Science.gov

Sample records for laser-based projection lithography

  1. Deep-UV microsphere projection lithography.

    PubMed

    Bonakdar, Alireza; Rezaei, Mohsen; Brown, Robert L; Fathipour, Vala; Dexheimer, Eric; Jang, Sung Jun; Mohseni, Hooman

    2015-06-01

    In this Letter, we present a single-exposure deep-UV projection lithography at 254-nm wavelength that produces nanopatterns in a scalable area with a feature size of 80 nm. In this method, a macroscopic lens projects a pixelated optical mask on a monolayer of hexagonally arranged microspheres that reside on the Fourier plane and image the mask's pattern into a photoresist film. Our macroscopic lens shrinks the size of the mask by providing an imaging magnification of ∼1.86×10(4), while enhancing the exposure power. On the other hand, microsphere lens produces a sub-diffraction limit focal point-a so-called photonic nanojet-based on the near-surface focusing effect, which ensures an excellent patterning accuracy against the presence of surface roughness. Ray-optics simulation is utilized to design the bulk optics part of the lithography system, while a wave-optics simulation is implemented to simulate the optical properties of the exposed regions beneath the microspheres. We characterize the lithography performance in terms of the proximity effect, lens aberration, and interference effect due to refractive index mismatch between photoresist and substrate.

  2. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  3. Considerations for a free-electron laser-based extreme-ultraviolet lithography program

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.; Mangat, Pawitter J. S.; Preil, Moshe E.

    2015-03-01

    Recent years have seen great strides in the development of extreme ultraviolet (EUV) laser-produced plasma sources. Field deployed EUV exposure tools are now capable of facilitating advanced technology node development. Nevertheless, as the required manufacturing exposure dose scales, EUV sources must follow suit and provide 500- 1000 W to maintain production throughputs. A free-electron laser (FEL) offers a cost effective, single-source alternative for powering an entire EUV lithography program. FEL integration into semiconductor fab architecture will require both unique facility considerations as well as a paradigm shift in lithography operations. Critical accelerator configurations relating to energy recovery, multi-turn acceleration, and operational mode are discussed from engineering/scientific, cost-minimization, and safety perspectives. Furthermore, the individual components of a FEL (electron injector, RF systems, undulator, etc.) are examined with respect to both design and cost, considering existing technology as well as prospective innovations. Finally, FEL development and deployment roadmaps are presented, focusing on manufacturer deployment for the 5 nm or 3 nm technology nodes.[1-3

  4. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  5. Atomic Image Projection Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Bum

    2006-03-01

    While we are approaching to the nanotechnology era, as was proposed by Richard Feynman in 1959, our main concern still lies in how one can controllably manufacture and utilize nanometer scale features. The top-down approaches, most notably, lithography based techniques still have the problem of throughput although it has been successfully demonstrate to make features with the size less than 10 nm. The bottom-up approaches, either utilizing chemical vapor deposition process to make carbon nanotube or wet-chemical process to make size controllable quantum dots and rods, still have the limitation of extending it to many different types of materials and also delivering them on a wafer size substrate to make nanodevices. In this talk, we will propose a novel electron beam lithography technique to make nanometer scale features. The novelty of this process lies in the fact that one can utilize the crystalline lattice image commonly observed by the high resolution transmission electron microscopy as an ultimate mask to generate nanometer scale patterns. Using this technique, we demonstrate that down to 45 nm pitch size can be resolved on hydrogen silsesquioxine (HSQ) e-beam resist material. The patterns are formed on Si substarte with the dot size of about 30 nm and the line size of about 25 nm. This technique can be extend to define less than 10 nm size features only if the suitable resist is developed.

  6. Patterning of membrane masks for projection e-beam lithography

    NASA Astrophysics Data System (ADS)

    Fetter, Linus A.; Biddick, Christopher J.; Blakey, Myrtle I.; Liddle, James A.; Peabody, Milton L., Jr.; Novembre, Anthony E.; Tennant, Donald M.

    1996-12-01

    A process for high-resolution patterning of the membrane- type masks used in the SCALPEL (SCattering with Angular Limitation in Projection Electron-beam Lithography) lithography system is described. SCALPEL is a 4X projection electron beam lithography tool with the potential to extend commercial lithographic capability well into the deep sub-micron range: the recently-completed SCALPEL proof- of-concept (SPOC) system has printed 0.08 micrometers lines in thick resist on Si. The details of the patterning process we currently employ and metrology results from the first series of masks are presented here. The SPOC mask blank consists of a segmented W-coated SiN (Si-rich) membrane, fabricated on a 4' Si wafer. The blank is patterned with 45 different test chips using a vector-scanned e-beam lithography tool. Metrology is performed on completed masks, and results from measurements of line-edge roughness, CD linearity, and pattern uniformity are presented. We examine the need for proximity effect correction of the pattern data, and compare the effect of correction on pattern data file size for a variety of mask technologies.

  7. A Feasibility Study of 50 nm Resolution with Low Energy Electron Beam Proximity Projection Lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Savas, T. A.

    2002-01-01

    Patterns of 50 nm lines and spaces were demonstrated by low energy electron beam proximity lithography using 47-nm-thick poly methyl methacrylate (PMMA) and stencil masks fabricated by achromatic interference lithography (AIL). The result indicates the validity of the resolution analysis previously reported and the resolution capabilities of low energy electron beam proximity projection lithography (LEEPL) as a 50 nm node technology.

  8. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  9. Development of CMOS-compatible membrane projection lithography

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Samora, Sally; Wiwi, Mike; Wendt, Joel R.

    2013-09-01

    Recently we have demonstrated membrane projection lithography (MPL) as a fabrication approach capable of creating 3D structures with sub-micron metallic inclusions for use in metamaterial and plasmonic applications using polymer material systems. While polymers provide several advantages in processing, they are soft and subject to stress-induced buckling. Furthermore, in next generation active photonic structures, integration of photonic components with CMOS electronics is desirable. While the MPL process flow is conceptually simple, it requires matrix, membrane and backfill materials with orthogonal processing deposition/removal chemistries. By transitioning the MPL process flow into an entirely inorganic material set based around silicon and standard CMOS-compatible materials, several elements of silicon microelectronics can be integrated into photonic devices at the unit-cell scale. This paper will present detailed fabrication and characterization data of these materials, emphasizing the processing trade space as well as optical characterization of the resulting structures.

  10. W-CMOS blanking device for projection multibeam lithography

    NASA Astrophysics Data System (ADS)

    Jurisch, Michael; Irmscher, Mathias; Letzkus, Florian; Eder-Kapl, Stefan; Klein, Christof; Loeschner, Hans; Piller, Walter; Platzgummer, Elmar

    2010-05-01

    As the designs of future mask nodes become more and more complex the corresponding pattern writing times will rise significantly when using single beam writing tools. Projection multi-beam lithography [1] is one promising technology to enhance the throughput compared to state of the art VSB pattern generators. One key component of the projection multi-beam tool is an Aperture Plate System (APS) to form and switch thousands of individual beamlets. In our present setup a highly parallel beam is divided into 43,008 individual beamlets by a Siaperture- plate. These micrometer sized beams pass through larger openings in a blanking-plate and are individually switched on and off by applying a voltage to blanking-electrodes which are placed around the blanking-plate openings. A charged particle 200x reduction optics demagnifies the beamlet array to the substrate. The switched off beams are filtered out in the projection optics so that only the beams which are unaffected by the blanking-plate are projected to the substrate with 200x reduction. The blanking-plate is basically a CMOS device for handling the writing data. In our work the blanking-electrodes are fabricated using CMOS compatible add on processes like SiO2-etching or metal deposition and structuring. A new approach is the implementation of buried tungsten electrodes for beam blanking.

  11. Fast character projection electron beam lithography for diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  12. Fabrication of planar photonic crystals in chalcogenide glass film by maskless projection lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Peiqing; Zhang, Qian; Zeng, Jianghui; Han, Jintao; Zhou, Jie; Zhang, Wei; Jiao, Qing; Wu, Yuehao; Dai, Shixun

    2016-09-01

    Ge20Sb15Se65 chalcogenide glass films were deposited and patterned using maskless projection lithography to create photonic crystal structures. This lithography technology, which is based on a digital micro-mirror device, is demonstrated as a powerful and low-cost tool to produce arbitrary intensity distributions to fabricate photonic devices. Direct photolithography in resist-free chalcogenide films was first studied, and results indicate that the quality of the products is insufficient. High-quality photonic crystals with sub-micrometer size were finally obtained in chalcogenide films with photoresist by maskless projection lithography and inductively coupled plasma technology.

  13. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  14. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  15. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    PubMed

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-04-14

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  16. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    PubMed Central

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  17. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    NASA Astrophysics Data System (ADS)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  18. High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography.

    PubMed

    Bonakdar, Alireza; Rezaei, Mohsen; Dexheimer, Eric; Mohseni, Hooman

    2016-01-22

    In this paper, we present a low-cost and high-throughput nanofabrication method to realize metasurfaces that have selective absorption/emission in the mid-infrared region of the electromagnetic spectrum. We have developed DUV projection lithography to produce arbitrary patterns with sub-80 nm feature sizes. As examples of practical applications, we experimentally demonstrate structures with single and double spectral absorption/emission features, and in close agreement with numerical simulation. The fundamental mechanism of perfect absorption is discussed as well. Selective infrared absorbers/emitters are critical elements in realizing efficient thermophotovoltaic cells and high-performance biosensors.

  19. Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.

    PubMed

    Sommargren, G E; Seppala, L G

    1993-12-01

    A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.

  20. Cell projection use in maskless lithography for 45nm and 32nm logic nodes

    NASA Astrophysics Data System (ADS)

    Manakli, S.; Komami, H.; Takizawa, M.; Mitsuhashi, T.; Pain, L.

    2009-03-01

    Due to the ever-increasing cost of equipment and mask complexity, the use of optical lithography for integrated circuit manufacturing is increasingly more complex and expensive. Recent workshops and conferences in semiconductor lithography underlined that one alternative to support sub-32nm technologies is mask-less lithography option using electron beam technology. However, this direct write approach based on variable shaped beam principle (VSB) is not sufficient in terms of throughput, i.e. of productivity. New direct write techniques like multibeam systems are under development, but these solutions will not be mature before 2012. The use of character/cell projection (CP) on industrial VSB tools is the first step to deal with the throughput concerns. This paper presents the status of the CP technology and evaluates its possible use for the 45nm and 32nm logic nodes. It will present standard cell and SRAM structures that are printed as single characters using the CP technique. All experiments are done using the Advantest tool (F3000) which can project up to 100 different cells per layer. Cell extractions and design have been performed with the design and software solution developed by D2S. In this paper, we first evaluate the performance gain that can be obtained with the CP approach compared to the standard VSB approach. This paper also details the patterning capability obtained by using the CP concept. An evaluation of the CD uniformity and process stability is also presented. Finally this paper discusses about the improvements of this technique to address high resolution and to improve the throughput concerns.

  1. A novel condenser for EUV lithography ring-field projection optics

    SciTech Connect

    Chapman, H; Nugent, K A

    1999-07-15

    A condenser for a ring-field extreme ultra-violet (EUV) projection lithography camera is presented. The condenser consists of a gently undulating mirror, that we refer to as a ripple plate, and which is illuminated by a collimated beam at grazing incidence. The light is incident along the ripples rather than across them, so that the incident beam is reflected onto a cone and subsequently focused on to the arc of the ring field. A quasistationary illumination is achieved, since any one field point receives light from points on the ripples, which are distributed throughout the condenser pupil. The design concept can easily be applied to illuminate projection cameras with various ring-field and numerical aperture specifications. Ray-tracing results are presented of a condenser for a 0.25 NA EUV projection camera.

  2. Grouping design method of catadioptric projection objective for deep ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Li, Yanqiu; Mao, Shanshan

    2017-02-01

    Choosing an adequate initial design for optimization plays an important role in obtaining high-quality deep ultraviolet (DUV) lithographic objectives. In this paper, the grouping design method is extended to acquire initial configurations of catadioptric projection objective for DUV lithography. In this method, an objective system is first divided into several lens groups. The initial configuration of each lens group is then determined by adjusting and optimizing existing lens design according to respective design requirements. Finally, the lens groups are connected into a feasible initial objective system. Grouping design allocates the complexity of designing a whole system to each of the lens groups, which significantly simplifies the design process. A two-mirror design form serves as an example for illustrating the grouping design principles to this type of system. In addition, it is demonstrated that different initial designs can be generated by changing the design form of each individual lens group.

  3. Multilayer coatings of 10x projection for extreme-ultraviolet lithography

    SciTech Connect

    Folta, J A; Montcalm, C; Spiller, E; Wedowski, M

    1999-03-09

    Two new sets of projections optics for the prototype 10X reduction EUV lithography system were coated with Mo/Si multilayers. The coating thickness was graded across the optics by using shadow masks to ensure maximum throughput at all incidence angles in the camera. The overall deviation of the (normalized) wavelength response across the clear aperture of each mirror is below 0.01% RMS. However, the wavelength mismatch between two optics coated in different runs is up to 0.07 nm. Nevertheless, this is still within the allowed tolerances, and the predicted optical throughput loss in the camera due to such wavelength mismatch is about 4%. EUV reflectances of 63-65% were measured around 13.40 nm for the secondary optics, which is in good agreement with the expected reflectance based on the substrate finish as measured with AFM.

  4. VUV lithography

    DOEpatents

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  5. VUV lithography

    DOEpatents

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  6. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  7. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  8. Initial development of efficient, low-debris laser targets for the Sandia soft x-ray projection lithography effort

    SciTech Connect

    Rockett, P.D.; Hunter, J.A.; Kubiak, G.D.

    1997-03-01

    During the fiscal years 92-94 a joint group from Sandia/New Mexico and Sandia/California studied the development of new laser-plasma targets for projection x-ray or EUV (extreme ultraviolet) lithography. Our experimental and theoretical analyses incorporated target design as an integral part of the lithographic optical system. Targets studied included thick solid targets, thin-foil metal-coated targets, and cryogenic targets. Our complete measurement suite consisted of x-ray conversion efficiency measurements, source size imaging, source x-ray angular distribution measurements, debris collection, and source EUV spectrum. Target evaluation also included the variation of laser characteristics, such as, laser intensity, spot size, wavelength, pulselength, and pulseshape. Over the course of these experiments we examined targets using KrF (248nm), XeCl (308nm), and CO{sub 2} (10.6 {mu}m) lasers. While debris issues now dominate research in this area, final details were concluded on our understanding of material spectra and radiation transport of 13 run light in laser-plasmas. Additionally, conclusive results were obtained with 308 rim light, showing the pulselength threshold below which plumes no longer limited the transmission of (and thus the conversion efficiency to) 13 nm radiation.

  9. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  10. Shot number analysis on character projection e-beam lithography for random logic device fabrication at 70-nm node

    NASA Astrophysics Data System (ADS)

    Tomo, Yoichi; Shimizu, Isao; Kojima, Yoshinori; Yoshida, Akira; Takenaka, Hiroshi; Yamabe, Masaki

    2001-08-01

    A reduction efficiency of shot numbers in character projection (CP) electron-beam (EB) lithography with memory device application depends on a design rule (cell size) and a pattern complexity within a memory cell. Many researchers reported that it was approximately 1/10 to 1/100 compared with conventional variable-shaped beam (VSB) method. The reduction of shot numbers in memory devices mainly comes from allowance to place multiple cells in one CP-cell area and simplicity of the cell's placement (regular pitch with adjacent allocation). On the other hand, there are few reports concerning reduction efficiency of shot numbers with logic specific application in CP EB lithography due to the complexity of logic cell's allocation to CP-cell area. To analyze this, logic device layout data in 70nm node was prepared by shringking actual functional device data of 350 nm node in the ratio of 1/5 and extracting random logic region. The size of this region was 1,094 x 283 micrometers . The height of logic cell was 2.64micrometers and it was smaller than typical one CP-cell size in second aperture (5 x 5micrometers ). The pattern data in GDS-II stream format was converted into EB exposure data: divided figures (rectangles). By this procedure, numbers of figures and cells were obtained. The total number of referred logic cell was 26,812. Among 26,812 cells, only 111 common (unique) logic cells were used for the logic region. The sum of figures in gate layer was 412,251 and this value was assumed to be equal to a total number of shots in conventional VSB method. Among the 111 common cells, only 6 cells in the gate layer showed width more than 5micrometers (maximum CP-cell size). Most frequently referred cell was an inverter and the number of reference was 5,395. The referred frequency of each cell exponentially decreased when the cells were arranged in descending order of reference. Among the total figures, top cell showed 66,120 accumulated number of figures (referred number=2

  11. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to

  12. The project of the high power free electron laser based on the race-track microtron-recuperator

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Gavrilov, N. G.; Gorniker, E. I.; Kulipanov, G. N.; Kuptsov, I. V.; Kurkin, G. Ya.; Erg, G. I.; Levashov, Yu. I.; Oreshkov, A. D.; Petrov, S. P.; Petrov, V. M.; Pinayev, I. V.; Popik, V. M.; Sedlyarov, I. K.; Shaftan, T. V.; Skrinsky, A. N.; Sokolov, A. S.; Veshcherevich, V. G.; Vobly, P. D.

    1995-02-01

    To provide a user facility for the Siberian Centre of Photochemical Researches in Novosibirsk a high power free electron laser is under construction. The project status and installation are described.

  13. Electron Scattering and Related Phenomena in Scattering with Angular Limitation Projection Electron Lithography (SCALPEL\\footnote{SCALPEL is a trademark of Lucent Technologies.})

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Masis M.

    2000-12-01

    Scattering with angular limitation projection electron lithography (SCALPEL) is a unique charged-particle projection imaging technique that employs a scattering mask with the pattern segmented between supporting struts. An aperture installed in the back-focal plane of the projection lens filters out the electrons scattered at large angles in the patterned area of the mask producing a high contrast aerial image. Various scattering phenomena involved with the energetic (100 keV) electrons carrying the mask pattern information to the wafer through the projection optics are responsible for the aerial image formation in SCALPEL@. These phenomena can be grouped into three major categories: (i) electron elastic scattering in the mask responsible for the aerial image intensity and contrast; (ii) electron inelastic scattering in the mask-membrane that might have negative effects, such as membrane charging, beam chromatic blur generation, mask heating, etc.; (iii) Coulomb interactions of electrons in the beam (space charge effect) generating a beam blur that links the system throughput and resolution. Analytical models developed to describe and quantitatively evaluate these phenomena are briefly reviewed. The implication of these models to the design and optimization of the electron projection lithography systems are discussed.

  14. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell; Shafer, David

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  15. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell; Shafer, David R.

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  16. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  17. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell

    2000-01-01

    An all-refelctive optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six refelecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  18. Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier

    SciTech Connect

    Kuznetsov, A. P.; Buzhinskij, R. O.; Gubskii, K. L.; Savjolov, A. S.; Sarantsev, S. A.; Terekhin, A. N.

    2010-05-15

    A novel method for visualization of the process of interaction of high-power energy fluxes with various surfaces is proposed. The possibility of the dynamic visualization of a surface covered with a {approx}3-cm-thick plasma layer with a linear density of {approx}10{sup 16} cm{sup -2} is demonstrated experimentally. A scheme of intracavity shadowgraphy of phase objects with the use of a laser projection microscope is developed. Shadow images illustrating the development of the plasma torch of an erosion capillary discharge in air are presented.

  19. A computational technique to optimally design in-situ diffractive elements: applications to projection lithography at the resist resolution limit

    NASA Astrophysics Data System (ADS)

    Feijóo, Gonzalo R.; Tirapu-Azpiroz, Jaione; Rosenbluth, Alan E.; Oberai, Assad A.; Jagalur Mohan, Jayanth; Tian, Kehan; Melville, David; Gil, Dario; Lai, Kafai

    2009-03-01

    Near-field interference lithography is a promising variant of multiple patterning in semiconductor device fabrication that can potentially extend lithographic resolution beyond the current materials-based restrictions on the Rayleigh resolution of projection systems. With H2O as the immersion medium, non-evanescent propagation and optical design margins limit achievable pitch to approximately 0.53λ/nH2O = 0.37λ. Non-evanescent images are constrained only by the comparatively large resist indices (typically1.7) to a pitch resolution of 0.5/nresist (typically 0.29). Near-field patterning can potentially exploit evanescent waves and thus achieve higher spatial resolutions. Customized near-field images can be achieved through the modulation of an incoming wavefront by what is essentially an in-situ hologram that has been formed in an upper layer during an initial patterned exposure. Contrast Enhancement Layer (CEL) techniques and Talbot near-field interferometry can be considered special cases of this approach. Since the technique relies on near-field interference effects to produce the required pattern on the resist, the shape of the grating and the design of the film stack play a significant role on the outcome. As a result, it is necessary to resort to full diffraction computations to properly simulate and optimize this process. The next logical advance for this technology is to systematically design the hologram and the incident wavefront which is generated from a reduction mask. This task is naturally posed as an optimization problem, where the goal is to find the set of geometric and incident wavefront parameters that yields the closest fit to a desired pattern in the resist. As the pattern becomes more complex, the number of design parameters grows, and the computational problem becomes intractable (particularly in three-dimensions) without the use of advanced numerical techniques. To treat this problem effectively, specialized numerical methods have been

  20. Membrane projection lithography

    DOEpatents

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  1. Coaxial lithography.

    PubMed

    Ozel, Tuncay; Bourret, Gilles R; Mirkin, Chad A

    2015-04-01

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowire that can be created and studied in the laboratory. Here, we report a high-throughput technique that can be used to prepare coaxial nanowires with sub-10 nm control over the architectural parameters in both axial and radial dimensions. The method, termed coaxial lithography (COAL), relies on templated electrochemical synthesis and can create coaxial nanowires composed of combinations of metals, metal oxides, metal chalcogenides and conjugated polymers. To illustrate the possibilities of the technique, a core/shell semiconductor nanowire with an embedded plasmonic nanoring was synthesized--a structure that cannot be prepared by any previously known method--and its plasmon-excitation-dependent optoelectronic properties were characterized.

  2. Recent results from extreme ultraviolet lithography patterned mask inspection for 11 nm half-pitch generation using projection electron microscope system

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-05-01

    Extreme ultraviolet lithography (EUVL) is a promising technique for 1X nm half-pitch (hp) generation lithography. The inspection of patterned EUVL masks is one of the main issues that must be addressed during mask fabrication for manufacture of devices with 11 nm hp feature sizes. We have already designed projection electron microscope (PEM) optics that have been integrated into a new inspection system called Model EBEYE-V30 (where "Model EBEYE" is an EBARA's model code) and this system seems quite promising for 16 nm hp generation EUVL patterned mask inspection. The defect inspection sensitivity of this system was evaluated via capture of an electron image that was generated at the mask by focusing the image through the projection optics onto a time-delay integration (TDI) image sensor. For increased throughput and higher defect detection sensitivity, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and a simultaneous deflector for the image capture area that follows the mask scanning motion have been developed. Using a combination of synchronous deflection and mask scanning, the image can be integrated into both the fixed area image sensor and the TDI image sensor. We describe our experimental results for EUV patterned mask inspection using the above system. Elements have been developed for inspection tool integration and the designed specification has been verified. The system performance demonstrates the defect detectability required for 11 nm hp generation EUVL masks.

  3. EUV lithography

    NASA Astrophysics Data System (ADS)

    Kemp, Kevin; Wurm, Stefan

    2006-10-01

    Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist are very challenging, and significant development efforts are still needed to support beta and production-level performance. Some of the important advances in the past few years include increased source output power, tool and optics system development and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the resolution, line width roughness, and photospeed requirements for EUV photoresists. Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique 7 (2006).

  4. Metrology for Grayscale Lithography

    SciTech Connect

    Murali, Raghunath

    2007-09-26

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed.

  5. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  6. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  7. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  8. Multi-shaped beam proof of lithography

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.

    2010-03-01

    In this paper a full package high throughput multi electron-beam approach, called Multi Shaped Beam (MSB), for applications in mask making as well as direct write will be presented including complex proof-of-lithography results. The basic concept enables a significant exposure shot count reduction for advanced patterns compared to standard Variable Shaped Beam (VSB) systems and allows full pattern flexibility by concurrently using MSB, VSB and Cell Projection (CP). Proof of lithography results will be presented, which have been performed using a fully operational electron-beam lithography system including data path and substrate scanning by x/y-stage movement.

  9. X ray lithography in Japan

    NASA Astrophysics Data System (ADS)

    Clemens, James T.; Hill, Robert W.; Cerrina, Franco; Fuller, Gene E.; Pease, R. F.

    1991-10-01

    Integrated circuits (semiconductors) are the key components of modern computers, communication systems, consumer electronics, and the new generations of smart machines and instruments. Japan's strong position and growing influence in the manufacture of semiconductors and systems based on them is well known and well documented. Microlithography is one the most critical elements of the semiconductor manufacturing process because it determines the minimum feature size and the functional capabilities of the semiconductor. Because it is used many times in the manufacturing sequence, the quality of the microlithography process (i.e., number of defects, control for feature size, etc.) is critical in determining the yield and cost of semiconductors and hence the competitiveness of the electronics industry. At present all volume semiconductor manufacturing is done with optical UV (ultraviolet) projection lithography, twenty-year-old photographic technology which has been and is still evolving. There are many issues that limit the technical capability and cost-effectiveness of UV lithography, and thus, alternate lithographic techniques are continuously being researched and developed. X-ray lithography, which was invented in the early 1970's, holds the promise of providing higher yields in manufacturing semiconductors by virtue of enhanced process latitude, process robustness, and resolution.

