse duration increases from 30 to 120 ns. The beam divergence problems associated with the use of a Fabry-Perot cavity or an unstable resonator of the telescopic type are discussed. A total average power of 13.5 W is obtained from V = 650 cm 3 at a lasing PRR F = 19 kHz. The output power generated at different laser wavelengths is as follows: 10.4 W at λ = 6.456 μm, 2.6 W at λ = 3 μm, and 0.5 W at λ = 1 μm. The wavelength dependence of the lasing pulse duration is considered.

  7. Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser Linewidth

    DTIC Science & Technology

    2007-11-02

    fiber optic sensors ; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR...SMC-TR-99-11 AEROSPACE REPORT NO. TR-98(8555)-14 Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser ...1999 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role

  8. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  9. The Evolution of KTP Laser Vaporization of the Prostate

    PubMed Central

    Tsakiris, Peter

    2008-01-01

    The search for a minimally invasive approach to the treatment of Lower Urinary Tract Symptoms (LUTS) suggestive of Benign Prostatic Hyperplasia (BPH) is probably as old as Transurethral Resection of the Prostate (TURP). In an effort to overcome the limitations and morbidities of TURP, and in light of evidence suggesting that medical treatment for BPH has a limited life-span, laser-based treatments have emerged during the last decade. Photoselective Vaporization of the Prostate (PVP) by the "GreenLight" KTP laser is considered one of the most promising options, one that is constantly evolving new technologies in prostate surgery. In this overview of KTP laser usage in BPH treatment, we will briefly discuss the evolution of this modality since it was first introduced and focus on the available evidence regarding safety, efficacy and cost parameters of its application. PMID:18452253

  10. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    SciTech Connect

    Khalil, Osama Mostafa

    2010-10-08

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  11. Wavelength diversity in optically pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.

    2017-01-01

    Alternative wavelengths for optically pumped alkali vapor lasers have been developed using single photon excitation of higher lying P-states, stimulated Raman processes, two-photon excitation of S and D states, and electric quadruple excitation on S-D transitions. Two photon excitation of Cs 72D leads to competing and cascade lasing producing red and infrared lasers operating on the D-P transitions, followed by ultraviolet, blue, the standard near infrared DPAL transitions operating on P-S transitions. The S-D pump transitions are fully bleached at pump intensities exceeding 1 MW/cm2, allowing for lasing transitions that terminate on the ground state. The kinetics of these systems are complex due to competition for population inversion among the many optical transitions. An optically pumped mid-infrared rubidium pulsed, mirrorless laser has also been demonstrated in a heat pipe along both the 62P3/2 - 62S1/2 transition at 2.73 μm and the 62P1/2 - 62S1/2 transition at 2.79 μm with a maximum energy of 100 nJ. Performance improves dramatically as the rubidium vapor density is increased, in direct contradiction with the prior work. No scaling limitations associated with energy pooling or ionization kinetics have been observed. Practical application for infrared counter measures depends on the further development of blue diode pump sources. Finally, stimulated electronic Raman scattering and hyper-Raman processes in potassium vapor near the D1 and D2 lines have been observed using a stable resonator and pulsed laser excitation. First and second order Stokes and anti-Stokes lines were observed simultaneously and independently for a pump laser tuning range exceeding 70 cm-1. When the pump is tuned between the K D1 and D2 lines, an efficient hyper-Raman process dominates with a slope efficiency that exceeds 10%. Raman shifted laser may be useful as a target illuminator or atmospheric compensation beacon for a high power diode pumped alkali laser.

  12. Removal of Water Vapor in a Mist Singlet Oxygen Generator for Chemical Oxygen Iodine Laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2004-02-01

    The mist singlet oxygen generator (Mist-SOG) for a chemical oxygen iodine laser (COIL) has been developed in order to increase basic hydrogen peroxide (BHP) utilization. It was clarified that the Mist-SOG generated much more water vapor than conventional SOGs because the heat capacity of BHP is small. The water vapor deactivates the excited iodine and depresses the laser power. Therefore, a jet-cold trap was developed in order to remove the water vapor while maintaining a minimum deactivation of singlet oxygen. In this method, a nozzle was used to spray chilled H2O2 at 238 K as a thin layer directly to the gas flow to achieve a large specific surface area for water vapor. As a result, the water vapor mole fraction was reduced to 7% from 18% with the BHP utilization of 21% at the Cl2 consumption rate of 3.5 mmol/s (Cl2 input flow rate of 8.0 mmol/s) for 65-μm-diameter BHP droplets.

  13. Method and Apparatus for Concentrating Vapors for Analysis

    DOEpatents

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  14. Investigation of metal evaporation by the laser ionization method

    SciTech Connect

    Kasimov, A.K.; Tursunov, A.T.

    1995-04-01

    Evaporation rates and vapor pressures of metallic gallium are measured, and spatial structures of gallium atomic beams are studied using the method of laser stepwise selective excitation of atoms and their ionization by the electric field.

  15. From a metal vapor laser projection microscope to a laser monitor (by the 50 year-anniversary of metal vapor lasers)

    NASA Astrophysics Data System (ADS)

    Evtushenko, G. S.

    2015-12-01

    The paper presents the history of active optical systems development from a laser projection microscope to a laser monitor. The examples of object visualization and diagnostics of high speed processes hidden by the intense background radiation are discussed. These are the processes of laser-surface interaction, self-propagating high-temperature synthesis (SHS), the corona discharge in the air, the nanoparticle production process using a high-power fiber laser, and etc. The results obtained by different research groups suggest that high-speed metal vapor brightness amplifiers and active optical systems based on them need further research, development and novel applications.

  16. Characterization of Vapor and Aerosol Flows by Photothermal Methods.

    DTIC Science & Technology

    2014-09-26

    transient Mie-scattering. The main parts of our experimental set-up have been shown previously5 . A Q-switched CO2 laser beam (pulse duration I ps...indicated beam separations in a nitrogen/ethanol vapor flow.The CO2 laser is fired at t-0. Signal decrease and broadening is in agreement with eq. (I...20. AUSTRACT (Confliu W tover@ aede It nemsaem iaind Identif by bleck numier) Pulsed laser heating is used to label aerosols or absorbing vapors

  17. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  18. Analysis of temporal jitter in a copper vapor laser system

    NASA Astrophysics Data System (ADS)

    Kumar, D. Durga Praveen; Gantayet, L. M.; Singh, Sunita; Rawat, A. S.; Rana, Paramjit; V, Rajasree; Agarwalla, Sandeep K.; Chakravarthy, D. P.

    2012-02-01

    Temporal jitter in a magnetic pulse compression based copper vapor laser (CVL) system is analyzed by considering ripple present in the input dc power supply and ripple present in the magnetic core resetting power supply. It is shown that the jitter is a function of the ratio of operating voltage to the designed voltage, percentage ripple, and the total propagation delay of the magnetic pulse compression circuit. Experimental results from a CVL system operating at a repetition rate of 9 kHz are presented.

  19. Means and method for vapor generation

    DOEpatents

    Carlson, L.W.

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid - starting as feedwater heating where no vapors are present, progressing to nucleate heating where vaporization begins and some vapors are present, and concluding with film heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10 to 30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  20. Means and method for vapor generation

    DOEpatents

    Carlson, Larry W.

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  1. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  2. Single frequency and wavelength stabilized near infrared laser source for water vapor DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Walters, Brooke; Shuman, Tim; Losee, Andrew; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2015-02-01

    Fibertek has demonstrated a single frequency, wavelength stabilized near infrared laser transmitter for NASA airborne water vapor DIAL application. The application required a single-frequency laser transmitter operating at 935 nm near infrared (NIR) region of the water vapor absorption spectrum, capable of being wavelength seeded and locked to a reference laser source and being tuned at least 100 pm across the water absorption spectrum for DIAL on/off measurements. Fibertek is building a laser transmitter system based on the demonstrated results. The laser system will be deployed in a high altitude aircraft (ER-2 or UAV) to autonomously perform remote, long duration and high altitude water vapor measurements.

  3. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    SciTech Connect

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  4. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  5. High-efficiency cluster laser vaporization sources based on Ti: sapphire lasers

    NASA Astrophysics Data System (ADS)

    Pellarin, M.; Cottancin, E.; Lerme, J.; Vialle, J.L.; Wolf, J.P.; Broyer, M.; Paillard, V.; Dupuis, V.; Perez, A.; Perez, J.P.; Tuaillon, J.; Melinon, P.

    1994-07-01

    A new laser vaporization source based on a flashlamp-pumped Ti:sapphire laser has been used to produce cluster beams. The performance is compared to the standard cluster sources based on neodyme YAG lasers. We show that the Ti:sapphire source is much more efficient: the clusters deposition rate are about 30 times higher, and larger clusters are produced. Finally the quality of nanostructured films is comparable to those obtained by the standard source, but the time deposition is 30 times shorter. This opens new possibilites for film growth by cluster deposition.

  6. Dynamic characteristics of laser-induced vapor bubble formation in water based on high speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-zeng; Guo, Wenqing; Zhan, Zhenlin; Xie, Shusen

    2013-08-01

    In clinical practice, laser ablation usually works under liquid environment such as water, blood or their mixture. Laser-induced vapor bubble or bubble formation and its consequent dynamics were believed to have important influence on tissue ablation. In the paper, the dynamic process of vapor bubble formation and consequently collapse induced by pulsed Ho:YAG laser in static water was investigated by using high-speed camera. The results showed that vapor channel / bubble can be produced with pulsed Ho:YAG laser, and the whole dynamic process of vapor bubble formation, pulsation and consequently collapse can be monitored by using high-speed camera. The dynamic characteristics of vapor bubble, such as pulsation period, the maximum depth and width were determined. The dependence of above dynamic parameters on incident radiant exposure was also presented. Based on which, the influence of vapor bubble on hard tissue ablation was discussed.

  7. Alexandrite laser characterization and airborne lidar developments for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, P.; Higdon, N. S.; Grossmann, B. E.; Browell, E. V.

    1991-01-01

    The spectral characteristics of an Alexandrite laser used for making water vapor DIAL measurements have been evaluated. The optical servo-system used to lock the laser wavelength on a water vapor absorption line is described. A brief description of the DIAL system is given and the data obtained with this lidar during flight tests in March 1990 are also presented.

  8. Stabilization and spectral characterization of an alexandrite laser for water vapor lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Higdon, Noah S.; Grossman, Benoist E.; Browell, Edward V.

    1991-01-01

    A description of an optical system used to lock the alexandrite laser frequency on a water vapor absorption line is presented. The laser spectral characteristics, which include the spectral purity, the effect of the laser linewidth on the absorption, and the laser wavelength stability, are evaluated.

  9. Stabilization and spectral characterization of an alexandrite laser for water vapor lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Higdon, Noah S.; Grossman, Benoist E.; Browell, Edward V.

    1991-01-01

    A description of an optical system used to lock the alexandrite laser frequency on a water vapor absorption line is presented. The laser spectral characteristics, which include the spectral purity, the effect of the laser linewidth on the absorption, and the laser wavelength stability, are evaluated.

  10. Laser frequency translation: a new method.

    PubMed

    Poelker, M; Kumar, P; Ho, S T

    1991-12-01

    We demonstrate how the frequency of a single-mode cw dye laser can be translated by 1.772 GHz using stimulated Raman scattering in sodium vapor. The output of a sodium Raman laser, the frequency-translated beam, is shown to be highly correlated in frequency with the dye-laser pump beam. The bandwidth of the 1.772-GHz heterodyne beat signal between the two beams is found to be as narrow as 440 Hz, much narrower than the root-mean-square frequency jitter (~1 MHz) of the dye-laser pump beam. The Raman laser method can be used with materials other than sodium, such as cesium or magnesium, to obtain frequency translations of a magnitude that may not be easily attainable with acousto-optic or electro-optic techniques.

  11. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  12. Endoscopic photodynamic therapy of tumors using gold vapor laser

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Yury P.; Poddubny, Boris K.; Mironov, Andrei F.; Ponomarev, Igor V.; Shental, V. V.; Vaganov, Yu. E.; Kondratjeva, T. T.; Trofimova, E. V.

    1996-01-01

    Compact sealed-off gold vapor laser (GVL) with 2 W average power and 628 nm wavelength was used for endoscopic photodynamic therapy in 20 patients with different tumors in respiratory system and upper gastrointestinal tract. Russian-made hematoporphyrin derivative (Hpd) `Photohem' was used as a photosensitizer. It was given intravenously at a dose of 2 - 2.5 mg/kg body weight 48 hours prior to tumor illumination with 628 nm light from GVL. Intermittent irradiation with GVL was done through flexible endoscope always under local anaesthesia at a power of 200 - 400 mW/sm2 and a dose of 150 - 400 J/sm2. 80% patients showed complete or partial response depending on stage of tumor. In cases of early gastric cancer all patients had complete remission with repeated negative biopsies. No major complication occurred.

  13. Multiphoton laser ionization for energy conversion in barium vapor

    NASA Astrophysics Data System (ADS)

    Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.

    2013-03-01

    We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.

  14. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.

    PubMed

    Zheng, Yajian; Liu, Hui; Wang, Yi; Zhu, Cong; Wang, Shuming; Cao, Jingxiao; Zhu, Shining

    2011-11-21

    Through the enhanced photothermal effect, which was achieved using a silver film, a low power weakly focused continuous-wave laser (532 nm) was applied to create a vapor bubble. A convective flow was formed around the bubble. Microparticles dispersed in water were carried by the convective flow to the vapor bubble and accumulated on the silver film. By moving the laser spot, we easily manipulated the location of the bubble, allowing us to direct-write micropatterns on the silver film with accumulated particles. The reported simple controllable accumulation method can be applied to bimolecular detection, medical diagnosis, and other related biochip techniques.

  15. Method for controlling corrosion in thermal vapor injection gases

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  16. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  17. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  18. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers.

    PubMed

    Sell, J F; Gulyuz, K; Sprouse, G D

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized (208-210)Fr ion beams at beam energies of 5 keV and intensities of 10(5) s(-1). Efficient neutralization (> or = 80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  19. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized F208-210r ion beams at beam energies of 5 keV and intensities of 105 s-1. Efficient neutralization (≥80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  20. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    SciTech Connect

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-15

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized {sup 208-210}Fr ion beams at beam energies of 5 keV and intensities of 10{sup 5} s{sup -1}. Efficient neutralization ({>=}80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  1. Simulation studies of vapor bubble generation by short-pulse lasers

    SciTech Connect

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.

  2. Simulation studies of vapor bubble generation by short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Amendt, Peter A.; London, Richard A.; Strauss, Moshe; Glinsky, Michael E.; Maitland, Duncan J.; Celliers, Peter M.; Visuri, Steven R.; Bailey, David S.; Young, David A.; Ho, Darwin; Lin, Charles P.; Kelly, Michael W.

    1998-01-01

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks [Lin and Kelly, SPIE 2391, 294 (1995)].

  3. Treatment of vulvar intraepithelial neoplasia with CO(2) laser vaporization and excision surgery.

    PubMed

    Leufflen, Léa; Baermann, Pauline; Rauch, Philippe; Routiot, Thierry; Bezdetnava, Lina; Guillemin, Francois; Desandes, Emmanuel; Marchal, Frederic

    2013-10-01

    To evaluate the recurrence rate after a single treatment of vulvar intraepithelial neoplasia (VIN) with CO(2) laser vaporization. Fifty women with usual-type or differentiated VIN (grades 2 and 3) treated with CO(2) laser vaporization or surgery excision (cold knife or CO(2) laser) were retrospectively evaluated. Of the 50 patients, 41 (82.0%) had usual-type VIN and 9 (18.0%) had differentiated VIN. Moreover, 24 (48.0%) were treated with surgery excision and 26 (52.0%) underwent CO(2) laser vaporization. Laser-treated patients were significantly younger (p < .01) with more multifocal (p < .05) and multicentric lesions (p < .01) than in the surgery group. Recurrence-free survival (RFS) rates at 1 year were 91.0% for the surgery and 65.2% for the laser vaporization groups (p < .01). At 5 years, RFS rates were unchanged for the surgery group and dropped to 51.3% (p < .01) for the laser group. On the univariate analysis, current smoker (p = .03), multicentric VIN (p = .02), and laser vaporization treatment (p < .01) had a statistically significant impact on RFS. One patient progressed to invasive cancer (2%). The recurrence rate after CO(2) laser vaporization requires regular, close, and extended monitoring.

  4. Determination of gas-discharge plasma parameters in powerful metal halide vapor lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, Krassimir A.; Slaveeva, Stefka I.; Fedchenko, Yulian I.

    2016-01-01

    Powerful metal halide vapor lasers are excited with nanosecond pulsed longitudinal discharge in complex multicomponent gas mixtures. Using a new method, thermal conductivity of various 5- and 6-component gas mixtures is obtained under gas-discharge conditions, which are optimal for laser operation on the corresponding metal atom and ion transitions. Assuming that the gas temperature varies only in the radial direction and using the calculated thermal conductivities, an analytical solution of the steady-state heat conduction equation is found for uniform and radially nonuniform power input in various laser tube constructions. Using the results obtained for time-resolved electron temperature by measurement of electrical discharge characteristics and analytically solving steady-state heat conduction equation for electrons as well, radial distribution of electron temperature is also obtained for the discharge period.

  5. Method and apparatus for isotope-selectively exciting gaseous or vaporous uranium hexafluoride molecules

    SciTech Connect

    Fill, E.E.; Jetter, H.L.; Volk, R.

    1981-06-09

    A method of isotope-selectively exciting gaseous or vaporous uranium hexafluoride molecules by subjecting them to the action of a monochromatic iodine laser beam, the frequency of which can be adjusted and tuned to an absorption band of the molecules to be excited, the laser beam being scattered by liquid and/or solid nitrogen to obtain a triple raman-scattering. In a preferred embodiment, the laser has an emission frequency of 7600 to 7610 cm-1 and the tuning is effected by means of a magnetic field. An apparatus suitable for carrying out such a method comprises a high-performance iodine laser and an optical resonator into which the emission beam or pulses of the laser are focused, one or more dewar vessels filled with liquid or solid nitrogen being located within the optical resonator. In a preferred embodiment, the laser beam tube is located between the poles of an electromagnet.

  6. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T. R.; Newkirk, L. R.

    1986-06-01

    Dielectric breakdown of gas mixtures can be used to deposit thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas-phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 ..mu.. where there is no significant resonant absorption in any of the source gases, homogeneous films from several gas-phase precursors have been sucessfully deposited by gas-phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls representing decomposition chemistry and tungsten from the hexafluoride representing reduction chemistry have been demonstrated. In each case the gas precursor is buffered with argon to reduce the partial pressure of the reactants and to induce breakdown. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size consistent with the low temperature of the substrate and the formation of metastable nickel carbide. Transmission electron microscopy supports this analysis.

  7. A Three Level Analytic Model for Alkali Vapor Lasers

    SciTech Connect

    Hager, Gordon D.; Perram, Glen P.

    2010-10-08

    A three level analytic model for optically pumped alkali metal vapor lasers is developed considering the steady-state rate equations for the longitudinally averaged number densities of the ground {sup 2}S{sub 1/2} and first excited {sup 2}P{sub 1/2} and {sup 2}P{sub 3/2} states. The threshold pump intensity includes both the requirements to fully bleach the pump transition and exceed optical losses, typically about 200 W/cm{sup 2}. Slope efficiency depends critically on the fraction of incident photons absorbed and the overlap of pump and resonator modes, approaching the quantum efficiency of 0.95-0.98, depending on alkali atom. For efficient operation, the collisional relaxation between the two upper levels should be fast relative to stimulated emission. By assuming a statistical distribution between the upper levels, the limiting analytic solution for the quasi-two level system is achieved. Application of the model and comparisons to recent laser demonstrations is presented.

  8. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  9. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  10. Performance characteristics of a chemical oxygen-iodine laser without a water vapor trap

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toshio; Tsuruyama, Toru; Uchiyama, Taro

    1988-09-01

    The effect of water vapor on the operation of a chemical oxygen-iodine laser without a water vapor trap is described. The maximum CW laser power of 87 W was obtained without the water vapor trap at a Cl2 flow rate of 740 mmol/min. An alkaline H2O2 solution (90 wt pct H2O2, 50 wt pct KOH) was cooled down to about -30 C in order to control the saturated H2O2-H2O vapor pressure to less than 100 mTorr. Two porous pipes made of carbon were utilized as a singlet oxygen generator.

  11. Method and apparatus for concentrating vapors for analysis

    DOEpatents

    Grate, Jay W [West Richland, WA; Baldwin, David L [Kennewick, WA; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  12. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-12-01

    Analysis of two new pump-couplings: semi-ring and trapezoid LD side-pumped configurations in alkali vapor lasers is reported, which mainly includes the numerical approaches for evaluation of the pump intensity and temperature distribution in the cell of these two configurations. Comparison between the simulated results of the semi-ring and trapezoid LD side-pumped Cs vapor lasers and the experimental results of the single-side pumped Cs vapor lasers with a cylindrical white diffuse reflector and a stable or unstable resonator is made. Dependencies of laser power on pump power and flowed velocity for semi-ring, trapezoid, single and double side-pumped configurations are calculated, demonstrating the advantages of the semi-ring and trapezoid LD side-pumped configurations. Thus the model is very helpful for designing high-power side-pumped alkali vapor lasers.

  13. Thermal electric vapor trap arrangement and method

    DOEpatents

    Alger, Terry

    1988-01-01

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  14. Thermal electric vapor trap arrangement and method

    DOEpatents

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  15. Method and apparatus for conducting variable thickness vapor deposition

    DOEpatents

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  16. Retrieval of water vapor mixing ratios from a laser-based sensor

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  17. Lithium triborate laser vaporization of the prostate using the 120 W, high performance system laser: high performance all the way?

    PubMed

    Hermanns, Thomas; Strebel, Daniel D; Hefermehl, Lukas J; Gross, Oliver; Mortezavi, Ashkan; Müller, Alexander; Eberli, Daniel; Müntener, Michael; Michel, Maurice S; Meier, Alexander H; Sulser, Tullio; Seifert, Hans-Helge

    2011-06-01

    Technical modifications of the 120 W lithium-triborate laser have been implemented to increase power output, and prevent laser fiber degradation and loss of power output during laser vaporization of the prostate. However, visible alterations at the fiber tip and the subjective impression of decreasing ablative effectiveness during lithium-triborate laser vaporization indicate that delivering constantly high laser power remains a relevant problem. Thus, we evaluated the extent of laser fiber degradation and loss of power output during 120 W lithium-triborate laser vaporization of the prostate. We investigated 46 laser fibers during routine 120 W lithium-triborate laser vaporization in 35 patients with prostatic bladder outflow obstruction. Laser beam power was measured at baseline and after the application of each 25 kJ during laser vaporization. Fiber tips were microscopically examined after the procedure. Mild to moderate degradation at the emission window occurred in all fibers, associated with a loss of power output. A steep decrease to a median power output of 57.3% of baseline was detected after applying the first 25 kJ. Median power output at the end of the defined 275 kJ lifespan of the fibers was 48.8%. Despite technical refinements of the 120 W lithium-triborate laser fiber degradation and significantly decreased power output are still detectable during the procedure. Laser fibers are not fully appropriate for the high power delivery of the new system. There is still potential for further improvement in the laser performance. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Risk factors for treatment failure of CO2 laser vaporization in cervical intraepithelial neoplasia 2.

    PubMed

    Yoon, Bo Sung; Seong, Seok Ju; Song, Taejong; Kim, Mi-La; Kim, Mi Kyoung

    2014-07-01

    The aim of our study was to evaluate the risk factors for treatment failure of CO2 laser vaporization in patients with cervical intraepithelial neoplasia 2 (CIN2). Medical records of patients who received either shallow or deep CO2 laser vaporization with biopsy-proven CIN2 during March 2007 to April 2011 were reviewed retrospectively. After laser vaporization, liquid-based cytology and human papilloma virus (HPV) DNA testing were checked in every follow-up visit. Treatment failure was defined when the follow-up biopsy was more than CIN2, needing secondary surgical treatment. During that period, 141 patients with CIN2 underwent CO2 laser vaporization. After laser ablation, 14 of 141 women needed the secondary treatment, a success rate of laser vaporization of 90.1 %. In multivariate analysis, the previous loop electrosurgical excision procedure (LEEP) history (adjusted OR = 13.649; P value = 0.025) and the ablation depth (adjusted OR = 11.279; P value = 0.006) were independent factors associated with treatment failure. Both ablation depth and previous LEEP history were the important factors increasing the risk for the treatment failure of CO2 laser vaporization in CIN2.

  19. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T.R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  20. Metal film deposition by laser breakdown chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jervis, T. R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO2 laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, X-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed X-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  1. Effect of Nd:YAG laser pulse energy on mercury vapor release from the dental amalgam.

    PubMed

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Rikhtegaran, Sahand; Puralibaba, Firooz; Ajami, Hamidreza

    2013-10-01

    The aim of this study was to evaluate the effect of different pulse energies of Nd:YAG laser on the amalgam ablation, and its effect on the amount of mercury vapor release from amalgam. Toxic vapor release from amalgam restorations at the laser focus site is possible. Forty-five amalgam samples (4 mm in diameter and 5 mm in height) were placed in sealed containers and underwent Nd:YAG laser irradiation with pulse energies of 50, 150, and 250 mJ at a distance of 1 mm from the amalgam surface for 4 sec. Subsequently, 150 mL of air was collected from the inside of the container using an Apex Pump to analyze the amount of mercury vapor in the air samples using a mercury vapor analyzer. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests (p<0.05). The amount of mercury vapor release significantly increased with an increase in the pulse energy of Nd:YAG laser (p<0.001). In addition, the amount of mercury vapor release with 250 mJ pulse energy was significantly higher compared with the standard mercury vapor concentration (50 μg/m(3)) (p<0.001). Nd:YAG laser produced cavities on the amalgam surface, which increased in size with an increase in the energy of the laser beam. The amount of mercury vapor significantly increased with an increase in the pulse energy of the laser beam, and was significantly higher than the standard mercury vapor concentration with 250 mJ pulse energy.

  2. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  3. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  4. Characteristics of a High Intensity, Pulsed, Potassium Vapor Laser in a Heat Pipe

    DTIC Science & Technology

    2011-03-01

    metals form the first column of the periodic table. From the top, this column includes lithium, sodium , potassium, rubidium, and cesium . They...pumped rubidium vapor laser by Krupke [2]. Since then, cesium (Cs), rubidium (Rb), and potassium (K) vapor lasers have been demonstrated and are the...would degrade the population inversion necessary for lasing to occur. Fortunately, the cesium and rubidium DPALs have much greater spin-orbit

  5. EPA Method 245.2: Mercury (Automated Cold Vapor Technique)

    EPA Pesticide Factsheets

    Method 245.2 describes procedures for preparation and analysis of drinking water samples for analysis of mercury using acid digestion and cold vapor atomic absorption. Samples are prepared using an acid digestion technique.

  6. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    NASA Astrophysics Data System (ADS)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  7. Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Nehrir, Amin R.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2007-09-01

    It is widely agreed that water vapor is one of the most important gasses in the atmosphere with regards to its role in local weather, global climate, and the water cycle. Especially with the growing concern for understanding and predicting global climate change, detailed data of water vapor distribution and flux and related feedback mechanisms in the lowest 3 km of the troposphere, where most of the atmospheric water vapor resides, are required to aid in climate models. Improved capabilities to monitor range-resolved tropospheric water vapor profiles continuously in time at many locations are needed. One method of obtaining this data in the boundary layer with improved vertical resolution relative to passive remote sensors is with a Differential Absorption LIDAR (DIAL) utilizing a compact laser diode source. Montana State University, with the expertise of its laser source development group, has developed a compact water vapor DIAL system that utilizes a widely tunable amplified external cavity diode laser (ECDL) transmitter. This transmitter has the ability to tune across a 17 nm spectrum near 830 nm, allowing it access to multiple water vapor absorption lines of varying strengths. A novel tuning system tunes and holds the ECDL to within +/- 88 MHz (0.20 pm) of the selected wavelength. The ECDL acts as a seed source for two commercial cascaded tapered amplifiers. The receiver uses commercially available optics and a fiber-coupled Avalanche Photodiode (APD) detector. Initial nighttime measurements of water vapor profiles taken over Bozeman, Montana, with comparisons to radiosonde-derived profiles will be presented.