  10. Controlled Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Sarid, Dror; Workman, Richard K.; Pyle, Jason L.

    1997-03-01

    A method for real-time monitoring of the quality and quantity of silicon oxide grown on silicon using conducting-tip scanning probe lithography has been developed. The sub-picoampere tip-sample currents measured during lithography in ambient conditions are shown to be proportional to the amount of silicon oxide being grown. In addition, we have demonstrated the ability to control the composition of the grown material by altering the lithographic environment. Silicon nitride growth is shown to result from lithography on silicon samples in an environment of annhydrous ammonia.

  11. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  12. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  13. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  14. Mask requirements for advanced lithography

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Engelstad, Roxann L.

    1998-06-01

    Within the n ext 10 years, sub-100 nm features will be required for state-of-the-industry devices. The tolerances for errors at 100 nm or less are substantially smaller than can be achieved today. A critical element of the error budget is the mask. For the 100 nm generation, the 4x mask image placement requirement is 20 nm with CD requirements as low as 9 nm. The challenge would be significant if the only improvement were to develop superior optical masks. There are multiple advanced technologies that are vying to be the successor to optical lithography. Each of these has a unique mask requirement. The leading contenders for the next generation are 1x x-ray, projection e-beam, ion beam, EUV and cell projection e-beam. The x-ray design is a proximity system that employs a 1x membrane mask. Projection e-beam uses a membrane mask with stabilizing struts. Ion beam lithography employs a stencil membrane mask with a carbon coating. EUV employs a 13 nm radiation source that requires a reflective mask. Cell projection e-beam has 25x or greater image masks that are stitched on the wafer. All the technologies indicated above. Once a total error budget for the mask is known, it is necessary to divide the total into the constituent parts. The major sources of distortion can be categorized into eight areas: mask blank processing, e- beam writing, pattern transfer, pellicle effects, mounting, thermal loadings, dynamic effects during exposure and radiation damage. The distortions introduced by each of these depend upon the type of mask; so, individual mask calculations must be made. The purpose of this paper is to review the modeling requirements of each of the categories and to highlight some results from each of the mask configurations.

  15. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  16. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  17. Thirty years of lithography simulation

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2005-05-01

    Thirty years ago Rick Dill and his team at IBM published the first account of lithography simulation - the accurate description of semiconductor optical lithography by mathematical equations. Since then, lithography simulation has grown dramatically in importance in four important areas: as a research tool, as a development tool, as a manufacturing tool, and as a learning tool. In this paper, the history of lithography simulations is traced from its roots to today"s indispensable tools for lithographic technology development. Along the way, an attempt will be made to define the true value of lithography simulation to the semiconductor industry.

  18. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  19. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  20. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  1. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  2. Immersion lithography bevel solutions

    NASA Astrophysics Data System (ADS)

    Tedeschi, Len; Tamada, Osamu; Sanada, Masakazu; Yasuda, Shuichi; Asai, Masaya

    2008-03-01

    The introduction of Immersion lithography, combined with the desire to maximize the number of potential yielding devices per wafer, has brought wafer edge engineering to the forefront for advanced semiconductor manufactures. Bevel cleanliness, the position accuracy of the lithography films, and quality of the EBR cut has become more critical. In this paper, the effectiveness of wafer track based solutions to enable state-of-art bevel schemes is explored. This includes an integrated bevel cleaner and new bevel rinse nozzles. The bevel rinse nozzles are used in the coating process to ensure a precise, clean film edge on or near the bevel. The bevel cleaner is used immediately before the wafer is loaded into the scanner after the coating process. The bevel cleaner shows promise in driving down defectivity levels, specifically printing particles, while not damaging films on the bevel.

  3. Simulations of immersion lithography

    NASA Astrophysics Data System (ADS)

    Bai, Min; Lei, Junjiang; Zhang, Lin; Shiely, James P.

    2005-05-01

    Immersion lithography has been regarded as the most viable contender to extend the resolution capability of optical lithography using 193nm wavelength. In parallel with the tremendous effort of overcoming the engineering challenges in immersion, support from modeling and simulations is strongly needed. Although immersion simulation has become available through a number of simulation tools, we need to investigate the model generation and its compatibility within the context of full-chip optical proximity correction (OPC). In this paper, we will describe the physics of a full vector model that is necessary for the high NA optical modeling under immersion. In this full vector model, we consider not only the plane wave decomposition as light travels from the mask to wafer plane, but also the refraction, transmission and reflection of light through a thin film stack on the wafer. We integrated this comprehensive vector model into Synopsys OPC modeling tool ProGen. Through ProGen simulation results, we will discuss several important merits of immersion lithography, as well as the full portability of immersion models into OPC process flow.

  4. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  5. Lithography, metrology and nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Liddle, J. Alexander; Gallatin, Gregg M.

    2011-07-01

    Semiconductor chip manufacturing is by far the predominant nanomanufacturing technology in the world today. Top-down lithography techniques are used for fabrication of logic and memory chips since, in order to function, these chips must essentially be perfect. Assuring perfection requires expensive metrology. Top of the line logic sells for several hundred thousand dollars per square metre and, even though the required metrology is expensive, it is a small percentage of the overall manufacturing cost. The level of stability and control afforded by current lithography tools means that much of this metrology can be online and statistical. In contrast, many of the novel types of nanomanufacturing currently being developed will produce products worth only a few dollars per square metre. To be cost effective, the required metrology must cost proportionately less. Fortunately many of these nanofabrication techniques, such as block copolymer self-assembly, colloidal self-assembly, DNA origami, roll-2-roll nano-imprint, etc., will not require the same level of perfection to meet specification. Given the variability of these self-assembly processes, in order to maintain process control, these techniques will require some level of real time online metrology. Hence we are led to the conclusion that future nanomanufacturing may well necessitate ``cheap'' nanometre scale metrology which functions real time and on-line, e.g. at GHz rates, in the production stream. In this paper we review top-down and bottom-up nanofabrication techniques and compare and contrast the various metrology requirements.

  6. Lithography, metrology and nanomanufacturing.

    PubMed

    Liddle, J Alexander; Gallatin, Gregg M

    2011-07-01

    Semiconductor chip manufacturing is by far the predominant nanomanufacturing technology in the world today. Top-down lithography techniques are used for fabrication of logic and memory chips since, in order to function, these chips must essentially be perfect. Assuring perfection requires expensive metrology. Top of the line logic sells for several hundred thousand dollars per square metre and, even though the required metrology is expensive, it is a small percentage of the overall manufacturing cost. The level of stability and control afforded by current lithography tools means that much of this metrology can be online and statistical. In contrast, many of the novel types of nanomanufacturing currently being developed will produce products worth only a few dollars per square metre. To be cost effective, the required metrology must cost proportionately less. Fortunately many of these nanofabrication techniques, such as block copolymer self-assembly, colloidal self-assembly, DNA origami, roll-2-roll nano-imprint, etc., will not require the same level of perfection to meet specification. Given the variability of these self-assembly processes, in order to maintain process control, these techniques will require some level of real time online metrology. Hence we are led to the conclusion that future nanomanufacturing may well necessitate "cheap" nanometre scale metrology which functions real time and on-line, e.g. at GHz rates, in the production stream. In this paper we review top-down and bottom-up nanofabrication techniques and compare and contrast the various metrology requirements.

  7. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

  8. Extending lithography with advanced materials

    NASA Astrophysics Data System (ADS)

    Guerrero, Douglas J.

    2014-03-01

    Material evolution has been a key enabler of lithography nodes in the last 30 years. This paper explores the evolution of anti-reflective coatings and their transformation from materials that provide only reflection control to advanced multifunctional layers. It is expected that complementary processes that do not require a change in wavelength will continue to dominate the development of new devices and technology nodes. New device architecture, immersion lithography, negative-tone development, multiple patterning, and directed self-assembly have demonstrated the capabilities of extending lithography nodes beyond what anyone thought would be possible. New material advancements for future technology nodes are proposed.

  9. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  10. Off-axis illumination of lithography tool

    NASA Astrophysics Data System (ADS)

    Xing, Han; Lin, Li; Bin, Ma

    2013-12-01

    Lithography tool is a necessary part for LSI and VLSI. The illumination system design is an important part in the lithography optical system design. Off-axis illumination technology is an effective way to reducing resolution of lithography. The paper introduction the basic components of lithography tool, the principle of off-axis illumination reducing the resolution of lithography and focus on the two implementations of OAI technology, finally point out advantages and disadvantage of the two implementations.

  11. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  12. Array imaging system for lithography

    NASA Astrophysics Data System (ADS)

    Kirner, Raoul; Mueller, Kevin; Malaurie, Pauline; Vogler, Uwe; Noell, Wilfried; Scharf, Toralf; Voelkel, Reinhard

    2016-09-01

    We present an integrated array imaging system based on a stack of microlens arrays. The microlens arrays are manufactured by melting resist and reactive ion etching (RIE) technology on 8'' wafers (fused silica) and mounted by wafer-level packaging (WLP)1. The array imaging system is configured for 1X projection (magnification m = +1) of a mask pattern onto a planar wafer. The optical system is based on two symmetric telescopes, thus anti-symmetric wavefront aberrations like coma, distortion, lateral color are minimal. Spherical aberrations are reduced by using microlenses with aspherical lens profiles. In our system design approach, sub-images of individual imaging channels do not overlap to avoid interference. Image superposition is achieved by moving the array imaging system during the exposure time. A tandem Koehler integrator illumination system (MO Exposure Optics) is used for illumination. The angular spectrum of the illumination light underfills the pupils of the imaging channels to avoid crosstalk. We present and discuss results from simulation, mounting and testing of a first prototype of the investigated array imaging system for lithography.

  13. Nanoimprint lithography for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven; Li, Zhiyong

    2016-09-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  14. Nanoimprint lithography for nanodevice fabrication.

    PubMed

    Barcelo, Steven; Li, Zhiyong

    2016-01-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  15. Directly patterned inorganic hardmask for EUV lithography

    NASA Astrophysics Data System (ADS)

    Stowers, Jason K.; Telecky, Alan; Kocsis, Michael; Clark, Benjamin L.; Keszler, Douglas A.; Grenville, Andrew; Anderson, Chris N.; Naulleau, Patrick P.

    2011-04-01

    This paper describes a metal oxide patternable hardmask designed for EUV lithography. The material has imaged 15-nm half-pitch by projection EUV exposure on the SEMATECH Berkeley MET, and 12-nm half-pitch by electron beam exposure. The platform is highly absorbing (16 μm-1) and etch resistant (>100:1 for silicon). These properties enable resist film thickness to be reduced to 20nm, thereby reducing aspect ratio and susceptibility to pattern collapse. New materials and processes show a path to improved photospeed. This paper also presents data for on coating uniformity, metal-impurity content, outgassing, pattern transfer, and resist strip.

  16. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  17. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  18. Condenser for extreme-UV lithography with discharge source

    DOEpatents

    Sweatt, William C.; Kubiak, Glenn D.

    2001-01-01

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  19. Quantum lithography beyond the diffraction limit via Rabi-oscillations

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2011-03-01

    We propose a quantum optical method to do the sub-wavelength lithography. Our method is similar to the traditional lithography but adding a critical step before dissociating the chemical bound of the photoresist. The subwavelength pattern is achieved by inducing the multi-Rabi-oscillation between the two atomic levels. The proposed method does not require multiphoton absorption and the entanglement of photons. This method is expected to be realizable using current technology. This work is supported by a grant from the Qatar National Research Fund (QNRF) under the NPRP project and a grant from the King Abdulaziz City for Science and Technology (KACST).

  20. Decal transfer lithography

    NASA Astrophysics Data System (ADS)

    Childs, William Robert

    A new soft-lithographic method for micropatterning polymeric resists, Decal Transfer Lithography (DTL), is described. This technique is based on the adhesive transfer of elastomeric decal patterns via the engineered adhesion and release properties of a compliant poly(dimethylsiloxane) (PDMS) patterning tool. This procedure is capable of transferring micron to sub-micron-sized features with high fidelity over large substrate areas in both open and closed forms, negative and positive image contrasts. Methods are introduced to promote adhesion of PDMS to noble metals using either of two methods: self-assembling monolayers (SAMs) or silicon dioxide capping layers. A novel UV/Ozone (UVO) mask was developed, which allows the photopatterning of UVO modifications of polymer surfaces. This modification in turn enables the direct photoinitiated patterning of resist patterns transferred by the soft-lithographic DTL method Photodefined-Cohesive Mechanical Failure (P-CMF), which fuses the design rules of the contact based adhesive transfer of PDMS in DTL with those of photolithography. The second, so-called Spartacus method, transfers the design rules of photolithography directly onto PDMS surfaces, enabling a photodefined adhesive transfer of PDMS films onto silicon oxide surfaces. The most significant advance embodied in the DTL method, however, is that is offers useful new capabilities for the design and fabrication of patterns of non-planar surfaces, 3D microfluidic assemblies, and microreactors.

  1. Lithography overlay controller formulation

    NASA Astrophysics Data System (ADS)

    Bode, Christopher A.; Toprac, Anthony J.; Edwards, Richard D.; Edgar, Thomas F.

    2000-08-01

    Lithography overlay refers to the measurement of the alignment of successive patterns within the manufacture of semiconductor devices. Control of overlay has become of great importance in semiconductor manufacturing, as the tolerance for overlay error is continually shrinking in order to manufacture next-generation semiconductor products. Run-to-run control has become an attractive solution to many control problems within the industry, including overlay. The term run-to-run control refers to any automated procedure whereby recipe settings are updated between successive process runs in order to keep the process under control. The following discussion will present the formulation of such a controller by examining control of overlay. A brief introduction of overlay will be given, highlighting the control challenge overlay presents. A data management methodology that groups like processes together in order to improve controllability, referred to as control threads, will then be presented. Finally, a discussion of linear model predictive control will show its utility in feedback run-to-run control.

  2. Photoinhibition superresolution lithography

    NASA Astrophysics Data System (ADS)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  3. Preliminary microfluidic simulations for immersion lithography

    NASA Astrophysics Data System (ADS)

    Wei, Alexander C.; Nellis, Greg F.; Abdo, Amr Y.; Engelstad, Roxann L.; Chen, Cheng-Fu; Switkes, Michael; Rothschild, Mordechai

    2003-06-01

    The premise behind immersion lithography is to improve the resolution for optical lithography technology by increasing the index of refraction in the space between the final projection lens of an exposure system and the device wafer. This is accomplished through the insertion of a high index liquid in place of the low index air that currently fills the gap. The fluid management system must reliably fill the lens-wafer gap with liquid, maintain the fill under the lens throughout the entire wafer exposure process, and ensure that no bubbles are entrained during filling or scanning. This paper presents a preliminary analysis of the fluid flow characteristics of a liquid between the lens and the wafer in immersion lithography. The objective of this feasibility study was to identify liquid candidates that meet both optical and specific fluid mechanical requirements. The mechanics of the filling process was analyzed to simplify the problem and identify those fluid properties and system parameters that affect the process. Two-dimensional computational fluid dynamics (CFD) models of the fluid between the lens and the wafer were developed for simulating the process. The CFD simulations were used to investigate two methods of liquid deposition. In the first, a liquid is dispensed onto the wafer as a "puddle" and then the wafer and liquid move under the lens. This is referred to as passive filling. The second method involves the use of liquid jets in close proximity to the edge of the lens and is referred to as active filling. Numerical simulations of passive filling included a parametric study of the key dimensionless group influencing the filling process and an investigation of the effects of the fluid/wafer and fluid/lens contact angles and wafer direction. The model results are compared with experimental measurements. For active filling, preliminary simulation results characterized the influence of the jets on fluid flow.

  4. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  5. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  6. Soft X-Ray Projection Lithography. Organization of the Photonics Science Topical Meetings Held in Monterey, California on May 10-12, 1993

    DTIC Science & Technology

    1993-05-10

    00 pm MA3 Two aspheric mirror system design development MB2 Condenser optics for SXPL, Steve Vernon. Vernon Ap- for SXPL, T. E Jewell. Optical Design...Consultant A generalized plied Physics, Gary Sommargren. Lynn Seppala. David Gaines, procedure for an optical design of a two aspheric mirror system...necessary to develop high-rollectance, tionat Laboratories: J. E, B3jorkhotm. R. R. Freeman, M. 0. Himet, normaltýincidence x-ray mirrors tar projection

  7. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  8. Soft X-Ray Projection Lithography Topical Meeting Held in Monterey, California on April 6 - 8, 1992. Technical Digest, Volume 8

    DTIC Science & Technology

    1992-04-08

    paperback) / G6A Masker Nw 560 (paperback)I VoL.13 Quantum Electronmics and Lanar Sciesie Anaheim, CA (may 10-15) Positconference edition:c ISBN 1...optics, Georgy Gutman, Kevin Parker, James L. Wood, 10.50 am Ovonic Synthetic Materials Co., Inc.; Richard Watts, National TuAS lx reflective x-ray...am (Invited) WA3 Soft x-ray projection imaging using a 1:1 ring- field op- 4:10 pm-5:20 pm tic, A. A. MacDowell, A T& T Bell Laboratories; J. E

  9. Laser Based Information Systems (Selected Pages),

    DTIC Science & Technology

    1986-05-22

    CO lasers . Microwaves, 1967, M* 7. 85. W e I s s P. F., T o h n s o n R. E. Laser tracking wiht automatic reacquisi- tion capability. Appl. Optics, 1968, Vol. 7, M* 6. I it 313 lab- Now - ...DIVISIONCD LASER BASED INFORMATION SYSTEMS (Selected Pages) bDTIC L.Z. Kriksunov EL’, %N16 86 4. I’, Approved for public release; Distribution...HUMAN TRANSLATION FTD-ID(RS)T-0563-85 22 May 1986 MICROFICHE NR: FTD-86-C-O01863 LASER BASED INFORMATION SYSTEMS (Selected Pages) By: L.Z.

  10. Biomolecular Patterning via Photocatalytic Lithography

    SciTech Connect

    Bearinger, J P; Hiddessen, A L; Wu, K J; Christian, A T; Dugan, L C; Stone, G; Camarero, J; Hinz, A K; Hubbell, J A

    2005-02-18

    We have developed a novel method for patterning surface chemistry: Photocatalytic Lithography. This technique relies on inexpensive stamp materials and light; it does not necessitate mass transport or specified substrates, and the wavelength of light should not limit feature resolution. We have demonstrated the utility of this technique through the patterning of proteins, single cells and bacteria.

  11. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  12. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  13. Graphic Arts/Offset Lithography.

    ERIC Educational Resources Information Center

    Hoisington, James; Metcalf, Joseph

    This revised curriculum for graphic arts is designed to provide secondary and postsecondary students with entry-level skills and an understanding of current printing technology. It contains lesson plans based on entry-level competencies for offset lithography as identified by educators and industry representatives. The guide is divided into 15…

  14. Plasmonic films based on colloidal lithography.

    PubMed

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.

  15. Laser- based Insect Tracker (LIT)

    NASA Astrophysics Data System (ADS)

    Mesquita, Leonardo; Sinha, Shiva; van Steveninck, Rob De Ruyter

    2011-03-01

    Insects are excellent model systems for studying learning and behavior, and the potential for genetic manipulation makes the fruitfly especially attractive. Many aspects of fruitfly behavior have been studied through video based tracking methods. However, to our knowledge no current system incorporates signals for behavioral conditioning in freely moving flies. We introduce a non-video based method that enables tracking of single insects over large volumes (> 8000cm3 at high spatial (<1mm) and temporal (<1ms) resolution for extended periods (>1 hour). The system uses a set of moveable mirrors that steer a tracking laser beam. Tracking is based on feedback from a four-quadrant sensor, sampling the beam after it bounces back from a retro reflector. Through the same mirrors we couple a high speed camera for flight dynamics analysis and an IR laser for aversive heat conditioning. Such heat shocks, combined with visual stimuli projected on a screen surrounding the flight arena, enable studies of learning and memory. By sampling the long term statistics of behavior, the system augments quantitative studies of behavioral phenotypes. Preliminary results of such studies will be presented.

  16. Photonic integrated circuits: new challenges for lithography

    NASA Astrophysics Data System (ADS)

    Bolten, Jens; Wahlbrink, Thorsten; Prinzen, Andreas; Porschatis, Caroline; Lerch, Holger; Giesecke, Anna Lena

    2016-10-01

    In this work routes towards the fabrication of photonic integrated circuits (PICs) and the challenges their fabrication poses on lithography, such as large differences in feature dimension of adjacent device features, non-Manhattan-type features, high aspect ratios and significant topographic steps as well as tight lithographic requirements with respect to critical dimension control, line edge roughness and other key figures of merit not only for very small but also for relatively large features, are highlighted. Several ways those challenges are faced in today's low-volume fabrication of PICs, including the concept multi project wafer runs and mix and match approaches, are presented and possible paths towards a real market uptake of PICs are discussed.

  17. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  18. Photoresist composition for extreme ultraviolet lithography

    SciTech Connect

    Felter, T.E.; Kubiak, G.D.

    1999-11-23

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4--0.05 {mu}m using projection lithography and extreme ultraviolet (EUV) radiation is disclosed. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  19. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  20. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  1. EUV Lithography: New Metrology Challenges

    SciTech Connect

    Wood, Obert

    2007-09-26

    Extreme ultraviolet lithography is one of the most promising printing techniques for high volume semiconductor manufacturing at the 22 nm half-pitch device node and beyond. Because its imaging wavelength is approximately twenty times shorter than those currently in use (13.5 nm versus 193-248 nm) and because EUV optics and masks must be provided with highly-precise reflective multilayer coatings, EUV lithography presents a number of new and difficult metrology challenges. In this paper, the current status of the metrology tools being used to characterize the figure and finish of EUV mirror surfaces, the defectivity and flatness of EUV mask blanks and the outgassing rates of EUV resist materials are discussed.

  2. Maskless micro-ion-beam reduction lithography system

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  3. Nanoimprint lithography for microfluidics manufacturing

    NASA Astrophysics Data System (ADS)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  4. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  5. Protein assay structured on paper by using lithography

    NASA Astrophysics Data System (ADS)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  6. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  7. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  8. Charting CEBL's role in mainstream semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Lam, David K.

    2013-09-01

    historically kept it out of mainstream fabs. Thanks to continuing EBDW advances combined with the industry's move to unidirectional (1D) gridded layout style, EBDW promises to cost-efficiently complement 193nm ArF immersion (193i) optical lithography in high volume manufacturing (HVM). Patterning conventional 2D design layouts with 193i is a major roadblock in device scaling: the resolution limitations of optical lithography equipment have led to higher mask cost and increased lithography complexity. To overcome the challenge, IC designers have used 1D layouts with "lines and cuts" in critical layers.1 Leading logic and memory chipmakers have been producing advanced designs with lines-and-cuts in HVM for several technology nodes in recent years. However, cut masks in multiple optical patterning are getting extremely costly. Borodovsky proposes Complementary Lithography in which another lithography technology is used to pattern line-cuts in critical layers to complement optical lithography.2 Complementary E-Beam Lithography (CEBL) is a candidate to pattern the Cuts of optically printed Lines. The concept of CEBL is gaining acceptance. However, challenges in throughput, scaling, and data preparation rate are threatening to deny CEBL's role in solving industry's lithography problem. This paper will examine the following issues: The challenges of massively parallel pixel writing The solutions of multiple mini-column design/architecture in: Boosting CEBL throughput Resolving issues of CD control, CDU, LER, data rate, higher resolution, and 450mm wafers The role of CEBL in next-generation solution of semiconductor lithography

  9. Discharge produced plasma source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Borisov, V.; Eltzov, A.; Ivanov, A.; Khristoforov, O.; Kirykhin, Yu.; Vinokhodov, A.; Vodchits, V.; Mishhenko, V.; Prokofiev, A.

    2007-04-01

    Extreme ultraviolet (EUV) radiation is seen as the most promising candidate for the next generation of lithography and semiconductor chip manufacturing for the 32 nm node and below. The paper describes experimental results obtained with discharge produced plasma (DPP) sources based on pinch effect in a Xe and Sn vapour as potential tool for the EUV lithography. Problems of DPP source development are discussed.

  10. Commercialization plan laser-based decoating systems

    SciTech Connect

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  11. Mask lithography for display manufacturing

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Ekberg, P.

    2010-05-01

    The last ten years have seen flat displays conquer our briefcases, desktops, and living rooms. There has been an enormous development in production technology, not least in lithography and photomasks. Current masks for large displays are more than 2 m2 and make 4-6 1X prints on glass substrates that are 9 m2. One of the most challenging aspects of photomasks for displays is the so called mura, stripes or blemishes which cause visible defects in the finished display. For the future new and even tighter maskwriter specifications are driven by faster transistors and more complex pixel layouts made necessary by the market's wish for still better image quality, multi-touch panels, 3D TVs, and the next wave of e-book readers. Large OLED screens will pose new challenges. Many new types of displays will be lowcost and use simple lithography, but anything which can show video and high quality photographic images needs a transistor backplane and sophisticated masks for its production.

  12. Laser-based detection of chemical contraband

    NASA Astrophysics Data System (ADS)

    Clemmer, Robert G.; Kelly, James F.; Martin, Steven W.; Mong, Gary M.; Sharpe, Steven W.