  8. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  9. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    NASA Astrophysics Data System (ADS)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  10. Preliminary results on diode-laser assisted vaporization of prostate tissue

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Seitz, Michael; Reich, Oliver; Bachmann, Alexander; Steinbrecher, Verena; Ackermann, Alexander; Stief, Christian

    2007-07-01

    Introduction and objectives: The aim was to identify the capability and the laser parameter of under water tissue vaporisation by means of a diode laser (1470 nm). Afterwards the feasibility and postoperative clinical outcome of vaporization of the prostate was investigated. Method: After acquiring suitable laser parameters in in-vitro experiments using a perfused tissue model patients (n=10) suffering from bladder outlet obstruction due to benign prostatic hyperplasia (BPH) were treated by diode laser. Their clinical outcome, in terms of acceptance and post-operatively voiding were evaluated. The diode laser emitted light of the wavelength of 1470 nm at 50 W (Biolitec GmbH) and delivered to the tissue by means of a side-fire fibre introduced through a 24F continuous-flow cystoscope. Normal saline was used for irrigation with an additive of 1% ethanol. The prostatic lobes (volume range 35-80ml) were vaporized within the prostatic capsular using sweeping and push and pull technique. The mean time of laser application was 2400 sec (1220-4000 sec) resulting in applied energies of 121 kJ in the mean (range: 61-200kJ). Results: During laser treatment none of the 10 patients showed any significant blood loss or any fluid absorption (no ethanol uptake). Foley catheters were removed between 18 and 168 hours postoperatively (mean: 49.8h+/-46h). After removal of the catheter the mean peak urine flow rate increased from 8.9ml/s +/- 2.9ml/s pre-operatively in comparison to 15.7ml/s +/- 5 ml/s (p=0.049) post-operatively. 8/10 patients were satisfied with their voiding outcome. None of the patients showed appearance of urgency, dysuria, hematuria, or incontinence but two patients required re-catheterization. After a follow-up of 1month, 8/10 patients showed evidence of good results and are satisfied with the outcome. Two patients required consecutive TUR-P. After a follow-up of 6-month the 8 patients are still satisfied. Conclusions: This very early and limited experience using

  11. Probing heat diffusion after pulsed-laser-induced breakdown in a metal vapor

    SciTech Connect

    Zapka, W.; Tam, A.C.

    1982-02-01

    We have used a pulsed dye-laser beam at 6010 A, of 1-..mu..sec duration and < or approx. =1-mJ energy, to produce a line plasma in a Cs metal vapor. This produces a line source of large thermal energy. The heat diffusion after the laser pulse can be studied by transmission monitoring of a weak cw He--Ne laser beam that is parallel to but separated from the pulse laser beam by an adjustable displacement. This is possible because the He--Ne beam is absorbed by the minority Cs/sub 2/ molecules but not by the majority Cs atoms; as the heat pulse diffuses through the probe beam, the transient temperature increase causes a corresponding change in the population distribution of the Cs/sub 2/ molecules and hence a transient increase in transmission of the probe beam. In other words, the Cs/sub 2/ workd like a thermometer. Our work demonstrates a new and simple method to measure heat diffusion in a well-defined geometry, and it is especially suitable for use in a hot corrosive system because it is a noncontact method.

  12. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  13. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  14. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  15. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  16. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  17. Influence of H2 and HBr additives on Cu and CuB vapor lasers performance

    NASA Astrophysics Data System (ADS)

    Evtushenko, Gennadiy S.; Shiyanov, Dmitriy V.; Zhdaneev, Oleg V.; Sukhanov, Viktor B.

    2005-03-01

    Investigations of the output parameters of CuBr (Cu)+HBr laser systems have shown that HBr additives to the CuBr laser active medium result in an increase ofthe laser output power and efficiency that compares, in this case, with that of a CuBr laser with H2 additives. It has been found that the vapor of working substance are additionally produced in gas-discharge tubes (GDTs) less than 2 cm in diameter due to expulsion of copper atoms from the GDT walls by HBr. The results of simulating the kinetics of the copper vapor laser active medium with HBr additives show that the enhancement of the laser performance parameters can be explained by the processes of chemical transformation of copper from the solid phase into the gas one.

  18. [Comparative study on the effects of LEEP and laser CO(2) vaporization in cervical intraepithelial neoplasia II].

    PubMed

    Sun, Lu-Lu; Cao, Dong-Yan; Bian, Mei-Lu; Wei, Li-Hui; Yang, Jia-Xin; Yang, Li; Cheng, Ning-Hai; Wang, You-Fang; Cheng, Xue-Mei; Hu, Li-Jun; Lang, Jing-He; Shen, Keng

    2010-11-23

    to compare the effect and complications of loop electro-surgical excision procedure (LEEP) and laser CO(2) vaporization in the treatment of cervical intraepithelial neoplasia II. a total of 338 CINII women were recruited into this multi-center comparative study. The diagnosis was confirmed by histopathological examination for cervical epithelial cell abnormalities. And colposcopic examination was submitted to LEEP (n = 195) or laser CO(2) vaporization (n = 143) respectively. A post-treatment follow-up of 3, 6 and 12 months was carried out to compare the effect of two methods. among 195 women undergoing LEEP, the frequency of cure, persistent and recurrent CIN was 89.2% (n = 174), 4.1% (n = 8) and 3.6% (n = 7) respectively. And among 143 women receiving laser CO(2) vaporization, the frequency of cure, persistent and recurrent CIN was 86.7% (n = 124), 4.9% (n = 7) and 0.70% (n = 1) respectively. There was no statistical difference in cure rates, persistence or recurrence of CIN (P > 0.05). The recovery time, the operative frequency and intra-operative blood loss were significantly different in two groups. both LEEP and CO(2) vaporization are both effective and reliable for the treatment of cervical intraepithelial neoplasia II. However, pathological specimens may be harvested during LEEP. It is of vital importance to conduct preoperative colposcopic assessment and standard postoperative follow-ups.

  19. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    SciTech Connect

    Early, J; Bibeau, C; Claude, P

    2003-09-16

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  20. A Linearly-Polarized Cesium Vapor Laser with Fundamental Mode Output and Low Threshold

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Tan, Rong-Qing; Huang, Wei; Xu, Cheng

    2014-04-01

    We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slope efficiency of 22.4% is obtained by using a pumping source with a linewidth of 0.26 nm and 80 kPa methane as the buffer gas. The threshold pumping power is 1.56 W.

  1. Analysis of Thermally Denatured Depth in Laser Vaporization for Benign Prostatic Hyperplasia using a Simulation of Light Propagation and Heat Transfer (secondary publication)

    PubMed Central

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Ioritani, Naomasa

    2016-01-01

    Background and Aims: Laser vaporization of the prostate is expected as a less invasive treatment for benign prostatic hyperplasia (BPH), via the photothermal effect. In order to develop safer and more effective laser vaporization of the prostate, it is essential to set optimal irradiation parameters based on quantitative evaluation of temperature distribution and thermally denatured depth in prostate tissue. Method: A simulation model was therefore devised with light propagation and heat transfer calculation, and the vaporized and thermally denatured depths were estimated by the simulation model. Results: The results of the simulation were compared with those of an ex vivo experiment and clinical trial. Based on the accumulated data, the vaporized depth strongly depended on the distance between the optical fiber and the prostate tissue, and it was suggested that contact laser irradiation could vaporize the prostate tissue most effectively. Additionally, it was suggested by analyzing thermally denatured depth comprehensively that laser irradiation at the distance of 3 mm between the optical fiber and the prostate tissue was useful for hemostasis. Conclusions: This study enabled quantitative and reproducible analysis of laser vaporization for BPH and will play a role in clarification of the safety and efficacy of this treatment. PMID:28765672

  2. Method and apparatus for precision laser micromachining

    DOEpatents

    Chang, Jim; Warner, Bruce E.; Dragon, Ernest P.

    2000-05-02

    A method and apparatus for micromachining and microdrilling which results in a machined part of superior surface quality is provided. The system uses a near diffraction limited, high repetition rate, short pulse length, visible wavelength laser. The laser is combined with a high speed precision tilting mirror and suitable beam shaping optics, thus allowing a large amount of energy to be accurately positioned and scanned on the workpiece. As a result of this system, complicated, high resolution machining patterns can be achieved. A cover plate may be temporarily attached to the workpiece. Then as the workpiece material is vaporized during the machining process, the vapors condense on the cover plate rather than the surface of the workpiece. In order to eliminate cutting rate variations as the cutting direction is varied, a randomly polarized laser beam is utilized. A rotating half-wave plate is used to achieve the random polarization. In order to correctly locate the focus at the desired location within the workpiece, the position of the focus is first determined by monitoring the speckle size while varying the distance between the workpiece and the focussing optics. When the speckle size reaches a maximum, the focus is located at the first surface of the workpiece. After the location of the focus has been determined, it is repositioned to the desired location within the workpiece, thus optimizing the quality of the machined area.

  3. Defining optimal laser-fiber sweeping angle for effective tissue vaporization using 180 W 532 nm lithium triborate laser.

    PubMed

    Ko, Woo Jin; Choi, Benjamin B; Kang, Hyun Wook; Rajabhandharaks, Danop; Rutman, Matthew; Osterberg, E Charles

    2012-04-01

    The goal of this study is to identify the most efficient sweeping angle (SA) during photoselective vaporization of the prostate (PVP). Experiments were conducted with GreenLight XPS™ laser at 120 and 180 W. Ten blocks of porcine kidney were used for each SA (0, 15, 30, 45, 60, 90, and 120 degrees). Vaporization efficiency was assessed by the amount of tissue removed per time. The coagulation zone (CZ) thickness was also measured. Maximal vaporization rate (VR) was achieved at SA 15 and 30 degrees. Irrespective of power, VR increased and CZ decreased linearly with decreasing SA from 120 to 30 degrees. The CZ was the thinnest at SA 30 degrees. Optimal vaporization occurred at a SA of 15 degrees and 30 degrees with the lowest CZ at 30 degrees. Contrary to a previous recommendation for a wider SA (60 degrees or greater), a narrower SA (30 degrees) achieved the maximal tissue vaporization efficiency.

  4. Dichroic atomic vapor laser lock with multi-gigahertz stabilization range

    SciTech Connect

    Pustelny, S.; Schultze, V.; Scholtes, T.; Budker, D.

    2016-06-15

    A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the {sup 85}Rb ground state or as far as 16 GHz away from the closest optical transition.

  5. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  6. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  7. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  8. [The use of laser vaporization for the treatment of benign prostatic hyperplasia].

    PubMed

    Ustinov, D V; Kholtobin, D P; Kul'chavenia, E V; Aĭzikovich, B I

    2013-01-01

    Results of use of UroBeam laser diode in 72 patients with benign prostatic hyperplasia (BPH) were analyzed. Average prostate volume was 67.29 +/- 26.72 cm3, the duration of vaporization--69.2 +/- 23.7 min. Blood loss was minimal. In the period from 2 weeks to 4 months after surgery, 9 patients have developed acute urinary retention. In the early postoperative period, acute prostatitis was diagnosed in 7 patients and was jugulated using drug treatment. The laser vaporization of BPH led to a three-fold reduction in the severity of urinary disorders and increase the urinary flow rate. The combination of laser vaporization of the prostate with transurethral resection of the prostate allow to improve the recovery of urination after surgery.

  9. Development of Field-deployable Diode-laser-based Water Vapor Dial

    NASA Astrophysics Data System (ADS)

    Pham Le Hoai, Phong; Abo, Makoto; Sakai, Tetsu

    2016-06-01

    In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL) has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  10. Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium

    NASA Astrophysics Data System (ADS)

    Xia, Chunsheng; Shen, Binglin; Xu, Xingqi; Pan, Bailiang

    2017-03-01

    A physical model for a flowing four-side pumped alkali vapor laser MOPA system, which considers the saturation effect and amplified spontaneous emission (ASE) and cross-sectional temperature distribution, is established to simulate the output performance of the cesium vapor amplifier. According to the experimental parameters, the simulated result agrees well with the experiment, which demonstrates the validity of this model. Influences of the seed power, the flowing velocity, and the cell length on the amplified power are simulated and analyzed, and a set of optimal operating parameters are obtained. Thus, the model can provide an effective way for designing an efficient side-pumped flowing-gas alkali vapor amplifier.

  11. Nano structured physical vapor deposited coatings by means of picosecond laser radiation.

    PubMed

    Bobzin, K; Bagcivan, N; Ewering, M; Gillner, A; Beckemper, S; Hartmann, C; Theiss, S

    2011-10-01

    Molding of nano structures by injection molding leads to special requirements for the tools e.g., wear resistance and as low as possible release forces of the molded components. On the other hand it is not allowed to affect the replication precision. Physical vapor deposition is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the plastics melt. Although physical vapor deposition technology allows the deposition of films on micro structures without changing the structure significantly, film deposition on nano structures and small micro structures leads to a relevant change in surface topography. For this reason direct structuring of physical vapor deposition coatings might be beneficial. In this paper structuring was done using a picoseconds ultraviolet laser, Lumera Laser "Rapid," with a master oscillator power amplifier system at 355 nm. Two different coatings were deposited by magnetron sputter ion plating physical vapor deposition technology for laser structuring tests ((Cr, Al)N, (Cr, Al,Si)N). After deposition, the coatings were analyzed by common techniques regarding hardness, Young's modulus and morphology. The structures were analyzed by scanning electron microscopy. The results show a high potential for laser structuring of coatings deposited via physical vapor deposition. Linear structures with sizes between 400 nm and 10microm were realized.

  12. Containerless laser-induced flourescence study of vaporization and optical properties for sapphire and alumina

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Evaporation of aluminum oxide was studied from 1800 to 2327 K by laser-induced flourescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO2 laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al2O3. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  13. Ex vivo evaluation of safety and efficacy of vaporization of the prostate using a 300 W high-power laser diode with the wavelength of 980 nm

    NASA Astrophysics Data System (ADS)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2014-03-01

    Laser vaporization of the prostate is one of the promising technique for less-invasive treatment of benign prostatic hyperplasia. However, shorter operative duration and higher hemostatic ability are expected. The wavelength of 980 nm offers a high simultaneous absorption by water and hemoglobin, so that it combines the efficient vaporization with good hemostasis. Therefore, we have evaluated the safety and efficacy of vaporization of the prostate using a recently developed 300 W high-power laser diode with the wavelength of 980 nm. First, validity of bovine prostate tissue as the sample was confirmed by measuring the optical properties of bovine and human prostate tissue using a double integrating sphere optical system. Next, contact and non-contact ex vivo irradiations were performed for various irradiation powers and times, and vaporized and coagulated depths were measured. In the contact irradiation, the vaporized depth at the power of 300 W was significantly deeper than that at the power of 100 W, while the difference was relatively smaller for the coagulated depths at 300 and 100 W. In the non-contact irradiation, coagulation as thick as that in the contact irradiation was observed almost without vaporization. Therefore, it is suggested that the treatment in the contact irradiation using the high-power laser diode can vaporize the prostate more efficiently without increasing the risk of perforation. Hemostasis with the coagulation would be possible in both irradiation methods. To prevent the postoperative perforation, operators need to understand the relationship between the coagulated depth and the irradiation conditions.

  14. Low temperature deposition of inorganic films by excimer laser assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kuk, Seungkuk; Park, Jongmin; Zhang, Tao; Hwang, David J.

    2017-02-01

    In this study, silicon nitride film is deposited by laser assisted chemical vapor deposition technique based on the direct photolysis of SiH4/NH3 gas mixture using argon fluoride excimer laser of 193 nm wavelength at low substrate temperature around 100°C. By illuminating laser beam in parallel to sample surface, sample damage or heating can be avoided allowing compatibility of temperature sensitive device architectures. A wide range of processing parameters for laser and reactant gases are examined in correlation with deposition mechanisms.

  15. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

    SciTech Connect

    Fifield, Leonard S.; Shin, Yongsoon; Liu, Wei; Gotthold, David W.

    2016-01-01

    ABSTRACT

    Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

  16. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    NASA Astrophysics Data System (ADS)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  17. Sub-microsecond vapor plume dynamics under different keyhole penetration regimes in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Zhang, Xiaosi; Jiang, Ping; Xiao, Jianzhong

    2017-05-01

    It is well-known that distinct vapor plume dynamics occur during deep penetration laser welding under different keyhole penetration states. However, there is little knowledge about the physical characteristics of vapor plumes (velocity, pressure, flow patterns, etc) located inside transient keyholes of varying penetration regimes in laser welding. This lack of knowledge is primarily because mesoscale vapor plumes are highly dynamic and generally invisible. Based on a well-tested three-dimensional multiphase laser welding model, we conducted a computational study on vapor plume dynamics inside transient keyholes during the fiber laser welding of 304 austenite stainless steel as a function of keyhole penetration regimes. We observed three keyhole regimes of penetration: full penetration, partial penetration and no penetration. We then physically analyzed the vapor plumes in these regimes. We determined that the vapor plume velocities and pressures in all three regimes were uneven and oscillated following the dynamic keyhole with a characteristic timescale in sub-microseconds. Only when the keyhole approached the full penetration regime did vapor plumes begin to violently eject from the bottom of the keyhole opening, whereas in the partial penetration regime, even when the bottom part of the keyhole was open, most of the vapor plume ejected from the upper keyhole opening. This latter observation was similar to that in the no penetration mode. We studied the physical mechanism of this behavior by analyzing the keyhole temperature and vapor plume velocity distributions. We determined that the upward ejection of the vapor plume from the upper keyhole opening was the result of an uneven micro-meter scale boiling phenomenon of the transient keyhole governed by Fresnel absorptions dependent on the local inclination angle of the keyhole wall. Similarly, we determined that the ejection of the vapor plume from the bottom of the keyhole opening resulted from pressure

  18. A Level Set Method for vaporizing two-phase flows

    NASA Astrophysics Data System (ADS)

    Tanguy, Sébastien; Ménard, Thibaut; Berlemont, Alain

    2007-02-01

    Development and applications of numerical methods devoted to reactive interface simulations are presented. Emphasis is put on vaporization, where numerical difficulties arise in imposing accurate jump conditions for heat and mass transfers. We use both the Level Set Method and the Ghost Fluid Method to capture the interface motion accurately and to handle suitable jump conditions. A local vaporization mass flow rate per unit of surface area is defined and Stefan flow is involved in the process. Specific care has been devoted to the extension of discontinuous variables across the interface to populate ghost cells, in order to avoid parasitic currents and numerical diffusion across the interface. A projection method is set up to impose both the velocity field continuity and a divergence-free condition for the extended velocity field across the interface. The d2 law is verified in the numerical simulations of the vaporization of an isolated static drop. Results are then presented for a water droplet moving in air. Vapor mass fraction and temperature fields inside and outside the droplet are presented.

  19. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  20. Parametric investigation of the dirt spike generation in a pulsed metal vapor laser discharge

    SciTech Connect

    Lin, C.E.; Yang, C.Y.; Wang, T.C.; Huang, C.L.

    1989-06-15

    The generation of dirt spikes in the discharge of a clean pulsed metal vapor laser is measured under various operating conditions, such as a change in pulse repetition rates, laser tube temperatures, buffer gas pressures, and charging voltages. It is shown that the dirt spikes will increase in magnitude for such conditions that the pulse repetition rate decreases, the laser tube temperature decreases, and the buffer gas pressure increases. The ratio of the dirt spike to the charging voltage will also increase as the charging voltage decreases. All experimental results are well explained by theoretical analyses. These results lead to a number of useful suggestions for the operation of a pulsed metal vapor laser.

  1. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    PubMed

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  2. Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Trigub, M. V.; Klenovskii, M. S.; Li, Lin; Evtushenko, G. S.

    2016-01-01

    The paper presents a study of the effect of excitation conditions in a CuBr vapor brightness amplifier in a monostatic laser monitor on the radial non-uniformity of the radiation bearing the information about the object being visualized. A significant dependence of radial signal distribution on the concentrations of CuBr, HBr and pumping power has been demonstrated. In particular, an increase in CuBr vapor concentration causes the gain profile of the active medium to constrict and the axial gain to increase. The conditions for the most uniform radial distribution of the laser monitor signal are substantially different from those for the maximum radiated power. The paper demonstrates HBr doping to be usable as a tool to correct the non-uniformity of the radial distribution of laser monitor radiation. An addition of ~0.15 Torr HBr broadens and flattens the radiation profile, improving an important aspect of laser monitor image quality.

  3. Laser-Based Measurements of OH, Temperature, and Water Vapor Concentration in a Hydrocarbon-Fueled Scramjet (POSTPRINT)

    DTIC Science & Technology

    2008-07-01

    AFRL-RZ-WP-TP-2010-2246 LASER-BASED MEASUREMENTS OF OH, TEMPERATURE, AND WATER VAPOR CONCENTRATION IN A HYDROCARBON-FUELED SCRAMJET...MEASUREMENTS OF OH, TEMPERATURE, AND WATER VAPOR CONCENTRATION IN A HYDROCARBON-FUELED SCRAMJET (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...within the combustor. Tunable diode laser- based absorption spectroscopy (TDLAS) is used to measure water vapor concentration and static temperature near

  4. Diode Pumped Alkali Vapor Lasers - A New Pathway to High Beam Quality at High Average Power

    SciTech Connect

    Page, R H; Boley, C D; Rubenchik, A M; Beach, R J

    2005-05-06

    Resonance-transition alkali-vapor lasers have only recently been demonstrated [1] but are already attracting considerable attention. Alkali-atom-vapor gain media are among the simplest possible systems known, so there is much laboratory data upon which to base performance predictions. Therefore, accurate modeling is possible, as shown by the zero- free-parameter fits [2] to experimental data on alkali-vapor lasers pumped with Ti:sapphire lasers. The practical advantages of two of the alkali systems--Rb and Cs--are enormous, since they are amenable to diode-pumping [3,4]. Even without circulating the gas mixture, these lasers can have adequate cooling built-in owing to the presence of He in their vapor cells. The high predicted (up to 70%) optical-to-optical efficiency of the alkali laser, the superb (potentially 70% or better) wall-plug efficiency of the diode pumps, and the ability to exhaust heat at high temperature (100 C) combine to give a power-scalable architecture that is lightweight. A recent design exercise [5] at LLNL estimated that the system ''weight-to-power ratio'' figure of merit could be on the order of 7 kg/kW, an unprecedented value for a laser of the 100 kW class. Beam quality is expected to be excellent, owing to the small dn/dT value of the gain medium. There is obviously a long way to go, to get from a small laser pumped with a Ti:sapphire or injection-seeded diode system (of near-perfect beam quality, and narrow linewidth) [1, 4] to a large system pumped with broadband, multimode diode- laser arrays. We have a vision for this technology-development program, and have already built diode-array-pumped Rb lasers at the 1 Watt level. A setup for demonstrating Diode-array-Pumped Alkali vapor Lasers (DPALs) is shown in Figure 1. In general, use of a highly-multimode, broadband pump source renders diode-array-based experiments much more difficult than the previous ones done with Ti:sapphire pumping. High-NA optics, short focal distances, and short

  5. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    PubMed

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  6. Experimental demonstration of a diode laser-excited optical filter in atomic Rb vapor

    SciTech Connect

    Chung, Y.C.; Shay, T.M.

    1988-05-01

    The authors report the first demonstration of a narrow bandwidth optical filter using diode laser-pumped atomic Rb vapor. Excellent rejection of off-resonant laser photons has been achieved. The measured detection bandwidth was 1.18 GHz at the Rb cell temperature of 150/sup 0/C, which shows a good agreement with the calculated detection bandwidth of 1.02 GHz.

  7. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  8. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  9. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system.

    PubMed

    Ponsardin, P; Higdon, N S; Grossmann, B E; Browell, E V

    1994-09-20

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two étalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-étalon laser system. High spectral purity (> 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by usingthis laser, which has a finite linewidth of 0.02 cm(-1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(-1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity étalons is presented, and a closed-loop computer control for active stabilization of the two intracavity étalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (≈ 1.5 h) of less than 0.7 pm in the laboratory.

  10. Absorption of Irrigation Fluid During Thulium Laser Vaporization of the Prostate.

    PubMed

    Müllhaupt, Gautier; Abt, Dominik; Mordasini, Livio; Köhle, Olivia; Engeler, Daniel S; Lüthi, Andreas; Sauter, Rafael; Schmid, Hans-Peter; Schwab, Christoph

    2017-04-01

    To assess the prevalence and extent of irrigation fluid absorption during thulium laser vaporization of the prostate. Fifty-four patients undergoing thulium laser vaporization of the prostate were prospectively included into the trial at a tertiary referral center. Isotonic saline containing 1% ethanol was used for intraoperative irrigation. Absorption of irrigation fluid was measured periodically during the operation using the expired breath ethanol technique. Among others, intra- and postoperative changes in biochemical and hematological laboratory findings were assessed. Absorption of irrigation fluid was detected in 7 out of 54 (13%) patients with a median absorption volume of 265 mL (227-615). No significant differences of intra- and postoperative blood parameters were observed between absorbers and nonabsorbers. No risk factor (i.e., age, prostate size, surgery duration, applied energy, and amount of irrigation fluid) for the occurrence of fluid absorption could be identified. Absorption of irrigation fluid also occurs during thulium laser vaporization of the prostate and should be kept in mind, especially in patients at a high cardiovascular risk. However, compared with previously assessed resection and vaporization techniques, thulium vaporization might have a favorable safety profile regarding fluid absorption.

  11. Water vapor concentration measurement in singlet oxygen generator by using emission spectroscopy method and absorption at 1392nm

    NASA Astrophysics Data System (ADS)

    Zhao, Weili; Wang, Zengqiang; Fang, Benjie; Li, Qingwei; Jin, Yuqi; Sang, Fengting

    2005-12-01

    By using emission spectroscopy method and absorption at 1392nm, partial water pressure at the exit of a square pipe-array jet-type singlet oxygen generator (SPJSOG) for chemical oxygen-iodine laser (COIL) was measured. The water vapor fraction was calculated from the partial water pressure in the diagnostic cell when we assumed the water vapor fraction in the diagnostic cell is the same as that in the generator. The results from the two methods showed that the water vapor concentration is less than 0.08 in this SPJSOG during normal operation. The water vapor fraction decreases with the increasing of the pressure in the generator and rises with the increasing of buffer gas flow rate and the basic hydrogen peroxide (BHP) temperature in the case of constant chlorine flow rate. Measurements showed that the change of water vapor fraction due to BHP temperature could be ignored during normal operation. It is indicated that the gas flow velocity is the main reason that affects on the water vapor fraction in COIL. It is proved that the emission spectroscopy method is one of the simple and convenient ways to measure the water vapor concentration in singlet oxygen generator (SOG), especially in real time measurements. But absorption spectroscopy method, as a direct measurement, can give the more factual results of the water concentration.

  12. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  13. Role of zinc coating at liquid-vapor interface during laser material processing of zinc coated steel

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seung; Mazumder, Jyoti

    2013-07-01

    In laser material processing, one of the major interests is characterizing interfacial phenomena induced by thermal phase changes of materials. The interfacial characteristics in the laser processing of multi-coated materials show different behaviors compared to those of single material processing. The difference in thermo-physical properties of the coated and primary materials induces the contrasting characteristics of multiple interfacial phenomena including temperature, recoil pressure, capillary force, and thermo capillary force. The influence of coating layer to the interfacial physics evolutions is difficult to be modeled mathematically when the laser beam penetrates the multi-coated material layer by layer. This paper addresses the role of the zinc coating at the liquid-vapor interface during the laser processing of zinc coated steel, as a representative case of multi-coated materials. Computational modules incorporating the zinc layers were established and selectively applied at the locations where the zinc coatings exist to investigate the interfacial phenomena. The level set method was integrated with the modules to track the evolution of the liquid-vapor interface in a self-consistent manner. The interfacial phenomena characteristics were estimated by a 3D mathematical simulation study. A reflective topography method was employed to validate the mathematical model and to supplement our understandings of the interfacial evolution.

  14. Spectrophone Measurement of the Water Vapor Continuum at DF Laser Frequencies

    DTIC Science & Technology

    1975-08-01

    afA’afthar^re^ enc " ^^ ^ ^ ^’ ’^ ™ ^ity The water vapor absorption for the DF laser frequencies consists of three components - selective absorption...Rome Air Development Center. (AD 778949) (RADC-TR-74-89) Bell, A.G., Proc. Am. Assoc. Advanced Scie . 29_, (1880), p. 115. Bell, A.G., Phil

  15. Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier.

    PubMed

    Hostutler, David A; Klennert, Wade L

    2008-05-26

    A master oscillator power amplifier (MOPA) with variable amplifier gain lengths was built to demonstrate power enhancement of an alkali vapor laser. A small signal gain of 0.91 / cm for two different gain lengths was observed. For a 2 cm long amplifier gain length an amplification of 7.9 dB was observed.

  16. High Prf Metal Vapor Laser Active Media For Visual And Optical Monitoring

    NASA Astrophysics Data System (ADS)

    Torgaev, S. N.; Trigub, M. V.; Evtushenko, G. S.; Evtushenko, T. G.

    2016-01-01

    In this paper the feasibility of using metal vapor lasers for visual and optical monitoring of fast processes is discussed. The theoretical calculations consistent with the experimental study have been performed. The possibility of visualizing objects with pulse repetition frequency of the brightness amplifier up to 60 kHz has been demonstrated. The visualization results of the corona discharge are also given.

  17. Detection and measurement of middle-distillate fuel vapors by use of tunable diode lasers.

    PubMed

    McNesby, K L; Wainner, R T; Daniel, R G; Skaggs, R R; Morris, J B; Miziolek, A W; Jackson, W M; McLaren, I A

    2001-02-20

    A sensor for the rapid (10-ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline is described. The sensor is based on a previously reported laser-mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region [Appl. Opt. 39, 5006 (2000)] to measure concentrations of gases that have unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths: one that is absorbed by the fuel vapor and one that is not absorbed. Sinusoidally modulating the power of the two lasers at the same frequency but 180 degrees out of phase allows a sinusoidal signal to be generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured by use of standard phase-sensitive detection techniques, is proportional to the fuel-vapor concentration. Limits of detection at room temperature are reported for the vapors of the three fuels studied. Improvements to be incorporated into the next generation of the sensor are discussed.

  18. Laser Induced Chemical Vapor Deposition of Gallium Arsenide Films.

    DTIC Science & Technology

    1987-08-20

    be grown. The VPE processes can be subdivided into (a) the chloride and (b) the metalorganic chemical vapor deposition (MOCVD) processes. The... chloride VPE processes, utilizing 1= AsCl 3 -Ga-H 2 or HC1-Ga-AsH3 . are capable of producing epitazial layers with low carrier concentrations and high...electron mobilities. However. the chloride systems have not been successful for the growth of aluminum- containing III-V alloys because of the reactivity

  19. Ablation of biological tissues by radiation of strontium vapor laser

    SciTech Connect

    Soldatov, A. N. Vasilieva, A. V.

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  20. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  1. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  2. Absorption of irrigation fluid occurs frequently during high power 532 nm laser vaporization of the prostate.

    PubMed

    Hermanns, Thomas; Grossmann, Nico C; Wettstein, Marian S; Fankhauser, Christian D; Capol, Janine C; Poyet, Cédric; Hefermehl, Lukas J; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander

    2015-01-01

    Absorption of irrigation fluid was not detected during GreenLight™ laser vaporization of the prostate using the first generation 80 W laser. However, data are lacking on intraoperative irrigation fluid absorption using the second generation 120 W high power laser. We assessed whether fluid absorption occurs during high power laser vaporization of the prostate. We performed this prospective investigation at a tertiary referral center in patients undergoing 120 W laser vaporization for prostatic bladder outlet obstruction. Normal saline containing 1% ethanol was used for intraoperative irrigation. The expired breath ethanol concentration was measured periodically during the operation using an alcometer. The volume of saline absorption was calculated from these concentrations. Intraoperative changes in hematological and biochemical blood parameters were also recorded. Of 50 investigated patients 22 (44%) had a positive breath ethanol test. Median absorption volume in the absorber group was 725 ml (range 138 to 3,452). Ten patients absorbed more than 1,000 ml. Absorbers had a smaller prostate, more capsular perforation, higher bleeding intensity and more laser energy applied during the operation. Three patients (13%) had symptoms potentially related to fluid absorption. Hemoglobin, hematocrit and serum chloride were the only blood parameters that changed significantly in the absorber group. The changes were significantly different than those in nonabsorbers. Fluid absorption occurs frequently during high power laser vaporization of the prostate. This should be considered in patients who present with cardiopulmonary or neurological symptoms during or after the procedure. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  4. A tunable MWIR laser remote sensor for chemical vapor detection

    NASA Astrophysics Data System (ADS)

    Bunn, Thomas L.; Noblett, Patricia M.; Otting, William D.

    1998-01-01

    The Air Force vision for Global Virtual Presence suggests a need for active remote sensing systems that provide both global coverage and the ability to detect multiple gaseous chemical species at low concentration from a significant standoff distance. The system will need to have acceptable weight, volume, and power characteristics, as well as a long operating lifetime for integration with various surveillance platforms. Laser based remote sensing systems utilizing the differential absorption lidar (DIAL) technique are promising for long range chemical sensing applications. Recent advancements in pulsed, diode pumped solid state laser (DPSSL) technology and in tunable optical parametric oscillators (OPO) make broadly tunable laser transmitters possible for the DIAL system. Also the characteristic narrow spectral bandwidth of these laser devices provides high measurement sensitivity and spectral selectivity with the potential to avoid interfering species. Rocketdyne has built and tested a tunable, midwave infrared (MWIR) DIAL system using DPSSL/OPO technology. The key to the system is a novel tuning and line narrowing technology developed for the OPO. The tuning system can quickly adjust to the desired wavelength and precisely locate a narrow spectral feature of interest. Once the spectral feature is located, a rapid dither tuning technique is employed. The laser pulses are tuned ``on'' and ``off'' the spectral resonance of a molecule with precise and repeatable performance as required to make the DIAL measurement. To date, the breadboard system has been tested by measuring methane, ethane, and sulfur dioxide in a calibrated gas cell at a range of 60 meters.

  5. An automated dynamic water vapor permeation test method

    NASA Astrophysics Data System (ADS)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  6. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection

    SciTech Connect

    Sawchuk, W.S.; Weber, P.J.; Lowy, D.R.; Dzubow, L.M.

    1989-07-01

    Papillomavirus DNA has been reported recently in the vapor (smoke plume) derived from warts treated with carbon dioxide laser; this raises concerns for operator safety. We therefore have studied a group of human and bovine warts to define further the potential risk of wart therapy and to test whether a surgical mask could reduce exposure. Half of each wart was treated with carbon dioxide laser and the other half with electrocoagulation. The vapor produced by each form of therapy was collected with a dry filter vacuum apparatus and analyzed for the presence of papillomavirus. Vapor from human plantar warts was analyzed for the presence of human papillomavirus DNA, because there is no infectivity assay for human papillomavirus. Of plantar warts treated, five of eight laser-derived vapors and four of seven electrocoagulation-derived vapors were positive for human papillomavirus DNA. Greater amounts of papillomavirus DNA were usually recovered in the laser vapor than in the electrocoagulation vapor from the same wart. Bioassay readily detected infectious bovine papillomavirus in the vapor from bovine warts treated with either modality; more virus was present in laser-derived material. A surgical mask was found capable of removing virtually all laser- or electrocoagulation-derived virus, strongly suggesting that such masks can protect operators from potential inhalation exposure to papillomavirus.

  7. Dual diode-laser fiber-optic diagnostic for water-vapor measurements.

    PubMed

    Arroyo, M P; Birbeck, T P; Baer, D S; Hanson, R K

    1994-07-15

    We present a novel diode-laser diagnostic for water-vapor measurements based on absorption spectroscopy. Two InGaAsP diode lasers were used to record H(2)O absorption line shapes near 1395 nm at a 3-kHz repetition rate along a single path through a water-vapor flow field generated in a shock tube. The use of two lasers permits simultaneous line-shape measurements in different spectral regions and facilitates the selection of appropriate line pairs for thermometry. The wavelength tuning rate was determined by use of a fiber-optic device known as a ring interferometer. Flow-field conditions (1320 K, 0.3 atm) inferred from measured line shapes compared favorably with calculated values.

  8. A new mass spectrometer system for investigating laser-induced vaporization phenomena

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1974-01-01

    A laser has been combined with a mass spectrometer in a new configuration developed for studies of high-temperature materials. A vacuum-lock, solid-sample inlet is mounted at one end of a cylindrical, high-vacuum chamber one meter in length with a nude ion-source, time-of-flight mass spectrometer at the opposite end. The samples are positioned along the axis of the chamber at distances up to one meter from the ion source, and their surfaces are vaporized by a pulsed laser beam entering via windows on one side of the chamber. The instrumentation along with its capabilities is described, and results from laser-induced vaporization of several graphites are presented.

  9. A new mass spectrometer system for investigating laser-induced vaporization phenomena

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1974-01-01

    A laser has been combined with a mass spectrometer in a new configuration developed for studies of high-temperature materials. A vacuum-lock, solid-sample inlet is mounted at one end of a cylindrical, high-vacuum chamber one meter in length with a nude ion-source, time-of-flight mass spectrometer at the opposite end. The samples are positioned along the axis of the chamber at distances up to one meter from the ion source, and their surfaces are vaporized by a pulsed laser beam entering via windows on one side of the chamber. The instrumentation along with its capabilities is described, and results from laser-induced vaporization of several graphites are presented.

  10. Method for producing laser targets

    DOEpatents

    Jarboe, Thomas R.; Baker, William R.

    1977-01-01

    An apparatus and method for producing deuterium targets or pellets of 25.mu. to 75.mu. diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection.

  11. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes.

    PubMed

    Zhang, Wei; Wang, You; Cai, He; Xue, Liangping; Han, Juhong; Wang, Hongyuan; Liao, Zhiye

    2014-07-01

    The diode-pumped alkali laser (DPAL) is a new type of laser source which has been widely studied in the recent years. The temperature distribution of a sealed vapor cell, which is the crucial component in a DPAL system, produces an important effect on the output performance of a DPAL. In this paper, the strict solution of the heat conduction equation for a cesium vapor cell is obtained by using a finite difference procedure. The temperature distribution of a dummy open cell is first analyzed, and then the temperature distributions of two independent windows, regarded as the boundary conditions of solving a sealed cell, are evaluated in detail. By combining the results of the two steps together, we finally acquire the temperature distribution of a real sealed cesium vapor cell. The results reveal that the temperature gradients on both radial and longitudinal directions change with the pump power, cell radius, and absorption coefficient when the sealed cesium vapor cell is heated or pumped with the laser diodes. The conclusions are helpful for accurately evaluating the output characteristics of a DPAL.

  12. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  13. Piston pump and method of reducing vapor lock

    DOEpatents

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  14. Piston pump and method of reducing vapor lock

    DOEpatents

    Phillips, Benjamin A.; Harvey, Michael N.

    2001-01-30

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  15. Piston pump and method of reducing vapor lock

    SciTech Connect

    Phillips, B.A.; Harvey, M.N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  16. Laser photoacoustic detection of the essential oil vapors of thyme, mint, and anise

    NASA Astrophysics Data System (ADS)

    El-Kahlout, A. M.; Al-Jourani, M. M.; Abu-Taha, M. I.; Laine, Derek C.

    1998-07-01

    Photoacoustic studies of the vapors of the essential oils of thyme, mint and anise have been made using a line-tunable waveguide CO2 laser in conjunction with a heat-pipe type of photoacoustic vapor sample cell operated over the temperature range 20 - 180 degree(s)C. Identifying spectral fingerprint features are found in the 9 - 10 micrometers spectral region for each of the three essential oils investigated. The principal features of the photoacoustic spectrum of each essential oil are associated with the dominant chemicals present i.e. thymol in thyme oil, menthol in mint and anethole in anise.

  17. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    PubMed

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  18. Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

    PubMed

    Gelskey, S C; White, J M; Gelskey, D E; Kremers, W

    1998-11-01

    The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

  19. Complementary treatment with oral Pidotimod plus vitamin C after laser vaporization for female genital warts: a prospective study

    PubMed Central

    Iatrakis, G; Peitsidou, A; Papandonopolos, L; Nikolopoulou, MK; Papadopoulos, L; Vladareanu, R

    2010-01-01

    This is a prospective study to assess a complementary treatment for genital warts after laser vaporization. 62 patients were enrolled in two randomized groups: A1: laser vaporization alone. A2: laser vaporization, followed with Pidotimod plus vitamin C for 2 and 1/2 months. The latter treatment shortened the time of warts remission and marginally decreased the rate of the warts' recurrence: 81% versus 67% (N.S.). Despite the non–significant difference, this complementary treatment seems to have some efficiency. PMID:20945819

  20. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  1. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  2. Atomic vapor laser isotope separation of lead-210 isotope

    SciTech Connect

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  3. Applications of copper vapor laser lighting in high-speed motion analysis

    NASA Astrophysics Data System (ADS)

    Hogan, Daniel C.

    1991-01-01

    Over the past few years copper vapor lasers have become an important tool in high speed photography as a high-tech strobe lighting source. The short flash duration ( 025 microseconds) high brightness (of the order of 20 million Lumens) and high flash rates (32 per second from a single laser 96 per second from three lasers) of copper vapor lasers have enabled high resolution analysis of processes that previously could not be explored using conventional incandescent continuous or strobe lighting sources. A summary of applications that have benefited from the use of copper laser lighting will be presented. These applications include: analysis of shock waves in turbine engine blades analysis of spinning fibers in the textile industry analysis of the bursting of high pressure storage vessels analysis of turbulent flow in internal combustion engines and capture of ballistic data of objects travelling in excess of 1500ms1(3 mph). Discussion of why copper laser lighting was crucial in each of these applications will be presented.

  4. Method of and apparatus for measuring vapor density

    DOEpatents

    Nelson, L.D.; Cerni, T.A.

    1989-10-17

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  5. Method of and apparatus for measuring vapor density

    DOEpatents

    Nelson, Loren D.; Cerni, Todd A.

    1989-01-01

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  6. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  7. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  8. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules.

    PubMed

    Kawasaki, Hideya; Ozawa, Tomoyuki; Hisatomi, Hirotaka; Arakawa, Ryuichi

    2012-08-30

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in a sample. However, when using an organic matrix in the MALDI-IMS of small molecules, inhomogeneous matrix crystallization may yield poorly reproducible peaks in the mass spectra. We describe a solvent-free approach that employs a homogeneously deposited metal nanoparticle layer (or film) for small-molecule detection. Platinum vapor deposition surface-assisted laser desorption/ionization imaging mass spectrometry (Pt vapor deposition SALDI-IMS) of small molecules was performed as a solvent-free and organic-matrix-free method. A commercially available magnetron sputtering device was used for Pt deposition. Vapor deposition of Pt produced a homogenous layer of nanoparticles over the surface of the target imaging sample. The effectiveness of Pt vapor deposition SALDI-IMS was demonstrated for the direct detection of small analytes of inkjet ink on printed paper as well as for various other analytes (saccharides, pigments, and drugs) separated by thin-layer chromatography (TLC), without the need for extraction or concentration processes. The advantage of choosing Pt instead of Au in SALDI-IMS was also shown. A solvent-free approach involving the direct deposition of Pt on samples (SALDI-IMS) is effective for the analysis of inkjet-printed papers and various analytes separated by TLC. This method would be useful in imaging analyses of various insulating materials such as polymers and biological materials. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    SciTech Connect

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  10. Upper Tropospheric and Lower Stratospheric Measurements of Water Vapor by the JPL Laser Hygrometer Mark 2

    NASA Astrophysics Data System (ADS)

    Troy, R. F.

    2015-12-01

    The concentration of water vapor in the upper troposphere and lower stratosphere has a significant impact on climate. Over the last sixteen years, the JPL Laser Hygrometers have collected a significant data record of atmospheric humidity from several platforms, including the NASA ER-2, WB-57, DC-8, and Global Hawk. Here, we describe the observed relation between atmospheric humidity and temperature in-cloud and out of cloud near the tropopause. The relation between cloud microphysical properties and humidity is also explored. We feature measurements of water vapor from a substantially improved instrument, JPL Laser Hygrometer Mark 2, made during the 2013 NASA SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) field mission.

  11. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    SciTech Connect

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  12. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  13. Numerical simulation of transient, incongruent vaporization induced by high power laser

    SciTech Connect

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

  14. Laser vaporization and excisional techniques in the treatment of cervical intraepithelial neoplasia.

    PubMed

    Monaghan, J M

    1995-03-01

    The CO2 laser proved to be a vital tool in the development of conservative therapy for the treatment of CIN in the 1980s. In conjunction with colposcopy, the laser has allowed many women to achieve the security of identified and treated CIN with the freedom to live their lives normally, including the achievement of pregnancies. The laser may be used either in the ablative (vaporization) or the cutting mode. This flexibility allows patients with unsatisfactory as well as satisfactory colposcopy to be managed. The results of treatment are universally excellent, with clearance rates of 96% being reported. Complications are rare both in the short and long term, most patients returning fully to normal activities within 4 weeks of therapy. Although the laser is being superceded to some extent by the advent of the loop diathermy technique, it will for years to come represent a valuable and useful tool in the treatment of CIN.

  15. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  16. Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption Scattering Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yin; Yoshizaki, Takuo; Nishida, Keiya

    2000-11-01

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  17. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  18. Modeling technique of capacitive discharge pumping of metal vapor lasers for electrode capacitance optimization

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Evtushenko, G. S.; Vuchkov, N. K.; Sukhanov, V. B.; Shiyanov, D. V.

    2012-05-01

    To estimate optimum gas discharge tube (GDT) electrode capacitance of metal vapor lasers (MVLs) pumped by a longitudinal capacitive discharge, we offer to use series connection of capacitors to the electrodes of a conventionally pumped GDT with inner electrodes. It has been demonstrated that the maximum output power in CuBr lasers is obtained when the capacitances of high-voltage and ground electrodes are equal. When using a model circuit an average output power reaches 12 W that suggests the possibility of generating high average output power (>10 W) in MVLs pumped using a capacitive discharge.

  19. Power Enhancement of a Rubidium Vapor Laser With a Master Oscillator Power Amplifier (Postprint)

    DTIC Science & Technology

    2009-09-15

    Phys. Lett. 34, 655-658 (1979). 5 . W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett...Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31 , 353-355 (2006). 10. Y. Wang, T. Kasamatsu, Y.Zheng, H...OPTICS EXPRESS 8050 #94531 - $15.00 USD Received 7 Apr 2008; revised 4 May 2008; accepted 7 May 2008; published 19 May 2008 (DPAL) started rapidly gaining

  20. Referred Air Method 25E: Determination of a Vapor Phase Organic Concentration in Waste Samples

    EPA Pesticide Factsheets

    This method is applicable for determining the vapor pressure of waste. The headspace vapor of the sample is analyzed for carbon content by a headspace analyzer, which uses a flame ionization detector (FID).

  1. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  2. Double-discharge copper vapor laser with copper chloride as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Nerheim, N. M.; Russell, G. R.

    1973-01-01

    A copper vapor laser utilizing copper chloride as a lasant in a heated discharge tube has been studied. The lasing action was observed only when two successive discharge current pulses at suitable time intervals were applied. The first pulse is considered to be a dissociation pulse to produce copper and chlorine atoms; the second to be a pumping pulse to produce population inversion. The maximum energy density measured to date was 17 microjoule/cu cm.

  3. Integrated DFB-DBR laser modulator grown by selective area metalorganic vapor phase epitaxy growth technique

    NASA Astrophysics Data System (ADS)

    Tanbun-Ek, T.; Chen, Y. K.; Grenko, J. A.; Byrne, E. K.; Johnson, J. E.; Logan, R. A.; Tate, A.; Sergent, A. M.; Wecht, K. W.; Sciortine, P. F.; Chu, S. N. G.

    1994-12-01

    A device quality of selective epitaxy growth of InGaAsP/InP multiple quantum well (MQW) structure using low-pressure metalorganic vapor phase epitaxy (MOVPE) technique is described. The technique is applied to a monolithically integrated electroabsorption modulator with distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers. Superior device characteristics such as efficient modulation, low threshold current and high efficiency operation of the integrated devices are obtained.

  4. Synthesis of cobalt oxides thin films fractal structures by laser chemical vapor deposition.

    PubMed

    Haniam, P; Kunsombat, C; Chiangga, S; Songsasen, A

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures.

  5. Optimization of physical conditions for a diode-pumped cesium vapor laser.

    PubMed

    An, Guofei; Wang, You; Han, Juhong; Cai, He; Wang, Shunyan; Yu, Hang; Rong, Kepeng; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie

    2017-02-20

    A diode-pumped alkali laser (DPAL) is thought to provide the significant promise for construction of high-powered lasers in the future. To examine the kinetic processes of the gas-state media (cesium vapor in this study), a mathematical model is developed while the processes including normal 3-enegry-level transition, energy pooling, and ionization are taken into account in this report. The procedures of heat transfer and laser kinetics are combined together in creating the model. We systemically investigate the influences of the temperature, cell length, and cell radius on the output features of a diode-pumped cesium vapor laser. By optimizing these key factors, the optical-to-optical conversion efficiency of a DPAL can be obviously improved. Additionally, the decrease of the output power due to energy pooling and ionization is also shrunk from 1.63% to 0.37% with the pump power of 200 W after optimization. It suggests that the effects of energy pooling and ionization should be decreased apparently under the optimal conditions. Basically, the conclusions we obtained in this study can be extended to other kinds of end-pumped laser configurations.

  6. Method and apparatus for producing thermal vapor stream

    DOEpatents

    Cradeur, Robert R.; Sperry, John S.; Krajicek, Richard W.

    1979-01-01

    Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

  7. Different CO2 laser vaporization protocols for the therapy of oral precancerous lesions and precancerous conditions: a 10-year follow-up.

    PubMed

    Deppe, Herbert; Mücke, Thomas; Hohlweg-Majert, Bettina; Hauck, Wolfgang; Wagenpfeil, Stefan; Hölzle, Frank

    2012-01-01

    Use of the CO(2) laser (λ = 10.6 μm, continuous wave, defocused) is an established procedure for the treatment of premalignant lesions. Through employment of the sp-mode as well as scanners, thermal laser effects can be reduced but, on the other hand, a lesser degree of destruction of dysplastic cells could lead to an increased recurrence rate. The purpose of this study was to prospectively evaluate the recurrence rates resulting from different methods of CO(2) laser vaporization. From May 1995 to May, 2005, 145 patients with a total of 148 premalignant lesions of the oral mucosa were treated in a prospective clinical study. Sixty-two lesions in 62 patients were vaporized with the defocused CO(2) laser (group 1). In a further 45 lesions (43 patients, group 2), a scanner was additionally employed. In the remaining 41 lesions (40 patients, group 3), vaporization was carried out in the sp-mode in which the scanner was also used. In September, 2005, recurrence rates in the three groups were evaluated. Use of the scanner in sp-mode resulted in the most irregular tissue vaporization. This can be accounted for by the irregular paths of the laser beam and the pulsed delivery of the laser energy. Statistically significant lowest recurrence rates were yielded by the defocused cw-technique followed by the cw-scanner and the sp-mode. These results indicate that for CO(2) laser treatment of premalignant lesions of the oral mucosa, the best results can be achieved with the defocused technique. It may be assumed that other methods with lesser penetration of thermal effects (e.g. sp, scanner) do not reach the deeper-lying cells and, consequently, render higher rates of recurrence.

  8. Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser

    NASA Astrophysics Data System (ADS)

    Yu, Jaesok; Chen, Xucai; Villanueva, Flordeliza S.; Kim, Kang

    2016-12-01

    Phase-transition droplets have been proposed as promising contrast agents for ultrasound and photoacoustic imaging. Short pulse laser activated perfluorocarbon-based droplets, especially when in a medium with a temperature below their boiling point, undergo phase changes of vaporization and recondensation in response to pulsed laser irradiation. Here, we report and discuss the vaporization and recondensation dynamics of perfluoropentane droplets containing indocyanine green in response to a short pulsed laser with optical and acoustic measurements. To investigate the effect of temperature on the vaporization process, an imaging chamber was mounted on a temperature-controlled water reservoir and then the vaporization event was recorded at 5 million frames per second via a high-speed camera. The high-speed movies show that most of the droplets within the laser beam area expanded rapidly as soon as they were exposed to the laser pulse and immediately recondensed within 1-2 μs. The vaporization/recondensation process was consistently reproduced in six consecutive laser pulses to the same area. As the temperature of the media was increased above the boiling point of the perfluoropentane, the droplets were less likely to recondense and remained in a gas phase after the first vaporization. These observations will help to clarify the underlying processes and eventually guide the design of repeatable phase-transition droplets as a photoacoustic imaging contrast agent.

  9. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  10. Optimal laser fiber rotational movement during photoselective vaporization of the prostate in a bovine ex-vivo animal model.

    PubMed

    Osterberg, E Charles; Kauffman, Eric C; Kang, Hyun Wook; Koullick, Ed; Choi, Benjamin B

    2011-07-01

    Photoselective vaporization of the prostate (PVP) has emerged as an effective debulking procedure for prostatic urinary obstruction. Surgical technique for the most efficient vaporization has, however, received little scientific investigation. We used an ex-vivo bovine prostate model to investigate how variation in the angle of laser fiber rotational movement ("sweeping") affects prostate tissue vaporization efficiency. Experiments were conducted using the GreenLight™ HPS 120W laser system. A single surgeon performed a clinical PVP video analysis, forming the basis of our study design. Sixty bovine prostate specimens were vaporized using an ex-vivo chamber equipped with computer-assisted axial movements. Specimens were vaporized at a fixed sweeping speed (0.5 sweeps/sec) and variable sweeping angles (0, 15, 30, 60, 90, and 120 degrees). The volume of tissue vaporized was calculated from cross sections and compared by a two-sample t test. Clinical PVP video analysis of a single experienced surgeon showed a mean angle of 47.7 degrees with 25% of vaporization between 0 and 30 degrees. Ex-vivo analysis showed larger sweeping angles generated wider but more superficial vaporization defects, leading to smaller vaporized volumes. Specifically, vaporization volumes with angles of 0, 15, or 30 degrees were significantly greater than those with rotational angles of 45, 60, and 90 degrees (1.5-3.0 X; P<0.05). The depth of tissue coagulation significantly increased with greater rotational angles. Optimal PVP occurred at narrower angles of laser fiber sweeping in our ex-vivo model. Our findings highlight that PVP laser fiber movement can be tested in a scientific manner, identifying parameters to maximize vaporization efficiency.

  11. Field evaluation of mercury vapor analytical methods: comparison of the "double amalgam method" and ISO 17733.

    PubMed

    Takaya, Mitsutoshi; Joeng, Jee Yeon; Ishihara, Nobuo; Serita, Fumio; Kohyama, Norihiko

    2006-04-01

    In this study, a gold amalgam method called the "Double amalgam method" was compared with the ISO 17733 method for mercury vapor analysis method. In terms of sensitivity and ease of operation, the amalgamation method is superior to the oxidation method. Two parallel samplings were carried out in this research at a button battery factory, where the mercury vapor level in the air was about 0.001 mg/m3 and at a fluorescent lamp factory, where the mercury vapor level was about 0.015 mg/m3. In the both cases, the measured values of the two showed good agreement with each other. As these two workplaces represent typical mercury levels in industries today, the double amalgam method is applicable to working environment measurement.

  12. Vaporization of the Prostate with 150-W Thulium Laser: Complications with 6-Month Follow-Up

    PubMed Central

    García-Larrosa, Alejandro; Capdevila, Santiago; Laborda, Ainhoa

    2014-01-01

    Abstract Purpose: To analyze the efficacy and safety of vaporization of the prostate (VP) with the 150-W thulium:yttrium-aluminum-garnet (Tm:YAG) laser. Patients and Methods: In a prospective series of 55 patients with small- and medium-size prostates undergoing major outpatient surgery (MOS), the primary objectives were to analyze changes in maximum flow (Qmax) and International Prostate Symptom Score (IPSS) after 6 months. Immediate (<30 days) and late (>30 days) complications were subsequently recorded. Results: An increase in mean Qmax of 9.33 mL/s (95% confidence interval [CI] of the mean difference 6.73–11.93; P<0.001) was recorded, and mean IPSS was reduced by 16.88 points (95% CI 14.22–19.54; P<0.001). The immediate complications recorded were acute urinary retention (one patient), urinary tract infection without fever (two patients), and macroscopic hematuria (two patients). The only late complication observed was bladder neck sclerosis (one patient). Conclusion: After 6 months, VP with 150-W Tm:YAG presents promising results in the clinical improvement of patients with small- and medium-size prostates. Its complication rate is low and it offers excellent hemostasis. The data from our study provide the basis for the design of clinical trials to compare this technique with other procedures. PMID:24521152

  13. Laser initiation and decay processes in an organic vapor plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  14. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    DOE PAGES

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; ...

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less

  15. Urethral stricture vaporization with the KTP laser provides evidence for a favorable impact of laser surgery on wound healing

    NASA Astrophysics Data System (ADS)

    Schmidlin, Franz R.; Venzi, Giordano; Jichlinski, Patrice; Oswald, Michael; Delacretaz, Guy P.; Gabbiani, Giulio; Leisinger, Hans-Juerg; Graber, Peter

    1997-12-01

    The objective of this study was to evaluate and compare the safety and efficacy of the KTP 532 laser to direct vision internal urethrotomy (DVIU) in the management of urethral strictures. A total of 32 patients were randomized prospectively in this study, 14 DVIU and 18 KTP 532 laser. Patients were evaluated postoperatively with flowmetry and in the case of recurrence with cystourethrography at 3, 12, 24 weeks. With the KTP 532 laser complete symptomatic and uredynamic success was achieved in 15 (83%) patients at 12 and 24 weeks. Success rate was lower in the DVIU group with 9 (64%) patients at 12 weeks and 8 (57%) patients at 24 weeks. Mean preoperative peak-flow was improved from 6 cc/s to 20 cc/s at 3, 12 and 24 weeks with the KTP laser. With DVIU mean preoperative peak-flow was improved from 5.5 cc/s to 20 cc/s at 3 weeks followed by a steady decrease to 13 cc/s at 12 weeks and to 12 cc/s 24 weeks. No complication was observed in either group of patients. Our results confirm that stricture vaporization with the KTP 532 laser is a safe and efficient procedure. The better results after laser surgery make it also a valuable alternative in the endoscopic treatment of urethral strictures. These findings suggest a favorable influence of laser surgery on wound healing with less wound contraction and scarring. The lack of contraction of laser wounds might be related to the absence and the lack of organization of myofibroblasts in laser induced lesions.