    1997-02-01

    The goal of our work is tow fold; 1) develop a portable and rapid laser based air sampler for detection of specific chemical contraband and 2) compile a spectral data base in both the near- and mid-IR of sufficiently high quality to be useful for gas phase spectroscopic identification of chemical contraband. During the synthesis or 'cooking' of many illicit chemical substances, relatively high concentrations of volatile solvents, chemical precursors and byproducts are unavoidably released to the atmosphere. In some instances, the final product may have sufficient vapor pressure to be detectable in the surrounding air. The detection of a single high-value effluent or the simultaneous detection of two or more low-value effluents can be used as reliable indicators of a nearby clandestine cooking operation. The designation of high- versus low-value effluent reflects both the commercial availability and legitimate usage of a specific chemical. This paper will describe PNNL's progress and efforts towards the development of a portable laser based air sampling system for the detection of clandestine manufacturing of methamphetamine. Although our current efforts ar focused on methamphetamine, we see no fundamental limitations on detection of other forms of chemical contraband manufacturing. This also includes the synthesis of certain classes of chemical weapons that have recently been deployed by terrorist groups.

  13. PSM design for inverse lithography with partially coherent illumination.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2008-11-24

    Phase-shifting masks (PSM) are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. Recently, a set of gradient-based PSM optimization methods have been developed to solve for the inverse lithography problem under coherent illumination. Most practical lithography systems, however, use partially coherent illumination due to non-zero width and off-axis light sources, which introduce partial coherence factors that must be accounted for in the optimization of PSMs. This paper thus focuses on developing a framework for gradient-based PSM optimization methods which account for the inherent nonlinearities of partially coherent illumination. In particular, the singular value decomposition (SVD) is used to expand the partially coherent imaging equation by eigenfunctions into a sum of coherent systems (SOCS). The first order coherent approximation corresponding to the largest eigenvalue is used in the PSM optimization. In order to influence the solution patterns to have more desirable manufacturability properties and higher fidelity, a post-processing of the mask pattern based on the 2D discrete cosine transformation (DCT) is introduced. Furthermore, a photoresist tone reversing technique is exploited in the design of PSMs to project extremely sparse patterns.

  14. Particle Lithography Enables Fabrication of Multicomponent Nanostructures

    PubMed Central

    Lin, Wei-feng; Swartz, Logan A.; Li, Jie-Ren; Liu, Yang; Liu, Gang-yu

    2014-01-01

    Multicomponent nanostructures with individual geometries have attracted much attention because of their potential to carry out multiple functions synergistically. The current work reports a simple method using particle lithography to fabricate multicomponent nanostructures of metals, proteins, and organosiloxane molecules, each with its own geometry. Particle lithography is well-known for its capability to produce arrays of triangular-shaped nanostructures with novel optical properties. This paper extends the capability of particle lithography by combining a particle template in conjunction with surface chemistry to produce multicomponent nanostructures. The advantages and limitations of this approach will also be addressed. PMID:24707328

  15. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  16. Subjective speckle suppression in laser-based stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Stark, Andreas Walter; Wong, Eugene; Weigel, Daniel; Babovsky, Holger; Schott, Thomas; Kowarschik, Richard

    2016-12-01

    The use of objective speckles as patterns is of high interest for the ongoing development of stereo photogrammetry. The depth of focus of the projected speckle patterns, which can be found to be several meters, can hardly be matched by other projection principles. On the downside, the use of coherent light leads to subjective speckles generated by the rough surface of the object under test. This effect decreases the accuracy under which objects can be reconstructed. We show how laser-based stereo photogrammetry can be adjusted to increase the measurement accuracy of three-dimensional (3-D)-surface measurements while preserving the advantages of speckles projection. Therefore, we present a method to decrease the contrast of subjective speckles in the images by pixel-wise shifting the cameras orthogonally to their viewing direction and back shifting the taken images numerically, accordingly. This leads to an increase in 3-D-reconstruction quality, as seen in a decrease in standard deviation, peak-to-valley value and in an increase in the number of reconstructed points for measured test objects.

  17. MAGIC: a European program to push the insertion of maskless lithography

    NASA Astrophysics Data System (ADS)

    Pain, L.; Icard, B.; Tedesco, S.; Kampherbeek, B.; Gross, G.; Klein, C.; Loeschner, H.; Platzgummer, E.; Morgan, R.; Manakli, S.; Kretz, J.; Holhe, C.; Choi, K.-H.; Thrum, F.; Kassel, E.; Pilz, W.; Keil, K.; Butschke, J.; Irmscher, M.; Letzkus, F.; Hudek, P.; Paraskevopoulos, A.; Ramm, P.; Weber, J.

    2008-03-01

    With the willingness of the semiconductor industry to push manufacturing costs down, the mask less lithography solution represents a promising option to deal with the cost and complexity concerns about the optical lithography solution. Though a real interest, the development of multi beam tools still remains in laboratory environment. In the frame of the seventh European Framework Program (FP7), a new project, MAGIC, started January 1st 2008 with the objective to strengthen the development of the mask less technology. The aim of the program is to develop multi beam systems from MAPPER and IMS nanofabrication technologies and the associated infrastructure for the future tool usage. This paper draws the present status of multi beam lithography and details the content and the objectives of the MAGIC project.

  18. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  19. Secrets of subwavelength imaging and lithography

    NASA Astrophysics Data System (ADS)

    Hemmer, Philip R.

    2011-08-01

    To understand the limits and tradeoffs of nearly all existing subwavelength imaging techniques it sufficient to understand magnetic resonance imaging (MRI) and its generalizations. In many cases, subwavelength optical lithography can be viewed as the inverse problem to imaging and so the same principles apply. A simple review of MRI is given which shows how the most popular subwavelength imaging and lithography techniques naturally arise as special cases.

  20. 3D resolution gray-tone lithography

    NASA Astrophysics Data System (ADS)

    Dumbravescu, Niculae

    2000-04-01

    With the conventional micro machining technologies: isotropic and anisotropic, dry and wet etching, a few shapes can be done. To overcome this limitation, both binary multi- tasking technique or direct EB writing were used, but an inexpensive one-step UV-lithographic method, using a so- called 'gray-tone reticle', seems to be the best choice to produce local intensity modulation during exposure process. Although, by using this method and common technologies in standard IC fabrication it is easy to obtain an arbitrarily 3D shaping of positive thick resists, there are some limitations, too. The maximum number of gray-levels, on projection reticle, achieved by e-beam writing, are only 200. Also, for very thick resists, the limited focus depth of the projection objective gives a poor lateral resolution. These are the reasons why the author prose da new approach to enhance the 3D resolution of gray-tone lithography applied for thick resist. By a high resolution, both for vertical direction, as well as for horizontal direction. Particular emphasis was put on the design, manufacturing and use of halftone transmission masks, required for UV- lithographic step in the fabrication process of mechanical, optical or electronics components. The original design and fabrication method for the gray-tone test reticle were supported by experiments showing the main advantage of this new technology: the 3D structuring of thick resist in a single exposure step and also a very promising aspect ratio obtained of over 9:1. Preliminary experimental results are presented for positive thick resists in SEM micrographs. A future optimization of the lithographic process opens interesting perspectives for application of this high 3D resolution structuring method in the fabrication process of different products, with imposed complex smooth profiles, such as: x-ray LiGA-masks, refractive optics and surface- relief DOEs.

  1. Direct write lithography: the global solution for R&D and manufacturing

    NASA Astrophysics Data System (ADS)

    Pain, Laurent; Tedesco, Serge; Constancias, Christophe

    2006-10-01

    The electron beam lithography is a well known and mature solution, widely installed in research laboratories and Universities, to provide advanced patterning for research and development programs for a large field of applications. However, limited by its low throughput capabilities, the direct write solution never appeared as a credible option for manufacturing purposes. Nevertheless, semiconductor business starts to be affected by the increasing cost of the optical lithography requesting more and more complex masks and projection systems. This trend opens opportunities for high throughput mask less equipments to address ASIC manufacturing. A review of the Maskless Lithography (ML2) technology is presented in this article, including process integration capability, application fields and perspective for high throughput ML2 solution. To cite this article: L. Pain et al., C. R. Physique 7 (2006).

  2. Speckle disturbance limit in laser-based cinema projection systems

    NASA Astrophysics Data System (ADS)

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-09-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.

  3. Speckle disturbance limit in laser-based cinema projection systems

    PubMed Central

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-01-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain. PMID:26370531

  4. Lithography aware overlay metrology target design method

    NASA Astrophysics Data System (ADS)

    Lee, Myungjun; Smith, Mark D.; Lee, Joonseuk; Jung, Mirim; Lee, Honggoo; Kim, Youngsik; Han, Sangjun; Adel, Michael E.; Lee, Kangsan; Lee, Dohwa; Choi, Dongsub; Liu, Zephyr; Itzkovich, Tal; Levinski, Vladimir; Levy, Ady

    2016-03-01

    We present a metrology target design (MTD) framework based on co-optimizing lithography and metrology performance. The overlay metrology performance is strongly related to the target design and optimizing the target under different process variations in a high NA optical lithography tool and measurement conditions in a metrology tool becomes critical for sub-20nm nodes. The lithography performance can be quantified by device matching and printability metrics, while accuracy and precision metrics are used to quantify the metrology performance. Based on using these metrics, we demonstrate how the optimized target can improve target printability while maintaining the good metrology performance for rotated dipole illumination used for printing a sub-100nm diagonal feature in a memory active layer. The remaining challenges and the existing tradeoff between metrology and lithography performance are explored with the metrology target designer's perspective. The proposed target design framework is completely general and can be used to optimize targets for different lithography conditions. The results from our analysis are both physically sensible and in good agreement with experimental results.

  5. High-n immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; Mulkens, Jan; Graeupner, Paul; McCafferty, Diane; Markoya, Louis; Donders, Sjoerd; Cortie, Rogier; Meijers, Ralph; Evangelista, Fabrizio; Samarakone, Nandarisi

    2008-03-01

    A two-year study on the feasibility of High-n Immersion Lithography shows very promising results. This paper reports the findings of the study. The evaluation shows the tremendous progress made in the development of second-generation immersion fluid technology. Candidate fluids from several suppliers have been evaluated. All the commercial fluids evaluated are viable, so there are a number of options. Life tests have been conducted on bench top fluid-handling systems and the results referenced to full-scale systems. Parameters such as Dose per Laser Pulse, Pulse Rate, Fluid Flow Rate, and Fluid Absorbency at 193nm, and Oxygen/Air Contamination Levels were explored. A detailed evaluation of phenomena such as Last Lens Element (LLE) contamination has been conducted. Lens cleaning has been evaluated. A comparison of High-n fluid-based technology and water-based immersion technology shows interesting advantages of High-n fluid in the areas of Defect and Resist Interaction. Droplet Drying tests, Resist Staining evaluations, and Resist Contrast impact studies have all been run. Defect-generating mechanisms have been identified and are being eliminated. The lower evaporation rate of the High-n fluids compared with water shows the advantages of High-n Immersion. The core issue for the technology, the availability of High-n optical material for use as the final lens element, is updated. Samples of LuAG material have been received from development partners and have been evaluated. The latest status of optical materials and the technology timelines are reported. The potential impact of the availability of the technology is discussed. Synergy with technologies such as Double Patterning is discussed. The prospects for <22nm (hp) are evaluated.

  6. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  7. Force-controlled inorganic crystallization lithography.

    PubMed

    Cheng, Chao-Min; LeDuc, Philip R

    2006-09-20

    Lithography plays a key role in integrated circuits, optics, information technology, biomedical applications, catalysis, and separation technologies. However, inorganic lithography techniques remain of limited utility for applications outside of the typical foci of integrated circuit manufacturing. In this communication, we have developed a novel stamping method that applies pressure on the upper surface of the stamp to regulate the dewetting process of the inorganic buffer and the evaporation rate of the solvent in this buffer between the substrate and the surface of the stamp. We focused on generating inorganic microstructures with specific locations and also on enabling the ability to pattern gradients during the crystallization of the inorganic salts. This approach utilized a combination of lithography with bottom-up growth and assembly of inorganic crystals. This work has potential applications in a variety of fields, including studying inorganic material patterning and small-scale fabrication technology.

  8. Data sharing system for lithography APC

    NASA Astrophysics Data System (ADS)

    Kawamura, Eiichi; Teranishi, Yoshiharu; Shimabara, Masanori

    2007-03-01

    We have developed a simple and cost-effective data sharing system between fabs for lithography advanced process control (APC). Lithography APC requires process flow, inter-layer information, history information, mask information and so on. So, inter-APC data sharing system has become necessary when lots are to be processed in multiple fabs (usually two fabs). The development cost and maintenance cost also have to be taken into account. The system handles minimum information necessary to make trend prediction for the lots. Three types of data have to be shared for precise trend prediction. First one is device information of the lots, e.g., process flow of the device and inter-layer information. Second one is mask information from mask suppliers, e.g., pattern characteristics and pattern widths. Last one is history data of the lots. Device information is electronic file and easy to handle. The electronic file is common between APCs and uploaded into the database. As for mask information sharing, mask information described in common format is obtained via Wide Area Network (WAN) from mask-vender will be stored in the mask-information data server. This information is periodically transferred to one specific lithography-APC server and compiled into the database. This lithography-APC server periodically delivers the mask-information to every other lithography-APC server. Process-history data sharing system mainly consists of function of delivering process-history data. In shipping production lots to another fab, the product-related process-history data is delivered by the lithography-APC server from the shipping site. We have confirmed the function and effectiveness of data sharing systems.

  9. Laser based combustion laboratory at NTH/SINTEF applied thermodynamics

    NASA Astrophysics Data System (ADS)

    Tichy, F.; Bjoerge, T.

    1993-12-01

    During the SPUNG-program, a laser based laboratory has been built up at NTH/SINTEF Applied Thermodynamics by the funding from that program. The laser based laboratory consists of a Nd:YAG laser and an image intensifier electronic camera system. There are numerous different laser based techniques that can be used, using the laser based laboratory, but we have concentrated on laser induced fluorescence (LIF). By shaping the laser beam into a flat plane, 2D imaging of combustion radicals (OH, CH) and emission species (NO) are possible. This can give valuable information about flame structure, flame stabilization, turbulence scales and so on, but at the time being not quantitative concentrations.

  10. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  11. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  12. System considerations for maskless lithography

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas; Joy, David; Allard, Larry; Clonts, Lloyd

    2004-05-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting prblems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-ofrf switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devidces are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  13. SYSTEM CONSIDERATIONS FOR MASKLESS LITHOGRAPHY

    SciTech Connect

    Karnowski, Thomas Paul; Joy, David; Allard Jr, Lawrence Frederick; Clonts, Lloyd G

    2004-01-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting problems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-off switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devices are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  14. Laser-Based Measurement Of Torsional Vibration

    NASA Astrophysics Data System (ADS)

    Eastwood, P. G.; Halliwell, N. A.

    1986-07-01

    Investigations of the torsional vibration characteristics of shaft systems which transmit pulsating torques are an important part of a machinery designer's responsibility. Satisfactory operation of such systems depends to a large extent on successful treatment of this vibration problem, since incorrectly or insufficiently controlled torsional oscillations can lead to fatigue failure, rapid bearing wear, gear hammer etc. The problem is particularly severe in engine crankshaft design where numerous failures have been traced to abnormal vibration at "critical" speeds. Traditionally, the monitoring of torsional oscillation has been performed using strain gauges, slip rings and a variety of mechanical and electrical "torsiographs". More recently systems employing slotted discs or toothed wheels together with proximity transducers have been preferred, but a disadvantage arises from all these methods in that they require contact with the rotating component which necessitates "downtime" for transducer attachment. Moreover, physical access to the rotating surface is often restricted thus making the use of such methods impractical. The "cross-beam" laser velocimeter provides a means of measuring torsional vibration by a non-contact method, thus effectively overcoming the disadvantages of previous measurement systems. This well established laser-based instrument provides a time-resolved voltage analogue of shaft tangential surface velocity and laboratory and field tests have shown it to be both accurate and reliable. The versatility of this instrument, however, is restricted by the need for accurate positioning, since the velocimeter must be arranged so that the rotating surface always traverses the beam intersection region, which is typically only a fraction of a millimetre in length. As a consequence use is restricted to components of circular cross section. This paper compares and contrasts the "cross-beam" system with a new laser instrument, the laser torsional vibrometer

  15. Interference Lithography for Optical Devices and Coatings

    DTIC Science & Technology

    2010-01-01

    fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to... catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography...self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester

  16. Liquid-Phase Beam Pen Lithography.

    PubMed

    He, Shu; Xie, Zhuang; Park, Daniel J; Liao, Xing; Brown, Keith A; Chen, Peng-Cheng; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2016-02-24

    Beam pen lithography (BPL) in the liquid phase is evaluated. The effect of tip-substrate gap and aperture size on patterning performance is systematically investigated. As a proof-of-concept experiment, nanoarrays of nucleotides are synthesized using BPL in an organic medium, pointing toward the potential of using liquid phase BPL to perform localized photochemical reactions that require a liquid medium.

  17. Performance of laser based optical imaging system

    NASA Astrophysics Data System (ADS)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh

    2016-05-01

    night imaging and higher frame rate (more than 100fps). Taking advantage of these, laser based camera system configuration was worked out and presented in this paper using scientific grade CMOS sensor and NIR Laser. Camera can image target range from 4km to 5km with resolution of 5cm. Camera can have instantaneous coverage of 100mx100m (at 5km). Scientific grade CMOS sensor could also be used for clear sky day time imaging conditions with Laser off condition. To reduce the laser energy requirement, FPA required to be operated in multi-integration mode where multiple low energy pulses could be thrown within given integration time and detector and its associated electronics will collect and accumulate only those photons which are reflected back from the target of interest using appropriate gating control mechanism. Paper will bring out system engineering aspects for finalization of imaging spectrum, optical parameters in terms of aperture & focal length, required laser energy, highlighting advantage of pulse mode operation of laser compared to continuous mode operation in terms of laser energy & back-scattered light, silicon based optical detector performance results and post processing aspects for target detection. Paper will also discuss achieved performance of proto-model camera.

  18. Process window simulation study with immersion lithography for 45-nm technology node

    NASA Astrophysics Data System (ADS)

    Park, Oseo; Gutmann, Alois; Neumueller, Walter; Back, David

    2004-05-01

    As the potentials of experimental studies are still limited, a predictive resist image simulation of Immersion lithography is very important for a better understanding of the technology. One of the most critical issues in Immersion lithography is the description of the influence of immersion which is the presence of a uniform liquid layer between the last objective lens and the photo resist, on optical lithography. It enables the real part of the index of refraction in the image space, and the numerical aperture of the projection lens, to be greater than unity. Therefore, it is virtually involves Maxwell vector solution approach, including polarization effects and arbitrary thin film multi-layers. This paper discusses the improvement in process window afforded by immersion under a variety of conditions, including 193nm and 157nm, Off-axis illumination, Attenuated Phase Shift Mask for 65nm and 45nm technology node. Comparisons with dry and liquid lithography simulations are used to evaluate the availability and the performance of the proposed approach. The implemented resist simulation approach is examined the impact to the process window of variations in liquid refractive index as well.

  19. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  20. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  1. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  2. Soft molding lithography of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Persano, Luana; Cingolani, Roberto; Gigli, Giuseppe; Babudri, Francesco; Farinola, Gianluca M.; Naso, Francesco

    2004-02-01

    We report on the nanopatterning of conjugated polymers by soft molding, and exploit the glass transition of the organic compound in conformal contact with an elastomeric element. We succeeded in printing different compounds with resolution down to 300 nm at temperatures up to 300 °C in vacuum. No significant variation of the photoluminescence (PL) spectra nor heavy degradation of the PL quantum yield was observed after the lithography process. Based on the high resolution achieved and on the well-retained luminescence properties of the patterned compounds, we conclude that high-temperature soft lithography is a valid, flexible and straightforward technique for one-step realization of organic-based devices.

  3. Implementation of assist features in EUV lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Burkhardt, Martin; Raghunathan, Ananthan; Torres, Andres; Gupta, Rachit; Word, James

    2015-03-01

    The introduction of EUV lithography will happen at a critical feature pitch which corresponds to a k1 factor of roughly 0.45. While this number seems not very aggressive compared to recent ArF lithography nodes, the number is sufficiently low that the introduction of assist features has to be considered. While the small NA makes the k1 factor larger, the depth of focus still needs to be scaled down with wavelength. However the exposure tool's focus control is not greatly improved over the ArF tools, so other solutions to improve the depth of focus, e.g. SRAFs, are needed. On the other hand, sub-resolution assist features (SRAFs) require very small mask dimensions, which make masks more costly to write and inspect. Another disadvantage of SRAFs is the fact that they may cause pattern-dependent best focus shift due to thick mask effects. Those effects can be predicted, but the shift of best focus and the associated tilt of Bossung curves make the process more difficult to control. We investigate the impact of SRAFs on printing in EUV lithography and evaluate advantages and disadvantages. By using image quality parameters such as best focus (BF), and depth of focus (DOF), respectively with and without SRAFs, we will answer the question if we can gain a net benefit for 1D and 2D patterns by adding SRAFs. SRAFs will only be introduced if any net improvement in process variation (PV) outweighs the additional expense of assist patterning on the mask. In this paper, we investigate the difference in printing behavior of symmetric and asymmetric SRAF placement and whether through slit effect needs to be considered in SRAF placement for EUV lithography.

  4. Ion Implant Enabled 2x Lithography

    NASA Astrophysics Data System (ADS)

    Martin, Patrick M.; Godet, Ludovic; Cheung, Andrew; de Cock, Gael; Hatem, Chris

    2011-01-01

    Ion implantation has many applications in microelectronics beyond doping. The broad range of species available combined with the ability to precisely control dose, angle, and energy offers compelling advantages for use in precision material modification. The application to lithography has been reported elsewhere. Integrating ion implantation into the lithography process enables scaling the feature size requirements beyond the 15 nm node with a simplified double patterning sequence. In addition, ion implant may be used to remove line edge roughness, providing tremendous advantages to meet extreme lithography imaging requirements and provide additional device stability. We examine several species (e.g. Si, Ar, etc.) and the effect of energy and impact angle on several commercially available 193 nm immersion photoresists using a Varian VIISta® single wafer high current ion implanter. The treated photoresist will be evaluated for stability in an integrated double patterning application with ion implant used to freeze the primary image. We report on critical dimension impact, pattern integrity, optical property modification, and adhesion. We analyze the impact of line edge roughness improvement beyond the work of C. Struck including the power spectral distribution. TGA and FTIR Spectroscopy results for the implanted photoresist materials will also be included.

  5. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  6. Laser based micro forming and assembly.

    SciTech Connect

    MacCallum, Danny O'Neill; Wong, Chung-Nin Channy; Knorovsky, Gerald Albert; Steyskal, Michele D.; Lehecka, Tom; Scherzinger, William Mark; Palmer, Jeremy Andrew

    2006-11-01

    It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

  7. Overlay distortions in wafer-scale integration lithography

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.

    1993-08-01

    Wafer scale integration (WSI) lithography is the technique used to fabricate ultra large scale integration (ULSI) integrated circuits significantly greater in size than current products. Applications for WSI lithography include large solid state detector arrays, large area liquid crystal displays, high speed mainframe supercomputers, and large random access memories. The lithography technology required to manufacture these devices is particularly challenging, requiring stringent control of both submicron critical dimensions and accurate alignment of level to level device patterns over large chip areas.

  8. Polymeric waveguide Bragg grating filter using soft lithography

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  9. Laser-based direct-write techniques for cell printing.

    PubMed

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2010-09-01

    Fabrication of cellular constructs with spatial control of cell location (+/-5 microm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing.

  10. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  11. Expected innovations of optical lithography in the next 10 years

    NASA Astrophysics Data System (ADS)

    Owa, Soichi; Hirayanagi, Noriyuki

    2016-03-01

    In the past 10 years, immersion lithography has been the most effective high volume manufacturing method for the critical layers of semiconductor devices. Thinking of the next 10 years, we can expect continuous improvement on existing 300 mm wafer scanners with better accuracy and throughput to enhance the total output value per input cost. This value productivity, however, can be upgraded also by larger innovations which might happen in optical lithography. In this paper, we will discuss the possibilities and the impossibilities of potential innovation ideas of optical lithography, which are 450 mm wafer, optical maskless, multicolor lithography, and metamaterial.

  12. Polarization manipulation in single refractive prism based holography lithography

    NASA Astrophysics Data System (ADS)

    Xiong, Wenjie; Xu, Yi; Xiao, Yujian; Lv, Xiaoxu; Wu, Lijun

    2015-01-01

    We propose theoretically and demonstrate experimentally a simple but effective strategy for polarization manipulation in single refractive prism based holographic lithography. By tuning the polarization of a single laser beam, we can obtain the pill shape interference pattern with a high-contrast where a complex optical setup and multiple polarizers are needed in the conventional holography lithography. Fabrication of pill shape two-dimensional polymer photonic crystals using one beam and one shoot holography lithography is shown as an example to support our theoretical results. This integrated polarization manipulation technique can release the crucial stability restrictions imposed on the multiple beams holography lithography.

  13. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  14. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography

    SciTech Connect

    Park, Joong- Mok; Nalwa, Kanwar Singh; Leung, Wai; Constant, Kristen; Chaudhary, Sumit; Ho, Kai-Ming

    2010-04-30

    Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.