  16. Diode laser vaporization of prostate as treatment for benign prostatic enlargement: initial results of 73 patients with 1 year follow-up.

    PubMed

    Aćimović, Miodrag; Rafailović, Dragutin; Bumbaširević, Uroš; Babić, Uroš; Šantrić, Veljko; Stanić, Miodrag; Džamić, Zoran; Hadži-Djokić, Jovan

    2014-01-01

    Our objective is to evaluate the efficacy, safety and 12 month outcome of a 980 nm diode laser with Twister fiber in the treatment of benign prostatic enlargement. Between February 2011 and January 2013, 73 patients with benign pros- tatic enlargement had undergone diode laser vaporization of prostate at our institution. The fol- lowing parameters were assessed at baseline, and after a follow-up period of 3 and 12 months: International Prostate Symptom Score, peak urinary flow rate, post-void residual urine volume, and quality of life score. The procedure was completed successfully in all patients with no intraoperative complications. At 12 months postoperatively the percentage improvements in IPSS was -69.09%, Qmax +197%, PVR -88.54%, and QoL -68.29%. Diode laser vaporization of prostate is safe and effective method for treatment of benign prostatic enlargement.

  17. Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization

    NASA Astrophysics Data System (ADS)

    Auslender, Ilya; Cohen, Tom; Lebiush, Eyal; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-01-01

    We present the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. The dependence of the output laser power on the incident pump power was found for varying pump beam cross-section widths and for a constant laser beam. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency 55% was obtained. Non monotonic dependence of the laser power and threshold power on the pump beam radius (at a given pump power) was observed with a maximum laser power and minimum threshold power achieved at the ratio 0.7 between the optimal pump beam and laser beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the incident pump power at different pump beam radii and of the laser power, threshold power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. This model can be applied to different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  18. Effect of laser power on orientation and microstructure of Ba2TiO4 film prepared by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Guo, Dongyun; Goto, Takashi; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2012-08-01

    Ba2TiO4 films were prepared on Pt/Ti/SiO2/Si substrates by laser chemical vapor deposition method. The effect of laser power (PL) on orientation and microstructure was investigated. With increasing PL from 52 to 93 W, the deposition temperature (Tdep) increased from 845 to 946 K. With increasing Tdep from 845 to 927 K, the preferred orientation of Ba2TiO4 films changed from (0 9 1) to (1 0 3), the surface morphologies changed from faceted to rectangular, and the columnar cross-section became thicker. The films prepared at high Tdep (931-946 K) had the porous cross-section consisted of powder-like grains. Ba2TiO4 film prepared at 881 K had high deposition rate (Rdep) of 51.4 μm h-1, which was advantageous to industrial production.

  19. Statistical approach in planning experiments with a copper bromide vapor laser

    SciTech Connect

    Iliev, I P; Gocheva-Ilieva, S G; Astadzhov, D N; Denev, N P; Sabotinov, N V

    2008-05-31

    To improve the planning of experiments, the statistical analysis of a large amount of experimental data obtained for a copper bromide laser emitting at 510.6 nm and 578.2 nm was performed. Various statistical methods such as factor analysis, method of principal components, multiple regression and others were applied for studying the influence of the ten basic input laser parameters on the output laser power. It was found that the most important parameters are the inside diameter of the laser tube, the diameter of internal rings, the length of the active area and the input electrical power. (lasers)

  20. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  1. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  2. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  3. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  4. Tissue ablation after 120W greenlight laser vaporization and bipolar plasma vaporization of the prostate: a comparison using transrectal three-dimensional ultrasound volumetry

    NASA Astrophysics Data System (ADS)

    Kranzbühler, Benedikt; Gross, Oliver; Fankhauser, Christian D.; Hefermehl, Lukas J.; Poyet, Cédric; Largo, Remo; Müntener, Michael; Seifert, Hans-Helge; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander; Hermanns, Thomas

    2012-02-01

    Introduction and objectives: Greenlight laser vaporization (LV) of the prostate is characterized by simultaneous vaporization and coagulation of prostatic tissue resulting in tissue ablation together with excellent hemostasis during the procedure. It has been reported that bipolar plasma vaporization (BPV) of the prostate might be an alternative for LV. So far, it has not been shown that BPV is as effective as LV in terms of tissue ablation or hemostasis. We performed transrectal three-dimensional ultrasound investigations to compare the efficiency of tissue ablation between LV and BPV. Methods: Between 11.2009 and 5.2011, 50 patients underwent pure BPV in our institution. These patients were matched with regard to the pre-operative prostate volume to 50 LV patients from our existing 3D-volumetry-database. Transrectal 3D ultrasound and planimetric volumetry of the prostate were performed pre-operatively, after catheter removal, 6 weeks and 6 months. Results: Median pre-operative prostate volume was not significantly different between the two groups (45.3ml vs. 45.4ml; p=1.0). After catheter removal, median absolute volume reduction (BPV 12.4ml, LV 6.55ml) as well as relative volume reduction (27.8% vs. 16.4%) were significantly higher in the BPV group (p<0.001). After six weeks (42.9% vs. 33.3%) and six months (47.2% vs. 39.7%), relative volume reduction remained significantly higher in the BPV group (p<0.001). Absolute volume reduction was non-significantly higher in the BPV group after six weeks (18.4ml, 13.8ml; p=0.051) and six months (20.8ml, 18ml; p=0.3). Clinical outcome parameters improved significantly in both groups without relevant differences between the groups. Conclusions: Both vaporization techniques result in efficient tissue ablation with initial prostatic swelling. BPV seems to be superior due to a higher relative volume reduction. This difference had no clinical impact after a follow-up of 6M.

  5. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOEpatents

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  6. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  7. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  8. Reduction of degradation in vapor phase transported InP/InGaAsP mushroom stripe lasers

    SciTech Connect

    Jung, H.; Burkhardt, E.G.; Pfister, W.

    1988-10-03

    The rapid degradation rate generally observed in InP/InGaAsP mushroom stripe lasers can be considerably decreased by regrowing the open sidewalls of the active stripe with low-doped InP in a second epitaxial step using the hydride vapor phase transport technique. This technique does not change the fundamental laser parameters like light-current and current-voltage characteristics. Because of this drastic reduction in degradation, the vapor phase epitaxy regrown InP/InGaAsP mushroom laser seems to be an interesting candidate for application in optical communication.

  9. Photoionization-Pumping Of Sodium Vapor With The Lawrence Livermore National Laboratory Soft-X-Ray Laser

    NASA Astrophysics Data System (ADS)

    Wood, O. R.; Silfvast, W. T.; Trebes, J. E.; Matthews, D. L.; MacGowan, B. J.

    1987-04-01

    We propose to construct an inner-shell photoionization laser in sodium at 37.2 nm by photoionizing sodium vapor with the 20.6 and 20.9 nm outputs from the Lawrence Livermore National Laboratory (LLNL) soft-x-ray laser. Pumping a 10 cm long cell filled with sodium vapor at 1 Torr with the 1 mJ, 175 psec duration, pulse from the LLNL Se laser should result in a gain-length product in excess of 16. This would lead to an intense pulse of amplified spontaneous emission at 37.2 nm.

  10. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  11. Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Kubicki, Jan; Kopczynski, Krzysztof; Mierczyk, Jadwiga

    2016-10-01

    The idea of using commercially available cascade lasers for stand-off detection of alcohol vapors in moving cars is presented. Special attention is paid to the optical characteristics of the car windowpanes for the monitoring as well as for the reference laser beams. A special experimental setup was built to investigate the idea. It is shown that using interband cascade lasers operating at 3.45- and 3.59-μm wavelengths, the alcohol vapors inside a car can be successfully detected, even in cars with different windowpanes.

  12. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  13. Waterproof Silicone Coatings of Thermal Insulation and Vaporization Method

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E. (Inventor)

    1999-01-01

    Thermal insulation composed of porous ceramic material can be waterproofed by producing a thin silicone film on the surface of the insulation by exposing it to volatile silicone precursors at ambient conditions. When the silicone precursor reactants are multi-functional siloxanes or silanes containing alkenes or alkynes carbon groups higher molecular weight films can be produced. Catalyst are usually required for the silicone precursors to react at room temperature to form the films. The catalyst are particularly useful in the single component system e.g. dimethylethoxysilane (DNMS) to accelerate the reaction and decrease the time to waterproof and protect the insulation. In comparison to other methods, the chemical vapor technique assures better control over the quantity and location of the film being deposited on the ceramic insulation to improve the waterproof coating.

  14. [Greenlight-XPS laser vaporization, the new standard of treatment in men with myasthenia gravis and benign prostatic obstruction]?

    PubMed

    Husillos-Alonso, Adrián; Simón-Rodríguez, Carlos; Bolufer-Moragues, Eduardo; López-Martín, Leticia; Carbonero-García, Manuel; González-Enguita, Carmen

    2015-05-01

    Patients with Benign Prostatic Obstruction (BPO) and Myasthenia Gravis (MG) treated with Transurethral Resection of the prostate (TURP) show a high incidence of urinary incontinence due to unnoticed damage to muscle fibres of the external sphincter. Photoselective laser vaporization could be an alternative treatment based on the hypothesis that using Laser as energy source in the treatment of BPH prevents sphincter damage because the energy is not transmitted outside the fiber tip. We report the case of a man diagnosed of MG and symptomatic BPO treated satisfactorily with photoselective laser vaporization (GreenLight-XPS). Patient did not experienced postoperative secondary incontinence. Laser photoselective vaporization (GreenLight-XPS) could be the standard treatment for men with MG and BPO, whose prostate volume is less than 60 cc who are candidates for surgical treatment. Despite the extremely low incidence of these cases, further investigations are needed to confirm this affirmation.

  15. Direct measurement of chemical composition of SOx in impact vapor using a laser gun

    NASA Astrophysics Data System (ADS)

    Ohno, Sohsuke; Kadono, Toshihiko; Kurosawa, Kosuke; Hamura, Taiga; Sakaiya, Tatsuhiro; Sugita, Seiji; Shigemori, Keisuke; Hironaka, Yoichiro; Watari, Takeshi; Matsui, Takafumi

    2011-06-01

    The SO3/SO2 ratio of the impact vapor cloud is a key parameter for understanding the environmental perturbation caused by the impact-induced SOx and the killing mechanism of. the mass extinction at the K-Pg boundary. We conducted hypervelocity impact experiments using a high-speed laser gun (GEKKO XII-HIPER, ILE, Osaka University) and measured the chemical compositions of the SOx released from CaSO4. The experimental result indicates that SOx are dominated by SO3. It implies that the SOx generated by the K-Pg impact would have been also dominated by SO3, because the SO3/SO2 ratio of natural planetary scale impact vapor clouds would have been larger than that of the experimental result of this study.

  16. High-gain inner-shell photoionization laser in Cd vapor pumped by soft-x-ray radiation from a laser-produced plasma source.

    PubMed

    Silfvast, W T; Macklin, J J; Ii, O R

    1983-11-01

    A soft-x-ray-pumped inner-shell photoionization laser has been produced in Cd vapor at 4416 and 3250 A. A gain of 5.6 cm(-1) has been measured at 4416 A, and a reasonably high-energy storage of 0.2 mJ/cm(3) in the upper laser states has been obtained.

  17. In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization

    SciTech Connect

    Puretzky, A. A.; Geohegan, D. B.; Fan, X.; Pennycook, S. J.

    2000-01-10

    The synthesis of single-wall carbon nanotubes by Nd:YAG laser vaporization of a graphite/(Ni, Co) target is investigated by laser-induced luminescence imaging and spectroscopy of Co atoms, C{sub 2} and C{sub 3} molecules, and clusters at 1000 degree sign C in flowing 500 Torr Ar. These laser-induced emission images under typical synthesis conditions show that the plume of vaporized material is segregated and confined within a vortex ring which maintains a {approx}1 cm3 volume for several seconds. Using time-resolved spectroscopy and spectroscopic imaging, the time for conversion of atomic and molecular species to clusters was measured for both carbon (200 {mu}s) and cobalt (2 ms). This rapid conversion of carbon to nanoparticles, combined with transmission electron microscopy analysis of the collected deposits, indicate that nanotube growth occurs over several seconds in a plume of mixed nanoparticles. By adjusting the time spent by the plume within the high-temperature zone using these in situ diagnostics, single-walled nanotubes of controlled length were grown at an estimated rate of 0.2 {mu}m/s. (c) 2000 American Institute of Physics.

  18. Virological and cytological clearance in laser vaporization and conization for cervical intra-epithelial neoplasia grade 3.

    PubMed

    Mariya, Tasuku; Nishikawa, Akira; Sogawa, Kanae; Suzuki, Riri; Saito, Masae; Kawamata, Akari; Shimizu, Ayumi; Nihei, Takehito; Sonoda, Tomoko; Saito, Tsuyoshi

    2016-12-01

    Cervical intra-epithelial neoplasia (CIN) is the precancerous stage of cervical cancer. Standard treatment for high-grade CIN is conization of the cervix. The risk of preterm birth following conization has been discussed recently. In contrast, laser vaporization is believed not to affect perinatal outcome, but the long-term effectiveness of each surgical procedure is still unclear. The aim of this prospective unmatched-cohort study was therefore to compare virological and cytological clearance and recurrence risk between conization and vaporization for CIN3. Subject consisted of CIN3 patients treated at the present hospital between 2007 to 2011 and followed up until December 2014. One hundred and one patients were treated with laser conization, and 137 with vaporization. The surgical procedure was selected on the basis of colposcopy, pathological grade and patient's hope for pregnancy. There were no significant differences in cure rate, human papilloma virus (HPV) clearance rate or recurrence rates between the conization and vaporization groups. Risk ratio of recurrence for each surgical procedure adjusted for age and HPV persistence status were analyzed on Cox proportional hazards modeling. Recurrence risk ratio for patients treated by vaporization was 6.21 (95%CI: 0.65-59.19; P = 0.111) compared with conization and there were no significant differences. No adverse pregnancy outcome was observed in the vaporization group compared with conization. Laser vaporization is useful for young patients with CIN3 who hope for pregnancy in the future. © 2016 Japan Society of Obstetrics and Gynecology.

  19. Development of a new laser heating system for thin film growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fujimoto, Eiji; Sumiya, Masatomo; Ohnishi, Tsuyoshi; Lippmaa, Mikk; Takeguchi, Masaki; Koinuma, Hideomi; Matsumoto, Yuji

    2012-09-01

    We have developed a new laser heating system for thin film growth by chemical vapor deposition (CVD). A collimated beam from a high-power continuous-wave 808 nm semiconductor laser was directly introduced into a CVD growth chamber without an optical fiber. The light path of the heating laser inside the chamber was isolated mechanically from the growth area by bellows to protect the optics from film coating. Three types of heat absorbers, (10 × 10 × 2 mm3) consisting of SiC, Ni/NiOx, or pyrolytic graphite covered with pyrolytic BN (PG/PBN), located at the backside of the substrate, were tested for heating performance. It was confirmed that the substrate temperature could reach higher than 1500 °C in vacuum when a PG/PBN absorber was used. A wide-range temperature response between 400 °C and 1000 °C was achieved at high heating and cooling rates. Although the thermal energy loss increased in a H2 gas ambient due to the higher thermal conductivity, temperatures up to 1000°C were achieved even in 200 Torr H2. We have demonstrated the capabilities of this laser heating system by growing ZnO films by metalorganic chemical vapor deposition. The growth mode of ZnO films was changed from columnar to lateral growth by repeated temperature modulation in this laser heating system, and consequently atomically smooth epitaxial ZnO films were successfully grown on an a-plane sapphire substrate.

  20. Theory and experiments of dye lasers longitudinally pumped by copper vapor laser (CVL)

    NASA Astrophysics Data System (ADS)

    Sun, W.; Tang, C. S.; Zhuge, X. B.; Chen, M. S.

    1986-06-01

    Theoretical and experimental studies were performed on high prf dye lasers longitudinally pumped by CVL. Analytic expressions were derived for the laser output power and efficiency by using a rate equation treatment and taking the influence of excited singlet-state absorption into account. A CuBr laser-pumped dye laser with longitudinally pumped geometry and a jet stream was used in the experiment. A maximum output power of 1.3 W was achieved for Kiton red dye with an efficiency of 40%. Experimental results were in good agreement with theoretical analysis.

  1. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Sistani, Habiballah; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-01-01

    Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale.

  2. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Sistani, Habiballah; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-03-01

    Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale.

  3. Vapor Corrosion Cell and Method of Using Same

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    2001-01-01

    The present invention provides a vapor corrosion cell for a real-time and quantitative measurement of corrosion of conductive materials in atmospheres containing chemically reactive gases and water vapor. Two prototypes are provided. Also provided are various applications of this apparatus in industry.

  4. A single surgeon's experience with contact laser vaporization of the prostate

    NASA Astrophysics Data System (ADS)

    Mueller, Edward J.

    1995-05-01

    Herein, I report on my first 50 contact laser prostatectomies performed with the SLT Nd:YAG laser. The obstructed prostatic urethra is opened via contact laser vaporization of the obstructing adenoma. The average pre-op AUA symptom score was 22.9 (range 14 - 30). The average 3 month post-op AUA symptom score was 2.1 (range 0 -8). Eighteen of the patients had the foley catheter removed approximately 4 - 6 hours post-op and were discharged the same day. Thirty patients had the foley catheter removed the morning following surgery and were discharged. And two patients had the foley catheter removed the morning following surgery, but remained in the hospital for medical reasons unrelated to the TURP. Thus, 48 (96%) of the patients were discharged within 24 hours of admission. No patient had to be readmitted to the hospital for any reason. All patients were allowed to return to full activity within 24 hours of discharge. The average hospital cost for the 48 patients discharged within 24 hours was DOL4,694. This compares to the average hospital cost of an electrocautery TURP of DOL6-8000. In summary, contact laser TURP using the SLT Nd:YAG laser relived the symptoms of an obstructing prostate comparable to electrocautery TURP. However, these results were achieved with a much shorter hospitalization, a quicker return to full activity and at a lower cost.

  5. An investigation into the output characteristics of a discharge-heated copper vapor laser

    NASA Astrophysics Data System (ADS)

    Wang, Tieh C.; Yang, Ching Y.

    1989-11-01

    The laser output characteristics of a discharge-heated copper vapor laser (CVL) were investigated at a charging voltage of 14.5 kV, laser tube temperature of 1450 C, pulse repetition rate (PRR) range from 0.5 to 9.5 kHz, and buffer gas pressures of 20 and 75 Torr. Changing buffer gas pressure from 20 to 75 Torr causes no significant variation of the rates of relaxation of metastable atoms. Increase of the current rise of pumping pulse with increasing PRR is the predominant factor for improving the laser behavior when PRR is greater than 3.5 kHz with buffer gas pressure of 20 Torr and when PRR is less than 4.5 kHz with buffer gas pressure of 75 Torr. For short pulse applications, the CVL is preferably operated at high PRR and low buffer gas regime. For the 25-W CVL used here, the prepulse electron density should be higher than 10 to the 13th/cu cm for efficient laser operation. The output power of this CVL can be increased to much higher than 30 W if the thermal insulation is optimized and the PRR is increased.

  6. Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Sokolow, Adam; Pearlstein, Robert; Edwards, Glenn

    2009-01-01

    Free-electron laser irradiation can superheat tissue water, driving thermal vapor bubbles confined by tissue matrix and leading to mechanical tissue failure (ablation). Acoustic transients propagating from an ablation cavity were recorded with a polarization quadrature, interferometric vibrometer. For 3.0 μm infrared irradiation, the shocklike transients with peak pressures in the megapascal range indicate amplification due to bubble collapse. In contrast, for 6.45 μm irradiation, elastic transients with peak pressures in the 0.1 MPa range indicate tissue failure during bubble growth.

  7. Convection and mass-transport in laser-induced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Patnaik, S.; Brown, R. A.

    1988-01-01

    Gas flow and energy and species transport in laser-induced chemical vapor deposition (LICVD) of amorphous silicon films by silane pyrolysis are analyzed by finite element analysis of a two-dimensional model for the process. Spatial nonuniformity of the deposited film is shown to result from diffusion controlled transport of products between the beam and substrate. Deposition profiles are affected by buoyancy-driven convection only at increased gas pressures. Horizontal orientation of the reactor with respect to gravity is optimal because the stagnation-like flow, that results adjacent to the substrate, enhances mixing, and smoothes the film profile.

  8. Optimization of the alexandrite laser tuning elements for a water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Higdon, Noah S.; Browell, Edward V.

    1990-01-01

    An overview of some of the developments completed on an alexandrite laser for making water vapor DIAL measurements is presented in this paper. A computer control for active stabilization of the two intracavity etalons has been implemented and recently tested in an aircraft environment. Long-term frequency drift (i.e., 2 hours) of less than 0.7 pm has been observed in the laboratory. An alignment technique to get the optimum free spectral range ratio for the two etalons is also developed.

  9. Non-collinear interaction model of the second harmonic generation of a copper vapor laser

    NASA Astrophysics Data System (ADS)

    Omatsu, T.; Kuroda, K.; Shimura, T.; Chihara, M.; Itoh, M.; Ogura, I.

    1990-10-01

    We estimated theoretically the conversion efficiency of the second harmonic generation of a copper vapor laser (CVL) beam. Since the CVL beam is only partially coherent, the theory for the coherent beam is useless for the second harmonic generation of the CVL beam. The focused CVL beam was considered as a set of bundles of rays with propagated in different directions through a crystal and non-collinear interaction between these bundles of rays was investigated. On the basis of this model, we found that the conversion efficiency depends on the product of the beam divergence and the beam diameter, and the length of a nonlinear crystal.

  10. Evaluation of metal vapor laser designs with radial separation of the active medium

    NASA Astrophysics Data System (ADS)

    Soldatov, Anatoly N.; Polunin, Yu. P.; Chausova, L. N.

    1995-08-01

    Recent advances in self-terminating metal-vapor lasers have largely resulted from the feasibility of scaling laser characteristics in the cylindrical configuration of the active medium and longitudinal pulsed discharge, which makes it possible to provide the average power W > 100W from a large bore laser tube. Increasing the active volume, however, at the expense of a larger bore for this geometry of the gas discharge channel substantially reduces the specific energy Esp and the average specific power Wsp. Notably, the best laser characteristics have been realized with a low average specific input power Psp. The latter ranged between 1.5 and 0.5 W/cm3 for 6-12 cm bore tubes. As Psp was increased above a certain value, Wsp and W were found to decrease. As that took place, there appeared high radial inhomogeneities in the laser power distribution. Among the things which interfere with further increase of W, Wsp, and Esp as the input energy is increased, are radially nonuniform overheating of the active medium and very high degree of ionization. Given high input energies, these factors will give rise to a substantial deficit of ground state metal atoms N(O) at the center of the laser tube. As Psp is increased, the valley in the radial thermal distribution N(R) gets deeper due to ambipolar diffusion. The N(R) variation with excitation conditions has been studied experimentally for cylindrical laser tubes. The primary processes involved have been examined by means of the saturated power model. In this work we have studied laser action from Cu, I, and AuI in a tube whose configuration allows us to ameliorate the effect of a number of limiting factors on the output energy performance, on the one hand, and provides transversely separated excitation zones on the other, which, in turn, makes it possible to realize optimal thermophysical characteristics of the active medium, manipulate the spatial distribution of metal vapor, including the case of simultaneous excitation of

  11. Estimation water vapor content using the mixing ratio method and validated with the ANFIS PWV model

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Alhasa, K. M.; Singh, M. S. J.

    2017-05-01

    This study reported the comparison between water vapor content, the surface meteorological data (pressure, temperature, and relative humidity), and precipitable water vapor (PWV) produced by PWV from adaptive neuro fuzzy inference system (ANFIS) for areas in the Universiti Kebangsaan Malaysia Bangi (UKMB) station. The water vapor content value was estimated with mixing ratio method and the surface meteorological data as the parameter inputs. The accuracy of water vapor content was validated with PWV from ANFIS PWV model for the period of 20-23 December 2016. The result showed that the water vapor content has a similar trend with the PWV which produced by ANFIS PWV model (r = 0.975 at the 99% confidence level). This indicates that the water vapor content that obtained with mixing ratio agreed very well with the ANFIS PWV model. In addition, this study also found, the pattern of water vapor content and PWV have more influenced by the relative humidity.

  12. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization

    SciTech Connect

    Morozov, A. A.; Evtushenko, A. B.; Bulgakov, A. V.

    2015-02-02

    The expansion of a plume produced by low-fluence laser ablation of graphite in vacuum is investigated experimentally and by direct Monte Carlo simulations in an attempt to explain hyperthermal particle energies for thermally vaporized materials. We demonstrate that the translation energy of neutral particles, ∼2 times higher than classical expectations, is due to two effects, hydrodynamic plume acceleration into the forward direction and kinetic selection of fast particles in the on-axis region. Both effects depend on the collision number within the plume and on the particles internal degrees of freedom. The simulations allow ablation properties to be evaluated, such as ablation rate and surface temperature, based on time-of-flight measurements. Available experimental data on kinetic energies of various laser-produced particles are well described by the presented model.

  13. Formation of rare-earth upconverting nanoparticles using laser vaporization controlled condensation

    NASA Astrophysics Data System (ADS)

    Glaspell, Garry; Wilkins, James R.; Anderson, John; El-Shall, M. Samy

    2008-04-01

    Rare earth doped upconverting nanoparticles have been synthesized via laser vaporization controlled condensation (LVCC) and their photoluminescence properties were characterized using 980 nm laser diode excitation. This procedure is highly tunable, specifically by increasing the Yb 3+ to Er 3+ concentration the observed green emission decreases and the observed red emission increases. We have also shown that nearly equal peaks of blue, green and red emissions producing a virtually white upconverter could be synthesized by appropriately mixing Tm 3+, Ho 3+, and Er 3+. We have also investigated the upconversion efficiency in a variety of lattices including Y IIO 3, Gd IIO 3 and La IIO 3. TEM confirmed that the as-formed particles were ~ 10 nm in size and XRD indicated that the overall crystal structure was predominately cubic.

  14. Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption

    SciTech Connect

    Becerra, F. E.; Willis, R. T.; Rolston, S. L.; Orozco, L. A.

    2009-07-15

    We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor using a two-photon process in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5S{sub 1/2}, 5P{sub 3/2}, and 5D{sub 5/2} levels. This atomic configuration can show electromagnetically induced transparency and absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5 GHz off atomic resonance.

  15. A pneumatically powered mechanical translator-rotator for the direct laser vaporization of solid materials

    NASA Astrophysics Data System (ADS)

    Stone, Earle G.; Bach, Stephan B. H.

    1997-03-01

    A pneumatically powered mechanical translator-rotator system has been designed and constructed for use in the direct laser vaporization (DLV) of materials. This translator-rotator was initially developed for the reproducible DLV production of refractory metal atoms to be reacted with small molecules and characterized in matrix isolation experiments, but has applications wherever a reproducible DLV stream of a material is required, such as matrix assisted laser desorption ionization. Key features of the new translator-rotator design are the employment of an inexpensive air ratchet to provide power for the translator-rotator mechanism, the elimination of magnetic relays and electrical limit switches through the use of an all mechanical gear and slot mechanism, and a triple O-ring gland capable of maintaining high vacuum, 10-7 Torr, while the translator-rotator is in operation.

  16. KTP laser selective vaporization of the prostate in the management of urinary retention due to BPH

    NASA Astrophysics Data System (ADS)

    Kleeman, M. W.; Nseyo, Unyime O.

    2003-06-01

    High-powered photoselective vaporization of the prostate (PVP) is a relatively new addition in the armamentarium against bladder outlet obstruction due to BPH. With BPH, the prostate undergoes stromal and epithelial hyperplasia, particularly in the transitional zone, mediated by dihydrotestosterone (DHT). This periurethral enlargement can compress the prostatic urethra leading to bladder outlet obstruction and eventually urinary retention. Treatment of uncomplicated symptomatic BPH has evolved from the standard transurethral resection of the prostate (TURP) to multiple medical therapies and the putative minimally invasive surgical procedures. These include microwave ablation, needle ablation, balloon dilation, stents, as well as fluid based thermo-therapy, ultrasound therapy and cryotherapy. Different forms of lasers have been applied to treat BPH with variable short and long term benefits of urinary symptoms. However, the controversy remains about each laser regarding its technical applicability and efficacy.

  17. High power diode laser vaporization of the prostate: preliminary results for benign prostatic hyperplasia.

    PubMed

    Erol, Ali; Cam, Kamil; Tekin, Ali; Memik, Omur; Coban, Soner; Ozer, Yavuz

    2009-09-01

    Vaporization techniques using lasers have gained wide acceptance for benign prostatic hyperplasia as an alternative to transurethral prostate resection. The high power, 980 nm wavelength diode laser is a new promising alternative with a more rapid ablation rate and excellent hemostatic properties, as shown in ex vivo and in vivo animal models. We prospectively evaluated vaporization efficiency of the high power, 980 nm diode laser for bladder outlet obstruction due to benign prostatic hyperplasia. A total of 47 consecutive patients were included in the study. Inclusion criteria were maximal flow rate 12 ml per second or less with voided volume 150 ml or greater, International Prostate Symptom Score 12 or greater and quality of life score 3 or greater. Patients with a history of neurogenic voiding dysfunction, chronic prostatitis, or prostate or bladder cancer were excluded from analysis. Preoperative maximal flow rate, post-void residual urine, International Prostate Symptom Score, quality of life, International Index of Erectile Function-5, prostate specific antigen and prostate volume were compared with values at 3 and 6 months. Complications were assessed. Month 3 assessment revealed that the mean +/- SD International Prostate Symptom Score decreased significantly from 21.93 +/- 4.88 to 10.31 +/- 3.79 (p = 0.0001). The mean maximal flow rate increased significantly from 8.87 +/- 2.18 to 17.51 +/- 4.09 ml per second (p = 0.0001). Quality of life score changed considerably compared to baseline. All of these values showed slight improvement at month 6. There was no deterioration in erectile function according to the International Index of Erectile Function-5 short form. Post-void residual urine decreased significantly. Prostate volume and prostate specific antigen reductions were also significant. The most common postoperative complications were retrograde ejaculation (13 of 41 patients or 31.7%) and irritative symptoms (11 of 47 or 23.4%), which subsided in the

  18. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  19. Laser-assisted methods for nanofabrication

    NASA Astrophysics Data System (ADS)

    Kabashin, Andrei V.; Meunier, Michel

    2004-07-01

    An overview of laser-assisted nanofabrication methods, which has been developed in the Laser Processing Laboratory, is presented. All methods imply the laser-related ablation of material from a solid target and the production of nanoparticles or nanostructures. We consider the nanofabrication process in both the gaseous and in the liquid ambience under different parameters of laser radiation. A particular attention is given on the absence or presence of the plasma-related absorption of the laser radiation, which make possible different nanofabrication regimes. The methods lead to a production of nanomaterials, which are of importance for photonics and biosensing applications.

  20. Study of an optical fiber water vapor sensor based on a DFB diode laser: combined wavelength scanning and intensity modulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Chang, Jun; Wang, Zongliang; Tian, Changbin; Jiang, Shuo; Lv, Guangping

    2014-10-01

    An optical fiber water vapor sensor based on a distributed feedback (DFB) diode laser was reported. The DFB diode laser was internally driven by a low-frequency current to realize wavelength scanning; simultaneously, laser output was externally modulated through an electro-optic modulator to realize high-frequency intensity modulation. Measurement precision of water vapor concentration could be improved by two main aspects, absolute absorption profile and high signal-to-noise ratio. The experiment was carried out at 1 atm/296 K and the recovered absolute absorption profile of water vapor at 1368.597 nm was described by Voigt profile with a difference of 1%. A well linearity was achieved with an R-square of 0.9999 and the sensitivity for a 10-cm absorption length was achieved to be 6.7 × 10-8 Hz-1/2.

  1. Diode Laser Pumped Alkali Vapor Lasers with Exciplex-Assisted Absorption

    DTIC Science & Technology

    2013-05-14

    ORGANIZATION Emory University, 1515 Dickey Drive, Atlanta, GA 30322 REPORT NUMBER The College of Optics and Photonics, University of Central Florida, 4000...supplies high power pumping system to AFRL. 1S. SUBJECT TERMS High-power lasers, line-narrowed diode lasers, volume Bragg grating, gas phase, OPAL, hybrid...Central Florida, School of Optics/CREOL Michael C. Heaven Department of Chemistry Emory University Atlanta, GA 30322 Multidisciplinary Research

  2. Kinetics of laser-pulse vaporization of uranium carbide by mass spectrometry. [LMFBR

    SciTech Connect

    Tehranian, F.

    1983-06-01

    The kinetics of uranium carbide vaporization in the temperature range 3000 K to 5200 K was studied using a Nd-glass laser with peak power densities from 1.6 x 10/sup 5/ to 4.0 x 10/sup 5/ watts/cm/sup 2/. The vapor species U, UC/sub 2/, C/sub 1/ and C/sub 3/ were detected and analyzed by a quadrupole mass spectrometer. From the mass spectrometer signals number densities of the various species in the ionizer were obtained as functions of time. The surface of the irradiated uranium carbide was examined by scanning electron microscope and the depth profile of the crater was obtained. In order to aid analysis of the data, the heat conduction and species diffusion equations for the solid (or liquid) were solved numerically by a computer code to obtain the temperature and composition transients during laser heating. A sensitivity analysis was used to study the effect of uncertainties in the input parameters on the computed surface temperatures.

  3. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    NASA Astrophysics Data System (ADS)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  4. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  5. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  6. Review of Various Air Sampling Methods for Solvent Vapors.

    DTIC Science & Technology

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass ...prescription bottles , and charcoal adsorption tubes. Efficiencies of collection are reported. (Author)

  7. Review of Various Air Sampling Methods for Solvent Vapors.

    ERIC Educational Resources Information Center

    Maykoski, R. T.

    Vapors of trichloroethylene, toluene, methyl ethyl ketone, and butyl cellosolve in air were collected using Scotchpac and Tedlar bags, glass prescription bottles, and charcoal adsorption tubes. Efficiencies of collection are reported. (Author/RH)

  8. Sodium vapor cell laser guide star experiments for continuous wave model validation

    NASA Astrophysics Data System (ADS)

    Pedreros Bustos, Felipe; Holzlöhner, Ronald; Budker, Dmitry; Lewis, Steffan; Rochester, Simon

    2016-07-01

    Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon return flux from a sodium vapor cell illuminated with a 589 nm CW laser beam, designed to approximately emulate a LGS under controlled conditions. Return flux measurements are carried out controlling polarization, power density, re-pumping, laser linewidth, and magnetic field intensity and orientation. Comparison with the numerical CW simulation package Atomic Density Matrix are presented and discussed.

  9. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry.

    PubMed

    Bednařík, Antonín; Tomalová, Iva; Kanický, Viktor; Preisler, Jan

    2014-10-17

    Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  11. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, Edward S.; Chen, Guoying

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  12. Prediction of water vapor transport rates across polyvinylchloride packaging systems using a novel radiotracer method

    SciTech Connect

    Wood, R.W.; Mulski, M.J.; Kuu, W.Y. )

    1990-09-01

    A radiotracer method is used to study the transport properties of water vapor in polyvinylchloride (PVC), a plastic commonly used in the packaging of parenteral solutions. Water vapor transport across a PVC film appears to be Fickian in nature. Using the steady-state solution of Fick's second law and the permeability coefficient of water vapor across the PVC film obtained using the described method, the predicted water vapor transport rate (WVTR) for a parenteral solution packaged in PVC is in reasonable agreement with actual WVTR as determined by weight loss under precisely controlled conditions.

  13. Critical Fluences And Modeling Of CO{sub 2} Laser Ablation Of Polyoxymethylene From Vaporization To The Plasma Regime

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Tsukiyama, Yosuke; Ogita, Naoya; Sasoh, Akihiro; Umehara, Noritsugu; Gregory, Don A.

    2010-05-06

    A CO{sub 2} laser was operated at pulse energies up to 10 J to ablate polyoxymethylene targets in air and vacuum conditions. Critical effects predicted by ablation models are discussed in relation to the experimental data, including specifically the threshold fluences for vaporization and critical plasma formation, and the fluence at which the optimal momentum coupling coefficient is found. Finally, we discuss a new approach for modeling polymers at long wavelengths, including a connection formula that links the vaporization and plasma regimes for laser ablation propulsion.

  14. High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy.

    PubMed

    Wassenaar, L I; Hendry, M J; Chostner, V L; Lis, G P

    2008-12-15

    A new H2O(liquid)-H2O(vapor) pore water equilibration and laser spectroscopy method provides a fast way to obtain accurate high resolution deltaD and delta18O profiles from single core samples from saturated and unsaturated geologic media. The precision and accuracy of the H2O(liquid)-H2O(vapor) equilibration method was comparable to or better than conventional IRMS-based methods, and it can be conducted on geologic cores that contain volumetric water contents as low as 5%. Significant advantages of the H2O(liquid)-H2O(vapor) pore water equilibration method and laser isotopic analysis method include dual hydrogen- and oxygen-isotope assays on single small core samples, low consumable and instrumentation costs, and the potential for field-based hydrogeologic profiling. A single core is sufficient to obtain detailed vertical isotopic depth profiles in geologic, soil, and lacustrine pore water, dramatically reducing the cost of obtaining pore water by conventional wells or physical water extraction methods. In addition, other inherent problems like contamination of wells by leakage and drilling fluids can be eliminated.

  15. Method and apparatus to measure vapor pressure in a flow system

    DOEpatents

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  16. Continuous-Wave Alkali Vapor Laser Pumped by a Ti-sapphire Laser with Narrow Linewidth

    NASA Astrophysics Data System (ADS)

    Cai, H.; An, G. F.; Dai, K.; Wang, Y.; Zhang, W.; Han, J. H.; Rong, K. P.; Yu, H.; Wang, S. Y.; Wang, H. Y.; Xue, L. P.; Zhou, J.

    2017-06-01

    We have experimentally demonstrated the continuous wave rubidium and cesium lasers pumped by a Ti-sapphire laser with the linewidth of about 5 MHz. The pump and laser beams were orthogonally polarized and they can be separated by a polarized beam splitter (PBS). Two 4-cm-long cells were respectively filled with metallic rubidium and cesium as well as 300 Torr ethane as a buffer gas. A series of output couplers at different cell temperatures have been used and the optimal parameters have been found for earning the highest output. As a result, we have achieved a maximum output power of 111 mW with the optical to optical efficiency of 18.4% for a rubidium laser and a maximum output power of 136 mW with the optical to optical efficiency of 30% for a cesium laser, respectively. By considering there are no anti-reflection coatings on the surfaces of two cell end-windows, the output should be improved if the transmission attenuation is effectively decreased in the future.

  17. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  18. Investigation Methods to Distinguish Between Vapor Intrusion and Indoor Sources of VOCS

    DTIC Science & Technology

    2010-12-01

    2010 2 . REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Investigation Methods to Distinguish Between Vapor Intrusion...Annual Partners in Environmental Technology Technical Symposium & Workshop, 30 Nov ? 2 Dec 2010, Washington, DC. Sponsored by SERDP and ESTCP. U.S...buildings potentially impacted by vapor intrusion and has proved useful to distinguish between vapor intrusion and indoor sources of VOCs. I 2

  19. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Metal-organic vapor phase epitaxy of (GaAl)As for 0.85-μm laser diodes

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.

    1988-11-01

    Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.

  20. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  1. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.

  2. Measurement of vapor/liquid distributions in a binary-component fuel spray using laser imaging of droplet scattering and vapor absorption

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhang, Yuyin; Wu, Shenqi; Xu, Bin

    2014-08-01

    Fuel volatility has a great effect on its evaporation processes and the mixture formation and thus combustion and emissions formation processes in internal combustion engines. To date, however, instead of the actual gasoline or diesel fuel, many researchers have been using single-component fuel in their studies, because the composition of the former is too complicated to understand the real physics behind the evaporation and combustion characteristics. Several research groups have reported their results on droplets evaporation in a spray of multi-component fuel, carried out both numerically and experimentally. However, there are plenty of difficulties in quantitative determination of vapor concentration and droplet distributions of each component in a multicomponent fuel spray. In this study, to determine the vapor phase concentration and droplet distributions in an evaporating binary component fuel spray, a laser diagnostics based on laser extinction by droplet scattering and vapor absorption was developed. In practice, measurements of the vapor concentration distributions of the lower (n-tridencane) and higher (n-octane) volatility components in the binary component fuel sprays have been carried out at ambient temperatures of 473K and 573K, by substituting p-xylene for noctane or α-methylnaphthalene for n-tridecane. p-Xylene and α-methylnaphthalene were selected as the substitutes is because they have strong absorption band near 266nm and transparent near 532nm and, their thermo-physical properties are similar to those of the original component. As a demonstration experiment, vapor/liquid distribution of the lower boiling point (LBP) and higher boiling point (HBP) components in the binary component fuel spray have been obtained.

  3. Spectral diagnostics of a vapor-plasma plume produced during welding with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Shcheglov, P. Yu.; Petrovskiy, V. N.; Gumenyuk, A. V.; Rethmeier, M.

    2013-07-01

    We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.

  4. Photoselective vaporization of the prostate using the 180W lithium triborate laser.

    PubMed

    Chung, Amanda S J; Chabert, Charles; Yap, Hin-Wai; Lam, Jimmy; Awad, Nader; Nuwayhid, Fadi; Redwig, Frank; Rashid, Prem; Woo, Henry H

    2012-05-01

    Photoselective vaporization of the prostate (PVP) is widely used to treat benign prostatic obstruction (BPO), but there is little experience reported on the new more powerful 180W lithium triborate (LBO) laser. This study evaluates the safety and efficacy of using the 180W LBO laser to treat BPO by examining a multicentre Australian experience. Retrospective review of prospectively collected data on all men treated by 180W LBO laser PVP by eight urologists across six Australian hospitals, from July 2011 to August 2011, was performed. Perioperative and functional outcomes were examined at baseline and 3 months. Of the 85 men (median age 70 years, prostate volume 51 cm(3)) identified, 27% (23/85) were in urinary retention and 44% (37/85) were taking antiplatelet/anticoagulant medication. Median operating time was 46 min, laser time 27 min, energy use 211 kJ, post-operative duration of catheterization 15 h and hospitalization 22 h. Functional outcomes from baseline to 3 months, respectively, were for IPSS 25-7; QoL 5-2; Qmax 7.7-18.4; and PVR 147-38. All improvements were statistically significant (P < 0.01). Thirty-eight percent (32/85) of patients experienced at least one adverse event. Most adverse events were low Clavien-Dindo grade I-II. There were five grade III, two grade IV and no grade V adverse events. Sixty per cent (51/85) of men were able to be discharged home voiding successfully without a catheter within 24-h post-PVP. Our early multicentre Australian experience indicates the 180W LBO laser PVP is an efficacious and safe treatment for BPO. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  5. Long-laser-pulse method of producing thin films

    DOEpatents

    Balooch, Mehdi; Olander, Donald K.; Russo, Richard E.

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  6. Determination of cadmium vapor pressure over dichromium cadmium tetraselenide by the atomic absorption method

    SciTech Connect

    Bel'skii, N.K.; Ochertyanova L.I.; Zhegalinka, V.A.

    1986-07-01

    By the atomic absorption method one measures the light absorption by the vapor of the investigated element as a function of the temperature of the evaporating surface. To measure vapor pressure the authors use cadmium selenide of the purity grade, which was recrystallized by sublimitation. The optical density of the vapor over cadmium selenide was determined in the temperature range 820-890 K. Using atomic spectroscopy the vapor pressure of cadmium over cadmium selenide was determined in dichromium cadmium tetraselenide with different amounts of deviation from stoichiometry at 790-880 deg. The results are compared with the literature data.

  7. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  8. Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Klingbeil, Adam Edgar

    unburned fuel, engine performance can be characterized and future engine designs can be improved to utilize all of the fuel supplied to the engine. Simultaneous measurement of absorption at two wavelengths is used as a basis for hydrocarbon detection in severe environments. A novel wavelength-tunable mid-IR laser is modified to rapidly switch between two wavelengths, improving the versatility of this laser system. The two-wavelength technique is then exploited to measure vapor concentration while rejecting interferences such as scattering from liquid droplets and absorption from other species. This two-wavelength laser is also used to simultaneously determine temperature and vapor concentration. These techniques, in combination with the library of temperature-dependent hydrocarbon spectra, lay the groundwork necessary to develop fuel diagnostics for laboratory experiments and tests in pulse detonation engines and internal combustion engines. The temperature-dependent spectroscopy of gasoline is examined to develop a sensor for fuel/air ratio in an internal combustion engine. A wavelength was selected for good sensitivity to gasoline concentration. A spectroscopic model is developed that uses the relative concentrations of five structural classes to predict the absorption spectrum of gasoline samples with varying composition. The model is tested on 21 samples of gasoline for temperatures ranging from 300 to 1200 K, showing good agreement between model and measurements over the entire temperature range. Finally, a two-wavelength diagnostic was developed to measure the post-evaporation temperature and n-dodecane concentration in an aerosol-laden shock tube. The experimental data validate a model which calculates the effects of shock-wave compression on a two-phase mixture. The measured post-shock temperature and vapor concentration compare favorably for gas-phase and aerosol experiments. The agreement between the two fuel-loading techniques verifies that this aerosol shock

  9. Buffer gas-assisted four-wave mixing resonances in alkali vapor excited by a single cw laser

    NASA Astrophysics Data System (ADS)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Khanbekyan, Alen; Mariotti, Emilio; Papoyan, Aram V.

    2016-12-01

    We report the observation of a fluorescence peak appearing in dilute alkali (Rb, Cs) vapor in the presence of a buffer gas when the cw laser radiation frequency is tuned between the Doppler-broadened hyperfine transition groups of an atomic D2 line. Based on steep laser radiation intensity dependence above the threshold and spectral composition of the observed features corresponding to atomic resonance transitions, we have attributed these features to the buffer gas-assisted four-wave mixing process.

  10. Study of Pulse Laser Assisted Metalorganic Vapor Phase Epitaxy of InGaN with Large Indium Mole Fraction

    NASA Astrophysics Data System (ADS)

    Kangawa, Yoshihiro; Kawaguchi, Norihito; Hida, Ken-nosuke; Kumagai, Yoshinao; Koukitu, Akinori

    2004-08-01

    The indium composition of the InGaN film increases with decreasing growth temperature; however, the crystalline quality of the film is poor when it is grown at low temperatures. To form a high-quality InGaN film with a large indium mole fraction, Nd: YAG pulse laser assisted metalorganic vapor phase epitaxy (MOVPE) was carried out at low temperatures. The results suggest that film quality can be improved by pulse laser irradiation on the surface of the film.

  11. Microstructure of metastable metallic alloy films produced by laser breakdown chemical vapor deposition and ion implantation

    SciTech Connect

    Menon, S.K.; Jervis, T.R.; Nastasi, M.

    1986-01-01

    Thin films produced by laser breakdown chemical vapor deposition from nickel and iron carbonyls and by implanting Ni foils with varying levels of C have been characterized by transmission electron microscopy. Decomposition of Ni(CO)/sub 4/ produces polycrystalline films of fcc Ni and metastable ordered hexagonal Ni/sub 3/C. This metastable phase is identical to that produced by gas carburization, rapid solidification of Ni-C melts, and ion implantation of C into Ni at low concentrations. Increasing the H/sub 2/ content in the gas mixture during laser deposition reduces the grain size of the films significantly with grain sizes smaller than 10 nanometers produced. Laser decomposition of Fe(CO)/sub 5/ produces films with islands of fcc gamma-Fe and finely dispersed metastable Fe/sub 3/C (Cementite). In addition, the ferrous oxides Fe/sub 2/O/sub 3/ and Fe/sub 3/O/sub 4/ were found in these samples. Implants of C into pure Ni foils at 77/sup 0/K and at a concentration of 35 at. % produced amorphous layers. Implants at the same dose at room temperature did not produce amorphous layers.

  12. A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser

    SciTech Connect

    Wang, L.G.; Vay, S.

    1995-12-31

    H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

  13. 40 CFR Appendix A to Subpart Wwww... - Test Method for Determining Vapor Suppressant Effectiveness

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... without the additive. The difference in emissions between the two yields the vapor suppressant effectiveness factor. 1.1.3The method uses a mass balance determination to establish the relative loss of the... the relative volatile weight losses from vapor suppressed and non-suppressed resins. The...

  14. 40 CFR Appendix A to Subpart Wwww... - Test Method for Determining Vapor Suppressant Effectiveness

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... without the additive. The difference in emissions between the two yields the vapor suppressant effectiveness factor. 1.1.3The method uses a mass balance determination to establish the relative loss of the... the relative volatile weight losses from vapor suppressed and non-suppressed resins. The...

  15. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  16. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    EPA Pesticide Factsheets

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  17. Can we predict the outcome of 532 nm laser photoselective vaporization of the prostate? Time to event analysis.

    PubMed

    Elshal, Ahmed M; Elmansy, Hazem M; Elhilali, Mostafa M

    2012-11-01

    We evaluated the safety, efficacy and predictability of the long-term outcome of GreenLight™ (532 nm laser) photoselective vaporization of the prostate to treat patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia. We performed a longitudinal study of patients who underwent GreenLight (532 nm laser) photoselective vaporization of the prostate at our center between June 2002 and November 2011. All patient data were prospectively maintained in the prostate unit database. Two types of laser equipment were used, including the KTP in 91 cases (31.6%) and the GreenLight HPS™ in 197 (68.4%). Larger glands were treated with HPS and KTP photoselective vaporization (mean ± SD volume 45.6 ± 22.5 and 39.6 ± 15.2 ml, respectively, p <0.05). After photoselective vaporization with the KTP laser, we noted a 59.1% and 61.8% decrease in the International Prostate Symptom Score, and a 140.7% and 118.4% improvement in the maximal urine flow rate at 1 and 5 years, respectively. Similarly, after prostate vaporization with the HPS we observed a 65.1% and 62.1% decrease in the International Prostate Symptom Score, and a 123.1% and 107.3% improvement in the maximal urine flow rate at 1 and 4 years, respectively. At a mean of 40.5 months (range 3 to 114) of followup reoperation was indicated in 7.6% of cases. The overall rates of bladder neck contracture, de novo urethral stricture and residual/recurrent adenoma were 3.4% (10 cases), 2.1% (6) and 2.1% (6) with no statistically significant difference between vaporization with the KTP and HPS lasers. Most adverse events occurred during year 1 postoperatively. More bladder neck contractures developed after vaporization was done in smaller glands (p <0.05). More cases with residual prostatic adenoma had a prostate volume of 50 ml or greater vs less than 50 ml (4 of 71 or 5.6% vs 2 of 207 or 0.96%). GreenLight (532 nm laser) photoselective vaporization of the prostate seems to be safe and effective for

  18. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  19. Temperature range and conditions of stable operation of gas-discharge rare-earth metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2008-08-01

    We have experimentally studied the temperature range and conditions of the stable operation of rare-earth metal (REM) vapor lasers. Gas-discharge tubes made of alumina (Al2O3-GDTs) were used in the experiments. The lasing appears at the temperature when the saturated-vapor pressure of REMs reaches the value of 0.1 Torr and abruptly drops at the melting temperature of corresponding REM under any excitation conditions. The necessity of protecting film of REM aluminates LnnAlmOk and oxides Ln2O3 on the inner surface of Al2O3-GDT for stable operation of these lasers is shown. An explanation of lasing impossibility in vapors of cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), and terbium (Tb) under gas-discharge excitation is proposed.

  20. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R. K.; Im, K. H.

    1996-01-01

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  1. Method for removing metal vapor from gas streams

    DOEpatents

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  2. Post-Decontamination Vapor Sampling and Analytical Test Methods

    DTIC Science & Technology

    2015-08-12

    or their simulants, nontraditional agents (NTAs), toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). A vapor collection...agent; CWA; simulants; nontraditional agent; NTA; toxic industrial chemical; TIC; toxic industrial material; TIM; coupon; contamination...decontamination process. Chemical contaminants can include chemical warfare agents (CWAs) or their simulants, nontraditional agents (NTAs), toxic industrial

  3. Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm

    NASA Astrophysics Data System (ADS)

    Fix, A.; Ehret, G.; Löhring, J.; Hoffmann, D.; Alpers, M.

    2011-03-01

    A diode-pumped, single-frequency laser system emitting at 935 nm has recently been developed to serve as the transmitter for water vapor differential absorption lidar (DIAL) measurements. This laser uses Nd:YGG (Y3Ga5O12) as the active medium and emits radiation directly at 935 nm without the need of additional frequency conversion processes. The system was diode-pumped at 806 nm and was built up in a master-oscillator-power-amplifier configuration. It generates more than 30 mJ of pulse energy at 100 Hz repetition rate with a beam quality ( M 2) of better than 1.4. Since water vapor DIAL demands for stringent requirements of the spectral properties those were carefully investigated in the scope of this paper. Single-frequency operation is achieved by injection seeding and active length control of the oscillator cavity. The range of continuously tunable single-frequency radiation extends to ˜0.4 nm centered around 935.31 nm. Values of the spectral purity of >99.996% were determined using long-pass absorption measurements in the atmosphere exceeding the requirements by a large margin. Finally, for the first time water vapor DIAL measurements were performed using a Nd:YGG laser. The reported results show much promise of these directly pumped lasers at 935 nm for future spaceborne but also airborne water vapor lidar systems.

  4. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  5. C-BN patterned single-walled nanotubes synthesized by laser vaporization.

    PubMed

    Enouz, Shaïma; Stéphan, Odile; Cochon, Jean-Lou; Colliex, Christian; Loiseau, Annick

    2007-07-01

    We report on the synthesis of C-BN single-walled nanotubes made of BN nanodomains embedded into a graphene layer. The synthesis process consists of vaporizing, by a continuous CO2 laser, a target made of carbon and boron mixed with a Co/Ni catalyst under N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) and nanoelectron energy loss spectroscopy (nanoEELS) provide direct evidence that boron and nitrogen co-segregate with respect to carbon and form nanodomains within the hexagonal lattice of the graphene layer in a sequential manner. A growth model is proposed to account for the observed C-BN self-organization and to explain how kinetics and local energetics at intermediate states can tailor ultimate single layer BN-C heterojunctions.

  6. Laser Physical Vapor Deposition of Nanocrystalline Boron Carbide Films to Enhance Cutting Tool Performance

    SciTech Connect

    Jagannadham, K.; Watkins, Thomas R; Lance, Michael J; Riester, Laura; Lemaster, Robert A

    2009-01-01

    Laser physical vapor deposition was used to deposit thin films of boron carbide on Si (100) and WC-Co substrates at 550 C under different pressures of methane atmosphere. Grazing incidence X-ray diffraction was used to identify a boron carbide phase, which exhibited weak peaks. The presence of particulates in the size range of 50 nm-3 {micro}m embedded in an amorphous matrix was observed by scanning electron microscopy. Raman spectroscopy indicated that as methane partial pressure was increased during deposition, the amount of disorder with the boron carbide structure also increased. Also, the nanoindentation hardness decreased, while the coefficient of friction and scratch adhesion strength increased. These effects are attributed to an increase in amorphous phase/disorder in the films. Wear tests conducted by machining particleboard using boron carbide coated WC-Co tools in the absence of methane showed the same wear rate as tools coated under higher methane pressures.

  7. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique.

    PubMed

    Arenal, Raul; Stephan, Odile; Cochon, Jean-Lou; Loiseau, Annick

    2007-12-26

    We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products. The results obtained by the TEM analysis and from the synthesis parameters (temperature, boron, and nitrogen sources) combined with phase diagram analysis to provide identification of the fundamental factors determining the nanotube growth mechanism. Our experiments strongly support a root-growth model that involves the presence of a droplet of boron. This phenomenological model considers the solubility, solidification, and segregation phenomena of the elements present in this boron droplet. In this model, we distinguish three different steps as a function of the temperature: (1) formation of the liquid boron droplet from the decomposition of different boron compounds existing in the hexagonal boron nitride target, (2) reaction of these boron droplets with nitrogen gas present in the vaporization chamber and recombination of these elements to form boron nitride, and (3) incorporation of the nitrogen atoms at the root of the boron particle at active reacting sites that achieves the growth of the tube.

  8. In vitro study on the vaporization ratio of 2-microm laser in human prostatic tissue.

    PubMed

    Yang, Yong; Sun, Dongchong; Wei, Zhitao; Xu, Feng; Hong, Baofa; Zhang, Xu

    2010-04-01

    In this study, the vaporization ratio of the 2-mum laser in the prostatic tissue with benign prostatic hyperplasia was examined in vitro, to explore a technique to estimate the clearance rate of prostatic tissue during the transurethral vaporesection of the prostate. A total of 9 fresh prostatic tissue specimens were obtained by open surgery and the wet weight of the prostatic tissue were measured immediately after the sample collection. Under the simulated conditions of transurethral vaporesection of the prostate by 2-microm laser, each prostate gland was completely vaporesected into fragments with a diameter of less than 1.0 cm in vitro. After the vaporesection, the whole fragments of prostatic tissue were collected and measured. Then the lost weight of prostatic tissue, the weight of the collected prostatic tissue and the ratio of the lost weight of prostatic tissue to the wet weight of the prostate glandular organ specimen were calculated. The correlation between the weight of collected prostatic tissue and the weight of the whole glandular organ was analyzed. All the experimental procedures were carried out by one operator. Wet weight of the prostatic gland specimen and the weight of the harvested prostatic tissues after the procedure were recorded. With respect to the wet weight of prostate gland specimen, the percentage of the weight of collected prostatic tissue was (34.45 + or - 1.51) %, and the percentage of the lost weight of prostatic tissue was (65.55 + or - 1.51)%. Satisfactory linear relationship was observed between the weight of collected prostatic tissue and the wet weight of prostate gland specimen [y = 3.245 x -6.475 (t=15.097, P=0.000)]. It is concluded that under the simulated conditions of transurethral vaporesection of the prostate by 2-mum laser, the vaporization ratio of prostatic tissue can be calculated on the basis of the weight of collected prostatic tissue, and thereby the clearance of prostatic tissue during the formal operation by 2

  9. Therapeutic effect of laser vaporization for vaginal intraepithelial neoplasia following hysterectomy due to premalignant and malignant lesions.