  15. Internal state manipulation for neutral atom lithography

    NASA Astrophysics Data System (ADS)

    Thywissen, Joseph Hermann

    2000-11-01

    We examine how the manipulation of the internal states of atoms can be used for atom lithography. Metastable argon atoms pattern a substrate by activating the growth of a carbonaceous material on the surface. We develop resist/etch systems that support 20 nm feature sizes, 2:1 aspect ratios, and 103 feature height amplification. Gold, silver, silicon, silicon dioxide, and silicon nitride substrates are patterned. Standing wave quenching (SWQ) light masks are used to create 65nm- wide features spaced 401 nm apart. One application of SWQ is to create a length reference artifact. We present a detailed error budget for the pattern periodicity, and find that an accuracy of better than one part in 106 is possible. We demonstrate atom resonance lithography (ARL), the first use of frequency encoding of spatial information for atom lithography. ARL has the potential to create patterns in two dimensions whose feature size is smaller than 20 nm and whose spacing is not limited by the wavelength of the patterning light. We form features in silicon that are 2.2 μm wide and spaced 20 μm apart. Using multiple probe frequencies, we demonstrate that multiple features can be created over the area covered by a monotonic gradient. The appendices include original contributions to the theory of manipulating atoms using micro- electromagnets. We propose several ways to create a magnetic waveguide using microfabricated wire patterns on a surface. We also discuss several implications of tight confinement: single mode atom guides, elongated traps with quasi-one-dimensional energetics, and constrictions whose conductance is quantized.

  16. EUV lithography imaging using novel pellicle membranes

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  17. Fast fabrication of curved microlens array using DMD-based lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimin; Gao, Yiqing; Luo, Ningning; Zhong, Kejun

    2016-01-01

    Curved microlens array is the core element of the biologically inspired artificial compound eye. Many existing fabrication processes remain expensive and complicated, which limits a broad range of application of the artificial compound eye. In this paper, we report a fast fabrication method for curved microlens array by using DMD-based maskless lithography. When a three-dimensional (3D) target curved profile is projected into a two-dimensional (2D) mask, arbitrary curved microlens array can be flexibly and efficiently obtained by utilizing DMD-based lithography. In order to verify the feasibility of this method, a curved PDMS microlens array with 90 micro lenslets has been fabricated. The physical and optical characteristics of the fabricated microlens array suggest that this method is potentially suitable for applications in artificial compound eye.

  18. Film stacking architecture for immersion lithography process

    NASA Astrophysics Data System (ADS)

    Goto, Tomohiro; Sanada, Masakazu; Miyagi, Tadashi; Shigemori, Kazuhito; Kanaoka, Masashi; Yasuda, Shuichi; Tamada, Osamu; Asai, Masaya

    2008-03-01

    In immersion lithography process, film stacking architecture will be necessary due to film peeling. However, the architecture will restrict lithographic area within a wafer due to top side EBR accuracy In this paper, we report an effective film stacking architecture that also allows maximum lithographic area. This study used a new bevel rinse system on RF3 for all materials to make suitable film stacking on the top side bevel. This evaluation showed that the new bevel rinse system allows the maximum lithographic area and a clean wafer edge. Patterning defects were improved with suitable film stacking.

  19. Metallic nanowires by full wafer stencil lithography.

    PubMed

    Vazquez-Mena, O; Villanueva, G; Savu, V; Sidler, K; van den Boogaart, M A F; Brugger, J

    2008-11-01

    Aluminum and gold nanowires were fabricated using 100 mm stencil wafers containing nanoslits fabricated with a focused ion beam. The stencils were aligned and the nanowires deposited on a substrate with predefined electrical pads. The morphology and resistivity of the wires were studied. Nanowires down to 70 nm wide and 5 mum long have been achieved showing a resistivity of 10 microOmegacm for Al and 5 microOmegacm for Au and maximum current density of approximately 10(8) A/cm(2). This proves the capability of stencil lithography for the fabrication of metallic nanowires on a full wafer scale.

  20. Wave and Particle in Molecular Interference Lithography

    SciTech Connect

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, Andras G.; Arndt, Markus; Deachapunya, Sarayut; Ulbricht, Hendrik

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.

  1. Highly absorbing ARC for DUV lithography

    NASA Astrophysics Data System (ADS)

    Pavelchek, Edward K.; Meador, James D.; Guerrero, Douglas J.; Lamb, James E., III; Kache, Ajit; doCanto, Manuel; Adams, Timothy G.; Stark, David R.; Miller, Daniel A.

    1996-06-01

    The properties of a new anti-reflective coating for 248 nm lithography are described. It is formed by thermally cross-linking a spin-on organic coating, and has an absorbance greater than 12/micrometers. It is compatible with UVIIHS and APEX-E photoresists. Thin films (less than 600 angstrom over silicon substrates) are found to completely suppress standing waves, to reduce EO swing curves to less than 3%, and to offer good CD control over typical field oxide topography. The etch rate was found to be comparable to that of the APEX-E photoresist.

  2. Lithography-Free Microchannel Fabrication in PDMS

    NASA Astrophysics Data System (ADS)

    Sankaran, Jeyantt S.; Kahsai, Wintana T.; Pham, Uyen H. T.; Iqbal, Samir M.

    2011-03-01

    We report a novel method for the fabrication of microchannels that could potentially be used for pervaporation experiments, cell adhesion and cell movement studies and detection of selective protein bio-markers. PDMS can sustain high temperatures, has a high young's modulus and it is biologically inert. Hydrophobic-hydrophilic interactions at gel point of PDMS form the basis of the presented technique. The repulsion of hydrophilic particles by the hydrophobic polymer matrix, stemming from the reduction of entropy and free energy variations during polymerization, provides an elegant lithography-independent approach for the fabrication of self-aligned microchannels. This work was supported by National Science Foundation CAREER Grant (ECCS 0845669).

  3. Focused ion beam lithography and anodization combined nanopore patterning.

    PubMed

    Lu, Kathy; Zhao, Jingzhong

    2010-10-01

    In this study, focused ion beam lithography and anodization are combined to create different nanopore patterns. Uniform-, alternating-, and gradient-sized shallow nanopore arrays are first made on high purity aluminum by focused ion beam lithography. These shallow pore arrays are then used as pore initiation sites during anodization by different electrolytes. Depending on the nature of the anodization electrolyte, the nanopore patterns by focused ion beam lithography play different roles in further pore development during anodization. The pore-to-pore distance by focused ion beam lithography should match with that by anodization for guided pore development to be effective. Ordered and heterogeneous nanopore arrays are obtained by the focused ion beam lithography and anodization combined approach.

  4. Mode-locked fiber lasers based on doped fiber arrays.

    PubMed

    Zhang, Xiao; Song, Yanrong

    2014-05-10

    We designed a new kind of mode-locked fiber laser based on fiber arrays, where the central core is doped. A theoretical model is given for an all-fiber self-starting mode-locked laser based on this kind of doped fiber array. Two different kinds of fiber lasers with negative dispersion and positive dispersion are simulated and discussed. The stable mode-locked pulses are generated from initial noise conditions by the realistic parameters. The process of self-starting mode-locking multipulse transition and the relationship between the energy of the central core and the propagation distance of the pulses are discussed. Finally, we analyze the difference between the averaged mode-locked laser and the discrete mode-locked laser.

  5. Infrared laser-based sensing in medical applications

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.; Bartlome, Richard; Gianella, Michele

    2010-01-01

    Laser-spectroscopic applications in medicine increase in importance. We present two medical applications of laser-based analyses of trace gases. The analysis of exhaled breath concerns the determination of the D/H isotope ratio after intake of a small amount of heavy water. The D/H isotope ratio can be used to deduce the total body water weight and lays the foundation for many other laser-based clinical applications. An elevated D/H ratio could be monitored in breath samples up to 30 days after ingestion of only 5 ml of D2O. A second example concerns the analysis of surgical smoke produced in minimally invasive laparoscopic surgery with electroknives. The quantitative determination of harmless and hazardous compounds down to the ppm level is demonstrated. A specific example is the presence of sevoflurane at concentrations of 80 to 300 ppm, an anesthetic, which to our knowledge is measured for the first time in an abdominal cavity.

  6. Laser-based ultraviolet absorption detection in capillary electrophoresis

    SciTech Connect

    Xue, Y.; Yeung, E.S. )

    1994-04-01

    Laser-based UV absorption in capillary electrophoresis is demonstrated. The use of vacuum photodiodes and an all-electronic noise canceller provides adequate baseline stability despite the large inherent intensity noise in UV lasers. A 4-fold improvement in the detection limit is achieved in comparison to that of commercial instruments. The main advantage here is the better optical coupling with small capillary tubes, maximizing the available optical pathlength for absorption.

  7. Pattern transfer processes for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Miyoshi, Seiro; Furukawa, Takamitsu; Watanabe, Hiroyuki; Irie, Shigeo; Itani, Toshiro

    2002-07-01

    We describe and evaluate three kinds of pattern transfer processes that are suitable for 157-nm lithography. These transfer processes are 1) a hard mask (HM) process using SiO as a HM material, 2) a HM process using an organic bottom anti-reflecting coating (BARC)/SiN structure, and 3) a bi- layer process using a silicon-containing resist and an organic film as the bottom layer. In all of these processes, the underlayer fo the resist acts as an anti-reflecting layer. For the HM processes, we patterned a newly developed fluorine-containing resist using a 157-nm microstepper, and transferred the resist patterns to the hard mask by reactive ion etching (RIE) with minimal critical dimension shift. Using the HM pattern, we then fabricated a 65nm Wsi/poly-Si gate pattern using a high-NA microstepper (NA=0.85). With the bi-layer process, we transferred a 60nm 1:1 lines and spaces pattern of a newly developed silicon-containing resist to a 300nm-thick organic film by RIE. The fabrication of a 65nm 1:1 gate pattern and 60nm 1:1 organic film patten clearly demonstrated that 157-nm lithography is the best candidate for fabricating sub-70nm node devices.

  8. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  9. Economic consequences of high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Hartley, John G.; Govindaraju, Lakshmi

    2005-11-01

    Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?

  10. Scanner performance predictor and optimizer in further low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Aoyama, Hajime; Nakashima, Toshiharu; Ogata, Taro; Kudo, Shintaro; Kita, Naonori; Ikeda, Junji; Matsui, Ryota; Yamamoto, Hajime; Sukegawa, Ayako; Makino, Katsushi; Murayama, Masayuki; Masaki, Kazuo; Matsuyama, Tomoyuki

    2014-03-01

    Due to the importance of errors in lithography scanners, masks, and computational lithography in low-k1 lithography, application software is used to simultaneously reduce them. We have developed "Masters" application software, which is all-inclusive term of critical dimension uniformity (CDU), optical proximity effect (OPE), overlay (OVL), lens control (LNS), tool maintenance (MNT) and source optimization for wide process window (SO), for compensation of the issues on imaging and overlay. In this paper, we describe the more accurate and comprehensive solution of OPE-Master, LNS-Master and SO-Master with functions of analysis, prediction and optimization. Since OPE-Master employed a rigorous simulation, a root cause of error in OPE matching was found out. From the analysis, we had developed an additional knob and evaluated a proof-of- concept for the improvement. Influence of thermal issues on projection optics is evaluated with a heating prediction, and an optimization with scanner knobs on an optimized source taken into account mask 3D effect for obtaining usable process window. Furthermore, we discuss a possibility of correction for reticle expansion by heating comparing calculation and measurement.

  11. Fabrication of a curved microlens array using double gray-scale digital maskless lithography

    NASA Astrophysics Data System (ADS)

    Luo, Ningning; Zhang, Zhimin

    2017-03-01

    Digital maskless lithography is considered to be a high-efficiency and low-cost approach for the fabrication of microstructures, but is limited by the gray scale capability of spatial light modulators. In this work, a novel method of double gray-scale digital maskless lithography is presented for forming a curved microlens array. The target exposure dose profile of the curved microlens array is first split into two individual 3D energy profiles, and then each 3D energy profile can be respectively realized by a single gray-scale digital lithography. Two gray-scale digital masks obtained by projection calculation are superposed on the substrate so as to realize the exposure dose profile of the curved microlens array. Thus, the effective steps that are achieved through the photoresist response to the modulated UV exposure are doubled, so a smoother profile with a steep gradient can be formed by the precise modulation of double gray-scale masks. As a result of the double gray-scale method, a curved microlens array with 183 micro lenslets on a 1024 µm  ×  768 µm spherical surface has been successfully fabricated.

  12. Step and flash imprint lithography for semiconductor high volume manufacturing?

    NASA Astrophysics Data System (ADS)

    Malloy, M.; Litt, L. C.

    2010-03-01

    Step and Flash Imprint Lithography (SFIL), a form of ultraviolet nanoimprint lithography (UV-NIL), is recognized for its resolution and patterning abilities. It is one of the few next generation lithography techniques capable of meeting the resolution requirements of future semiconductor devices. However, many integration issues such as defectivity, throughput, and overlay must be resolved before SFIL can be used for semiconductor high volume manufacturing (HVM). This paper discusses the current status of SFIL, including the process and templates, and shows where more industry collaboration is needed to solve the most critical issues.

  13. Hybrid hotspot detection using regression model and lithography simulation

    NASA Astrophysics Data System (ADS)

    Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki; Pan, David Z.

    2016-03-01

    As minimum feature sizes shrink, unexpected hotspots appear on wafers. Therefore, it is important to detect and fix these hotspots at design stage to reduce development time and manufacturing cost. Currently, as the most accurate approach, lithography simulation is widely used to detect such hotspots. However, it is known to be time-consuming. This paper proposes a novel aerial image synthesizing method using regression and minimum lithography simulation for only hotspot detection. Experimental results show hotspot detection on the proposed method is equivalent compared with the results on the conventional hotspot detection method which uses only lithography simulation with much less computational cost.

  14. Nanoimprint lithography using disposable biomass template

    NASA Astrophysics Data System (ADS)

    Hanabata, Makoto; Takei, Satoshi; Sugahara, Kigen; Nakajima, Shinya; Sugino, Naoto; Kameda, Takao; Fukushima, Jiro; Matsumoto, Yoko; Sekiguchi, Atsushi

    2016-04-01

    A novel nanoimprint lithography process using disposable biomass template having gas permeability was investigated. It was found that a disposable biomass template derived from cellulose materials shows an excellent gas permeability and decreases transcriptional defects in conventional templates such as quartz, PMDS, DLC that have no gas permeability. We believe that outgasses from imprinted materials are easily removed through the template. The approach to use a cellulose for template material is suitable as the next generation of clean separation technology. It is expected to be one of the defect-less thermal nanoimprint lithographic technologies. It is also expected that volatile materials and solvent including materials become available that often create defects and peelings in conventional temples that have no gas permeability.

  15. New antireflective coatings for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Xu, Gu; Guerrero, Douglas J.; Dobson, Norman

    1998-06-01

    New bottom antireflective coatings (BARCs) for 193 nm lithography have been recently developed by Brewer Science Inc. Copolymers of benzyl methacrylate (or benzyl acrylate) and hydroxypropyl methacrylate have been synthesized and used as a main component in 193 nm BARCs. The acrylic copolymers have strong absorbance at 193 nm UV light wavelength. The 193 nm BARCs were formulated in safe solvents such as ethyl lactate and formed by spin-on coating process. Thermosetting of the 193 nm BARCs limited their intermixing with photoresists. These 193 nm BARCs had optical density of about 10 micrometers -1, k equals 0.35, and n equals 1.81. Preliminary oxygen plasma etch rates were > 1.5 times DUV resists. Good profiles at small feature sizes (< 0.20 micrometers ) were achieved with tested photoresists.

  16. Patterning proteins and cells using soft lithography.

    PubMed

    Kane, R S; Takayama, S; Ostuni, E; Ingber, D E; Whitesides, G M

    1999-12-01

    This review describes the pattering of proteins and cells using a non-photolithographic microfabrication technology, which we call 'soft lithography' because it consists of a set of related techniques, each of which uses stamps or channels fabricated in an elastomeric ('soft') material for pattern transfer. The review covers three soft lithographic techniques: microcontact printing, patterning using microfluidic channels, and laminar flow patterning. These soft lithographic techniques are inexpensive, are procedurally simple, and can be used to pattern a variety of planar and non-planar substrates. Their successful application does not require stringent regulation of the laboratory environment, and they can be used to pattern surfaces with delicate ligands. They provide control over both the surface chemistry and the cellular environment. We discuss both the procedures for patterning based on these soft lithographic techniques, and their applications in biosensor technology, in tissue engineering, and for fundamental studies in cell biology.

  17. Femtolitre chemistry assisted by microfluidic pen lithography

    PubMed Central

    Carbonell, Carlos; Stylianou, Kyriakos C.; Hernando, Jordi; Evangelio, Emi; Barnett, Sarah A.; Nettikadan, Saju; Imaz, Inhar; Maspoch, Daniel

    2013-01-01

    Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study biological processes, to synthesize homogenous nanostructures and to perform high-throughput assays and combinatorial screening. Here we show that a femtolitre reaction can be realized on a surface by handling and mixing femtolitre volumes of reagents using a microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents in isolated femtolitre droplets that can be used as reactors to conduct independent reactions and crystallization processes. This strategy overcomes the high-throughput limitations of vesicles and micelles and obviates the usually costly step of fabricating microdevices and wells. We anticipate that this process enables performing distinct reactions (acid-base, enzymatic recognition and metal-organic framework synthesis), creating multiplexed nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate the crystallization of novel peptide-based materials. PMID:23863998

  18. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  19. A laser-based ice shape profilometer for use in icing wind tunnels

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Vargas, Mario

    1995-01-01

    A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.

  20. Reflective electron beam lithography: lithography results using CMOS controlled digital pattern generator chip

    NASA Astrophysics Data System (ADS)

    Gubiotti, Thomas; Sun, Jeff Fuge; Freed, Regina; Kidwingira, Francoise; Yang, Jason; Bevis, Chris; Carroll, Allen; Brodie, Alan; Tong, William M.; Lin, Shy-Jay; Wang, Wen-Chuan; Haspeslagh, Luc; Vereecke, Bart

    2013-03-01

    Maskless electron beam lithography can potentially extend semiconductor manufacturing to the 10 nm logic (16 nm half pitch) technology node and beyond. KLA-Tencor is developing Reflective Electron Beam Lithography (REBL) technology targeting high-volume 10 nm logic node performance. REBL uses a novel multi-column wafer writing system combined with an advanced stage architecture to enable the throughput and resolution required for a NGL system. Using a CMOS Digital Pattern Generator (DPG) chip with over one million microlenses, the system is capable of maskless printing of arbitrary patterns with pixel redundancy and pixel-by-pixel grayscaling at the wafer. Electrons are generated in a flood beam via a thermionic cathode at 50-100 keV and decelerated to illuminate the DPG chip. The DPG-modulated electron beam is then reaccelerated and demagnified 80-100x onto the wafer to be printed. Previously, KLA-Tencor reported on the development progress of the REBL tool for maskless lithography at and below the 10 nm logic technology node. Since that time, the REBL team has made good progress towards developing the REBL system and DPG for direct write lithography. REBL has been successful in manufacturing a CMOS controlled DPG chip with a stable charge drain coating and with all segments functioning. This DPG chip consists of an array of over one million electrostatic lenslets that can be switched on or off via CMOS voltages to pattern the flood electron beam. Testing has proven the validity of the design with regards to lenslet performance, contrast, lifetime, and pattern scrolling. This chip has been used in the REBL demonstration platform system for lithography on a moving stage in both PMMA and chemically amplified resist. Direct imaging of the aerial image has also been performed by magnifying the pattern at the wafer plane via a mag stack onto a YAG imaging screen. This paper will discuss the chip design improvements and new charge drain coating that have resulted in a

  1. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  2. Comparison of laser-based rapid prototyping techniques

    NASA Astrophysics Data System (ADS)

    Humphreys, Hugh; Wimpenny, David

    2002-04-01

    A diverse range of Rapid Prototyping, or layer manufacturing techniques have evolved since the introduction of the first process in the late 1980s. Many, although not all, rapid prototyping processes rely on lasers to provide a localised and controllable source of light for curing a liquid photopolymer or heat to fuse thermoplastic powders to form objects. This paper will provide an overview of laser based rapid prototyping methods and discuss the future direction of this technology in light of the threats posed by low cost 3D printing techniques and the opportunity for the direct manufacture of metal components.

  3. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect

    Simmons, Blake Alexander; King, William P.

    2011-02-01

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  4. Maskless lithography using point array technique for fine patterns

    NASA Astrophysics Data System (ADS)

    Nakajima, Fumitaka; Ohta, Eiji; Nakagawa, Takashi; Tachikawa, Masahiro; Takeda, Nobuo; Nishimoto, Nirou

    2015-07-01

    We made a steady progress in designing a maskless exposure system using the point array technique. An epoch-making high-resolution maskless lithography system with resolution of less than 1 micron half-pitch has been developed. Exposure results indicated that patterns were resolved up to 0.8 microns half-pitch. Smooth edges of the photoresist for various directions were also confirmed. It is distinctive characteristics of the point array technique. Another merit is coexistence of high resolution and high throughput. 4 inches wafers used in this evaluation were exposed within 30 minutes. Therefore, we consider that tact time of manufacturing a photomask can be shortened drastically. Finally we have challenged to apply an annular stop to our new projection optics system in order to achieve further improvement of optical performance. However, we confirmed that a sidelobe of optical spots, which became stronger by using the annular stop, exerted an undesirable influence upon imaging for fine patterns. Consequently, it became clear that suppressing the sidelobe as well as narrowing the mainlobe of optical spots is important for microlithography using the point array technique.

  5. Sub-10 nm patterning using EUV interference lithography.

    PubMed

    Päivänranta, Birgit; Langner, Andreas; Kirk, Eugenie; David, Christian; Ekinci, Yasin

    2011-09-16

    Extreme ultraviolet (EUV) lithography is currently considered as the leading technology for high-volume manufacturing below sub-20 nm feature sizes. In parallel, EUV interference lithography based on interference transmission gratings has emerged as a powerful tool for industrial and academic research. In this paper, we demonstrate nanopatterning with sub-10 nm resolution using this technique. Highly efficient and optimized molybdenum gratings result in resolved line/space patterns down to 8 nm half-pitch and show modulation down to 6 nm half-pitch. These results show the performance of optical nanopatterning in the sub-10 nm range and currently mark the record for photon-based lithography. Moreover, an efficient phase mask completely suppressing the zeroth-order diffraction and providing 50 nm line/space patterns over large areas is evaluated. Such efficient phase masks pave the way towards table-top EUV interference lithography systems.

  6. Development of motorized plasma lithography for cell patterning.

    PubMed

    Deguchi, Shinji; Nagasawa, Yohei; Saito, Akira C; Matsui, Tsubasa S; Yokoyama, Sho; Sato, Masaaki

    2014-03-01

    The micropatterning of cells, which restricts the adhesive regions on the substrate and thus controls cell geometry, is used to study mechanobiology-related cell functions. Plasma lithography is a means of providing such patterns and uses a spatially-selective plasma treatment. Conventional plasma lithography employs a positionally-fixed mask with which the geometry of the patterns is determined and thus is not suited for producing on-demand geometries of patterns. To overcome this, we have manufactured a new device with a motorized mask mounted in a vacuum chamber of a plasma generator, which we designate motorized plasma lithography. Our pilot tests indicate that various pattern geometries can be obtained with the control of a shielding mask during plasma treatment. Our approach can thus omit the laborious process of preparing photolithographically microfabricated masks required for the conventional plasma lithography.

  7. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  8. 32nm node technology development using interference immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; McCafferty, Diane; Markoya, Louis; Hendrickx, Eric; Hermans, Jan; Ronse, Kurt

    2005-05-01

    The 38nm and 32nm lithography nodes are the next major targets for optical lithography on the Semiconductor Industry Roadmap. The recently developed water-based immersion lithography using ArF illumination will be able to provide an optical solution for lithography at the 45nm node, but it will not be able to achieve the 38nm or the 32nm nodes as currently defined. To achieve these next lithographic nodes will require new, very high refractive index fluids to replace the water used in current immersion systems. This paper describes tests and experiments using an interference immersion lithography test jig to develop key technology for the 32nm node. Interference imaging printers have been available for years, and with the advent of Immersion Lithography, they have a new use. Interference immersion image printing offers users a rapid, cost-effective way to develop immersion lithography, particularly at extremely high resolutions. Although it can never replace classical lens-based lithography systems for semiconductor device production, it does offer a way to develop resist and fluid technology at a relatively low cost. Its simple image-forming format offers easy access to the basic physics of advanced imaging. Issues such as: Polarization of the image forming light rays; Fluid/resist interaction during exposure; Topcoat film performance; and the Line Edge Roughness (LER) of resists at extremely high resolutions can all be readily studied. Experiments are described and results are provided for work on: 32nm imaging tests; high refractive index fluid testing using 193nm wavelength at resolutions well beyond current lens-based system capabilities; and polarization configuration testing on 45nm, 38nm, and 32nm L/S features. Results on the performance of resists and topcoats are reported for 32nm L/S features.

  9. Evolution in the concentration of activities in lithography

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2016-03-01

    From a perusal of the proceedings of the SPIE Advanced Lithography Symposium, the progression of new concepts in lithographic technology can be seen. A new idea first appears in a few papers, and over time, there is an increase in the number of papers on the same topic. Eventually the method becomes commonplace, and the number of papers on the topic declines, as the idea becomes part of our industry's working knowledge. For example, one or two papers on resolution enhancement techniques (RETs) appeared in the proceedings of the Optical Microlithography Conference in 1989 and 1990. By 1994, the total number of papers had increased to 35. Early lithographers focused on practical issues, such as adhesion promotion and resist edge bead. The introduction of simulation software brought on the next era of lithography. This was followed by a period of time in which RETs were developed and brought to maturity. The introduction of optical proximity corrections (OPC) initiated the next major era of lithography. The traditional path for scaling by using shorter wavelengths, decreasing k1 and increasing numerical aperture has given way to the current era of optical multiple patterning and lithography-design co-optimization. There has been sufficient activity in EUV lithography R and D to justify a separate EUV Lithography Conference as part of the annual Advanced Lithography Symposium. Each era builds on the cumulative knowledge gained previously. Over time, there have been parallel developments in optics, exposure tools, resist, metrology and mask technology, many of which were associated with changes in the wavelength of light used for leading-edge lithography.

  10. Simple laser-based pipeline corrosion assessment system

    SciTech Connect

    Bruce, W.A.; Yapp, D.; Barborak, D.M.; Fingerhut, M.P.; Kania, R.

    1997-03-01

    The article focuses on development and use of a simpler laser-based system for accurately and efficiently measuring and assessing corrosion damage on the external surface of an exposed pipeline. The system uses a laser-based range sensor, which relies on optical spray, sensor movement, and the principal of triangulation to construct a three-dimensional measurement. Baseline subtraction, where a polynomial curve-fit is used to approximate the ideal pipe profile above the corroded area, is used. Future profiles are subtracted from the ideal profile, and when differences are significant, corrosion depth measurements are made by constructing normal vectors at points along the ideal profile. The use of such a system for accurately mapping corrosion damage allows more accurate assessments, thereby reducing the number of unnecessary repairs and cut outs, and reduces the risk of non-conservative assessments. The use of this system also results in reduced labor costs associated with mapping corrosion damage and allows the assessment process to be carried out over a much shorter period of time. The system can also be used to develop an accurate correlation between inline inspection (ILI) results and corrosion geometry during the first few excavations following ILI, resulting in the need to excavate fewer areas.

  11. Diffraction spectral filter for use in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Tichenor, Daniel A.; Bernardez, Luis J.

    2002-01-01

    A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

  12. Application of optical CD metrology for alternative lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Kawamoto, Akiko; Matsuki, Kazuto; Godny, Stephane; Lin, Tingsheng; Wakamoto, Koichi

    2013-04-01

    Directed self-assembly (DSA) and nanoimprint lithography (NIL) have been widely developed for low-cost nanoscale patterning. Although they are currently regarded as "alternative lithography," some papers show their potential to be candidates for next-generation lithography (NGL). To actualize the potential, the contribution of metrology engineers is necessary. Since the characteristics of the lithography techniques are different from those of conventional lithography, new metrology schemes correlated with each characteristic are required. In DSA of block copolymer (BCP), a guide is needed to control the direction and position of BCP. Therefore, it is necessary to monitor the relationship between the guide and the BCP pattern. Since the depth of guide or the coating thickness variation of BCP over guide influences the behavior of phase separation of BCP, 3D metrology becomes increasingly important. In NIL, residual resist thickness (RLT) underneath the pattern should be measured because its variation affects the CD variation of transferred pattern. 3D metrology is also important in NIL. Optical critical dimension (OCD) metrology will be a powerful tool for 3D metrology. In this work, some applications of OCD for alternative lithography have been studied. For DSA, we have tried to simultaneously monitor the guide and BCP pattern in a DSA-based contact hole shrinking process. Sufficient measurement accuracy for CD and shapes for guide and BCP patterns was achievable. For NIL, sufficient sensitivity to RLT measurement was obtained.

  13. Successful demonstration of a comprehensive lithography defect monitoring strategy

    NASA Astrophysics Data System (ADS)

    Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael

    2003-07-01

    This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the

  14. Software-based data path for raster-scanned multi-beam mask lithography

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Archana; Agarwal, Ankita; Buck, Peter; Geller, Paul; Hamaker, H. Christopher; Rao, Nagswara

    2016-10-01

    According to the 2013 SEMATECH Mask Industry Survey,i roughly half of all photomasks are produced using laser mask pattern generator ("LMPG") lithography. LMPG lithography can be used for all layers at mature technology nodes, and for many non-critical and semi-critical masks at advanced nodes. The extensive use of multi-patterning at the 14-nm node significantly increases the number of critical mask layers, and the transition in wafer lithography from positive tone resist to negative tone resist at the 14-nm design node enables the switch from advanced binary masks back to attenuated phase shifting masks that require second level writes to remove unwanted chrome. LMPG lithography is typically used for second level writes due to its high productivity, absence of charging effects, and versatile non-actinic alignment capability. As multi-patterning use expands from double to triple patterning and beyond, the number of LMPG second level writes increases correspondingly. The desire to reserve the limited capacity of advanced electron beam writers for use when essential is another factor driving the demand for LMPG capacity. The increasing demand for cost-effective productivity has kept most of the laser mask writers ever manufactured running in production, sometimes long past their projected lifespan, and new writers continue to be built based on hardware developed some years ago.ii The data path is a case in point. While state-ofthe- art when first introduced, hardware-based data path systems are difficult to modify or add new features to meet the changing requirements of the market. As data volumes increase, design styles change, and new uses are found for laser writers, it is useful to consider a replacement for this critical subsystem. The availability of low-cost, high-performance, distributed computer systems combined with highly scalable EDA software lends itself well to creating an advanced data path system. EDA software, in routine production today, scales

  15. Inverse pupil wavefront optimization for immersion lithography.

    PubMed

    Han, Chunying; Li, Yanqiu; Dong, Lisong; Ma, Xu; Guo, Xuejia

    2014-10-10

    As the critical dimension of integrated circuits is continuously shrunk, thick mask induced aberration (TMIA) cannot be ignored in the lithography image process. Recently, a set of pupil wavefront optimization (PWO) approaches has been proposed to compensate for TMIA, based on a wavefront manipulator in modern scanners. However, these prior PWO methods have two intrinsic drawbacks. First, the traditional methods fell short in building up the analytical relationship between the pupil wavefront and the cost function, and used time-consuming algorithms to solve for the PWO problem. Second, in traditional methods, only the spherical aberrations were optimized to compensate for the focus exposure matrix tilt and best focus shift induced by TMIA. Thus, the degrees of freedom were limited during the optimization procedure. To overcome these restrictions, we build the analytical relationship between the pupil wavefront and the cost function based on Abbe vector imaging theory. With this analytical model and the Fletcher-Reeves conjugate-gradient algorithm, an inverse PWO method is innovated to balance the TMIA including 37 Zernike terms. Simulation results illustrate that our approach significantly improves image fidelity within a larger process window. This demonstrates that TMIA is effectively compensated by our inverse PWO approach.

  16. Fabrication of subwavelength holes using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Besser, J.; Baum, M.; Saupe, R.; Otto, T.; Gessner, T.

    2013-03-01

    Driven by the demand of miniaturized and highly integrated functionalities in the area of photonics and photonic circuits, the metal or plasmon optics has become a promising method for manipulating light at the nanometer scale. Especially the application of periodic sub wavelength hole structures within an opaque metal film on a dielectric substrate holds many advantages for the realization of optical filters, since the variation of the hole diameter and the periodicity allows a selective filter response. This paper is concerned with the modeling, fabrication and characterization of a sub wavelength hole array for surface plasmon enhanced transmission of light [1]. The theoretical backgrounds as well as the basics of the simulation by Finite-Difference Time-Domain (FDTD) are described for the target structure with a hole diameter of 180 nm and a periodicity of 400 nm. By using a double-molding technology via nanoimprint lithography the fabrication of this sub wavelength hole array with a peak wavelength of 470 nm and full width at half maximum of 50 nm from a silicon nanopillar master is demonstrated. In order to ensure the dimensional stability of the molded structures, characterization was consequently done by means of a self made non-contact mode atomic force microscope.

  17. Maskless plasmonic lithography at 22 nm resolution.

    PubMed

    Pan, Liang; Park, Yongshik; Xiong, Yi; Ulin-Avila, Erick; Wang, Yuan; Zeng, Li; Xiong, Shaomin; Rho, Junsuk; Sun, Cheng; Bogy, David B; Zhang, Xiang

    2011-01-01

    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing.

  18. Coherence management in lithography printing systems

    NASA Astrophysics Data System (ADS)

    Bernasconi, Johana; Scharf, Toralf; Herzig, Hans Peter; Voelkel, Reinhard; Bramati, Arianna

    2016-03-01

    In proximity lithography, interference and diffraction effects arise when printing small features because of the proximity gap. Different techniques are used in order to control and take advantage of these effects. In this paper, the focus is set on the MO Exposure Optics developed to shape the angular spectrum of the exposure light. The MO Exposure Optics contains several elements including microlens arrays that have certain symmetry and sampling. The MO Exposure Optics allows to set the angle of illumination and can be used to define spatial coherence. We study here in detail the influence of different illumination settings on optical proximity correction (OPC) structures. We apply this concept for the first time to a LED illumination. The propagation of light after an optical proximity correction structure is measured by recording aerial images over a distance of up to 60 μm behind the mask with a high resolution microscope setup.1 As an example structure, we investigate here an optical proximity correction structure that is intended to make the edge of a line sharper. Using illumination filter plates that limit the angle of illumination and increase the coherence lead to pronounced interference effects in aerial images as expected. But special settings of the illumination allow to achieve comparable results with much larger illumination angles and higher throughput. We will show examples and analyze the results

  19. Resist profile simulation with fast lithography model

    NASA Astrophysics Data System (ADS)

    He, Yan-Ying; Chou, Chih-Shiang; Tang, Yu-Po; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2014-03-01

    A traditional approach to construct a fast lithographic model is to match wafer top-down SEM images, contours and/or gauge CDs with a TCC model plus some simple resist representation. This modeling method has been proven and is extensively used for OPC modeling. As the technology moves forward, this traditional approach has become insufficient in regard to lithography weak point detection, etching bias prediction, etc. The drawback of this approach is from metrology and simulation. First, top-down SEM is only good for acquiring planar CD information. Some 3D metrology such as cross-section SEM or AFM is necessary to obtain the true resist profile. Second, the TCC modeling approach is only suitable for planar image simulation. In order to model the resist profile, full 3D image simulation is needed. Even though there are many rigorous simulators capable of catching the resist profile very well, none of them is feasible for full-chip application due to the tremendous consumption of computational resource. The authors have proposed a quasi-3D image simulation method in the previous study [1], which is suitable for full-chip simulation with the consideration of sidewall angles, to improve the model accuracy of planar models. In this paper, the quasi-3D image simulation is extended to directly model the resist profile with AFM and/or cross-section SEM data. Resist weak points detected by the model generated with this 3D approach are verified on the wafer.

  20. Evaporative Lithography in Open Microfluidic Channel Networks.

    PubMed

    Lone, Saifullah; Zhang, Jia Ming; Vakarelski, Ivan U; Li, Er Qiang; Thoroddsen, Sigurdur T

    2017-03-13

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  1. Reflective masks for extreme ultraviolet lithography

    SciTech Connect

    Nguyen, Khanh Bao

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  2. Pattern collapse mitigation strategies for EUV lithography

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Bruce, Robert L.; Bucchignano, James J.; Klaus, David P.; Guillorn, Michael A.; Wu, Chunghsi J.

    2012-03-01

    In this study, a comprehensive approach towards assessing pattern collapse challenges and solutions for Extreme Ultraviolet Lithography (EUV) resists beyond the 14nm node is undertaken. The fundamental forces that drive pattern deformation are reassessed in order to propose a generalized design criterion for EUV photoresists and aqueous surfactanated rinses. Furthermore, ultimate pattern collapse solutions such as solvent drying utilizing pressurized fluids (supercritical CO2) are exemplified for sub-60nm pitch EUV patterning. In parallel, alternative EUV integration schemes that use a metal-based hardmask (MHM) are studied using a specifically tailored self-assembled monolayer (SAM) to prevent delamination-driven pattern collapse due to resist-hardmask interfacial adhesion failure. Finally, the marginal image transfer of 40nm pitched L/S of ultrathin EUV resist into a SiARC-underlayer stack appears to be gated by the EUV resist resolution limit and the reduced film thickness budget. An alternative method for achieving improved postetch line width roughness (LWR) with an ultrathin MHM-based integration scheme is herein demonstrated.

  3. Analysis of the blurring in stencil lithography.

    PubMed

    Vazquez-Mena, O; Villanueva, L G; Savu, V; Sidler, K; Langlet, P; Brugger, J

    2009-10-14

    A quantitative analysis of blurring and its dependence on the stencil-substrate gap and the deposition parameters in stencil lithography, a high resolution shadow mask technique, is presented. The blurring is manifested in two ways: first, the structure directly deposited on the substrate is larger than the stencil aperture due to geometrical factors, and second, a halo of material is formed surrounding the deposited structure, presumably due to surface diffusion. The blurring is studied as a function of the gap using dedicated stencils that allow a controlled variation of the gap. Our results show a linear relationship between the gap and the blurring of the directly deposited structure. In our configuration, with a material source of approximately 5 mm and a source-substrate distance of 1 m, we find that a gap size of approximately 10 microm enlarges the directly deposited structures by approximately 50 nm. The measured halo varies from 0.2 to 3 microm in width depending on the gap, the stencil aperture size and other deposition parameters. We also show that the blurring can be reduced by decreasing the nominal deposition thickness, the deposition rate and the substrate temperature.

  4. Materials for future lithography (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Seung Wook; Yang, Da; Dai, Junyan; Felix, Nelson; Bratton, Daniel; Tsuchiya, Kousuke; Kwark, Young-Je; Bravo-Vasquez, Juan-Pablo; Ober, Christopher K.; Cao, Heidi B.; Deng, Hai

    2005-05-01

    The demands for high resolution and issues of line edge roughness require a reconsideration of current resist design strategies. In particular, EUV lithography will provide an opportunity to examine new resist concepts including new elemental compositions and low molar mass resists or molecular resists. In the former case, resist compositions incorporating elements such as silicon and boron have been explored for EUV resists and will be described. In an example of the latter case, molecular glass resists have been designed using synthetic architectures in globular and core-arm forms ranging from one to multiple arms. Moreover, our studies include a series of ring and irregularly shaped small molecules modified to give imaging performance. These materials have been explored to improve line edge roughness (LER) compared to common polymer resists. Several examples of polymeric and molecular glass resists will be described. Several compositions showed high glass transition temperatures (Tg) of ~ 120°C and possessed no crystallinity as seen from XRD studies. Negative-tone molecular glass resists with a T-shaped phenolic core structure, 4-[4-[1,1-Bis(4-hydroxyphenyl)ethyl

  5. Smartphone Sensors for Stone Lithography Authentication

    PubMed Central

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Papalillo, Donato

    2014-01-01

    Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to “authenticate” non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the “not original artwork” is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography. PMID:24811077

  6. Lithography strategy for 65-nm node

    NASA Astrophysics Data System (ADS)

    Borodovsky, Yan A.; Schenker, Richard E.; Allen, Gary A.; Tejnil, Edita; Hwang, David H.; Lo, Fu-Chang; Singh, Vivek K.; Gleason, Robert E.; Brandenburg, Joseph E.; Bigwood, Robert M.

    2002-07-01

    Intel will start high volume manufacturing (HVM) of the 65nm node in 2005. Microprocessor density and performance trends will continue to follow Moore's law and cost-effective patterning solutions capable of supporting it have to be found, demonstrated and developed during 2002-2004. Given the uncertainty regarding the readiness and respective capabilities of 157nm and 193nm lithography to support 65nm technology requirements, Intel is developing both lithographic options and corresponding infrastructure with the intent to use both options in manufacturing. Development and use of dual lithographic options for a given technology node in manufacturing is not a new paradigm for Intel: whenever introduction of a new exposure wavelength presented excessive risk to the manufacturing schedule, Intel developed parallel patterning approaches in time for the manufacturing ramp. Both I-line and 248nm patterning solutions were developed and successfully used in manufacturing of the 350nm node at Intel. Similarly, 248nm and 193nm patterning solutions were fully developed for 130nm node high volume manufacturing.

  7. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  8. Proximity correction for electron beam lithography

    NASA Astrophysics Data System (ADS)

    Marrian, Christie R.; Chang, Steven; Peckerar, Martin C.

    1996-09-01

    As the critical dimensions required in mask making and direct write by electron beam lithography become ever smaller, correction for proximity effects becomes increasingly important. Furthermore, the problem is beset by the fact that only a positive energy dose can be applied with an electron beam. We discuss techniques such as chopping and dose shifting, which have been proposed to meet the positivity requirement. An alternative approach is to treat proximity correction as an optimization problem. Two such methods, local area dose correction and optimization using a regularizer proportional to the informational entropy of the solution, are compared. A notable feature of the regularized proximity correction is the ability to correct for forward scattering by the generation of a 'firewall' set back from the edge of a feature. As the forward scattering width increases, the firewall is set back farther from the feature edge. The regularized optimization algorithm is computationally time consuming using conventional techniques. However, the algorithm lends itself to a microelectronics integrated circuit coprocessor implementation, which could perform the optimization faster than even the fastest work stations. Scaling the circuit to larger number of pixels is best approached with a hybrid serial/parallel digital architecture that would correct for proximity effects over 108 pixels in about 1 h. This time can be reduced by simply adding additional coprocessors.

  9. Axion search by laser-based experiment OSQAR

    NASA Astrophysics Data System (ADS)

    Sulc, M.; Pugnat, P.; Ballou, R.; Deferne, G.; Duvillaret, L.; Flekova, L.; Finger, M.; Finger, M.; Hosek, J.; Husek, T.; Jost, R.; Kral, M.; Kunc, S.; Macuchova, K.; Meissner, K. A.; Morville, J.; Romanini, D.; Schott, M.; Siemko, A.; Slunecka, M.; Vitrant, G.; Zicha, J.

    2013-08-01

    Laser-based experiment OSQAR in CERN is aimed to the search of the axions by two methods. The photon regeneration experiment is using two LHC dipole magnets of the length 14.3 m and magnetic field 9.5 T equipped with an optical barrier at the end of the first magnet. It looks as light shining through the wall. No excess of events above the background was detected at this arrangement. Nevertheless, this result extends the exclusion region for the axion mass. The second method wants to measure the ultra-fine vacuum magnetic birefringence for the first time. An optical scheme with electro-optical modulator has been proposed, validated and subsequently improved. Cotton-Mouton constant for air was determined in this experiment setup.

  10. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  11. Laser-based instrumentation for the detection of chemical agents

    SciTech Connect

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures.

  12. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  13. A laser-based vision system for weld quality inspection.

    PubMed

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.

  14. Synthesis of fluorinated materials for 193-nm immersion lithography and 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Ishikawa, T.; Yoshida, T.; Hayamai, T.; Araki, Takayuki; Aoyama, H.; Hagiwara, T.; Itani, Toshiro; Fujii, Kiyoshi

    2005-05-01

    Various fluorinated polymers were synthesized for application in 193-nm immersion lithography with the goal of improving 157-nm photoresist performance. Their fundamental properties were characterized, such as transparency at 193-nm and 157-nm (wavelength) and solubility in water and a standard alkaline developer. High transparency, i.e., absorbance better than 0.3 μm-1 at 193-nm wavelength, was achieved. The dissolution behaviors of them were studied by using the Quartz Crystal Microbalance (QCM) method. We find that the dissolution rate of Poly(norbornene-2-fluoro-2-hexafluoroalchol) (PNB1FVIP) in 0.065N tetramethylammonium hydroxide (TMAH) was >200 times (nm/s) faster than that of the copolymer of tetrafluoroethylene (TFE) and norbornene-2-fluoro-2-hexafluoroalchol (TFE/NB1FVIP). A resist based on TFE/NB1FVIP was able to delineate 75 nm dense lines by exposure at 193-nm (wavelength) with an alternating phase shift mask using a 0.75 NA ArF scanner. The dissolution rates of the fluoropolymers in water and a 0.262N and 0.065 TMAH can be controlled by optimizing counter monomers containing hexafluoroisopropanol (HFA) unit, carboxylic acid unit and so on. In addition, we have collect water contact angle data. This data shows that fluoropolymers can be used as resist cover materials for 193-nm immersion lithography.

  15. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  16. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  17. Neutral atom lithography with metastable helium

    NASA Astrophysics Data System (ADS)

    Allred, Claire Shean

    In this dissertation we describe our performance of resist assisted neutral atom lithography using a bright beam of metastable 23S1 Helium (He*). Metastable Helium atoms have 20 eV of internal energy making them easy to detect and able to destroy a resist. The He* is produced by a reverse flow DC discharge source and then collimated with the bichromatic force, followed by three optical molasses velocity compression stages. The atoms in the resulting beam have a mean longitudinal velocity of 1125 m/s and a divergence of 1.1 mrad. The typical beam flux is 2 x 109 atoms/mm2s through a 0.1mm diameter aperture 70 cm away from the source. The internal energy of the atoms damages the molecules of a self assembled monolayer (SAM) of nonanethiol. The undisturbed SAM protects a 200 A layer of gold that has been evaporated onto a prepared Silicon wafer from a wet chemical etch. Two methods are used to pattern the He* atoms before they destroy the SAM. First, a Nickel micro mesh was used to protect the SAM. These experiments established an appropriate dosage and etch time for patterning. The samples were analyzed with an atomic force microscope and found to have an edge resolution of 63 nm. Then, patterning was accomplished using the dipole force the atoms experience while traversing a standing wave of lambda = 1083nm light tuned 500MHz below the 23S 1 → 23P2 transition. Depending on the intensity of the light, the He* atoms are focused or channeled into lines separated by lambda/2. The lines cover the entire exposed length of the substrate, about 3 mm. They are about 3 mm long, corresponding to about twice the beam waist of the laser standing wave. Thus there are 6 x 10 3 lines of length 5500lambda. These results agree with our numerical simulations of the experiment.

  18. Antireflective surface patterned by rolling mask lithography

    NASA Astrophysics Data System (ADS)

    Seitz, Oliver; Geddes, Joseph B.; Aryal, Mukti; Perez, Joseph; Wassei, Jonathan; McMackin, Ian; Kobrin, Boris

    2014-03-01

    A growing number of commercial products such as displays, solar panels, light emitting diodes (LEDs and OLEDs), automotive and architectural glass are driving demand for glass with high performance surfaces that offer anti-reflective, self-cleaning, and other advanced functions. State-of-the-art coatings do not meet the desired performance characteristics or cannot be applied over large areas in a cost-effective manner. "Rolling Mask Lithography" (RML™) enables highresolution lithographic nano-patterning over large-areas at low-cost and high-throughput. RML is a photolithographic process performed using ultraviolet (UV) illumination transmitted through a soft cylindrical mask as it rolls across a substrate. Subsequent transfer of photoresist patterns into the substrate is achieved using an etching process, which creates a nanostructured surface. The current generation exposure tool is capable of patterning one-meter long substrates with a width of 300 mm. High-throughput and low-cost are achieved using continuous exposure of the resist by the cylindrical photomask. Here, we report on significant improvements in the application of RML™ to fabricate anti-reflective surfaces. Briefly, an optical surface can be made antireflective by "texturing" it with a nano-scale pattern to reduce the discontinuity in the index of refraction between the air and the bulk optical material. An array of cones, similar to the structure of a moth's eye, performs this way. Substrates are patterned using RML™ and etched to produce an array of cones with an aspect ratio of 3:1, which decreases the reflectivity below 0.1%.

  19. Two-Dimensional Modeling Of Contrast-Enhanced Lithography

    NASA Astrophysics Data System (ADS)

    Griffing, B. F.; Lorensen, W. E.

    1984-05-01

    The aerial image produced by projection mask aligners can be readily visualized using high resolution computer graphics. This paper describes a computer model that calculates the aerial image using a mask pattern and the optical system characteristics as input. The program converts the digital result into a grey scale image. This image is an accu-rate representation of the image the photoresist actually "sees." The model is applied to contrast-enhanced lithography (CEL).1120 By combining the aerial image model with the known bleaching behavior of CEL materials it is possible to calculate the image intensity transmitted by the bleachable layer as a function of time. This result is presented in the form a computer-generated movie, which makes apparent the high contrast of the transmitted image. A second application of the aerial image model is to two-dimensional resist pattern modeling. Although not as sophisticated as SAMPLE4 this model is capable of modeling com-plete structures, such as a dynamic RAM cell. The output of the model is a three-dimensional surface which is displayed using a computer-generated, shaded surface. Linewidth variation with exposure is easily explored with this model. It is a best case model in that it assumes ideal optics and resist development conditions. Resist thickness is calculated using an experimentally determined thickness transfer function. These assumptions are necessary in order to minimize the time necessary for performing the calculations. The model calculates a pattern on a 512 X 512 point array from an image in 1-2 min. on a VAX-780. Since ideal conditions are assumed, the utility of the model is primarily in its ability to predict when a structure is beyond the limits of a given optical system. Applications of the model to CEL will be presented.

  20. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  1. Thickness optimization for lithography process on silicon substrate

    NASA Astrophysics Data System (ADS)

    Su, Xiaojing; Su, Yajuan; Liu, Yansong; Chen, Fong; Liu, Zhimin; Zhang, Wei; Li, Bifeng; Gao, Tao; Wei, Yayi

    2015-03-01

    With the development of the lithography, the demand for critical dimension (CD) and CD uniformity (CDU) has reached a new level, which is harder and harder to achieve. There exists reflection at the interface between photo-resist and substrate during lithography exposure. This reflection has negative impact on CD and CDU control. It is possible to optimize the litho stack and film stack thickness on different lithography conditions. With the optimized stack, the total reflectivity for all incident angles at the interface can be controlled less than 0.5%, ideally 0.1%, which enhances process window (PW) most of the time. The theoretical results are verified by the experiment results from foundry, which helps the foundry achieve the mass production finally.