    PubMed

    Wang, Yan; Kong, Wei-Min; Wu, Yu-Mei; Wang, Jian-Dong; Zhang, Wei-Yuan

    2014-06-01

    The aim of this study was to evaluate the therapeutic effect of laser vaporization for vaginal intraepithelial neoplasia (VAIN) after hysterectomy in Chinese women and to identify factors affecting persistence/recurrence. Twenty-eight VAIN patients after hysterectomy due to cervical intraepithelial neoplasia (group 1) and 11 VAIN patients due to cervical cancer (group 2) were reviewed retrospectively. All patients were treated with at least one episode of laser vaporization between 2010 and 2011, and then followed up every 3 months for at least 1 year. Cox regression analysis was used to identify independent factors predicting persistence/recurrence. All VAIN patients achieved remission after two episodes of laser treatment, with 85.7% complete regression in group 1 and 54.5% in group 2. The first episode of the treatment had a significantly higher success rate in group 1 than in group 2 (46.2% vs 0.0%). All patients had no recurrence during a mean follow-up time of 22.8-27.8 months (range 12-39 months). However, infection persisted in 21 (61.8%) of 34 human-papillomavirus-positive patients after laser vaporization. Severity of VAIN was the only significant independent predictor of persistence/recurrence after one episode of the treatment (adjusted odds ratio, 4.08; 95% confidence interval, 1.28-12.96; P = 0.017). Laser treatments were well tolerated with no major side-effects. Laser vaporization may be a useful option for the treatment of VAIN after hysterectomy. However, a follow-up is required to assess the long-term efficacy of laser treatment. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  10. Development of a widely tunable amplified diode laser differential absorption lidar for profiling atmospheric water vapor

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Repasky, Kevin S.; Nehrir, Amin R.; Carlsten, John L.; Shaw, Joseph A.

    2010-03-01

    This work describes the design and testing of a highly-tunable differential absorption lidar (DIAL) instrument utilizing an all-semiconductor transmitter. This new DIAL instrument transmitter has a highly-tunable external cavity diode laser (ECDL) as a seed laser source for two cascaded commercial tapered amplifiers. The transmitter has the capability of tuning over a range of ~ 17 nm centered at about 832 nm to selectively probe several water vapor absorption lines. This capability has been requested in other recent DIAL experiments for wavelengths near 830 nm. The transmitter produces pulse energies of approximately 0.25 μJ at a repetition rate of 20 kHz. The linewidth is exceptionally narrow at <0.3 MHz, with frequency stability that has been shown to be +/- 88 MHz and spectral purity of 0.995. Tests of the DIAL instrument to prove the validity of its measurements were undertaken. Preliminary water vapor profiles, taken in Bozeman, Montana, agree to within 5-60% with profiles derived from co-located radiosondes 800 meters above ground altitude. Below 800 meters, the measurements are biased low due to a number of systematic issues that are discussed. The long averaging times required by low-power systems have been shown to lead to biases in data, and indeed, our results showed strong disagreements on nights when the atmosphere was changing rapidly, such as on windy nights or when a storm system was entering the area. Improvements to the system to correct the major systematic biases are described.

  11. Kinetics of laser chemical vapor deposition of carbon and refractory metals

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    2000-10-01

    Three-dimensional laser chemical vapor deposition (3D-LCVD) has been used to grow rods of carbon, tungsten, titanium, and hafnium from a variety of hydrocarbons and metal halide-based precursors. A novel computerized 3D-LCVD system was designed and successfully used in the experiments. A focused Nd:Yag laser beam (lambda = 1.06 mum) was utilized to locally heat up a substrate to deposition temperature. The rods, which grew along the axis of the laser beam, had a typical diameter of 30--80 mum and a length of about 1 mm. The precursors for carbon deposition were the alkynes: propyne, butyne, pentyne, hexyne, and octyne. Propyne gave the highest deposition rate, in excess 3 mm/s at high laser powers (0.45 W) and high partial pressures (3000 mbar). the temperature dependence and pressure dependence were both non-linear functions of the growth rate. the temperature dependence could be separated into two regions---the kinetically limited region, which obeys the Arrhenius relationship, and the transport limited region, which is explained by diffusion of the precursors to the reaction zone. The pressure dependence showed that the reaction order for the different precursors varied from 2.5 for propyne to 1.3 for octyne. The precursors used deposit the refractory metals were tungsten hexafloride, titanium tetraiodide and hafnium chloride. The only successful precursor was tungsten hexafluoride, which readily produced tungsten rods when mixed with hydrogen. Rod diameters typically ranged from 50 mum to 400 mum and the average length of the rods were about 1 mm. Much lower deposition rates, less than 4.5 mum/s were obtained in this case as compared to carbon deposition. By an optimization of the LCVD process, it was possible to deposit high-quality single crystal tungsten rods. They were all oriented in the <100> direction.

  12. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  13. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification.

    PubMed

    Judge, Elizabeth J; Brady, John J; Barbano, Paolo Emilio; Levis, Robert J

    2011-03-15

    Laser electrospray mass spectrometry (LEMS) with offline classification is used to discriminate plant tissues at atmospheric pressure using an intense (10(13) W cm(-2)), nonresonant (800 nm) femtosecond laser pulse to vaporize cellular content for subsequent mass analysis. The tissue content of the plant within the 0.05 mm(2) laser interaction region is vaporized into the electrospray plume where the molecules are ionized prior to transfer into the mass spectrometer. The measurements for a flower petal, leaf, and stem of an impatiens plant reveal mass spectral signatures that enable discrimination as performed using a compressive linear classifier. The statistical analysis of the plant tissue samples reveals reproducibility of the data for replicate tissue samples and within a single tissue sample. A similar degree of discrimination was achieved for the green and white regions of aphelandra squarrosa (zebra plant) leaves.

  14. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I.

    PubMed

    Han, Juhong; Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan

    2014-06-02

    A diode-pumped alkali laser (DPAL) is one of the most hopeful candidates to achieve high power performances. As the laser medium is in a gas-state, populations of energy-levels of a DPAL are strongly dependent on the vapor temperature. Thus, the temperature distribution directly determines the output characteristics of a DPAL. In this report, we developed a systematic model by combining the procedures of heat transfer and laser kinetics together to explore the radial temperature distribution in the transverse section of a cesium vapor cell. A cyclic iterative approach is adopted to calculate the population densities. The corresponding temperature distributions have been obtained for different beam waists and pump powers. The conclusion is thought to be useful for realizing a DPAL with high output power.

  15. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    NASA Astrophysics Data System (ADS)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  16. Primary Vaginal Adenocarcinoma Arising in Vaginal Adenosis After CO2 Laser Vaporization and 5-Fluorouracil Therapy

    PubMed Central

    Paczos, Tamera A.; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2016-01-01

    Summary We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO2 laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma. PMID:20173507

  17. Structure and reactivity of Pd-Pt clusters produced by laser vaporization of bulk alloys

    NASA Astrophysics Data System (ADS)

    Rousset, J. L.; Cadrot, A. M.; Lianos, L.; Renouprez, A. J.

    Pd-Pt nanoclusters are obtained by the focusing of an Nd:YAG laser onto rods of alloys. The aggregates, which are produced by plasma cooling via short helium bursts synchronized with the laser pulses, are collected on amorphous carbon or silicon substrates, in a UHV chamber. Transmission electron microscopy (TEM) experiments show that the diameters of the clusters range between 1.5 and 4.5 nm, and analytical microscopy indicates that they have the same composition as the vaporized rods. Low-energy ion scattering (LEIS) also shows that the surface of the obtained clusters is Pd enriched: the Pd concentration in the first atomic layer is found to be equal to 38% for a Pd17Pt83 rod composition and 87% for the Pd65 Pt35 alloy. The catalytic activity of these clusters in the hydrogenation of 1,3-butadiene to butenes and butane is measured in static mode, with mass spectrometry detection. The reactivity of the bimetallic clusters is explained by the atomic local order and low-coordination sites considered as ``hot sites''.

  18. Primary vaginal adenocarcinoma arising in vaginal adenosis after CO2 laser vaporization and 5-fluorouracil therapy.

    PubMed

    Paczos, Tamera A; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2010-03-01

    We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO(2) laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma.

  19. Holmium laser enucleation versus photoselective vaporization for prostatic adenoma greater than 60 ml: preliminary results of a prospective, randomized clinical trial.

    PubMed

    Elmansy, Hazem; Baazeem, Abdulaziz; Kotb, Ahmed; Badawy, Hesham; Riad, Essam; Emran, Ashraf; Elhilali, Mostafa

    2012-07-01

    To our knowledge we report the first single center, prospective, randomized study comparing holmium laser enucleation and high performance GreenLight™ prostate photoselective vaporization as surgical treatment of prostatic adenomas greater than 60 ml. A total of 80 patients with a large prostatic adenoma were randomly assigned to surgical treatment with holmium laser enucleation or photoselective vaporization. International Prostate Symptom Score, International Index of Erectile Function-15, maximum flow rate, post-void residual urine, serum prostate specific antigen and transrectal ultrasound volume were recorded. Patient baseline characteristics were similar for holmium laser enucleation and photoselective vaporization. Operative time and catheter removal time were almost equal in the 2 groups (p = 0.7 and 0.2, respectively). Eight vaporization cases were converted to transurethral prostate resection or holmium laser enucleation intraoperatively due to bleeding. A significantly higher maximum flow rate and lower post-void residual urine were noted in holmium laser cases during the entire followup (at 1 year each p = 0.02). However, no significant difference in International Prostate Symptom Score, quality of life or International Index of Erectile Function-15 was detected. Prostate volume and serum PSA decreased 78% and 88% in the holmium laser group, and 52% and 60% in the vaporization group, respectively. Holmium laser enucleation and photoselective vaporization are effective for lower urinary tract symptoms due to a large prostatic adenoma. Early subjective functional results (maximum flow rate and post-void residual urine) of holmium laser enucleation appear to be superior to those of photoselective vaporization. In our hands cases intended to be treated with photoselective vaporization were at 22% risk of conversion to another modality. This could reflect our determination to vaporize to the capsule in all vaporization cases. Copyright © 2012 American

  20. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  1. A COMPARISON OF FOUR METHODS FOR DETERMINING PRECIPITABLE WATER VAPOR CONTENT FROM MULTI-SPECTRAL DATA

    SciTech Connect

    K. HIRSCH; ET AL

    2001-03-01

    Determining columnar water vapor is a fundamental problem in remote sensing. This measurement is important both for understanding atmospheric variability and also from removing atmospheric effects from remotely sensed data. Therefore discovering a reliable and if possible automated method for determining water vapor column abundance is important. There are two standard methods for determining precipitable water vapor during the daytime from multi-spectral data. The first method is the Continuum Interpolated Band Ratio (CIBR) (see for example King et al. 1996). This method assumes a baseline and measures the depth of a water vapor feature as compared to this baseline. The second method is the Atmospheric Pre-corrected Differential Absorption technique (APDA) (see Schlaepfer et al. 1998); this method accounts for the path radiance contribution to the top of atmosphere radiance measurement which is increasingly important at lower and lower reflectance values. We have also developed two methods of modifying CIBR. We use a simple curve fitting procedure to account for and remove any systematic errors due to low reflectance while still preserving the random spread of the CIBR values as a function of surface reflectance. We also have developed a two-dimensional look-up table for CIBR; CIBR using this technique is a function of both water vapor (as with all CIBR techniques) and surface reflectance. Here we use data recently acquired with the Multi-spectral Thermal Imager spacecraft (MTI) to compare these four methods of determining columnar water vapor content.

  2. Helium Nanodroplet Isolation of Ionic Liquid Vapor: Inrared Laser Spectroscopy of [EMIM][Tf_2N

    NASA Astrophysics Data System (ADS)

    Flynn, Steven D.; Douberly, Gary E.

    2012-06-01

    The Infrared spectrum of the vapor produced upon thermal vaporization of the [emim][Tf_2N] ionic liquid has been obtained using the helium nanodroplet isolation method. Despite the low vapor pressure of [emim][Tf_2N], sufficient gas phase densities are produced, allowing for efficient helium nanodroplet pick-up. The mass spectrum of the emim[Tf_2N] doped droplet beam shows signatures that have been attributed in gas phase measurements to the presence of isolated, intact [emim][Tf_2N] ion-pairs. Furthermore, the mass spectrometry results indicate that emim[Tf_2N] does not undergo thermal decomposition at 410 K. Comparisons are made between the experimental measurements and ab initio calculations (mp2/6-311++g(d,p)) of the CH stretch vibrational bands and permanent electric dipole moments for several [emim][Tf_2N] low energy isomers. The helium nanodroplet infrared spectrum of this species provides rather definitive support to the previously suggested vaporization mechanism of ionic liquids. [emim][Tf_2N] is defined as 1-ethyl-3-methylimidazolium[bis(trifluoromethylsulfonyl)imide] Armstrong, J.P.; Hurst, C.; Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Satterley, C. J.; Villar-Garcia, I. J. Physical Chemistry Chemical Physics 2007, 9, 982. Strasser, D.; Goulay, F.; Belau, L.; Kostko, O.; Koh, C.; Chambreau, S. D.; Vaghjiani, G. L.; Ahmed, M.; Leone, S. R. Journal of Physical Chemistry A 2010, 114, 879. Strasser, D.; Goulay, F.; Kelkar, M. S.; Maginn, E. J.; Leone, S. R. Journal of Physical Chemistry A 2007, 111, 3191. Chambreau, S. D.; Vaghjiani, G. L.; To, A.; Koh, C.; Strasser, D.; Kostko, O.; Leone, S. R. Journal of Physical Chemistry B 2010, 114, 1361. Maginn, E. J.; Kelkar, M. S. Journal of Physical Chemistry B 2007, 111, 9424.

  3. Rapid and Localized Synthesis of Single-Walled Carbon Nanotubes on Flat Surface by Laser-Assisted Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kasuya, Keigo; Nagato, Keisuke; Jin, Yusuke; Morii, Hiroshi; Ooi, Takeshi; Nakao, Masayuki

    2007-04-01

    The synthesis of single-walled carbon nanotubes (SWNTs) at a controlled position on a flat surface was demonstrated by laser-assisted chemical vapor deposition (CVD). The developed multilayer substrate including an energy-confining layer (ECL) enabled the efficient heating of catalysts on the surface, resulting in the rapid and localized syntheses of SWNTs. Using a Nd:YAG laser as a heat source, we achieved the rapid synthesis with laser irradiation for 1 s and the localized synthesis in an area of approximately 1 μm diameter. In addition, the scanning of the laser irradiation spot at a rate of 1 μm/s enabled the line-patterned synthesis of SWNTs at a linewidth of 2 μm. The resulting synthesis of SWNTs on a flat surface by laser-assisted CVD will lead to the easy and controllable fabrication of SWNT-based nanodevices.

  4. High rate, large area laser-assisted chemical vapor deposition of nickel from nickel carbonyl

    NASA Astrophysics Data System (ADS)

    Paserin, Vlad

    High-power diode lasers (HPDL) are being increasingly used in industrial applications. Deposition of nickel from nickel carbonyl (Ni(CO)4 ) precursor by laser-induced chemical vapor deposition (CVD) was studied with emphasis on achieving high deposition rates. An HPDL system was used to provide a novel energy source facilitating a simple and compact design of the energy delivery system. Nickel deposits on complex, 3-dimensional polyurethane foam substrates were prepared and characterized. The resulting "nickel foam" represents a novel material of high porosity (>95% by volume) finding uses, among others, in the production of rechargeable battery and fuel cell electrodes and as a specialty high-temperature filtration medium. Deposition rates up to ˜19 mum/min were achieved by optimizing the gas precursor flow pattern and energy delivery to the substrate surface using a 480W diode laser. Factors affecting the transition from purely heterogeneous decomposition to a combined hetero- and homogeneous decomposition of nickel carbonyl were studied. High quality, uniform 3-D deposits produced at a rate more than ten times higher than in commercial processes were obtained by careful balance of mass transport (gas flow) and energy delivery (laser power). Cross-flow of the gases through the porous substrate was found to be essential in facilitating mass transport and for obtaining uniform deposits at high rates. When controlling the process in a transient regime (near the onset of homogenous decomposition), unique morphology features formed as part of the deposits, including textured surface with pyramid-shape crystallites, spherical and non-spherical particles and filaments. Operating the laser in a pulsed mode produced smooth, nano-crystalline deposits with sub-100 nm grains. The effect of H2S, a commonly used additive in nickel carbonyl CVD, was studied using both polyurethane and nickel foam substrates. H2S was shown to improve the substrate coverage and deposit

  5. Prospective evaluation of ambulatory laser vaporization of the prostate for benign prostatic hyperplasia.

    PubMed

    Berquet, Gaetan; Corbel, Luc; Della Negra, Emmanuel; Huet, Romain; Trifard, François; Codet, Yann; Boulière, Fabien; Verhoest, Grégory; Vincendeau, Sébastien; Bensalah, Karim; Mathieu, Romain

    2015-07-01

    Photoselective vaporization of the prostate (PVP) is an alternative to transurethral resection of the prostate in the surgical treatment of benign prostatic hyperplasia (BPH). Our objective was to prospectively evaluate the feasibility, safety, and efficacy of ambulatory photoselective vaporization of the prostate for benign prostatic hyperplasia. We prospectively collected data of all consecutive patients who underwent ambulatory PVP with the Greenlight(®) laser 180-W XPS at two centers between May 2012 and June 2013. Patients' characteristics, perioperative data, postoperative outcomes, complications, and patient's satisfaction were evaluated. Successful ambulatory care procedure was defined as the ability to leave the hospital in the evening of the operation. The ambulatory procedure was intended in 134 patients. Mean age was 67 years. Mean prostate volume was 54 ml, and Median American Society Anesthesiologists (ASA) score was 2. Ambulatory procedure was successful in 121 patients (90%). At 3 months, International Prostate Symptom Score (7.3 ± 4.9), maximal urinary flow rate (20.8 ± 7.6 ml/s), postvoid residual urine (19.2 ± 71 ml), and quality of life (1.6 ± 1.4) were significantly improved (P < 0.001). Fourteen patients (10.5%) had complications that were all minor (Clavien ≤ 2). Two patients had to be readmitted to the hospital. The majority of patients (89%) were satisfied with ambulatory care. Failure to complete ambulatory procedure was mostly related to logistical problem (70% of the cases). Ambulatory PVP is feasible with functional results and complications comparable to that of traditional hospitalization. Ambulatory care yields high patient's satisfaction. © 2015 Wiley Periodicals, Inc.

  6. Vapor pressure measurements on low-volatility terpenoid compounds by the concatenated gas saturation method.

    PubMed

    Widegren, Jason A; Bruno, Thomas J

    2010-01-01

    The atmospheric oxidation of monoterpenes plays a central role in the formation of secondary organic aerosols (SOAs), which have important effects on the weather and climate. However, models of SOA formation have large uncertainties. One reason for this is that SOA formation depends directly on the vapor pressures of the monoterpene oxidation products, but few vapor pressures have been reported for these compounds. As a result, models of SOA formation have had to rely on estimated values of vapor pressure. To alleviate this problem, we have developed the concatenated gas saturation method, which is a simple, reliable, high-throughput method for measuring the vapor pressures of low-volatility compounds. The concatenated gas saturation method represents a significant advance over traditional gas saturation methods. Instead of a single saturator and trap, the concatenated method uses several pairs of saturators and traps linked in series. Consequently, several measurements of vapor pressure can be made simultaneously, which greatly increases the rate of data collection. It also allows for the simultaneous measurement of a control compound, which is important for ensuring data quality. In this paper we demonstrate the use of the concatenated gas saturation method by determination of the vapor pressures of five monoterpene oxidation products and n-tetradecane (the control compound) over the temperature range 283.15-313.15 K. Over this temperature range, the vapor pressures ranged from about 0.5 Pa to about 70 Pa. The standard molar enthalpies of vaporization or sublimation were determined by use of the Clausius-Clapeyron equation.

  7. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere.

    PubMed

    Sargent, M R; Sayres, D S; Smith, J B; Witinski, M; Allen, N T; Demusz, J N; Rivero, M; Tuozzolo, C; Anderson, J G

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT∕LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT∕LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons

  8. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Witinski, M.; Allen, N. T.; Demusz, J. N.; Rivero, M.; Tuozzolo, C.; Anderson, J. G.

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT/LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in

  9. A novel “sandwich” method for observation of the keyhole in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chen, Genyu; Wei, Haiying; Zhang, Jun

    2008-02-01

    A sandwich method was used to observe the keyhole in deep penetration laser welding, which provided an effective way to analyze both the Fresnel and inverse Bremsstrahlung absorption. In the transparent metal-analog system, different densities of metal vapor, ionized atoms, and free electrons in the keyhole can be simulated by changing the thickness of aluminum films. The research results show that inverse Bremsstrahlung absorption exerts a tremendous influence on the energy absorption of the laser beam for CO 2 laser welding. Low density of keyhole plasma benefits the incident laser energy coupling to the materials. However, excess density of keyhole plasma baffles the transmission of the incident laser beam to the interior material. By comparing inflow energy and outflow energy, there exits an energy balance on the keyhole wall by balancing the absorbed laser intensity and heat flux on the wall.

  10. Pulsed carbon dioxide laser for cartilage vaporization and subchondral bone perforation in horses. Part I: Technique and clinical results.

    PubMed

    Roth, J E; Nixon, A J; Gantz, V A; Meyer, D; Mohammed, H

    1991-01-01

    A carbon dioxide laser, used in a rapidly pulsed mode, was evaluated for intra-articular use in horses. Under arthroscopic guidance, a lensed 5 mm laser probe attached directly to a hand-held carbon dioxide laser was inserted into one intercarpal joint of eight horses. In four horses, a cartilage crater 1 cm in diameter was created to the level of the subchondral bone of the articular surface of the third carpal bone. In four horses, the laser was directed perpendicular to the articular surface of the third carpal bone and activated to penetrate the cartilage and subchondral bone. The intercarpal joint of the opposite carpus in each horse was subjected to arthroscopic examination and insertion of the laser probe for an equivalent time. The laser was not activated and these joints served as sham operated controls. The horses were evaluated clinically for 8 weeks, then euthanatized, and the joints were examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. The carbon dioxide laser is a useful intra-articular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  11. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives.

    PubMed

    Lohbauer, Ulrich; Wagner, Andrea; Belli, Renan; Stoetzel, Christian; Hilpert, Andrea; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A

    2010-12-01

    Zirconia nanoparticles prepared by laser vaporization were incorporated into the primer or into the adhesive of a commercial adhesive system in order to evaluate its effect on bond strength to dentin. Zirconia nanoparticles (20-50nm) were prepared using a particular laser vaporization technique and incorporated into the primer (P) or into the adhesive (A) of the Adper Scotchbond Multi-Purpose (SBMP) system at 5, 10, 15 and 20wt.% by means of mechanical mixing (stirring) and ultrasonication. Control (unfilled) and experimental groups (filled) were applied, according to the manufacturer's instructions, onto flat mid-coronal human dentin. Composite crowns were built up, stored in distilled water for 24h at 37°C and cut into 0.65±0.05mm² beams following a non-trimming microtensile technique. Specimens were fractured in tension using a universal testing machine (Zwick) and examined by scanning electron microscopy for fractographic analysis. Microtensile bond strength (μTBS) data were analyzed using a two-way ANOVA and modified LSD test at α=0.05. Analysis of the nanofiller distribution and ultramorphological characterization of the interface were performed by transmission electron microscopy (TEM). Zirconia nanoparticle incorporation into the primer or into the adhesive of SBMP significantly increased μTBS to dentin. Filler concentration only affected μTBS significantly in the P group. Statistically significant differences between groups P and A occurred only at 20wt.% filler content, with a significantly higher μTBS in group P. TEM micrographs revealed nanoparticle deposition on top of a hybrid layer when incorporated into the primer, whereas they remained dispersed through the adhesive layer in group A. Zirconia nanoparticles incorporation into SBMP increased bond strength to dentin by reinforcing the interface adhesive layer. Nanofiller incorporation into the primer solution showed a tendency of increasing bond strength with increasing concentration. At high

  12. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Asher, W. E.

    2008-05-01

    The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm) and enthalpy of vaporization Δ Hvap (kJ mol-1) of organic compounds as functions of temperature (T). For each compound i, the method assumes log10poL,i (T)=∑kνk,ibk(T) where νk,i is the number of groups of type k, and bk (T) is the contribution to log10poL,i (T) by each group of type k. A zeroeth group is included that uses b0 (T) with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C-C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T) is assumed to follow b(T)=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T) are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σFIT is defined as the average over all points of the absolute value of the difference between experimental and predicted values of log10poL,i (T). After consideration of σFIT for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, σFIT=0.34: on average, poL,i (T) values are predicted to within a factor of 2. Because d(log10 poL,i (T))d(1/T) is related to the enthalpy of vaporization ΔHvap,i, the fitted B provide

  13. SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Asher, W. E.

    2007-08-01

    The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure pLo (atm) and enthalpy of vaporization ΔHvap (kJ mol-1) of organic compounds as functions of temperature (T). For each compound i, the method assumes log10pL,io(T)=Σkνk,ibk(T) where νk,i is the number of groups of type k, and bk(T) is the contribution to log10 pL,io(T) by each group of type k. A zeroeth group is included that uses b0(T) with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C-C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk(T) is assumed to follow b(T)=B1/T+B2+B3T+B4lnT. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions pL,io=fi(T) are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict pLo values is examined using a test set of 161 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σFIT is defined as the average over all points of the absolute value of the difference between experimental and predicted values of log10pL,io(T). After consideration of σFIT for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, σFIT=0.34: on average, pL,io(T) values are predicted to within a factor of 2. Because d(log10pL,io(T))/d(1/T) is related to the enthalpy of vaporization ΔHvap,i, the fitted B provide predictions of

  14. Analysis of Amphiphilic Lipids and Hydrophobic Proteins Using Nonresonant Femtosecond Laser Vaporization with Electrospray Post-Ionization

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-04-01

    Amphiphilic lipids and hydrophobic proteins are vaporized at atmospheric pressure using nonresonant 70 femtosecond (fs) laser pulses followed by electrospray post-ionization prior to being transferred into a time-of-flight mass spectrometer for mass analysis. Measurements of molecules on metal and transparent dielectric surfaces indicate that vaporization occurs through a nonthermal mechanism. The molecules analyzed include the lipids 1-monooleoyl-rac-glycerol, 1,2-dihexanoyl- sn-glycero-3-phosphocholine, 1,2-dimyristoyl- sn-glycero-3-phosphocholine, and the hydrophobic proteins gramicidin A, B, and C. Vaporization of lipids from blood and milk are also presented to demonstrate that lipids in complex systems can be transferred intact into the gas phase for mass analysis.

  15. Determination of Optimal Vapor Pressure Data by the Second and Third Law Methods.

    PubMed

    Nakajima, Kunihisa

    2016-01-01

    Though equilibrium vapor pressures are utilized to determine thermodynamic properties of not only gaseous species but also condensed phases, the obtained data often disagree by a factor of 100 and more. A new data analysis method is proposed using the so-called second and third law procedures to improve accuracy of vapor pressure measurements. It was found from examination of vapor pressures of cesium metaborate and silver that the analysis of the difference between the second and third law values can result in determination of an optimal data set. Since the new thermodynamic method does not require special techniques and or experiences in dealing with measured data, it is reliable and versatile to improve the accuracy of vapor pressure evaluation.

  16. Determination of Optimal Vapor Pressure Data by the Second and Third Law Methods

    PubMed Central

    Nakajima, Kunihisa

    2016-01-01

    Though equilibrium vapor pressures are utilized to determine thermodynamic properties of not only gaseous species but also condensed phases, the obtained data often disagree by a factor of 100 and more. A new data analysis method is proposed using the so-called second and third law procedures to improve accuracy of vapor pressure measurements. It was found from examination of vapor pressures of cesium metaborate and silver that the analysis of the difference between the second and third law values can result in determination of an optimal data set. Since the new thermodynamic method does not require special techniques and or experiences in dealing with measured data, it is reliable and versatile to improve the accuracy of vapor pressure evaluation. PMID:28101442

  17. Intra-operative power measurement of laser fibers during photoselective vaporization of the prostate using the 80W-KTP-Greenlight laser

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Baumgartner, Martin K.; Fatzer, Markus; Rey, Julien M.; Sigrist, Markus W.; Seifert, Hans-Helge

    2008-02-01

    Photoselective vaporization of the Prostate (PVP) using the 80W-Greenlight-PV (R) Laser System (Laserscope (R), San Jose, USA) has been established as a treatment option for patients suffering from obstructive symptoms caused by benign prostatic hyperplasia. However, longer operation time compared to standard trans-urethral resection of the prostate (TURP) and the high costs of the laser fibers are specific problems of this technique. In addition, many clinicians performing PVP complain about a reduced effectiveness of vaporization during treatment. Therefore, power measurement was performed during PVP using the 80W-Greenlight-PV (R) Laser System. Power output was measured at the beginning and also regularly throughout the operation. A total of 40 fibers were investigated in 35 patients. Damage to the tip of the fibers was regularly visible and increased as more energy was supplied. Additionally, in 90% of all fibers a decrease of power output was detectable during the operation. This became pronounced after the application of 200kJ, resulting in an end of lifespan (i.e. 275kJ) median power output of only 20% of the starting value. Corresponding to the clinical observations the impressive damage to the emission window was associated with a substantial decrease of power output during PVP. These observations might explain the impaired vaporization during PVP and a longer operation time compared to conventional TURP. Hence, improvements in the quality of the laser fibers are necessary to advance the efficiency of this promising technology.

  18. Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C.; Skirtach, Andre G.; Braeckmans, Kevin

    2015-03-01

    Macromolecular agents such as nucleic acids and proteins need to be delivered into living cells for therapeutic purposes. Among physical methods to deliver macromolecules across the cell membrane, laser-induced photoporation using plasmonic nanoparticles is a method that is receiving increasing attention in recent years. By irradiating gold nanoparticles bound to the cell membrane with laser light, nanosized membrane pores can be created. Pores are formed by localized heating or by vapour nanobubbles (VNBs) depending on the incident laser energy. Macromolecules in the surrounding cell medium can then diffuse through the transiently formed pores into the cytoplasm. While both heating and VNBs have been reported before for permeabilization of the cell membrane, it remains unclear which of both methods is more efficient in terms of cell loading with minimal cytotoxicity. In this study we report that under condition of a single 7 ns laser pulse VNBs are substantially more efficient for the cytosolic delivery of macromolecules. We conclude that VNB formation is an interesting photoporation mechanism for fast and efficient macromolecular delivery in live cells.

  19. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  20. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  1. Laser spectroscopy with nanometric cells containing atomic vapor of metal: influence of buffer gas

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Hakhumyan, G.; Sargsyan, A.; Mirzoyan, R.; Leroy, C.; Pashayan-Leroy, Y.

    2010-10-01

    Comparison of absorption and fluorescence in a nano-cell containing Rb vapor with other Rb nano-cells with addition of neon gas is presented. It is shown that the effect of collapse and revival of Dicke-type narrowing occurs for Rb nanocells containing N2 as buffer gas under 6 and 20 Torr pressure for the thickness L = λ /2 and L = where λ is the resonant λ, laser wavelength 794 nm (D1 line). Particularly for 6 Torr the line-width of the transmission spectrum for the thickness L =λ/2 is 2 times narrower than that for L = λ. For an ordinary Rb cell with L = 0.1 - 10 cm with addition of buffer gas, the velocity selective optical pumping/saturation (VSOP) resonances in saturated absorption spectra are fully suppressed when the buffer gas pressure > 0.5 Torr. A spectacular difference is that for L = λ, VSOP resonances located at the atomic transitions are still observable even when Ne pressure is >= 6 Torr. Narrowband fluorescence spectra of a nano-cell with L = λ/2 can be used as a convenient tool for online buffer gas pressure monitoring for the conditions when ordinary pressure gauges are unusable. Comparison of electromagnetically induced transparency (EIT) effect in a nano-cell filled with pure (without a buffer gas) Rb with another nano-cell, where buffer gas nitrogen is added, is presented. The use of N2 gas inside Rb nano-cells strongly extends the range of coupling laser detunings in which it is still possible to form EIT resonance.

  2. Growth of thick GaN layers on laser-processed sapphire substrate by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Koyama, Koji; Aida, Hideo; Kim, Seong-Woo; Ikejiri, Kenjiro; Doi, Toshiro; Yamazaki, Tsutomu

    2014-10-01

    A 600 μm thick GaN layer was successfully grown by hydride vapor phase epitaxy by replacing the standard sapphire substrate with that processed by a focused laser beam within the substrate. The effects of the laser processing on the curvature and cracking of the GaN layer were investigated. Microscopic observations of the interior of the thick GaN layer revealed that the laser-processed substrate suppressed the generation of microcracks in the GaN layer. In addition, the laser processing was also found to reduce the change in the curvature during the GaN layer growth in comparison to that on the standard substrate. It is shown that the overlapping microcracks observed in the GaN layer on the standard sapphire substrate lead to serious cracking after thick GaN layer growth.

  3. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II).

    PubMed

    Han, Juhong; Wang, You; Cai, He; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Jiang, Zhigang; Gao, Ming

    2015-04-06

    With high efficiency and small thermally-induced effects in the near-infrared wavelength region, a diode-pumped alkali laser (DPAL) is regarded as combining the major advantages of solid-state lasers and gas-state lasers and obviating their main disadvantages at the same time. Studying the temperature distribution in the cross-section of an alkali-vapor cell is critical to realize high-powered DPAL systems for both static and flowing states. In this report, a theoretical algorithm has been built to investigate the features of a flowing-gas DPAL system by uniting procedures in kinetics, heat transfer, and fluid dynamic together. The thermal features and output characteristics have been simultaneously obtained for different gas velocities. The results have demonstrated the great potential of DPALs in the extremely high-powered laser operation.

  4. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    SciTech Connect

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T.; Symietz, C.; Bonse, J.; Andree, S.; Krüger, J.; Heidmann, B.; Schmid, M.; Lux-Steiner, M.

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  5. Stable and efficient operation of a large-bore copper vapor laser with funnel-shaped, grooved copper electrodes

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, R.; Pasandideh, K.; Zand, M.; Nazari Mahroo, H.

    2017-03-01

    Using an appropriate design of electrodes and adjustment of the thyratron decoupling circuit as a high-repetition-rate and high-voltage switch, very stable operation of a copper vapor laser at high pressures was obtained. This was achieved by canceling the intense filamentation in the laser plasma at the higher pressures. The transverse grooves on the inner surface of the funnel-shaped copper electrodes permit operation of the laser up to 100 torr. This design reduces the cathode-fall voltage, and as a result reduces the thermal loading in the cathode-fall region. The optimum pressure was 80 torr. At this condition the output power was more than that observed with expensive molybdenum electrodes in a similar laser system.

  6. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  7. Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Menyuk, Norman; Killinger, Dennis K.

    1987-01-01

    A differential-absorption lidar system has been developed which uses a continuously tunable (1.5-2.3 micron) cobalt-doped magnesium fluoride laser as the radiation source. Preliminary atmospheric measurements of water vapor, HCl, and CH4 have been made with this system, including both path-averaged and ranged-resolved DIAL measurements at ranges up to 6 and 3 km, respectively.

  8. Efficacy and Safety of Transurethral Photoselective Greenlight(™) Laser Vaporization for the Treatment of Orthotopic Ureteroceles in Adults.

    PubMed

    Liu, Cuilong; Chen, Weihao; Xie, Changliang; Guan, Weimin; Zhao, Yubo; Ouyang, Yun; Xu, Yansheng; Wu, Yiguang; Wang, Xiyou; Wang, Yi; Zhang, Xinyu

    2015-06-01

    This study aimed to retrospectively evaluate the safety and efficacy of transurethral photoselective Greenlight(™) laser vaporization in adult patients with orthotopic ureterocele. Thirty adult patients diagnosed with orthotopic urecterocele were recruited at our center. Transurethral photoselective Greenlight laser vaporization was used as the exclusive technique for endoscopic management during the study period. Information, including age, gender, mode of presentation, ureterocele size, vesicoureteral reflux, hydronephrosis status, and incidence of reoperation, were collected for evaluation. Our series included 12 men and 18 women. The mean patient age at presentation was 30.5 years (range, 18-62 years). The mean size of ureterocele was 18 mm (range, 10-41 mm). All patients successfully underwent transurethral photoselective Greenlight laser to vaporize the ureterocele. The operation ranged from 13 min to 38 min (mean 19.6 min). The average blood loss was <10 mL. No patient had intraoperative complications. The average postoperative hospital stay was 18.3 h. All patients were voided after postoperative catheter removal. None of the patients demonstrated any residual ureterocele and/or hydronephrosis when evaluated with ultrasonography after 3 months. Only one patient with a duplex collecting system presented asymptomatic low-grade reflux at 3 months, which was spontaneously resolved after 6 months of follow-up. All patients were free of any symptoms. No reoperative procedures were required at a mean follow-up of 14.2 months (range, 8-16). Transurethral photoselective Greenlight laser vaporization is safe, effective, and efficient for the management of orthotopic urecteroceles in adults. Therefore, this technique should be considered as the initial treatment in most patients.

  9. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  10. Holmium:YAG transurethral incision versus laser photoselective vaporization for benign prostatic hyperplasia in a small prostate.

    PubMed

    Elshal, Ahmed M; Elkoushy, Mohamed A; Elmansy, Hazem M; Sampalis, John; Elhilali, Mostafa M

    2014-01-01

    We assess the perioperative, short-term and long-term functional outcomes of treating bladder outlet obstruction secondary to a small prostate by 1 of 2 laser techniques. A retrospective review using a prospectively maintained database was performed of patients treated for bladder outlet obstruction secondary to a prostate smaller than 40 ml. Patients who were treated with GreenLight™ photoselective vaporization of the prostate or holmium laser transurethral incision of the prostate were included in the study. From January 2002 through December 2010, 191 cases of 1,682 laser prostate surgeries were described. GreenLight photoselective vaporization of the prostate was performed in 144 (75.4%) cases and holmium laser transurethral incision of the prostate was performed in 47 (24.6%) cases. A significantly shorter mean operating time, hospital stay and catheter duration were observed in the holmium laser transurethral incision of the prostate group (30.3 ± 16 minutes, 0.8 ± 0.8 days and 1.3 ± 1.9 days, respectively) than in the photoselective vaporization of the prostate group (45.8 ± 22 minutes, 0.3 ± 0.4 days and 0.4 ± 0.6 days, respectively, p <0.05). At 1 and 5 years after photoselective vaporization of the prostate there were reductions in mean International Prostate Symptom Score, quality of life score and residual urine with improvement in mean maximal flow rate of 57.7% and 62.8%, 58.3% and 57.2%, 65.4% and 73%, and 127.6% and 167.1%, respectively. At 1 and 5 years after holmium laser transurethral incision of the prostate there were reductions in mean International Prostate Symptom Score, quality of life score and residual urine with improvement of mean maximal flow rate of 55.3% and 52.8%, 49.2% and 49%, 45% and 78.1%, and 67.4% and 35.4%, respectively. Subjective and objective urine flow parameters were comparable at different followup points. There was no significant difference between the 2 groups in terms of early and late complications (p >0

  11. Vaporization of the prostate with 150-w thulium laser: complications with 6-month follow-up.

    PubMed

    Vargas, César; García-Larrosa, Alejandro; Capdevila, Santiago; Laborda, Ainhoa

    2014-07-01

    Purpose: To analyze the efficacy and safety of vaporization of the prostate (VP) with the 150-W thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In a prospective series of 55 patients with small- and medium-size prostates undergoing major outpatient surgery (MOS), the primary objectives were to analyze changes in maximum flow (Qmax) and International Prostate Symptom Score (IPSS) after 6 months. Immediate (<30 days) and late (>30 days) complications were subsequently recorded. An increase in mean Qmax of 9.33 mL/s (95% confidence interval [CI] of the mean difference 6.73-11.93; P<0.001) was recorded, and mean IPSS was reduced by 16.88 points (95% CI 14.22-19.54; P<0.001). The immediate complications recorded were acute urinary retention (one patient), urinary tract infection without fever (two patients), and macroscopic hematuria (two patients). The only late complication observed was bladder neck sclerosis (one patient). After 6 months, VP with 150-W Tm:YAG presents promising results in the clinical improvement of patients with small- and medium-size prostates. Its complication rate is low and it offers excellent hemostasis. The data from our study provide the basis for the design of clinical trials to compare this technique with other procedures.

  12. MW Spectroscopy Coupled with Ultrafast UV Laser Vaporization: Succinic Acid in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Mendez, Estibaliz; Ecija, Patricia; Cocinero, Emilio J.; Castano, Fernando; Basterretxea, Francisco J.; Godfrey, Peter D.; McNaughton, Don; Jahn, Michaela K.; Nair, K. P. Rajappan; Grabow, Jens-Uwe

    2013-06-01

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. In order to understand the nucleation process, here we report an experimental and theoretical investigation of chemical structure of succinic acid. We have used the technique of Fourier Transform Microwave Spectroscopy (FTMW). Succinic acid was vaporized by UV ultrafast laser ablation to suppress thermal decomposition processes^a and seeded into an expanding stream of Ne forming a supersonic jet. The rotational spectrum detected the presence of a single most stable conformation in the cm- mm- wave regions for which accurate rotational and centrifugal distortion parameters have been determined. The study was extended to all monosubstituted isotopic species (^{13}C, ^{18}O, D(O)), which were positively identified, leading to an accurate determination of the effective and substitution structures of the molecule. The experimental study was supplemented by ab initio (MP2) and DFT (M06-2X and B3LYP) calculations. ^{a} E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño, Angew. Chem. Int. Ed., 51, 3119-3124, 2012.

  13. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.

    PubMed

    Wang, Yuliang; Zaytsev, Mikhail E; The, Hai Le; Eijkel, Jan C T; Zandvliet, Harold J W; Zhang, Xuehua; Lohse, Detlef

    2017-02-28

    Microbubbles produced by exposing water-immersed metallic nanoparticles to resonant light play an important role in emerging and efficient plasmonic-enhanced processes for catalytic conversion, solar energy harvesting, biomedical imaging, and cancer therapy. How do these bubbles form, and what is their gas composition? In this paper, the growth dynamics of nucleating bubbles around laser-irradiated, water-immersed Au plasmonic nanoparticles are studied to determine the exact origin of the occurrence and growth of these bubbles. The microbubbles' contact angle, footprint diameter, and radius of curvature were measured in air-equilibrated water (AEW) and degassed water (DGW) with fast imaging. Our experimental data reveals that the growth dynamics can be divided into two regimes: an initial bubble nucleation phase (regime I, < 10 ms) and, subsequently a bubble growth phase (regime II). The explosive growth in regime I is identical for AEW and DGW due to the vaporization of water. However, the slower growth in regime II is distinctly different for AEW and DGW, which is attributed to the uptake of dissolved gas expelled from the water around the hot nanoparticle. Our scaling analysis reveals that the bubble radius scales with time as R(t) ∝ t(1/6) for both AEW and DGW in the initial regime I, whereas in the later regime II it scales as R(t) ∝ t(1/3) for AEW and is constant for perfectly degassed water. These scaling relations are consistent with the experiments.

  14. Spectroscopically pure metal vapor source for highly charged ion spectroscopy and capillary discharge soft x-ray lasers.

    PubMed

    Tomasel, F G; Shlyaptsev, V N; Rocca, J J

    2008-01-01

    We describe a compact, pulsed metal vapor source used for the production of dense plasma columns of interest for both soft x-ray laser research and spectroscopy of highly ionized plasmas. The source generates spectroscopically pure cadmium vapor jets in a room-temperature environment by rapidly heating an electrode with a capacitive discharge. In the configuration described herein, the metal vapor jet produced by the source is axially injected into a fast (up to 15 kA/ ns), high current (up to 200 kA peak) capillary discharge to generate highly ionized cadmium plasma columns. Spectroscopic analysis of the discharge emission in the 12-25 nm spectral range evidences the dominance of Cu-like (CdXX) and Ni-like (CdXXI) lines and shows strong line emission at 13.2 nm from the 4d (1)S(0)-4p (1)P(1) laser transition of Ni-like Cd. Hydrodynamic/atomic physics simulations performed to describe the dynamics of the plasma column and compute the optimum discharge conditions for laser amplification are discussed.

  15. Reinjection laser oscillator and method

    DOEpatents

    McLellan, Edward J.

    1984-01-01

    A uv preionized CO.sub.2 oscillator with integral four-pass amplifier capable of providing 1 to 5 GW laser pulses with pulse widths from 0.1 to 0.5 ns full width at half-maximum (FWHM) is described. The apparatus is operated at any pressure from 1 atm to 10 atm without the necessity of complex high voltage electronics. The reinjection technique employed gives rise to a compact, efficient system that is particularly immune to alignment instabilities with a minimal amount of hardware and complexity.

  16. The Growth and Characterization of Iii-V Compound Semiconductor Materials by Metalorganic Chemical Vapor Deposition and Laser Photochemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    York, Pamela Kay

    Despite the vast use of metalorganic chemical vapor deposition (MOCVD) for the growth of optical and electronic devices, it is a process for which the details of the reaction mechanisms are not well understood. Efforts aimed at gaining insight into growth-related matters will be described here and involve deposition in both the low temperature, kinetically-controlled growth regime (< 600^circC) as well as the conventional, diffusion-limited growth regime (600 -800^circC). For deposition at lower temperatures, an ultraviolet excimer laser is used to assist in the growth of GaAs, motivated by the fact that the common MOCVD precursors such as trimethylgallium and arsine are absorbing in the ultraviolet region of the spectrum. Progress toward obtaining device quality material with growth at reduced substrate temperatures in the presence of laser irradiation is assessed. Furthermore, historically, only lattice-matched heterostructures were considered feasible options for device applications. However, the combining of the lattice-mismatched and therefore strained layers of InGaAs-GaAs-AlGaAs significantly extends the range of material parameters and increases the flexibility in the band structure engineering of electronic and optical devices. The existence of strain brings about several important modifications to the energy band structure that lead to improved performance over unstrained quantum well lasers. The unique metallurgical aspects of strained materials and, in particular, the consequences of mixing the seemingly incompatible alloys of In_ {rm x}Ga_{rm 1-x}As and Al_{rm y}Ga_{rm 1-y} As on GaAs are presented and discussed here. A brief theoretical formulation of strain-induced modifications to the InGaAs band structure, the relevance of these changes to quantum well lasers, and experimental observations in various sets of experiments designed to ascertain the viability of strained InGaAs-GaAs-AlGaAs quantum well lasers are described.

  17. Algorithm for Evaluation of Temperature 3D-Distribution of a Vapor Cell in a Diode End-pumped Alkali Laser System

    NASA Astrophysics Data System (ADS)

    Han, J. H.; Wang, Y.; Cai, H.; An, G. F.; Rong, K. P.; Yu, H.; Wang, S. Y.; Wang, H. Y.; Zhang, W.; Xue, L. P.; Zhou, J.

    2017-06-01

    We develop a new 3D-model to evaluate the light characteristics and the thermal features of a cesium-vapor laser end-pumped by a laser diode. The theoretical model is based on the principles of both heat transfer and laser kinetics. The 3-dimensional population density distribution and temperature distribution are both systematically obtained and analyzed. The methodology is thought to be useful for realization of a high-powered diode-pumped alkali laser (DPAL) in the future.

  18. Simple Method To Measure the Vapor Pressure of Phthalates and Their Alternatives.

    PubMed

    Wu, Yaoxing; Eichler, Clara M A; Chen, Shengyang; Little, John C

    2016-09-20

    Phthalates and alternative plasticizers are semivolatile organic compounds (SVOCs), an important class of indoor pollutants that may have significant adverse effects on human health. Unfortunately, models that predict emissions of and the resulting exposure to SVOCs have substantial uncertainties. One reason is that the characteristics governing emissions, transport, and exposure are usually strongly dependent on vapor pressure. Furthermore, available data for phthalates exhibit significant variability, and vapor pressures for the various alternatives are usually unavailable. For these reasons, a new approach based on modeling of the evaporation process was developed to determine vapor pressures of phthalates and alternate plasticizers. A laminar flow forced convection model was used in the design of a partial saturator (PS) tube. The mass transfer mechanisms in the PS tube are accurately modeled and enable the determination of vapor pressure even when the carrier gas is not completely saturated, avoiding the complicated procedure to establish vapor saturation. The measured vapor pressures ranged from about 10(-2) to 10(-7) Pa. Compared to the traditional gas saturation method, the model-based approach is advantageous in terms of both predictability and simplicity. The knowledge provides new insight into experimental design and a sound basis for further method development.

  19. Method for forming electrically charged laser targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1979-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  20. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume

    PubMed Central

    Kim, Kang Sup; Choi, Jin Bong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Kim, Sae Woong

    2016-01-01

    Objective Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Methods Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters—such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications—were compared between the groups. Results PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001). There was no significant difference in postoperative complications between the two groups. Conclusion Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume. PMID:27227564

  1. CO oxidation activity of Cu-CeO2 nano-composite catalysts prepared by laser vaporization and controlled condensation

    NASA Astrophysics Data System (ADS)

    Sundar, Rangaraj S.; Deevi, Sarojini

    2006-08-01

    Ceria supported copper catalysts were synthesized by laser vaporization and controlled condensation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and temperature programmed reduction (TPR). The catalytic activity of the nanopowders for CO oxidation reaction was tested in a fixed bed flow tube reactor in Ar-20%O2-4%CO mixture. Irrespective of the copper content, the catalytic activity of the nanopowders is similar in the initial CO test, and the catalytic activity improves (i.e. the light-off temperature decreases) during a subsequent run. The lowest light-off temperature during the second run is recorded in the material with 20% copper. TEM studies on 20%Cu-CeO2 sample in the as-prepared condition and after CO test exhibit two types of ceria particles namely, polygonal particles 3-5 nm in size and spherical particles of 15-20 nm in size. Rapid cooling of the nanoparticles formed during the laser ablation results in incorporation of a large amount of copper within the ceria as solid solution. Presence of solid solution of copper is confirmed by EDAX and electron diffraction analyses. In addition, copper-rich surface layer of Cu2O is found over the spherical particles. The cerium oxide components are essentially identical before and after CO test, except that the polygonal CeO2 particles contain newly formed fine crystals of CuO. TPR results reveal two reduction peaks, which further supports, the presence of two different copper species in the material. The shift in light-off temperature during the second run is attributed to the synergistic interaction between newly formed CuO crystals with the CeO2 matrix.

  2. In situ metalorganic vapor phase epitaxy control of GaAs/AlAs Bragg reflectors by laser reflectometry at 514 nm

    NASA Astrophysics Data System (ADS)

    Raffle, Y.; Kuszelewicz, R.; Azoulay, R.; Le Roux, G.; Michel, J. C.; Dugrand, L.; Toussaere, E.

    1993-12-01

    In situ reflectometry with a 514-nm laser beam was used to monitor AlAs and GaAs layer thicknesses grown by metalorganic vapor phase epitaxy. The effective optical indices of these materials have been calibrated at the growth temperature by using an original method based on ex situ double crystal x-ray diffraction measurement. According to these measured indices, the in situ laser reflectometry at 514 nm appears to be well suited for a real-time thickness control of the GaAs/AlAs based Bragg reflectors. Finally, Bragg reflectors centered at 980 nm have been grown using the reflectometry at 514 nm. X-ray diffraction and reflectivity measurements performed on these reflectors confirm a 1% reproducibility and accuracy of the wavelength stop band center.

  3. Method for laser spot welding monitoring

    NASA Astrophysics Data System (ADS)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  4. Research remote laser methods for radionuclides monitoring

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, Valentin V.; Grishkanich, Alexander S.; Bespalov, V. G.; Vasil'ev, Sergey K.; Zhevlakov, A. P.

    2014-05-01

    Laser sensing can serve as a highly effective method of searching and monitoring of radioactive contamination. The first method is essence consists in definition the Sr90 and Сs137 concentration by excitation and registration of fluorescence at wavelength of λ = 0.347÷7.0 μm at laser sounding. The second method experiments were carried out under the Raman-scattering circuit. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 108÷109 сm-3 on a safe distance from the infected object.

  5. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  6. Vapor pressure measurements by mass loss transpiration method with a thermogravimetric apparatus.

    PubMed

    Viswanathan, R; Narasimhan, T S Lakshmi; Nalini, S

    2009-06-18

    Thermobalances are used for equilibrium vapor pressure measurements based on both effusion and transpiration methods. In the case of the transpiration method, however, despite the numerous advantages a thermogravimetric apparatus can offer, it is not as widely used as is the conventional apparatus. In this paper, the difference that can exist in the vapor phase compositions in an effusion cell and in a transpiration cell is shown first with two examples. Subsequently, how a commercial thermobalance was utilized to perform transpiration experiments that conform to the basic principle of the transpiration method and yield vapor pressures consistent with the Knudsen effusion mass spectrometric method is described. The three systems investigated are CsI(s), TeO(2)(s), and Te(s), each known to vaporize congruently, but in different manner. A critical analysis was performed on the information available in the literature on transpiration measurements using thermogravimetric apparatuses, and the salient findings are discussed. Smaller plateau regions than with conventional transpiration apparatuses and the lack of evidence for perfect transpiration conditions in some transpiration thermogravimetric investigations are shown with a few examples. A recommendation is made for the use of the rate of mass loss versus flow rate plot to ascertain that the usual apparent vapor pressure versus flow rate plot corresponds to a meaningful transpiration experiment.

  7. Design and testing of a compact diode-laser-based differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Carlsten, John L.

    2009-08-01

    A compact, widely tunable semiconductor based water vapor differential absorption lidar (DIAL) has been built and tested at Montana State University (MSU). The laser transmitter uses a tunable external cavity diode laser (ECDL) with a center wavelength of 830 nm to injection seed two cascaded tapered semiconductor optical amplifier (SOA), producing 1.5 micro joule pulses at a pulse repetition rate and pulse width duration of 20 kHz and 1000 ns respectively, allowing for water vapor number density retrievals up to approximately 4 km. Water vapor number density profiles collected with the MSU water vapor DIAL will be compared with co-located radiosonde measurements, demonstrating the instruments ability to measure daytime and nighttime water vapor profiles in the lower troposphere.

  8. Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition.

    PubMed

    Matsuura, Y; Miyagi, M

    1999-04-20

    A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

  9. Aluminum-Coated Hollow Glass Fibers for ArF-Excimer Laser Light Fabricated by Metallorganic Chemical-Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Matsuura, Yuji; Miyagi, Mitsunobu

    1999-04-01

    A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

  10. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  11. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  12. MONITORING METHODS ADAPTABLE TO VAPOR INTRUSION MONITORING - USEPA COMPENDIUM METHODS TO-15, TO-15 SUPPLEMENT (DRAFT), AND TO-17

    EPA Science Inventory

    USEPA ambient air monitoring methods for volatile organic compounds (VOCs) using specially-prepared canisters and solid adsorbents are directly adaptable to monitoring for vapors in the indoor environment. The draft Method TO-15 Supplement, an extension of the USEPA Method TO-15,...

  13. Industrial applications of laser methods profilometry

    SciTech Connect

    Doyle, J.L.

    1995-12-31

    Laser-based profilometry has evolved rapidly over the past ten years. During that period, QUEST Integrated Inc. has been actively involved in the development of systems for a wide variety of NDE applications. The measurement method is based on the principle of optical triangulation. The sensor includes a diode laser which generates the collimated laser beam that is projected orthogonally onto a target surface. Receiving optics, positioned at an oblique angle to the beam, image the reflected light onto a lateral-effect photodetector. Depending on the packaging constraints and resolution requirements, probes use either a single or dual-axis lateral-effect photodetector. As the target surface moves toward or away from the laser source, the imaged light moves across the photodetector in a predictable and repeatable manner. Since the laser beam can be focused to a ``footprint`` as small as a few microns in diameter, this method provides unparalleled spatial resolution. In addition, lateral effect photodetectors are composed or a single silicon element that provides almost infinite lateral resolution. This method was applied to two applications in this paper. The first was to locate and identify flows caused by pitting corrosion in steam generator tubes at nuclear power plants. The second was for inspection of gun tubes by the US army.

  14. Photoselective vaporization prostatectomy: experience with a novel 180 W 532 nm lithium triborate laser and fiber delivery system in living dogs.