  2. Deconstructing contact hole CD printing variability in EUV lithography

    NASA Astrophysics Data System (ADS)

    Civay, D.; Wallow, T.; Doganaksoy, N.; Verduijn, E.; Schmid, G.; Mangat, P.

    2014-04-01

    Lithographic CD printing variability can be easily captured with a CDU measurement, however delineating the most significant sources causing the variability is challenging. In EUV lithography, the resist, reticle, metrology methodology, and stochastics are examples of factors that influence printing variability. Determining the most significant sources of variability in contact hole and via patterning is particularly interesting because the variability can be measured as a function of two tethered dimensions. Contact hole (CH) variability has a direct impact on device performance while via variability affects metal area scaling and design. By studying sources of variability opportunities for improving device performance and scaling can be identified. In this paper, we will examine sources of contact patterning variability in EUV lithography comprehensively using various EUV exposure tools as well as simulation methods. We will present a benchmark of current state of the art materials and patterning methods with the goal of assessing contact hole printability at the limit of 0.33 NA EUV lithography.

  3. Sequence-Specific Molecular Lithography on Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Keren, Kinneret; Krueger, Michael; Gilad, Rachel; Ben-Yoseph, Gdalyahu; Sivan, Uri; Braun, Erez

    2002-07-01

    Recent advances in the realization of individual molecular-scale electronic devices emphasize the need for novel tools and concepts capable of assembling such devices into large-scale functional circuits. We demonstrated sequence-specific molecular lithography on substrate DNA molecules by harnessing homologous recombination by RecA protein. In a sequence-specific manner, we patterned the coating of DNA with metal, localized labeled molecular objects and grew metal islands on specific sites along the DNA substrate, and generated molecularly accurate stable DNA junctions for patterning the DNA substrate connectivity. In our molecular lithography, the information encoded in the DNA molecules replaces the masks used in conventional microelectronics, and the RecA protein serves as the resist. The molecular lithography works with high resolution over a broad range of length scales from nanometers to many micrometers.

  4. Graphene nanoribbon superlattices fabricated via He ion lithography

    SciTech Connect

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  5. Reducing DfM to practice: the lithography manufacturability assessor

    NASA Astrophysics Data System (ADS)

    Liebmann, Lars; Mansfield, Scott; Han, Geng; Culp, James; Hibbeler, Jason; Tsai, Roger

    2006-03-01

    The need for accurate quantification of all aspects of design for manufacturability using a mutually compatible set of quality-metrics and units-of-measure, is reiterated and experimentally verified. A methodology to quantify the lithography component of manufacturability is proposed and its feasibility demonstrated. Three stages of lithography manufacturability assessment are described: process window analysis on realistic integrated circuits following layout manipulations for resolution enhancement and the application of optical proximity correction, failure sensitivity analysis on simulated achievable dimensional bounds (a.k.a. variability bands), and yield risk analysis on iso-probability bands. The importance and feasibility of this technique is demonstrated by quantifying the lithography manufacturability impact of redundant contact insertion and Critical Area optimization in units that can be used to drive an overall layout optimization. The need for extensive experimental calibration and improved simulation accuracy is also highlighted.

  6. Pattern-integrated interference lithography: prospects for nano- and microelectronics.

    PubMed

    Leibovici, Matthieu C R; Burrow, Guy M; Gaylord, Thomas K

    2012-10-08

    In recent years, limitations in optical lithography have challenged the cost-effective manufacture of nano- and microelectronic chips. Spatially regular designs have been introduced to improve manufacturability. However, regular designed layouts typically require an interference step followed by a trim step. These multiple steps increase cost and reduce yield. In the present work, Pattern-Integrated Interference Lithography (PIIL) is introduced to address this problem. PIIL is the integration of interference lithography and superposed pattern mask imaging, combining the interference and the trim into a single-exposure step. Example PIIL implementations and experimental demonstrations are presented. The degrees of freedom associated with the source, pattern mask, and Fourier filter designs are described.

  7. ILT for double exposure lithography with conventional and novel materials

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman

    2007-03-01

    Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.

  8. The study of chromeless phase lithography (CPL) for 45nm lithography

    NASA Astrophysics Data System (ADS)

    Tan, Soon Yoeng; Lin, Qunying; Tay, Cho Jui; Quan, Chenggen

    2006-10-01

    Chromeless Phase Lithography (CPL) has been used to achieve high resolution by using phase edge interference in addition with high NA and off-axis illuminations such as annular and quasar for sub-wavelength lithography. There are two types of CPL. One is the totally chromeless pure phase type and the other is the zebra chrome pattern type for critical line dimensions. Both types of CPL masks require adding in chrome pads in some structures such as circuit line junction region to improve the resolution. Zebra type CPL mask making has reached the limitation due to small chrome peeling issue during mask cleaning and small space writing resolution issue for sub-45nm technology. In this paper, two types of CPL masks are studied. The investigation shows the differences on mask making and wafer performance. For mask making, process limitation studies such as writing, etching and cleaning will be evaluated. Data on mask CD (Critical Dimension) performance, registration, overlay, phase and transmission are collected and analyzed. For wafer performance, process window comparison, CD through pitch, MEEF (Mask Error Enhancement Factor) and linearity will be characterized for these two CPL mask types. Minimum resolution of less than 160nm pitch with reasonable good process window has been achieved with both mask types. Chromeless pure phase type has advantages on mask making while zebra type has the advantages on wafer performance. Furthermore, SRAF (Sub-Resolution Assist Feature) are added to improve wafer printing process windows. Detailed characterization work done on assist features are presented. Assist feature can improve process window by improving the contrast of isolated lines.

  9. High-fidelity replication of Dammann gratings using soft lithography.

    PubMed

    Wang, Wei; Zhou, Changhe; Jia, Wei

    2008-04-01

    We report the experimental results of using the soft lithography method for replication of Dammann gratings. By using an elastomeric stamp, uniform grating structures were transferred to the UV-curable polymer. To evaluate the quality of the replication, diffraction images and light intensity were measured. Compared with the master devices, the replicas of Dammann gratings show a slight deviation in both surface relief profile and optical performance. Experimental results demonstrated that high-fidelity replication of Dammann gratings is realized by using soft lithography with low cost and high throughput.

  10. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect

    Atwater, J. H.; Spinelli, P.; Kosten, E.; Parsons, J.; Van Lare, C.; Van de Groep, J.; Garcia de Abajo, J.; Polman, A.; Atwater, H. A.

    2011-10-10

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 μm high and 10 μm in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  11. Capillary Force Lithography for Cardiac Tissue Engineering

    PubMed Central

    Macadangdang, Jesse; Lee, Hyun Jung; Carson, Daniel; Jiao, Alex; Fugate, James; Pabon, Lil; Regnier, Michael; Murry, Charles; Kim, Deok-Ho

    2014-01-01

    Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA

  12. Nanoimprint lithography for functional polymer patterning

    NASA Astrophysics Data System (ADS)

    Cui, Dehu

    2011-07-01

    Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. Then, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. After that, Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and

  13. Damage detection technique by measuring laser-based mechanical impedance

    SciTech Connect

    Lee, Hyeonseok; Sohn, Hoon

    2014-02-18

    This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

  14. Stochastic resonance-enhanced laser-based particle detector.

    PubMed

    Dutta, A; Werner, C

    2009-01-01

    This paper presents a Laser-based particle detector whose response was enhanced by modulating the Laser diode with a white-noise generator. A Laser sheet was generated to cast a shadow of the object on a 200 dots per inch, 512 x 1 pixels linear sensor array. The Laser diode was modulated with a white-noise generator to achieve stochastic resonance. The white-noise generator essentially amplified the wide-bandwidth (several hundred MHz) noise produced by a reverse-biased zener diode operating in junction-breakdown mode. The gain in the amplifier in the white-noise generator was set such that the Receiver Operating Characteristics plot provided the best discriminability. A monofiber 40 AWG (approximately 80 microm) wire was detected with approximately 88% True Positive rate and approximately 19% False Positive rate in presence of white-noise modulation and with approximately 71% True Positive rate and approximately 15% False Positive rate in absence of white-noise modulation.

  15. Detecting Molecular Properties by Various Laser-Based Techniques

    SciTech Connect

    Hsin, Tse-Ming

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  16. Diode-Laser-Based Spectrometer for Sensing Gases

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.

    2005-01-01

    A diode-laser-based spectrometer has been developed for measuring concentrations of gases and is intended particularly for use in analyzing and monitoring combustion processes under microgravitational conditions in a drop tower or a spacecraft. This instrument is also well suited for use on Earth in combustion experiments and for such related purposes as fire-safety monitoring and monitoring toxic and flammable gases in industrial settings. Of the gas-sensing spectrometers available prior to the development of this instrument, those that were sensitive enough for measuring the combustion gases of interest were too large, required critical optical alignments, used far too much electrical power, and were insufficiently rugged for use under the severe conditions of spacecraft launch and space flight. In contrast, the present instrument is compact, consumes relatively little power, and is rugged enough to withstand launch vibrations and space flight. In addition, this instrument is characterized by long-term stability, accuracy, and reliability. The diode laser in this spectrometer is operated in a wavelength-modulation mode. Different gases to be measured can be selected by changing modular laser units. The operation of the laser is controlled by customized, low-power electronic circuitry built around a digital signal-processor board. This customized circuitry also performs acquisition and analysis of data, controls communications, and manages errors.

  17. Dental hard tissue characterization using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  18. Ceramic Coating Inspection Using Laser-Based Ultrasonics and Nanoindentation

    SciTech Connect

    Steen, T. L.; Murray, T. W.; Basu, S. N.; Sarin, V. K.

    2007-03-21

    A combination of laser-based ultrasonic (LBU) inspection and nanoindentation testing is used to evaluate the thickness uniformity and through-thickness mechanical property distributions in 5-20 {mu}m thick CVD environmental barrier coatings. Mullite (3Al2O3{center_dot}2SiO2) coatings grown on silicon carbide substrates are studied in order to provide feedback on the growth process under a range of operating conditions. Nanoindentation tests are performed on polished coating cross sections, and the depth dependence of the elastic modulus of each coating is found. In the LBU experiments, a modulated continuous wave (CW) source is used for surface wave generation. The source is held at a fixed temporal frequency as it is scanned over the surface of the coating. At each temporal frequency of interest, the spatial frequencies of the acoustic modes are found, allowing for phase velocities to be determined. The mean values of elastic moduli found using the LBU approach compare well with the nanoindentation results.

  19. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  20. Versatile optofluidic ring resonator lasers based on microdroplets.

    PubMed

    Lee, Wonsuk; Luo, Yunhan; Zhu, Qiran; Fan, Xudong

    2011-09-26

    We develop a novel nL-sized microdroplet laser based on the capillary optofluidic ring resonator (OFRR). The microdroplet is generated in a microfluidic channel using two immiscible fluids and is subsequently delivered to the capillary OFRR downstream. Despite the presence of the high refractive index (RI) carrier fluid, the lasing emission can still be achieved for the droplet formed by low RI solution. The lasing threshold of 1.54 µJ/mm(2) is achieved, >6 times lower than the state-of-the-art, thanks to the high Q-factor of the OFRR. Furthermore, the lasing emission can be conveniently coupled into an optical fiber. Finally, tuning of the lasing wavelength is achieved via highly efficient fluorescence resonance energy transfer processes by merging two different dye droplets in the microfluidic channel. Versatility combined with improved lasing characteristics makes our OFRR droplet laser an attractive platform for high performance optofluidic lasers and bio/chemical sensing with small sample volumes.

  1. Residual Stress Determination from a Laser-Based Curvature Measurement

    SciTech Connect

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  2. Residual stress determination from a laser-based curvature measurement

    SciTech Connect

    W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright

    2000-05-08

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  3. X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications

    NASA Astrophysics Data System (ADS)

    Di Fabrizio, E.; Fillipo, R.; Cabrini, S.; Kumar, R.; Perennes, F.; Altissimo, M.; Businaro, L.; Cojac, D.; Vaccari, L.; Prasciolu, M.; Candeloro, P.

    2004-08-01

    ELETTRA (http://www.elettra.trieste.it/index.html) is a third generation synchrotron radiation source facility operating at Trieste, Italy, and hosts a wide range of research activities in advanced materials analysis and processing, biology and nano-science at several various beam lines. The energy spectrum of ELETTRA allows x-ray nano-lithography using soft (1.5 keV) and hard x-ray (10 keV) wavelengths. The Laboratory for Interdisciplinary Lithography (LIILIT) was established in 1998 as part of an Italian national initiative on micro- and nano-technology project of INFM and is funded and supported by the Italian National Research Council (CNR), INFM and ELETTRA. LILIT had developed two dedicated lithographic beam lines for soft (1.5 keV) and hard x-ray (10 keV) for micro- and nano-fabrication activities for their applications in engineering, science and bio-medical applications. In this paper, we present a summary of our research activities in micro- and nano-fabrication involving x-ray nanolithography at LILIT's soft and hard x-ray beam lines.

  4. Hybrid source mask optimization for robust immersion lithography.

    PubMed

    Ma, Xu; Han, Chunying; Li, Yanqiu; Wu, Bingliang; Song, Zhiyang; Dong, Lisong; Arce, Gonzalo R

    2013-06-20

    To keep pace with the shrinkage of critical dimension, source and mask optimization (SMO) has emerged as a promising resolution enhancement technique to push the resolution of 193 nm argon fluoride immersion lithography systems. However, most current pixelated SMO approaches relied on scalar imaging models that are no longer accurate for immersion lithography systems with hyper-NA (NA>1). This paper develops a robust hybrid SMO (HSMO) algorithm based on a vector imaging model capable of effectively improving the robustness of immersion lithography systems to defocus and dose variations. The proposed HSMO algorithm includes two steps. First, the individual source optimization approach is carried out to rapidly reduce the cost function. Subsequently, the simultaneous SMO approach is applied to further improve the process robustness by exploiting the synergy in the joint optimization of source and mask patterns. The conjugate gradient method is used to update the source and mask pixels. In addition, a source regularization approach and source postprocessing are both used to improve the manufacturability of the optimized source patterns. Compared to the mask optimization method, the HSMO algorithm achieves larger process windows, i.e., extends the depth of focus and exposure latitude, thus more effectively improving the process robustness of 45 nm immersion lithography systems.

  5. Innovative Technologies for Maskless Lithography and Non-Conventional Patterning

    DTIC Science & Technology

    2008-08-01

    the purpose of directly maskless lithography, and at developing functional materials for direct printing of semiconductors , dielectrics, and...printable nanomaterial semiconductors , dielectrics, and insulators were developed, and used to realize a range of directly printed active components for...configurations were investigated. The first, the electron bombardment source (EBS), features a thin semiconductor (single crystal diamond) membrane with a

  6. Novel ultra-high sensitive 'metal resist' for EUV lithography

    NASA Astrophysics Data System (ADS)

    Fujimori, Toru; Tsuchihashi, Toru; Minegishi, Shinya; Kamizono, Takashi; Itani, Toshiro

    2016-03-01

    This study describes the use of a novel ultra-high sensitive `metal resist' for use in extreme ultraviolet (EUV) lithography. Herein, the development of a metal resist has been studied for improving the sensitivity when using metal-containing non-chemically amplified resist materials; such materials are metal-containing organic-inorganic hybrid compounds and are referred to as EUVL Infrastructure Development Center, Inc. (EIDEC) standard metal EUV resist (ESMR). The novel metal resist's ultra-high sensitivity has previously been investigated for use with electron beam (EB) lithography. The first demonstration of ESMR performance was presented in SPIE2015, where it was shown to achieve 17-nm lines with 1.5 mJ/cm2: equivalent in EUV lithography tool. The sensitivity of ESMR using EUV open-flame exposure was also observed to have the same high sensitivity as that when using EB lithography tool. Therefore, ESMR has been confirmed to have the potential of being used as an ultra-high sensitive EUV resist material. The metal-containing organic-inorganic hybrid compounds and the resist formulations were investigated by measuring their sensitivity and line-width roughness (LWR) improvement. Furthermore, new processing conditions, such as new development and rinse procedures, are an extremely effective way of improving lithographic performance. In addition, the optimal dry-etching selective conditions between the metal resist and spin-on carbon (SOC) were obtained. The etched SOC pattern was successfully constructed from a stacked film of metal resist and SOC.

  7. Multilayer reflective coatings for extreme-ultraviolet lithography

    SciTech Connect

    Montcalm, C., LLNL

    1998-03-10

    Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.

  8. Shadow overlap ion-beam lithography for nanoarchitectures.

    PubMed

    Choi, Yeonho; Hong, Soongweon; Lee, Luke P

    2009-11-01

    Precisely constructed nanoscale devices and nanoarchitectures with high spatial resolution are critically needed for applications in high-speed electronics, high-density memory, efficient solar cells, optoelectronics, plasmonics, optical antennas, chemical sensors, biological sensors, and nanospectroscopic imaging. Current methods of classical optical lithography are limited by the diffraction effect of light for nanolithography, and the state of art of e-beam or focused ion beam lithography limit the throughput and further reduction less than few nanometers for large-area batch fabrication. However, these limits can be surpassed surprisingly by utilizing the overlap of two shadow images. Here we present shadow overlap of ion-beam lithography (SOIL), which can combine the advantages of parallel processing, tunable capability of geometries, cost-effective method, and high spatial resolution nanofabrication technique. The SOIL method relies on the overlap of shadows created by the directional metal deposition and etching angles on prepatterned structures. Consequently, highly tunable patterns can be obtained. As examples, unprecedented nanoarchitectures for optical antennas are demonstrated by SOIL. We expect that SOIL can have a significant impact not only on nanoscale devices, but also large-scale (i.e., micro and macro) three-dimensional innovative lithography.

  9. Defectivity reduction studies for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Matsunaga, Kentaro; Kondoh, Takehiro; Kato, Hirokazu; Kobayashi, Yuuji; Hayasaki, Kei; Ito, Shinichi; Yoshida, Akira; Shimura, Satoru; Kawasaki, Tetsu; Kyoda, Hideharu

    2007-03-01

    Immersion lithography is widely expected to meet the manufacturing requirements of future device nodes. A critical development in immersion lithography has been the construction of a defect-free process. Two years ago, the authors evaluated the impact of water droplets made experimentally on exposed resist films and /or topcoat. (1) The results showed that the marks of drying water droplet called watermarks became pattern defects with T-top profile. In the case that water droplets were removed by drying them, formation of the defects was prevented. Post-exposure rinse process to remove water droplets also prevented formation of the defects. In the present work, the authors evaluated the effect of pre- and post-exposure rinse processes on hp 55nm line and space pattern with Spin Rinse Process Station (SRS) and Post Immersion Rinse Process Station (PIR) modules on an inline lithography cluster with the Tokyo Electron Ltd. CLEAN TRACK TM LITHIUS TM i+ and ASML TWINSCAN XT:1700Fi , 193nm immersion scanner. It was found that total defectivity is decreased by pre- and post-exposure rinse. In particular, bridge defects and large bridge defects were decreased by pre- and post-exposure rinse. Pre- and post-exposure rinse processes are very effective to reduce the bridge and large bridge defects of immersion lithography.

  10. Three-Dimensional Nano-Lithography for Emerging Technologies

    DTIC Science & Technology

    2005-09-27

    SUBJECT TERMS Grayscale lithography, micro - and nano -fabrication, 3D micro ...meso-optics for optical system integration, and the burgeoning field of micro -electro-mechanical systems (MEMS), provide drive in the micro - and nano ...scientific literature, and presentations at conferences devoted to micro - and nano -fabrication and micro - optics. More importantly, we developed technology

  11. Beyond EUV lithography: a comparative study of efficient photoresists' performance

    PubMed Central

    Mojarad, Nassir; Gobrecht, Jens; Ekinci, Yasin

    2015-01-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm is the main candidate for patterning integrated circuits and reaching sub-10-nm resolution within the next decade. Should photon-based lithography still be used for patterning smaller feature sizes, beyond EUV (BEUV) lithography at 6.x nm wavelength is an option that could potentially meet the rigid demands of the semiconductor industry. We demonstrate simultaneous characterization of the resolution, line-edge roughness, and sensitivity of distinct photoresists at BEUV and compare their properties when exposed to EUV under the same conditions. By using interference lithography at these wavelengths, we show the possibility for patterning beyond 22 nm resolution and characterize the impact of using higher energy photons on the line-edge roughness and exposure latitude. We observe high sensitivity of the photoresist performance on its chemical content and compare their overall performance using the Z-parameter criterion. Interestingly, inorganic photoresists have much better performance at BEUV, while organic chemically-amplified photoresists would need serious adaptations for being used at such wavelength. Our results have immediate implications for deeper understanding of the radiation chemistry of novel photoresists at the EUV and soft X-ray spectra. PMID:25783209

  12. Instrumentation for Microfabrication with Deep X-ray Lithography

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.

    2007-01-01

    Deep X-ray lithography for microfabrication is performed at least at ten synchrotron radiation centers worldwide. The characteristic energies of these sources range from 1.4 keV up to 8 keV, covering mask making capabilities, deep X-ray lithography up to ultra deep x-ray lithography of several millimeters resist thickness. Limitations in deep X-ray lithography arise from hard X-rays in the SR-spectrum leading to adhesion losses of resist lines after the developing process, as well as heat load due to very high fluxes leading to thermal expansion of mask and resist during exposure and therefore to microstructure distortion. Considering the installations at ANKA as an example, the advantages of mirrors and central beam stops for DXRL are presented. Future research work will concentrate on feature sizes much below 1 μm, while the commercialization of DXRL goes in the direction of massive automation, including parallel exposures of several samples in a very wide SR-fan, developing and inspection.

  13. Nanoscale molecular-switch devices fabricated by imprint lithography

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Ohlberg, Douglas A. A.; Li, Xuema; Stewart, Duncan R.; Stanley Williams, R.; Jeppesen, Jan O.; Nielsen, Kent A.; Stoddart, J. Fraser; Olynick, Deirdre L.; Anderson, Erik

    2003-03-01

    Nanoscale molecular-electronic devices comprising a single molecular monolayer of bistable [2]rotaxanes sandwiched between two 40-nm metal electrodes were fabricated using imprint lithography. Bistable current-voltage characteristics with high on-off ratios and reversible switching properties were observed. Such devices may function as basic elements for future ultradense electronic circuitry.

  14. Biologically inspired omniphobic surfaces by reverse imprint lithography.

    PubMed

    Hensel, René; Finn, Andreas; Helbig, Ralf; Braun, Hans-Georg; Neinhuis, Christoph; Fischer, Wolf-Joachim; Werner, Carsten

    2014-04-02

    Springtail skin morphology is translated into robust omniphobic polymer membranes by reverse imprint lithography. The combination of overhanging cross-sections and their arrangement in a self-supporting comblike pattern are crucial for mechanically stable coatings that can be even applied to curved surfaces.

  15. Verification of optical proximity effect in immersion lithography

    NASA Astrophysics Data System (ADS)

    Suganaga, Toshifumi; Maejima, Shinroku; Hanawa, Tetsuro; Ishibashi, Takeo; Nakao, Shuji; Shirai, Seiichiro; Narimatsu, Koichiro; Suko, Kazuyuki; Shiraishi, Kenichi; Ishii, Yuki; Ando, Tomoyuki; Ohmori, Katsumi

    2006-03-01

    193 nm lithography is one of the most promising technologies for next-generation lithography and is being actively evaluated for making it practicable (1,2). First, we evaluated an immersion lithography tool (engineering evaluation tool (EET)) (3) and a dry lithography tool (S307E) with the same numerical aperture (NA = 0.85), manufactured by Nikon Corporation. As a result, an increase in the depth of focus (DOF) of the EET to 200 nm in comparison with the DOF (110 nm) of the dry exposure tool was confirmed in a 90 nm isolated space pattern. Next, the optical proximity effect (OPE) in this pattern was evaluated. Generally, when an immersion lithography tool is compared with a dry one with the same NA or both the tools, only an increase in the DOF is found. However, we confirmed that the OPE (The OPE of the 90 nm isolated space pattern is defined as the difference in the space width between a dense space and an isolated space.) of the dry exposure tool for the 90 nm isolated space pattern reduced from 33.1 nm to 14.1 nm by immersion lithography. As the effect of the reduction of 19 nm, the OPE reduced to 15.2 nm by the effect of the top coatings (TCs) and to 3.8 nm by the optical characteristics. An impact of about 5 nm on the OPE was confirmed by the process parameters-film thickness and the pre-bake temperature of the TC. In the case that the solvent was replaced with a high boiling point solvent, the impact changed from 5 to 20 nm further, the replacement of the solvent had a considerable impact on the OPE. However, this influence differs considerably according to the kind of resists; further, it was shown that the addition of acid materials and a change in the polymer base resulted in a high impact on the OPE for a certain resist. Thus, it was demonstrated that the selection of TC is very important for the OPE in immersion lithography.

  16. Laser-based gluing of diamond-tipped saw blades

    NASA Astrophysics Data System (ADS)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  17. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  18. Diode laser based photoacoustic gas detection instruments for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Bozóki, Z.; Pogány, A.; Varga, A.; Mohácsi, Á.; Szabó, G.