    PubMed

    Malek, Reza S; Kang, Hyun Wook; Peng, Yihlih Steven; Stinson, Douglas; Beck, Michael T; Koullick, Ed

    2011-02-01

    We studied vaporization parameters, and anatomical and histopathological outcomes of photoselective vaporization of the prostate with the novel GreenLight™ XPS™ 180 W, 532 nm lithium triborate laser and MoXy™ fiber in a survival model of living dogs. We compared these findings with those of the existing GreenLight HPS™ 120 W 532 nm lithium triborate laser photoselective vaporization of the prostate in living dogs. Eight dogs underwent antegrade photoselective vaporization of the prostate with the 180 W laser delivered through a new 750 μm (vs the existing 600 μm core diameter), 50% larger, spot sized, side firing fiber. Four dogs were sacrificed 3 hours and 8 weeks postoperatively, respectively. We recorded laser energy and time. Prostates were sectioned, measured and histologically analyzed after hematoxylin and eosin, triphenyltetrazolium chloride or Gomori trichrome staining and compared with a normal control. Photoselective vaporization of the prostate with the 180 W laser bloodlessly created a 76% larger cavity (mean 11.8 vs 6.7 cm(3), p = 0.014), vaporized tissue at a 77% higher rate (mean 2.3 vs 1.3 cm(3) per minute, p = 0.03) and did so in 37% less time per volume vaporized (0.5 vs 0.8 minutes per cm(3), p = 0.003). Hematoxylin and eosin, and triphenyltetrazolium chloride staining histologically revealed a 33% thicker mean coagulation zone vs that of 120 W laser photoselective vaporization of the prostate (2.0 ± 0.4 vs 1.5 ± 0.3 mm, p <0.005). In prostates healed for 8 weeks postoperatively hematoxylin and eosin, and Gomori trichrome staining showed re-epithelialized cavities with negligible submucosal fibrosis compared with a normal prostate. GreenLight XPS 180 W 532 nm lithium triborate laser photoselective vaporization of the prostate with the MoXy fiber has a significantly higher vaporization rate and speed with a deeper hemostatic coagulation zone but favorable tissue interaction and healing equal to those of HPS 120 W laser photoselective

  15. Method of increasing biodegradation of sparingly soluble vapors

    DOEpatents

    Cherry, Robert S.

    2000-01-01

    A method for increasing biodegradation of sparingly soluble volatile organic compounds (VOCs) in a bioreactor is disclosed. The method comprises dissolving in the aqueous phase of the bioreactor a water soluble, nontoxic, non-biodegradable polymer having a molecular weight of at least 500 and operable for decreasing the distribution coefficient of the VOCs. Polyoxyalkylene alkanols are preferred polymers. A method of increasing the growth rate of VOC-degrading microorganisms in the bioreactor and a method of increasing the solubility of sparingly soluble VOCs in aqueous solution are also disclosed.

  16. Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua (Inventor)

    2009-01-01

    Briefly described, methods of forming diamond are described. A representative method, among others, includes: providing a substrate in a reaction chamber in a non-magnetic-field microwave plasma system; introducing, in the absence of a gas stream, a liquid precursor substantially free of water and containing methanol and at least one carbon and oxygen containing compound having a carbon to oxygen ratio greater than one, into an inlet of the reaction chamber; vaporizing the liquid precursor; and subjecting the vaporized precursor, in the absence of a carrier gas and in the absence in a reactive gas, to a plasma under conditions effective to disassociate the vaporized precursor and promote diamond growth on the substrate in a pressure range from about 70 to 130 Torr.

  17. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor. Progress report, January-June 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  18. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser

    NASA Astrophysics Data System (ADS)

    Xu, Dongdong; Chen, Fei; Guo, Jin; Shao, Mingzhen; Xie, Jijiang

    2016-09-01

    447.3 nm blue-violet lasers are investigated by extra-cavity single-pass second harmonic generation (SHG) of diode-pumped cesium vapor lasers (Cs-DPALs) using a LBO crystal. Two types of 894.6 nm Cs-DPAL are constructed, and the beam quality factors are Mx2=1.02, My2=1.13 and Mx2=2.13, Mx2=2.66, respectively. The maximum output powers for the two types of Cs-DPAL operating in pulsed mode are 0.692 W and 2.6 W, and the corresponding maximum second harmonics (SH) powers are 9.5 μW and 11.2 μW at optimal focusing parameter of 1.68, respectively. The relative insensitivity of SH power to the LBO crystal temperature and the influence of Cs laser beam quality on the SHG efficiency are analyzed qualitatively.

  19. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection.

    PubMed

    Lux, Oliver; Sarang, Soumya; Williams, Robert J; McKay, Aaron; Mildren, Richard P

    2016-11-28

    We report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode output power in the wavelength range from 1483 to 1488 nm at a conversion efficiency of 21%. Stable single longitudinal mode operation was achieved over the whole tuning range at low power (0.1 W), whereas incorporation of a volume Bragg grating as an output coupler enabled much higher stable power to be attained (0.5 W). A frequency stability of 40 MHz was obtained over a minute without active cavity stabilization. It was found that mode stability is aided via seeding of the second Stokes by four-wave mixing, which leads to a doubling of the mode-hopping interval. The laser was employed for the detection of water vapor in ambient air, demonstrating its potential for remote sensing applications.

  20. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  1. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  2. Progress toward a water-vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Meng, Lei S.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2005-08-01

    Water vapor is one of the most significant constituents of the atmosphere because of its role in cloud formation, precipitation, and interactions with electromagnetic radiation, especially its absorption of longwave infrared radiation. Some details of the role of water vapor and related feedback mechanisms in the Earth system need to be characterized better if local weather, global climate, and the water cycle are to be understood. A Differential Absorption LIDAR (DIAL) with a compact laser diode source may be able to provide boundary-layer water vapor profiles with improved vertical resolution relative to passive remote sensors. While the tradeoff with small DIAL systems is lower vertical resolution relative to large LIDARs, the advantage is that DIAL systems can be built much smaller and more robust at less cost, and consequently are the more ideal choice for creating a multi-point array or satellite-borne system. This paper highlights the progress made at Montana State University towards a water vapor DIAL using a widely tunable amplified external cavity diode laser (ECDL) transmitter. The ECDL is configured in a Littman-Metcalf configuration and was built at Montana State University. It has a continuous wave (cw) output power of 20 mW, a center wavelength of 832 nm, a coarse tuning range of 17 nm, and a continuous tuning range greater than 20 GHz. The ECDL is used to injection seed a tapered amplifier with a cw output power of 500 mW. The spectral characteristics of the ECDL are transferred to the output of the tapered amplifier. The rest of the LIDAR uses commercially available telescopes, filter optics, and detectors. Initial cw and pulsed absorption measurements are presented.

  3. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2011-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of 364 K to 454 K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the 5 PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  4. (SiC)x(AlN)1-x solid-solution grown by physical vapor transport (PVT) method

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Wagner, B.; Berghmans, A.; Knuteson, D. J.; McLaughlin, S.; Kahler, D.; King, M.; Hedrick, J.; Bates, G. M.

    2009-08-01

    (SiC)x (AlN)1-x Solid-solution films were deposited on on-axis Si-face 4H-SiC (0001) substrates by the physical vapor transport (PVT) method. Attempts were made to dope this film with Nd+3 for high power laser applications. SiC or its alloys will have better properties compared to oxides because of extremely high thermal conductivity and damage threshold. The doped film was characterized for its quality by X-ray, Photoluminescence (PL) and scanning electron microscope (SEM). X-ray rocking curves showed that crystals with FWHM of less than 200 arc seconds could be grown. The results were compared with previous results published on rare earth doped SiC material. Effect of annealing at high temperature on PL characteristics is also reported.

  5. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  6. Retrofit device and method to improve humidity control of vapor compression cooling systems

    DOEpatents

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  7. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOEpatents

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  8. Investigation of the lasing characteristics of a barium vapor laser with pulse repetition frequencies up to 320 kHz for navigation

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Polunin, Yu. P.

    2015-11-01

    Results of experimental investigations into the characteristics of a laser on self-terminating transitions of the barium atom with λ = 1499 nm are presented for high pulse repetition frequencies (PRF). The frequency-energy characteristics are investigated in the self-heating mode of laser operation. Record values of PRF for the barium vapor laser, equal to ~320 kHz, have been attained.

  9. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    DTIC Science & Technology

    2014-07-01

    Triaminoguanidinium-1-methyl-5-nitriminotetrazolate 171 –5.5 –5.4 27 Hydrazinebistetrazole 206 –7.5 –7.6 29 TAGDN (Triaminoguanidinium-5-dinitrate) 81 –0.2 0.5...G.R.B. Vapor Pressure Determination for Several Polychlorodioxins by Two Gas Saturation Methods, Chemosphere , Volume 15, Issues 9–12, 1986, Pages 2073

  10. Development of Tunable Diode Laser Absorption Tomography for Determination of Spatially Resolved Distributions of Water Vapor Temperature and Concentration

    NASA Astrophysics Data System (ADS)

    Bryner, Elliott

    Optical diagnostic techniques used in high speed, high enthalpy flows, such as in a supersonic ramjet (scramjet) combustor, allow direct measurement of temperature and species concentration. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a common laser based measurement technique for measuring temperature and species concentration in harsh environments such as chemically reacting flows. TDLAS is a one-dimensional, path integrated measurement that provides average values of the measured quantities and can be affected by gradients in the measurement space. By combining TDLAS with tomographic image reconstruction a two-dimensional spatially resolved distribution can be obtained. This technique is called Tunable Diode Laser Absorption Tomography. TDLAT has been developed for the purpose of making temperature and species concentration measurements on the supersonic combustion facility at the Aerospace Research Laboratory. TDLAT has been developed for the purpose of making two-dimensional measurements of water vapor concentration, which when combined with Stereoscopic Particle Image Velocimetry can be used to calculate supersonic combustion efficiency of a scramjet combustor. This measurement system has been used in measurements of a flat flame burner from which two-dimensional distributions of temperature and water vapor concentration have been calculated. The calculated temperatures were then compared to measurements made on the same flat flame burner. Reconstructions of temperature and concentration show the structure of the flat flame burner, resolving regions of ambient room air, nitrogen co-flow, mixing layer and hot burner core. The TDLAT system was then installed on the supersonic combustion facility, where measurements were made for a known mole fraction of steam injected into the free stream. The TDLAT system was then used to measure water vapor concentration and temperature for clean-air combustion for an equivalence ratio of 0.17. The resulting values

  11. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  12. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  13. The PSDAVLL signal detection with synchronous ferroelectric liquid crystal switching as a laser frequency stabilization method

    NASA Astrophysics Data System (ADS)

    Dudzik, G.; Rzepka, J.; Abramski, K. M.

    2016-12-01

    In this paper we present the DAVLL (Dichroic Atomic Vapor Laser Lock) signals detection method for laser frequency stabilization which has been improved by synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC). The SSFLC cell is a polarization switch and quarter waveplate component and it replaces the well-known two-photodiode detection configuration known as the balanced polarimeter. The presented polarization switching dichroic atomic vapor laser lock technique (PSDAVLL) was practically used in VCSEL-based frequency stabilization system with vapor isotopes (85,87Rb) rubidium cell. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7 × 10-9 and a reproducibility of 1.2 × 10-8, with a dynamic range ratio (DNR) of detected signals of around 81.4 dB, what is 9.6 dB better than obtained in the balanced polarimeter configuration. The described PSDAVLL technique was compared with 3-f (on the 3rd harmonic) and passive frequency stabilization methods. Additionally, the presented setup consists only one-photodiode detection path what reduces parasitic phenomena like offsets between photodiode amplifiers, amplifier gain changes due to ambient conditions, aging effects of electronic components etc. as a consequence leads to better frequency reproducibility, stabilization accuracy and less detection system sensitivity to ambient condition changes.

  14. A comparison of incidences of bladder neck contracture of 80- versus 180-W GreenLight laser photoselective vaporization of benign prostatic hyperplasia.

    PubMed

    Hu, Bo; Song, Zhenyu; Liu, Hui; Qiao, Liang; Zhao, Yong; Wang, Muwen; Song, Wei; Zhang, Dong; Jin, Xunbo; Zhang, Haiyang

    2016-11-01

    Bladder neck contracture (BNC) after GreenLight laser photoselective vaporization (PVP) of benign prostatic hyperplasia is a common complication. In the present study, data of patients received 80 or 180 W PVP were collected. Perioperative parameters, including applied energy, irradiation time, catheter removal time, and hospital stay, were recorded. Postoperative parameters, including maximum urinary flow rate, International Prostate Symptom Score, post-void residual volume, and incidences of BNC, were recorded at 3 and 12 months after operations. Bladder neck tissues were taken at 3 months after operations for immunohistochemical staining and western blot analysis to examine the expressions of collagen I, matrix metalloproteinase-3 (MMP-3), and transforming growth factor-β (TGF-β). Sample size of patients was calculated with a power of 80 %. Chi-square test and one-way analysis of variance were performed as statistical methods. Three hundred twenty-six patients who received potassium titanyl phosphate (KTP) laser and 256 who received X-ray photoelectron spectroscopy (XPS) laser entered into the study. Perioperative parameters were comparable, except for shorter irradiation time in 180 W group (P = 0.032). Postoperative parameters were also similar, except for higher incidence of BNC in 80 W group at 3 months after operations (P = 0.022). Immunohistochemical staining and western blot analysis showed higher expressions of collagen I, MMP-3, and TGF-β in 80 W group than in 180 W group. In conclusion, 80 W GreenLight laser showed a comparable efficacy with 180-W laser in PVP but showed a higher incidence of BNC in short term, which might be the result of up-regulated fibrotic factors in bladder neck triggered by lasers.

  15. Radioiodination of interleukin 2 to high specific activities by the vapor-phase chloramine T method

    SciTech Connect

    Siekierka, J.J.; DeGudicibus, S.

    1988-08-01

    Recombinant human interleukin 2 (IL-2) was radioiodinated utilizing the vapor phase chloramine T method of iodination. The method is rapid, reproducible, and allows the efficient radioiodination of IL-2 to specific activities higher than those previously attained with full retention of biological activity. IL-2 radioiodinated by this method binds with high affinity to receptors present on phytohemagglutinin-stimulated peripheral blood lymphocytes and should be useful for the study of receptor structure and function.

  16. Subscale Ship Airwake Studies Using Novel Vortex Flow Devices with Smoke, Laser-Vapor-Screen and Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.

    2007-01-01

    Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.

  17. Temporal compression of cw diode-laser output into short pulses with cesium-vapor group-velocity dispersion.

    PubMed

    Choi, K; Menders, J; Ross, D; Korevaar, E

    1993-11-15

    Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s(1/2)-to-6p(3/2) cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms.

  18. Repetitive output laser system and method using target reflectivity

    DOEpatents

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  19. Augmented Lagrangian method for optimal laser control

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pierre; Bandrauk, Andre D.

    1994-06-01

    We use penalty methods derived from Augmented Lagrangians coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schodinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  20. Determination of vaporization enthalpies of the branched esters from correlation gas chromatography and transpiration methods

    SciTech Connect

    Verevkin, S.P.; Heintz, A.

    1999-12-01

    Vaporization enthalpies are indispensable for the assessment of the environmental fate and behavior of environmental contaminants. The temperature dependencies of retention indices of a set of 80 esters with branched molecular structures were measured on a nonpolar gas chromatographic column. The correlation gas chromatography method and reliable data set of 16 esters selected from the literature were used to derive a correlation for the prediction of the standard molar enthalpies of vaporization {Delta}{sub 1}{sup g}H{sub m}{sup {degree}} at the temperature T = 298.15 K. Experimental values of {Delta}{sub 1}{sup g}H{sub m}{sup {degree}} for 64 branched esters were obtained with the help of this correlation. The vaporization enthalpies of isopentyl acetate, ethyl hexanoate, and neopentyl pivalate were additionally obtained by the transpiration method from the temperature dependence of the vapor pressure measured in a flow system and used for checking the validity of the correlation gas chromatography method.

  1. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  2. On the prospects of using runaway electron beams generated in an open discharge for the pumping of metal-vapor lasers

    SciTech Connect

    Arlantsev, S.V.; Borovich, B.L.; Yurchenko, N.I.

    1995-03-01

    The excitation of gas lasers with the help of electron beams (e-beams) is, at the present time, one of the most promising methods of pumping. In most of the conventional methods, an electron beam is produced as a result of a collisionless acceleration of electrons due to the low gas density in a diode of an accelerator. Because of this, an accelerative gap should be hermetically isolated from a laser cell, which makes the technique of e-beam injection into the active region quite complicated. A radical solution to the problem would be the production of an e-beam in the gas whose density in the accelerative gap corresponds to the working pressure of the laser. This would allow one to place an accelerator in one chamber with the laser. The generation of a beam in a high-density gas would become possible when one provides the conditions for an effective transition of electrons into the runaway regime. Such a motion of electrons can be achieved in a strong electric field as a result of the decreasing cross section of the electron-atom interaction as sufficiently high energy. The runaway effect is manifested in the case where the electrons moving under the action of a strong external field obtain kinetic energy comparable with the potential difference. The kinetic energy is many times greater than that spent in one collision. Despite the considerable number of collisions, the electrons are transmitted into the steady acceleration regime, and their motion becomes almost directed, thus forming a beam. The present paper is devoted to the development of a physical-mathematical model of an open discharge, the calculation of its characteristics, and the estimation of the potentialities of e-beam pumping of metal-vapor lasers.

  3. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  4. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  5. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  6. Vaporization of perfluorocarbon droplets using optical irradiation

    PubMed Central

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-01-01

    Micron-sized liquid perfluorocarbon (PFC) droplets are currently being investigated as activatable agents for medical imaging and cancer therapy. After injection into the bloodstream, superheated PFC droplets can be vaporized to a gas phase for ultrasound imaging, or for cancer therapy via targeted drug delivery and vessel occlusion. Droplet vaporization has been previously demonstrated using acoustic methods. We propose using laser irradiation as a means to induce PFC droplet vaporization using a method we term optical droplet vaporization (ODV). In order to facilitate ODV of PFC droplets which have negligible absorption in the infrared spectrum, optical absorbing nanoparticles were incorporated into the droplet. In this study, micron-sized PFC droplets loaded with silica-coated lead sulfide (PbS) nanoparticles were evaluated using a 1064 nm laser and ultra-high frequency photoacoustic ultrasound (at 200 and 375 MHz). The photoacoustic response was proportional to nanoparticle loading and successful optical droplet vaporization of individual PFC droplets was confirmed using photoacoustic, acoustic, and optical measurements. A minimum laser fluence of 1.4 J/cm2 was required to vaporize the droplets. The vaporization of PFC droplets via laser irradiation can lead to the activation of PFC agents in tissues previously not accessible using standard ultrasound-based techniques. PMID:21698007

  7. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  8. A Review on Prediction Methods for Molar Enthalpies of Vaporization of Hydrocarbons: The ELBA Method as the Best Answer

    NASA Astrophysics Data System (ADS)

    Santos, Rui C.; Leal, João P.

    2012-12-01

    A review on prediction methods for molar enthalpies of vaporization at T = 298.15 K of hydrocarbons is presented. A new method is proposed and compared with six of the most common used ones from the literature. This new method, the extended Laidler bond additivity (ELBA), was applied to the prediction of standard molar enthalpies of vaporization of hydrocarbons (alkanes, alkenes, alkynes, polyenes, poly-ynes, cycloalkanes, cycloalkenes, benzene compounds, biphenyl compounds, and polyphenyl compounds) at T = 298.15 K. A total of 260 experimental standard molar enthalpies of vaporization at T = 298.15 K were used for the parameters optimization. Comparison between the experimental values and those calculated using ELBA led to an average absolute difference of 0.35 kJ mol-1, corresponding to an average relative error of 0.92%. In addition, this new method proves to be better than the ones used for comparison with an independent set of 83 experimental standard molar enthalpies of vaporization at T = 298.15 K.

  9. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  10. Nonlinear absorption, scattering, and extinction of laser radiation by two-layered spherical system-gold nanoparticle and vapor shell in water

    NASA Astrophysics Data System (ADS)

    Pustovalov, V. K.; Astafyeva, L. G.

    2011-12-01

    Nonlinear absorption, scattering and extinction of laser radiation with wavelengths 532, 633 nm by spherical gold nanoparticles (NPs) with radii in the range of 5-100 nm placed in water and heated by laser radiation with formation and expansion of vapor nanoshells is theoretically investigated. Decrease of absorption, decrease and subsequent increase of scattering and extinction with increasing of shell radius beginning from the initial period of shell expansion is established. Optical indicatrixes and nonlinear behavior of scattered radiation are investigated including the examination of these characteristics during the adiabatic expansion of vapor shell. Formation of vapor nanoshells (bubbles) as a result of the action of short laser pulses on NPs placed in tissue was proposed for cutting of tissue.

  11. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    PubMed

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  12. On the Applicability of Linearization Method of Vapor Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhan, H.; Huang, G.

    2009-12-01

    For decades, linearization treatment has been commonly applied in vapor flow problems in natural gas engineering, soil vapor extraction (SVE) design, barometric and pneumatic pumping in order to make the governing equation of vapor flow tractable for analytical solutions. In this study, we will particularly investigate two linearization methods: one is the standard linearization method using the squared pressure as the dependent variable (method A), and the other is using the history-dependent averaged pressure to calculate the diffusivity of flow as proposed by Wu et al. (1998) (method B). Although attempts were tried to enhance the confidence for applications of the linearization methods, errors caused by such approximations have not been analyzed to great details. In this work, we validate the linearization methods A and B based on a numerical solution, which is obtained using stiff integrator ODE15s to deal with the temporal derivative and finite-difference to deal with the spatial derivative. This numerical solution is obtained with sufficiently fine temporal and spatial resolutions to make the numerical errors negligible, thus is regarded as the “exact solution”. Two scenarios, the one-dimensional vapor flow under constant pressure difference and radial vapor flow under constant extraction rate, are investigated respectively. A new linearization method is proposed to reduce the error of pressure estimation in methods A and B. This study shows a few features of the linearization methods A and B. First, both methods A and B provide adequate pressure evaluation at early times under relatively small constant pressure difference or gas injection rate, otherwise large discrepancy from the exact solution becomes significant. Second, the maximum value of error of the method A is relatively insensitive to time for either scenarios investigated. Third, the pressure evaluation of the method B shows a transition from underestimate to overestimate (or from

  13. Monitoring of temperature increase and tissue vaporization during laser interstitial thermotherapy of ex vivo swine liver by computed tomography.

    PubMed

    Schena, E; Saccomandi, P; Giurazza, F; Del Vescovo, R; Mortato, L; Martino, M; Panzera, F; Di Matteo, F M; Beomonte Zobel, B; Silvestri, S

    2013-01-01

    Laser interstitial thermotherapy (LITT) is a minimally invasive technique used to thermally destroy tumour cells. Being based on hyperthermia, LITT outcome depends on the temperature distribution inside the tissue. Recently, CT scan thermometry, based on the dependence of the CT number (HU) on tissue temperature (T) has been introduced during LITT; it is an attractive approach to monitor T because it overcomes the concerns related to the invasiveness. We performed LITT on nine ex vivo swine livers at three different laser powers, (P=1.5 W, P=3 W, P=5 W) with a constant treatment time t=200 s; HU is averaged on two ellipsoidal regions of interest (ROI) of 0.2 cm2, placed at two distances from the applicator (d=3.6 mm and d=8.7 mm); a reference ROI was placed away from the applicator (d=30 mm). The aim of this study is twofold: 1) to evaluate the effect of the T increase in terms of HU variation in ex vivo swine livers undergoing LITT; and 2) to estimate the P value for tissue vaporization. To the best of our knowledge, this is the first study focused on the HU variation in swine livers undergoing LITT at different P. The reported findings could be useful to assess the effect of LITT on the liver in terms of both T changes and tissue vaporization, with the aim to obtain an effective therapy.

  14. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    NASA Astrophysics Data System (ADS)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  15. Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy.

    PubMed

    Persson, Linda; Lewander, Märta; Andersson, Mats; Svanberg, Katarina; Svanberg, Sune

    2008-04-20

    We report on a dual-diode laser spectroscopic system for simultaneous detection of two gases. The technique is demonstrated by performing gas measurements on absorbing samples such as an air distance, and on absorbing and scattering porous samples such as human tissue. In the latter it is possible to derive the concentration of one gas by normalizing to a second gas of known concentration. This is possible if the scattering and absorption of the bulk material is equal or similar for the two wavelengths used, resulting in a common effective pathlength. Two pigtailed diode lasers are operated in a wavelength modulation scheme to detect molecular oxygen ~760 nm and water vapor ~935 nm within the tissue optical window (600 nm to 1.3 mum). Different modulation frequencies are used to distinguish between the two wavelengths. No crosstalk can be observed between the gas contents measured in the two gas channels. The system is made compact by using a computer board and performing software-based lock-in detection. The noise floor obtained corresponds to an absorption fraction of approximately 6x10(-5) for both oxygen and water vapor, yielding a minimum detection limit of ~2 mm for both gases in ambient air. The power of the technique is illustrated by the preliminary results of a clinical trial, nonintrusively investigating gas in human sinuses.

  16. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  17. Cutaneous side effects from laser treatment of the skin: skin cancer, scars, wounds, pigmentary changes, and purpura--use of pulsed dye laser, copper vapor laser, and argon laser.

    PubMed

    Haedersdal, M

    1999-01-01

    It has been the intention of this thesis to increase the knowledge on the development of cutaneous side effects from treatment with the argon laser, the copper vapor laser, and the pulsed dye laser, which represent technical developments within laser systems used for treatment of vascular lesions. To reach that goal, the investigations focused on patient and lesional characteristics (skin pigmentation, skin redness, and epidermal thickness) and on the importance of UV irradiation before and after dermatological laser treatment. The aspect of UV irradiation was added because vascular lesions frequently involve the face and, therefore, may be exposed to sunlight in relation to laser treatment. Risk assessments were performed on clinically visible side effects in order to improve the preoperative information to the patients about their individual risks of obtaining side effects from dermatological laser treatment. The laser-induced side effects were evaluated by systematic clinical assessments, by histological and biochemical examinations, by skin reflectance measurements, optical profilometry, and ultrasonography. The term side effects is associated with both transient and permanent skin reactions such as purpura, wounds, textural changes, scars, pigmentary changes, and squamous cell carcinomas. Lightly pigmented, hairless hr/hr C3H/Tif mice, hairless, albino hr/hr MORO/Ibm mice, human, healthy volunteers, and children with port-wine stains were included in the studies. This thesis represents the first systematic and experimental approach to selected side effects from laser treatment of the skin. The argon laser (AL) and the copper vapor laser (CVL) The results from AL and CVL treatments are described together because these lasers are continuous/quasicontinuous lasers that do not meet the requirements for selective photothermolysis, which represents the most selective delivery of energy to cutaneous vessels. In normal-skinned human volunteers, the postoperative

  18. Vacuum ultraviolet laser spectroscopy. III - Laboratory sources of coherent radiation tunable from 105 to 175 nm using Mg, Zn, and Hg vapors

    NASA Astrophysics Data System (ADS)

    Herman, P. R.; Larocque, P. E.; Lipson, R. H.; Jamroz, W.; Stoicheff, B. P.

    1985-12-01

    Nonlinear frequency mixing of laser radiation in Mg, Zn, and Hg vapors has produced coherent radiation, tunable over the range 175-104.5 nm in the vacuum ultraviolet. The resulting radiation is pulsed, monochromatic, and of sufficient intensity for use in high-resolution spectroscopy. Detailed descriptions are given of the dye oscillator-amplifier systems along with the heat-pipe ovens for producing stable densities of the metal vapors. Measurements of intensities, linewidths, and ranges of tunability are presented for each metal vapor.

  19. Study on energy density of gold-vapor laser and necrosis depth of mouse malignant tumor (S180)

    NASA Astrophysics Data System (ADS)

    Guo, Yong; Wang, Ze-shi; Yang, Yonghua; Wang, Yongjiang

    1993-03-01

    Gold-vapor laser glass type is a new laser for photodynamic therapy (PDT). Its chief characteristics are pulse type, 6000 - 7000 Hz of frequency, 627.8 nm in wavelength, 3 - 4 watts output, etc. By changing laser energy density, we noticed changes of necrosis depth and surface temperature. The results show that the depth of groups of 500, 1000, 1500, and 2000 Jol/cm2 were 0.62 +/- 0.21, 0.72 +/- 0.05, 0.97 +/- 0.10, and 1.56 +/- 0.13 cm (p < 0.05), respectively. This study indicates that the pulse laser energy density should be larger than that of a continuant one in PDT, thus photodynamic effect may be improved in the clinic. The surface tumor temperature was changed during the treatment, reaching as high as 39.13 degree(s)C, 43.78 degree(s)C, 44.16 degree(s)C, and 43.5 degree(s)C in different groups. This paper also discusses the coordinated effects of hyperthermia and photodynamic therapy.

  20. Monolithically integrated multi-wavelength MQW-DBR laser diodes fabricated by selective metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Tatsuya; Yamaguchi, Masayuki; Kitamura, Mitsuhiro

    1994-12-01

    Selective metalorganic vapor phase epitaxy (MOVPE) was used to grow InGaAsP/InP layers for fabricating multi-wavelength laser diodes. Multiple quantum well (MQW) active and passive waveguides were simultaneously grown by one step selective growth. The selectively grown layer thickness increases with the mask stripe width. This growth enhancement can be used to control the lasing wavelength of distributed Bragg reflector (DBR) laser diodes, because the effective refractive index of the MQW passive waveguide at the DBR region can be controlled by the mask stripe width. This simple technique was used to fabricate multi-wavelength MQW-DBR laser diodes. In the selective growth, the MQW structure was grown under 150 Torr to obtain large bandgap energy shift for the MQW passive waveguides compared to the active waveguide, which was effective for wide wavelength tuning range. On the contrary, a bulk InGaAsP guide layer was grown under 35 Torr to prevent too much composition shift and maintain high crystalline quality of the MQW passive waveguide. For 10 consecutive laser diodes, a wavelength span of over 20 nm with accurate wavelength control was achieved.