    2009-04-01

    We have developed several diode laser based photoacoustic instruments for environmental applications. Both laboratory tests and field measurement campaigns show that these instruments are capable of highly reliable, fully automatic operation over several years, even under harsh conditions. One instrument (WaSul-Hygro) is mounted on-board of a commercial aircraft and measures water vapour and total water concentration in the 1-30,000 ppm concentration range, within the CARIBIC project. Another instrument (WaSul-Flux) measures ammonia concentration in the lower ppb concentration range, simultaneously in up to three channels. Field intercomparison campaigns with several other instruments show that it is a reliable instrument for environmental ammonia monitoring. The third instrument (WaSul-MuWaPas) is a multi-wavelength instrument for quantitative and qualitative aerosol measurements. It measures the optical absorption of aerosols in a particularly broad wavelength range from the UV to the NIR, and consequently it is ideal for differentiation between various aerosol types. The instrument was calibrated with well defined aerosols in the laboratory, and tested under field conditions as well.

  19. Advances in mask fabrication and alignment for masked ion-beam lithography

    NASA Astrophysics Data System (ADS)

    Stumbo, David P.; Damm, George A.; Engler, D. W.; Fong, F. O.; Sen, S.; Wolfe, John C.; Randall, John N.; Mauger, Phillip E.; Shimkunas, Alex R.; Loeschne, Hans

    1990-05-01

    This paper describes recent developments in three areas ofmasked ion beam lithography (MIBL). These are 1) fabrication oflarge area, low distortion, silicon stencilmasks for demagnifying ion projection lithography, 2) fabrication ofstencil masks with nanometer scale resolution for 1:1 proximity printing, and 3) development of a direct method of alignment using the ion beam induced fluorescence of Si02. These topics are discussed below. Demagnifying ion projection masks: We describe the fabrication of stencil masks in large area, low stress (10 MPa), n-type silicon membranes. The projection masks have a silicon foil area 95 mm in diameter, thicknesses between 1.5-5 and resolution of0.6um. Measured distortion (3a) in the IPL masks ranges between 0.23gm and 0.65,um, with an experimental error of 0.20 1um. Proximity printing masks: A process is described for fabricating stencil masks with 50 nm resolution in low stress, n-type silicon membranes. Membranes less than 0.5 ,ttm thick are shown to be free of the sidewall taper that limits resolution in thicker masks. These thin membranes show a slightly flared profile due to the imperfectly collimated etching ions. Alignment: A direct method of alignment is being developed which uses the ion beam induced fluorescence of Si02 marks. Fluorescence yield is characterized as a function of ion energy and resist coating thickness. The yield for Si02 is in the range between 0.1-1.0 photons/proton, while the yields for Si, Al, and photoresist are negligibly small. Thus, a simple alignment technique can be implemented where registration of a grating in the mask with a corresponding oxide pattern is detected as a fluorescence maximum. A simple model predicts that 50 nm alignment can be accomplished, following a 1 im prealignment, in 2 seconds.

  20. Multi-shaped-beam (MSB): an evolutionary approach for high throughput e-beam lithography

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Döring, Hans-Joachim; Stolberg, Ines A.; Dorl, Wolfgang

    2010-09-01

    The development of next-generation lithography (NGL) such as EUV, NIL and maskless lithography (ML2) are driven by the half pitch reduction and increasing integration density of integrated circuits down to the 22nm node and beyond. For electron beam direct write (EBDW) several revolutionary pixel based concepts have been under development since several years. By contrast an evolutionary and full package high throughput multi electron-beam approach called Multi Shaped Beam (MSB), which is based on proven Variable Shaped Beam (VSB) technology, will be presented in this paper. In the recent decade VSB has already been applied in EBDW for device learning, early prototyping and low volume fabrication in production environments for both silicon and compound semiconductor applications. Above all the high resolution and the high flexibility due to the avoidance of expensive masks for critical layers made it an attractive solution for advanced technology nodes down to 32nm half pitch. The limitation in throughput of VSB has been mitigated in a major extension of VSB by the qualification of the cell projection (CP) technology concurrently used with VSB. With CP more pixels in complex shapes can be projected in one shot, enabling a remarkable shot count reduction for repetitive pattern. The most advanced step to extend the mature VSB technology for higher throughput is its parallelization in one column applying MEMS based multi deflection arrays. With this Vistec MSB technology, multiple shaped beamlets are generated simultaneously, each controllable individually in shape size and beam on time. Compared to pixel based ML2 approaches the MSB technology enables the maskless, variable and parallel projection of a large number of pixels per beamlet times the number of beamlets. Basic concepts, exposure examples and performance results of each of the described throughput enhancement steps will be presented.

  1. Novel remote phosphor design for laser-based white lighting application

    NASA Astrophysics Data System (ADS)

    Lee, Tsung-Xian; Chou, Ching-Chia; Chang, Shuo-Chieh

    2016-09-01

    Recently, there is an interest in the laser-based white light source for illumination and display applications. The laser-based white lights inherently have much higher luminance than the corresponding LEDs. Moreover, laser diodes are often more efficient when operating at higher current densities and are with smaller form factors, which may outperform LEDs in the future. Based on this, in this paper, we combine the design of the light guide and reflective type remote phosphor structures in order to improve the overall performance of the laser-based white light source. In addition, these well-designed white light sources will provide the more flexible architecture for designing the subsequent lighting system. With the introduction of the innovative design for the laser-based illumination system, multiple applications incorporating laser and remote phosphor elements for improving lighting efficiency and quality were obtained.

  2. Development and testing of a laser-based decontamination system

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2013-06-01

    Decontamination of radioactive concrete surfaces may be necessary during operation or decommissioning of nuclear power plants. Usually only the upper layers of the concrete structure are contaminated and are removed using labor-intensive mechanical milling processes. Production of a large amount of dust, which can lead to secondary contamination, is inherent to these processes. Improvements in high-energy laser technology have now made it possible for laser radiation to be used in decontamination technologies for the removal of concrete layers. A decontamination unit comprising a diode laser with a beam power of 10 kW in continuous wave (CW) mode in combination with an autonomous manipulator was developed for use in nuclear plants. The laser beam melts the concrete surface to a depth of approximately 5 mm. Compressed air jets then detach the molten layer from the concrete surface and convey it to a suction system, with which it is transported to a collection container. Most of the radionuclides are trapped in the solidifying melt particles, which form an extremely stable effluent well suited to long-term storage. A relatively small amount of dust is generated in the process. Because there is no backlash during energy transfer, the laser device carrier can be designed to be lightweight and flexible. A specially developed manipulator that can move freely along walls and ceilings by means of suction plates is used for the carrier unit. This results in short setup times for preparing for use of the device and minimal personnel exposure to the radiation. Experiments were conducted on a concrete wall to demonstrate the functionality of the overall system in realistic conditions. An optimal ablation rate of 2.16 m²/h at an ablation depth of 1-5 mm was achieved. Today's commercially available diode lasers with powers higher than 50 kW enable ablation rates of >10 m²/h to be achieved and hence make these laser-based systems competitive alternatives to mechanical systems.

  3. Electrically tunable laser based on heliconical cholesteric (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter

    2016-09-01

    STUDENT CONTRIBUTION: Cholesteric liquid crystals (CLC) self-assemble into a periodic supramolecular helical structure with properties of a one-dimensional photonic crystal. The CLCs doped with a fluorescent dye and optical pump enable a distributed feedback cavity and lasing [1]. Although lasing was observed in range of wavelength from near UV to near IR, a practical method of tuning of emission wavelength from a dye-doped CLC without structural destruction of a helix is not demonstrated yet. In this work, we demonstrate an electrically tunable dye-doped CLC laser based on the so-called oblique helicoidal, or heliconical, CLC state [2,3]. In this state, the molecules twist around the helicoidal axis, making an angle smaller than 90 degrees with the axis. Molecular tilt makes the heliconical structure different from the regular CLC (in which the molecules are perpendicular to the axis) and enable electric tunability [2,3]. An electric field applied parallel to the heliconical axis changes the pitch but does not realign the axis. When the field increases, the pitch decreases. As a result, the selective reflection band and a lasing wavelength move towards shorter wavelength. Using heliconical CLC and two laser dyes DCM and LD688, we demonstrate effective tuning of the laser emission wavelength from 574 nm to 722 nm. With appropriate laser dyes, the spectrum can be extended from near UV to near IR. Efficient electric tuning in the broad spectral range and small size of the heliconical cholesteric lasers makes them potentially useful for optical and biomedical applications. [1] P. Palffy-Muhoay, W.Y. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal [2] J. Xiang, S.V. Shiyanovskii, C.T. Imrie, O.D. Lavrentovich, Electrooptic Response of Chiral Nematic Liquid Crystals with Oblique Helicoidal Director, Phys Rev Lett, 112 (2014) 217801. [3] J. Xiang, Y.N. Li, Q. Li, D.A. Paterson, J.M.D. Storey, C.T. Imrie, O.D. Lavrentovich, Electrically

  4. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the

  5. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.

    PubMed

    Burrow, Guy M; Leibovici, Matthieu C R; Gaylord, Thomas K

    2012-06-20

    Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits.

  6. Nodal line-scanning method for maskless optical lithography.

    PubMed

    Johnson, Kenneth C

    2014-12-01

    Maskless optical lithography can improve the economics and performance of multi-patterning by eliminating photomasks and by simplifying the lithography exposure technology. It could also potentially eliminate the need for multi-patterning by enabling dual-wavelength, nonlinear optical recording methods. High-resolution, maskless patterning can be achieved with a scanned-spot-array system in which modulated, diffraction-limited focus spots write the exposure pattern. Each spot has a central zero-intensity interference null along a line parallel to the scan direction for printing sub-resolution line patterns. High throughput can be achieved at the comparatively low repetition rate of excimer lasers (e.g., 6 kHz). The low repetition rate simplifies the optical modulation technology, enabling the use of supplemental modulation controls including dynamic gray-level and beam-centration controls for resolution enhancement.

  7. Particulate templates and ordered liquid bridge networks in evaporative lithography.

    PubMed

    Vakarelski, Ivan U; Kwek, Jin W; Tang, Xiaosong; O'Shea, Sean J; Chan, Derek Y C

    2009-12-01

    We investigate the properties of latex particle templates required to optimize the development of ordered liquid bridge networks in evaporative lithography. These networks are key precursors in the assembly of solutions of conducting nanoparticles into large, optically transparent, and conducting microwire networks on substrates (Vakarelski, I. U.; Chan, D. Y. C.; Nonoguchi, T.; Shinto, H.; Higashitani, K. Phys. Rev. Lett., 2009, 102, 058303). An appropriate combination of heat treatment and oxygen plasma etching of a close-packed latex particle monolayer is shown to create open-spaced particle templates which facilitates the formation of ordered fully connected liquid bridge networks that are critical to the formation of ordered microwire networks. Similar results can also be achieved if non-close-packed latex particle templates with square or honeycomb geometries are used. The present results have important implications for the development of the particulate templates to control the morphology of functional microwire networks by evaporative lithography.

  8. 4-Nitrobenzene Grafted in Porous Silicon: Application to Optical Lithography.

    PubMed

    Tiddia, Mariavitalia; Mula, Guido; Sechi, Elisa; Vacca, Annalisa; Cara, Eleonora; De Leo, Natascia; Fretto, Matteo; Boarino, Luca

    2016-12-01

    In this work, we report a method to process porous silicon to improve its chemical resistance to alkaline solution attacks based on the functionalization of the pore surface by the electrochemical reduction of 4-nitrobenzendiazonium salt. This method provides porous silicon with strong resistance to the etching solutions used in optical lithography and allows the fabrication of tailored metallic contacts on its surface. The samples were studied by chemical, electrochemical, and morphological methods. We demonstrate that the grafted samples show a resistance to harsh alkaline solution more than three orders of magnitude larger than that of pristine porous silicon, being mostly unmodified after about 40 min. The samples maintained open pores after the grafting, making them suitable for further treatments like filling by polymers. Optical lithography was performed on the functionalized samples, and electrochemical characterization results are shown.

  9. Combined capillary force and step and flash lithography

    NASA Astrophysics Data System (ADS)

    Mele, Elisa; Di Benedetto, Francesca; Persano, Luana; Pisignano, Dario; Cingolani, Roberto

    2005-04-01

    The combination of a key element of soft lithography, namely the elastomeric stamp, with the operation principle of step and flash imprint lithography results in a moulding procedure allowing high throughput and remarkable operational simplicity. 100 nm scale dense features can be fabricated via in situ polymerization of a polyurethane fluid, simultaneous to the capillary penetration into the recessed regions of high-resolution elastomeric elements. Excellent pattern definition has been obtained for features down to 200 nm, with aspect ratio of around unity over areas of the order of cm2. The physical principles of the fluidic motion within the sub-µm channels are also discussed, to estimate the maximum aspect ratio achievable before the complete curing of the employed photopolymer.

  10. Rapid prototyping of microstructures by soft lithography for biotechnology.

    PubMed

    Wolfe, Daniel B; Qin, Dong; Whitesides, George M

    2010-01-01

    This chapter describes the methods and specific procedures used to fabricate microstructures by soft lithography. These techniques are useful for the prototyping of devices useful for applications in biotechnology. Fabrication by soft lithography does not require specialized or expensive equipment; the materials and facilities necessary are found commonly in biological and chemical laboratories in both academia and industry. The combination of the fact that the materials are low-cost and that the time from design to prototype device can be short (< 24 h) makes it possible to use and to screen rapidly devices that also can be disposable. Here we describe the procedures for fabricating microstructures with lateral dimensions as small as 1 mum. These types of microstructures are useful for microfluidic devices, cell-based assays, and bioengineered surfaces.

  11. Materials for and performance of multilayer lithography schemes

    NASA Astrophysics Data System (ADS)

    Weimer, Marc; Wang, Yubao; Neef, Charles J.; Claypool, James; Edwards, Kevin; Zu, Zhimin

    2007-03-01

    The 45-nm node will require the use of thinner photoresists, which necessitates the use of multilayer pattern transfer schemes. One common multilayer approach is the use of a silicon-rich anti-reflective hardmask (Si BARC) with a carbon-rich pattern transfer underlayer (spin-on carbon, or SOC). The combination of the two layers provides a highly planar platform for a thin resist, and provides a route to etch substrates due to the alternating plasma etch selectivities of the organic resist, inorganic Si BARC, and organic SOC. Yet such schemes will need to be optimized both for pattern transfer and optics. Optimizing optics under hyper-NA immersion conditions is more complicated than with standard (that is, NA<1) lithography. A rigorous calculation technique is used to evaluate and compare standard lithography to a hyper-NA case using a multilayer stack. An example of such a stack is shown to have reasonable lithographic performance.

  12. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications.

    PubMed

    Vazquez-Mena, Oscar; Sannomiya, Takumi; Villanueva, Luis G; Voros, Janos; Brugger, Juergen

    2011-02-22

    The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices.

  13. Source development for extreme ultraviolet lithography and water window imaging

    NASA Astrophysics Data System (ADS)

    O'Sullivan, G.; Dunne, P.; Kilbane, D.; Liu, L.; Lokasani, R.; Long, E.; Li, B. W.; McCormack, T.; O'Reilly, F.; Shiel, J.; Sokell, E.; Suzuki, C.; Wu, T.; Higashiguchi, T.

    2017-03-01

    Sources based on laser produced plasmas of tin (Sn) are currently being developed for extreme ultraviolet lithography for semiconductor fabrication. Since they operate at short wavelength (13.5 nm) they are capable of producing features with critical dimensions in the 10 nm range. Already next generation lithography sources operating at an even lower wavelength of around 6.7-6.8 nm have been proposed and research is ongoing on their feasibility for both large scale manufacturing and `at wavelength' metrology. The high resolution afforded by such short wavelengths is also of use for applications such as surface patterning and microscopy and the results of recent experiments to identify sources for operation in the `water window' (2.34-4.2 nm), where carbon absorbs strongly but water does not are summarized.

  14. Nanostructure patterning on flexible substrates using electron beam lithography

    NASA Astrophysics Data System (ADS)

    Nagaraj, K. S.; Sangeeth, K.; Hegde, G. M.

    2014-06-01

    Patterning nanostructures on flexible substrates plays a key role in the emerging flexible electronics technology. The flexible electronic devices are inexpensive and can be conformed to any shape. The potential applications for such devices are sensors, displays, solar cells, RFID, high-density biochips, optoelectronics etc. E-beam lithography is established as a powerful tool for nanoscale fabrication, but its applicability on insulating flexible substrates is often limited because of surface charging effects. This paper presents the fabrication of nanostructures on insulating flexible substrates using low energy E-beam lithography along with metallic layers for charge dissipation. Nano Structures are patterned on different substrates of materials such as acetate and PET foils. The fabrication process parameters such as the proximity gap of exposure, the exposure dosage and developing conditions have been optimized for each substrate.

  15. Maskless, parallel patterning with zone-plate array lithography

    SciTech Connect

    Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark K.; Smith, Henry I.; Anderson, Erik H.

    1999-11-01

    Zone-plate array lithography (ZPAL) is a maskless lithography scheme that uses an array of shuttered zone plates to print arbitrary patterns on a substrate. An experimental ultraviolet ZPAL system has been constructed and used to simultaneously expose nine different patterns with a 3x3 array of zone plates in a quasidot-matrix fashion. We present exposed patterns, describe the system design and construction, and discuss issues essential to a functional ZPAL system. We also discuss another ZPAL system which operates with 4.5 nm x radiation from a point source. We present simulations which show that, with our existing x-ray zone plates and this system, we should be able to achieve 55 nm resolution. (c) 1999 American Vacuum Society.

  16. Option of resolution enhancement technology in advanced lithography

    NASA Astrophysics Data System (ADS)

    Li, Yanqui; Zhou, Yuan

    2007-12-01

    Hyper-numerical aperture ArF scanner has being designed to meet the needs of 45nm node. Resolution enhancement technology, such as phase shift mask, off-axis illumination, and innovation processing technology must be employed in hyper-numerical aperture ArF lithography. However the cross talk of phase shift mask, off axis illumination, polarization effect, and resist stack impacts lithography performance significantly. Option of resolution enhancement technology is presented in conjunction with optimal dual-layers bottom anti-refactive coating and polarized illumination by our program and Prolith 9.0. Multi options of resolution enhancement technology are obtained to maintain a small CD, good CD uniformity (CDU), reasonable process window (PW) and fidelity of resist profile.

  17. Coupling-aware mixed dummy metal insertion for lithography

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Wong, Martin D. F.; Chao, Kai-Yuan; Xiang, Hua

    2007-03-01

    As integrated circuits manufacturing technology is advancing into 65nm and 45nm nodes, extensive resolution enhancement techniques (RET) are needed to correctly manufacture a chip design. The widely used RET called offaxis illumination (OAI) introduces forbidden pitches which lead to very complex design rules. It has been observed that imposing uniformity on layout designs can substantially improve printability under OAI. In this paper, two types of assist features for the metal layer are proposed to improve the uniformity, printable assist feature and segmented printable assist feature. They bring different costs on performance and manufacturing. Coupling and lithography costs from these assist features are discussed. Optimal insertion algorithm is proposed to use both types of dummy metals, considering trade-offs between coupling and lithography costs.

  18. Enhancement of height resolution in direct laser lithography.

    PubMed

    Rhee, Hyug-Gyo; Lee, Yun-Woo

    2012-01-02

    To address the requirements of multi-level semiconductors, we propose a new technique for overcoming the height limitation of direct laser lithography. In the proposed system, an original source beam is fed into an interference generator that divides the input beam by 50: 50 into two output beams. After going through an imaging lens, these two beams make two focusing spots, which are slightly separated in the axial direction. In the overlapped region, these two spots generate a small interferogram that shortens the depth of focus. By using this phenomenon, we are able to overcome the height limitation of direct laser lithography. The governing equations are also derived in this manuscript by using the Gaussian beam model.

  19. Bioimprinting strategies: from soft lithography to biomimetic sensors and beyond.

    PubMed

    Mujahid, Adnan; Iqbal, Naseer; Afzal, Adeel

    2013-12-01

    Imprinting is a straightforward, yet a reliable technique to develop dynamic artificial recognition materials-so called as synthetic antibodies. Surface imprinting strategies such as soft lithography allow biological stereotyping of polymers and sol-gel phases to prepare extremely selective receptor layers, which can be combined with suitable transducer systems to develop high performance biomimetic sensors. This article presents an overview of the remarkable technical advancements in the field of surface bioimprinting with particular emphasis on surface imprinted bioanalyte detection systems and their applications in rapid bioanalysis and biotechnology. Herein, we discuss a variety of surface imprinting strategies including soft lithography, template immobilization, grafting, emulsion polymerization, and others along with their biomimetic sensor applications, merits and demerits. The pioneering research works on surface patterned biosensors are described with selected examples of detecting biological agents ranging from small biomolecules and proteins to living cells and microorganisms.

  20. Design and fabrication of diverse metamaterial structures by holographic lithography.

    PubMed

    Yang, Yi; Li, Qiuze; Wang, Guo Ping

    2008-07-21

    We demonstrate a holographic lithography for the fabrication of diverse metamaterial structures by using an optical prism. Cylindrical nanoshells, U-shaped resonator arrays, and double-split ring arrays are obtained experimentally by real time modulating the phase relation of the interference beams. This easy-to-use method may provide a roadway for the design and fabrication of future metamaterials requiring diverse structures for effectively manipulating electromagnetic properties at optical frequencies.

  1. 3D nanostructures fabricated by advanced stencil lithography

    NASA Astrophysics Data System (ADS)

    Yesilkoy, F.; Flauraud, V.; Rüegg, M.; Kim, B. J.; Brugger, J.

    2016-02-01

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au.

  2. 3D nanostructures fabricated by advanced stencil lithography.

    PubMed

    Yesilkoy, F; Flauraud, V; Rüegg, M; Kim, B J; Brugger, J

    2016-03-07

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au.

  3. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  4. 450mm wafer patterning with jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.

  5. Preparation of ring resonator based on PDMS using laser lithography

    NASA Astrophysics Data System (ADS)

    Jandura, D.; Pudis, D.; Gaso, P.

    2016-12-01

    In this paper we present preparation process of ring resonator in racetrack configuration based on polydimethylsiloxane (PDMS). 3D laser lithography in combination with imprinting technique was used to pattern photoresist layer as a master for imprinting process. In the next step, PDMS ring resonator was imprinted and filled with core PDMS. Finally, morphological properties of prepared device were investigated by scanning electron microscope (SEM) and confocal microscope and transmission spectrum measurements were performed.

  6. Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jooyoung; Cho, Kyuman; Kim, Inho; Kim, Won Mok; Lee, Taek Sung; Lee, Kyeong-Seok

    2012-02-01

    In this study, we present and demonstrate a new route to the fabrication of plasmonic nanostructures with a controlled size and shape using photonic nanojet lithography. Through the approach of dual-layer lift-off, the achievable size was remarkably reduced to a sub-100 nm scale and the introduction of an engineered diffuser was proved to give a facile and precise way of controlling the anisotropy in shape without a process burden even when the spherical focusing beads are used.

  7. Multiphoton laser lithography for the fabrication of plasmonic components

    NASA Astrophysics Data System (ADS)

    Passinger, Sven; Koch, Jürgen; Kiyan, Roman; Reinhardt, Carsten; Chichkov, Boris N.

    2006-08-01

    In this contribution, we demonstrate multi-photon femtosecond laser lithography for the fabrication and rapid prototyping of plasmonic components. Using this technology different dielectric and metallic SPP-structures can be fabricated in a low-cost and time-efficient way. Resolution limits of this technology will be discussed. Investigations of the optical properties of the fabricated SPP-structures by far-field leakage radiation microscopy will be reported.

  8. Large-Area Zone Plate Fabrication with Optical Lithography

    SciTech Connect

    Denbeaux, G.

    2011-09-09

    Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/{Delta}E = 700[1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/{Delta}E = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

  9. Extension of practical k1 limit in EUV lithography

    NASA Astrophysics Data System (ADS)

    Park, Sarohan; Lee, Inwhan; Koo, Sunyoung; Lee, Junghyung; Lim, Chang-Moon

    2016-03-01

    Sub 0.3k1 regime has been widely adopted for high volume manufacturing (HVM) of optical lithography due to various resolution enhancement technologies (RETs). It is not certain when such low k1 is feasible in EUV, though most technologies are available in EUV also. In this paper, experimental results on patterning performance of line space (L/S) and contact hole (C/H) in EUV lithography will be presented. First, practical k1 value with 0.33NA EUV lithography was investigated through experiment using NXE3300 EUV tool. Patterning limit, as defined by local critical dimension uniformity (LCDU) for C/H array pattern were measured with respect to various design rules. It was evaluated that the effect of off axis illumination (OAI) mode with various illumination conditions to improve the patterning performance and to reduce k1 limit. Then the experimental results of LCDU were compared with normalized image log slope (NILS) values from simulation. EUV source mask optimization (SMO) technologies to increase NILS with FlexPupil option of EUV scanner were evaluated and possibility of further improvement was also discussed.

  10. How much further can lithography process windows be improved?

    NASA Astrophysics Data System (ADS)

    Hockey, Mary Ann; Lin, Qin; Calderas, Eric

    2012-03-01

    Utilizing thin photoresist layers for successful pattern transfer has gained acceptance as the lithography process of record, primarily due to the incorporation of silicon-containing hardmask (HM) layers for added etching resistance. Our work includes understanding the impact of HfO2 and ZrO2 nanocrystal additives incorporated into spin-on HM materials. The goal is to quantify both etch selectivity and the improvements in the lithography process windows with the addition of HfO2 nanocrystals into various types of polymers. Conventional 193-nm photoresists and spin-on carbon materials were selected as references for etch selectivity calculations. Results indicate there are process window advantages with improvements in the depth of focus (DOF) and overall pattern collapse margins. In addition, the ability to quantify line width roughness (LWR) as a function of resolution has been accomplished for these HM materials, and results show low levels of LWR are achievable. Overall lithography process margins are positive for DOF, exposure latitude (EL), LWR, and pattern collapse with the incorporation of HfO2-enhanced HM coatings for etch protection.

  11. Advanced lithography parameters extraction by using scatterometry system: part II

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Hsieh, Michael; Koh, Huipeng; Zhou, Meisheng

    2008-03-01

    As the advanced IC device process shrinks to below sub-micron dimensions (65nm, 45 nm and beyond), the overall CD error budget becomes more and more challenging. The impact of lithography process parameters other than exposure energy and defocus on final CD results cannot be ignored any more. In this paper we continue the development of the advanced lithography parameters model which we presented last year. This year we achieved to decouple 4 lithography parameters: exposure, focus, PEB temperature and laser bandwidth (or z-blur). To improve the accuracy and precision of the model, new scatterometry marks are designed to reduce the pitch dependent accuracy impact of sidewall angle and photoresist height for scatterometry metrology. The concept of this kind of scatterometry mark design is from T.A. Brunner's paper "Process Monitor Gating" [SPIE Vol. 6518, 2007]. With this concept, new scatterometry marks are designed to increase the accuracy of scatterometry measurement without sacrificing the process sensitivity and thus improve the model prediction accuracy.

  12. Inverse Tomo-Lithography for Making Microscopic 3D Parts

    NASA Technical Reports Server (NTRS)

    White, Victor; Wiberg, Dean

    2003-01-01

    According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.

  13. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  14. Advantages of Using Soft Materials in Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Wang, Mary X.; Mirkin, Chad A.

    2014-03-01

    Scanning probes based upon soft materials provide new capabilities and insights into the science of scanning probe lithography. Specifically, we have explored a cantilever-free architecture that consists of an array of sharp probes on an elastomeric film on a glass slide. This architecture allows every probe in an array to be in simultaneous, gentle contact with a surface, allowing one to perform lithography with millions of probes in parallel. Here, we describe three recent developments in cantilever-free scanning probe lithography that were enabled by the elastomeric material. 1) As the mechanical properties of elastomers can be readily tuned, it is possible to tailor the spring constant of the probes.1 2) The high coefficient of thermal expansion of elastomers means that local heating can be used to physically actuate individual probes allowing for arbitrary patterning.2 3) Solvents retained in the elastomer can mediate molecular printing and allow a user to pattern hydrophilic and hydrophobic materials in totally dry environments. 1D. J. Eichelsdoerfer, et al., Nano Lett. 13, 664 (2013). 2K. A. Brown, et al., Proc. Natl. Acad. Sci. USA 110, 12921 (2013).

  15. Double exposure technology for KrF lithography

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.; Beyer, H.; Old, G.; Marschmeyer, St.; Kuck, B.

    2008-04-01

    The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch. We will use the DEL for the integration of critical layers for dedicated applications requiring resolution enhancement into 0.13 μm BiCMOS technology. In this paper we present the overlay precision and the focus difference of 1st and 2nd exposure as critical parameters of the DEL for k I <= 0.3 lithography (100 nm half pitch) with binary masks (BIM). The realization of excellent overlay (OVL) accuracy is a main key of double exposure and double patterning techniques. We show the DEL requires primarily a good mask registration, when the wafer stays in the scanner for both exposures without alignment between 1st and 2nd exposure. The exposure tool overlay error is more a practical limit for double patterning lithography (DPL). Hence we prefer the DEL for the resolution enhancement, especially if we use the KrF high NA lithography tool for 130 nm generation. Experimental and simulated results show that the critical dimension uniformity (CDU) depends strongly on the overlay precision. The DEL results show CDU is not only affected by the OVL but also by an optical proximity effect of 1st and 2nd exposure and the mask registration. The CD uniformity of DEL demands a low focus difference between 1st and 2nd exposure and therefore requires a good focus repeatability of the exposure tool. The Depth of Focus (DOF) of 490 nm at stable CD of lines was achieved for DEL. If we change the focus of one of the exposures the CD-focus performance of spaces was reduced with simultaneous line position changing. CDU vs. focus difference between 1st and 2nd exposure demands a focus repeatability <100 nm for the exposure tool. Summary, the results show DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  16. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  17. Analysis of feature stability for laser-based determination of tissue thickness

    NASA Astrophysics Data System (ADS)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias

    2015-03-01

    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  18. Design of soft x-ray varied-line-spacing grating based on electron beam lithography-near field lithography

    NASA Astrophysics Data System (ADS)

    Lin, Dakui; Chen, Huoyao; Kroker, Stefanie; Käsebier, Thomas; Liu, Zhengkun; Qiu, Keqiang; Liu, Ying; Kley, Ernst-Bernhard; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2016-10-01

    Soft x-ray varied line spacing grating (VLSG), which is a vital optical element for laser plasma diagnosis and spectrometry analysis, is conventionally fabricated by holographic lithography or mechanical ruling. In order to overcome the issues of the above fabrication methods, a method based on electron beam lithography-near field lithography (EBL-NFH) is proposed to make good use of the flexibility of EBL and the high throughput of NFH. In this paper, we showed a newly designed soft x-ray VLSG with a central groove density of 3600 lines/mm, which is to be realized based on EBL-NFH. First, the optimization of the spatial distribution of line density and groove profile of the VLSG was shown. As an important element in NFH, a fused silica mask plays a key role during NFH in order to obtain a required line density of VLSG. Therefore, second, the transfer relationship of spatial distribution of line densities between fused silica mask and resist grating was investigated in different exposure modes during NFH. We proposed a formulation about the transfer of line density to design of the groove density distribution of a fused silica grating mask. Finally, the spatial distribution of line densities between the fused silica mask, which is to be fabrication by using EBL, was demonstrated.

  19. Lithography alternatives meet design style reality: How do they "line" up?

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2016-03-01

    Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to

  20. Accurate lithography hotspot detection based on PCA-SVM classifier with hierarchical data clustering

    NASA Astrophysics Data System (ADS)

    Gao, Jhih-Rong; Yu, Bei; Pan, David Z.

    2014-03-01

    As technology nodes continues shrinking, layout patterns become more sensitive to lithography processes, resulting in lithography hotspots that need to be identified and eliminated during physical verification. In this paper, we propose an accurate hotspot detection approach based on PCA (principle component analysis)-SVM (sup- port vector machine) classifier. Several techniques, including hierarchical data clustering, data balancing, and multi-level training, are provided to enhance performance of the proposed approach. Our approach is accurate and more efficient than conventional time-consuming lithography simulation; in the meanwhile, provides high flexibility to adapt to new lithography processes and rules.

  1. Step and flash imprint lithography: A low-pressure, room-temperature nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Colburn, Matthew Earl

    Lithography process has been proven to be a high-resolution technique capable of patterning a wide variety of substrate at room temperature under low applied pressure in a fashion consistent with high volume manufacturing requirements.

  2. IR LASER BASED CHEMICAL SENSOR FOR THE COOPERATIVE MONITORING PROGRAM

    SciTech Connect

    Edward A Whitaker

    2005-08-08

    The purpose of this project was to investigate the device properties of the quantum cascade laser (QCL), a type of laser invented at Bell Laboratories, Lucent Technologies in the device physics research lab of Dr. Federico Capasso and more specifically to determine the remote sensing capability of this device. The PI and Stevens Institute of Technology collaborated with Dr. Capasso and Bell Laboratories to carry out this research project. The QCL is a unique laser source capable of generating laser radiation in the middle-infrared spectral region that overlaps the most important molecular absorption bands. With appropriate modulation techniques it is possible to use the laser to measure the concentration of many molecules of interest to the remote sensing community. In addition, the mid-IR emission wavelength is well suited to atmospheric transmission as mid-IR experiences much less scattering due to dust and fog. At the onset of this project little was known about several key device performance parameters of this family of lasers and the NNSA supported research enabled them to determine values of several of these characteristics.

  3. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  4. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  5. Exchange Bias Realignment Using a Laser-based Direct-write Technique

    NASA Astrophysics Data System (ADS)

    Berthold, I.; Löschner, U.; Schille, J.; Ebert, R.; Exner, H.

    We report on selective realignment of the exchange biased magnetization direction in spintronic layer stacks using rapidly deflected focused laser radiation in a direct-write technique. Laser-based magnetic field cooling by applying either pulsed or continuous wave laser radiation was investigated. The magnetic properties of laser-based field cooled layer stacks were investigated by using magneto optical Kerr effect (MOKE) measurements. The dependencies of the processing parameters peak intensity and external magnetic field strength on the resulting exchange bias field strength were evaluated. In addition, temperature field simulations gain deeper insights into the mechanisms of laser-based field cooling. Our results show significant influence of the laser processing regime. Field cooling induced by continuous laser radiation caused higher exchange bias field strengths, compared to pulsed laser radiation. Moreover, the external magnetic field strength affected the resulting exchange bias field strength only by irradiating low-intensity laser beams.

  6. Refractive microlenses for ultraflat photolithographic projection systems

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Eisner, Martin; Ossmann, Christian; Weible, Kenneth J.

    2000-08-01

    We report on the fabrication of high quality microlens arrays on 4', 6' and 8'-fused silica wafers. Refractive, plano-convex microlenses are fabricated by using photolithography; a reflow or melting resist technique and reactive ion etching. A diffraction-limited optical performance (p-v wave aberrations of < (lambda) /8, Strehl ratio GTR 0.97) is achieved. Aspherical lens profiles are obtained by varying the etch parameters during the reactive ion etching transfer. The microlens arrays are used for Microlens Projection Lithography (MPL) and within UV-light illumination systems. Microlens Projection Lithography is an innovative technique using KARL SUSS Mask Aligners equipped with an ultra-flat microlens-based projection system. The projection system consists of 500.000 identical micro-objectives side- by-side. Each micro-objective consists of 3 to 4 microlenses. A fully symmetrical optical design eliminates coma, distortion and lateral color. The lens system is frontal- and backside telecentric to provide a unit magnification (+1) over the whole depth of focus. Each micro- objective images a small part of the photomask pattern onto the wafer. The partial images from different channels overlap consistently and form a complete aerial image of the photomask. Microlens Projection Lithography provides an increased depth of focus (GTR 50 microns) at a larger working distance ($GTR 1 mm)than standard proximity printing. Microlens Projection Lithography allows photolithography on curved on non-planar substrates, in V-grooves, holes, etc. using a KARL SUSS Mask Aligner.

  7. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  8. Double-Sided Opportunities Using Chemical Lift-Off Lithography.

    PubMed

    Andrews, Anne M; Liao, Wei-Ssu; Weiss, Paul S

    2016-08-16

    We discuss the origins, motivation, invention, development, applications, and future of chemical lift-off lithography, in which a specified pattern of a self-assembled monolayer is removed, i.e., lifted off, using a reactive, patterned stamp that is brought into contact with the monolayer. For Au substrates, this process produces a supported, patterned monolayer of Au on the stamp in addition to the negative pattern in the original molecular monolayer. Both the patterned molecular monolayer on the original substrate and the patterned supported metal monolayer on the stamp are useful as materials and for further applications in sensing and other areas. Chemical lift-off lithography effectively lowers the barriers to and costs of high-resolution, large-area nanopatterning. On the patterned monolayer side, features in the single-nanometer range can be produced across large (square millimeter or larger) areas. Patterns smaller than the original stamp feature sizes can be produced by controlling the degree of contact between the stamp and the lifted-off monolayer. We note that this process is different than conventional lift-off processes in lithography in that chemical lift-off lithography removes material, whereas conventional lift-off is a positive-tone patterning method. Chemical lift-off lithography is in some ways similar to microtransfer printing. Chemical lift-off lithography has critical advantages in the preparation of biocapture surfaces because the molecules left behind are exploited to space and to orient functional(ized) molecules. On the supported metal monolayer side, a new two-dimensional material has been produced. The useful important chemical properties of Au (vis-à-vis functionalization with thiols) are retained, but the electronic and optical properties of bulk Au or even Au nanoparticles are not. These metal monolayers do not quench excitation and may be useful in optical measurements, particularly in combination with selective binding due to

  9. Design of the ultraprecision stage for lithography using VCM

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Han; Kim, Mun-Su; Oh, Min-Taek

    2007-12-01

    This paper presents a new design of precision stage for the reticle in lithography process and a low hunting control method for the stage. The stage has three axes for X,Y, θ Z, those actuated by three voice coil motors individually. The proposed precision stage system has three gap sensors and voice coil motors, and supported by four air bearings, so it do not have any mechanical contact and nonlinear effect such as hysterisis which usually degrade performance in nano level movement. The reticle stage has cross coupled dynamics between X,Y,θ Z, axes, so the forward and inverse kinematics were solved to get an accurate reference position. When the stage is in regulating control mode, there always exist small fluctuations (stage hunting) in the stage movement. Because the low stage hunting characteristic is very important in recent lithography and nano-level applications, the proposed stage has a special regulating controller composed of digital filter, adjustor and switching algorithm. Another importance factor that generates hunting noise is the system noise inside the lithography machine such as EMI from another motor and solenoids. For reducing such system noises, the proposed controller has a two-port transmission system that transfers torque command signal from the DSP board to the amplifier. The low hunting control algorithm and two-port transmission system reduced hunting noise as 35nm(rms) when a conventional PID generates 77nm(rms) in the same mechanical system. The experimental results showed that the reticle system has 100nm linear accuracy and 1μ rad rotation accuracy at the control frequency of 8 kHz.

  10. Sources for beyond extreme ultraviolet lithography and water window imaging

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Gerry; Li, Bowen; Dunne, Padraig; Hayden, Paddy; Kilbane, Deirdre; Lokasani, Ragava; Long, Elaine; Ohashi, Hayato; O'Reilly, Fergal; Sheil, John; Sheridan, Paul; Sokell, Emma; Suzuki, Chihiro; White, Elgiva; Higashiguchi, Takeshi

    2015-05-01

    Lithography tools are being built and shipped to semiconductor manufacturers for high volume manufacturing using extreme ultraviolet lithography (EUVL) at a wavelength of 13.5 nm. This wavelength is based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ˜70% at this wavelength. Moreover, the primary lithography tool manufacturer, ASML, has identified 6.x nm, where x˜7, as the wavelength of choice for so-called Beyond EUVL, based on the availability of La/B4C MLMs, with theoretical reflectance approaching 80% at this wavelength. The optimum sources have been identified as laser produced plasmas of Gd and Tb, as n = 4-n = 4 transitions in their ions emit strongly near this wavelength. However, to date, the highest conversion efficiency obtained, for laser to EUV energy emitted within the 0.6% wavelength bandwidth of the mirror is only 0.8%, pointing to the need to identify other potential sources or consider the selection of other wavelengths. At the same time, sources for other applications are being developed. Conventional sources for soft x-ray microscopy use H-like line emission from liquid nitrogen or carbon containing liquid jets which can be focused using zone plates. Recently the possibility of using MLMs with n = 4-n = 4 emission from a highly charged Bi plasma was proposed and subsequently the possibility of using Δn = 1 transitions in 3rd row transition elements was identified. All of these studies seek to identify spectral features that coincide with the reflectance characteristics of available MLMs, determine the conditions under which they are optimized and establish the maximum conversion efficiencies obtainable. Thus, there is a need for systematic studies of laser produced plasmas of a wide range of elements as some of the challenges are similar for all of these sources and some recent results will be presented.

  11. Low-cost method for producing extreme ultraviolet lithography optics

    DOEpatents

    Folta, James A.; Montcalm, Claude; Taylor, John S.; Spiller, Eberhard A.

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  12. Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography

    SciTech Connect

    Lee, Jae-Hwang; Kuang, Ping; Leung, Wai; Kim, Yong-Sung; Park, Joong-Mok; Kang, Henry; Constant, Kristen; Ho, Kai-Ming

    2010-05-13

    We report the fabrication and characterization of woodpile photonic crystals with up to 12 layers through titania nanoparticle infiltration of a polymer template made by soft lithography. Because the complicated alignment in the conventional layer-by-layer fabrication associated with diamondlike symmetry is replaced by a simple 90{sup o} alignment, the fabricated photonic crystal has semicrystalline phase. However, the crystal performs similarly to a perfectly aligned crystal for the light propagation integrated from the surface normal to 30{sup o} at the main photonic band gap.

  13. Modeling the lithography of ion implantation resists on topography

    NASA Astrophysics Data System (ADS)

    Winroth, Gustaf; Vaglio Pret, Alessandro; Ercken, Monique; Robinson, Stewart A.; Biafore, John J.

    2014-03-01

    With emerging technologies, such as fin-based field-effect transistors (finFETs), the structures, which define the functionality of a device, have added one dimension in the patterning and are now three-dimensional. Lithography for CMOS patterning becomes more complicated for finFETs given the three-dimensional substrate structure, and the resist modeling targeting this issue is yet to be fully investigated. Here, we present lithographic simulations on topography relevant for finFET devices compatible with nodes down to 10 nm. We investigate the influence of different materials and of the additional optical complexity due to the topography and density of the gates and fins.

  14. Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS

    PubMed Central

    2014-01-01

    Deep-ultraviolet surface-enhanced Raman scattering (UV-SERS) is a promising technique for bioimaging and detection because many biological molecules possess UV absorption lines leading to strongly resonant Raman scattering. Here, Al nanovoid substrates are developed by combining nanoimprint lithography of etched polymer/silica opal films with electron beam evaporation, to give a high-performance sensing platform for UV-SERS. Enhancement by more than 3 orders of magnitude in the UV-SERS performance was obtained from the DNA base adenine, matching well the UV plasmonic optical signatures and simulations, demonstrating its suitability for biodetection. PMID:25291629

  15. Self-cleaning optic for extreme ultraviolet lithography

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  16. Laser Produced X-Ray for High Resolution Lithography.

    DTIC Science & Technology

    2014-09-26

    Neodymium Laser Pulse ....... ....................... ... 24 Figure 11. Densitometer Trace of Al X-Ray Spectrum ........... ... 26...typical x-ray lithography experiments, 100 joule light pulses with a nanosecond pulse width (full-width-half-maximum) were produced with a neodymium -doped...34."..’’’.. ’ ’.’/ .. ".-".’ ’ ’ . > . . ’ ’ ’ ’ ’ , ’ : . r "" ’ "" " " ". . . .;" 23 The Laser -, The laser used in prior research is a neodymium

  17. Recent Printing And Registration Results With X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Fay, B.; Tai, L.; Alexander, D.

    1985-06-01

    X-ray lithography has matured from a research and development phase to an implementation phase. Accordingly, the concerns have shifted from imaging issues to those of registration, critical dimension control, step height coverage, and system repeatability. In this paper, results will be discussed relating to x-ray printing and registration for full field alignment systems with 100mm field diameter using optical verniers, SEM (scanning electron microscope) and electrical wafer probe techniques. These results will encompass micrometer and submicrometer imaging using single 'level and tri-level processing techniques.

  18. Flexible Transition Metal Oxide Electronics and Imprint Lithography

    NASA Astrophysics Data System (ADS)

    Jackson, Warren B.

    The previous chapters have discussed inorganic low-deposition temperature materials suitable for flexible applications, such as amorphous and nano-crystalline-silicon (Si) and organic conductors. This chapter presents the results of a recently developed inorganic low-temperature materials system, transition metal oxides (TMOs), that appears to be a very promising, new high-performance flexible electronic materials system. An equally, if not more, important part of this chapter, is the presentation of self-aligned imprint lithography (SAIL) a new fabrication method for flexible substrates that solves the layer-to-layer alignment problem.

  19. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  20. Optical laue diffraction on photonic structures designed by laser lithography

    NASA Astrophysics Data System (ADS)

    Samusev, K. B.; Rybin, M. V.; Lukashenko, S. Yu.; Limonov, M. F.

    2016-06-01

    Two-dimensional photonic crystals with square symmetry C 4v were obtained using the laser lithography method. The structure of these samples was studied by scanning electron microscopy. Optical Laue diffraction for monochromatic light was studied experimentally depending on the incidence angle of laser beam and lattice constant. Interpretation of the observed diffraction patterns is given in the framework of the Laue diffraction mechanism for an one-dimensional chain of scattering elements. Red thresholds for different diffraction orders were determined experimentally and theoretically. The results of calculations are in an excellent agreement with experiment.

  1. Masks for high aspect ratio x-ray lithography

    SciTech Connect

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-04-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding.

  2. Resistless lithography - selective etching of silicon with gallium doping regions

    NASA Astrophysics Data System (ADS)

    Abdullaev, D.; Milovanov, R.; Zubov, D.

    2016-12-01

    This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.

  3. Speckle perception and disturbance limit in laser based projectors

    NASA Astrophysics Data System (ADS)

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2016-04-01

    We investigate the level of speckle that can be tolerated in a laser cinema projector. For this purpose, we equipped a movie theatre room with a prototype laser projector. A group of 186 participants was gathered to evaluate the speckle perception of several, short movie trailers in a subjective `Quality of Experience' experiment. This study is important as the introduction of lasers in projection systems has been hampered by the presence of speckle in projected images. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. As is also discussed in [Verschaffelt et al., Scientific Reports 5, art. nr. 14105, 2015] we find that, for moving images, the speckle becomes disturbing if the speckle contrast becomes larger than 6.9% for the red, 6.0% for the green, and 4.8% for the blue primary colors of the projector, whereas for still images the speckle detection threshold is about 3%. As we could not independently tune the speckle contrast of each of the primary colors, this speckle disturbance limit seems to be determined by the 6.9% speckle contrast of the red color as this primary color contains the largest amount of speckle. The speckle disturbance limit for movies thus turns out to be substantially larger than that for still images, and hence is easier to attain.

  4. Mask-induced best-focus shifts in deep ultraviolet and extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Erdmann, Andreas; Evanschitzky, Peter; Neumann, Jens Timo; Gräupner, Paul

    2016-04-01

    The mask plays a significant role as an active optical element in lithography, for both deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography. Mask-induced and feature-dependent shifts of the best-focus position and other aberration-like effects were reported both for DUV immersion and for EUV lithography. We employ rigorous computation of light diffraction from lithographic masks in combination with aerial image simulation to study the root causes of these effects and their dependencies from mask and optical system parameters. Special emphasis is put on the comparison of transmission masks for DUV lithography and reflective masks for EUV lithography, respectively. Several strategies to compensate the mask-induced phase effects are discussed.

  5. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  6. Laser-based instrumentation for detection of chemical-warfare agents

    SciTech Connect

    Quigley, G.P.; Radziemski, L.J.; Sander, R.K.; Hartford, A. Jr.

    1981-01-01

    Several laser-based techniques are being developed for remote, point, and surface contamination detection of chemical warfare agents. These techniques include optoacoustic spectroscopy, laser-induced breakdown spectroscopy, and synchronous detection of laser-induced fluorescence. Detection limits in the part-per-million to part-per-billion regime have been demonstrated.

  7. Speckle reduction methods in laser-based picture projectors

    NASA Astrophysics Data System (ADS)

    Akram, M. Nadeem; Chen, Xuyuan

    2016-02-01

    Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.

  8. Fundamental study of optical threshold layer approach towards double exposure lithography

    NASA Astrophysics Data System (ADS)

    Gu, Xinyu; Berro, Adam J.; Cho, Younjin; Jen, Kane; Lee, Saul; Ngai, Tomoki; Ogata, Toshiyuki; Durand, William J.; Sundaresan, Arunkumar; Lancaster, Jeffrey R.; Jockusch, Steffen; Zimmerman, Paul; Turro, Nicholas J.; Willson, C. G.

    2009-03-01

    193 immersion lithography has reached its maximal achievable resolution. There are mainly two lithographic strategies that will enable continued increase in resolution. Those are being pursued in parallel. The first is extreme ultraviolet (EUV) lithography and the second is double patterning (exposure) lithography. EUV lithography is counted on to be available in 2013 time frame for 22 nm node. Unfortunately, this technology has suffered several delays due to fundamental problems with source power, mask infrastructure, metrology and overall reliability. The implementation of EUV lithography in the next five years is unlikely due to economic factors. Double patterning lithography (DPL) is a technology that has been implemented by the industry and has already shown the proof of concept for the 22nm node. This technique while expensive is the only current path forward for scaling with no fundamental showstoppers for the 32nm and 22nm nodes. Double exposure lithography (DEL) is being proposed as a cost mitigating approach to advanced lithography. Compared to DPL, DEL offers advantages in overlay and process time, thus reducing the cost-of-ownership (CoO). However, DEL requires new materials that have a non-linear photoresponse. So far, several approaches were proposed for double exposure lithography, from which Optical Threshold Layer (OTL) was found to give the best lithography performance according to the results of the simulation. This paper details the principle of the OTL approach. A photochromic polymer was designed and synthesized. The feasibility of the material for application of DEL was explored by a series of evaluations.

  9. Hierarchically Ordered Plasmonic Mask for Photo-lithography

    NASA Astrophysics Data System (ADS)

    Kim, Woo Soo; Thomas, Edwin L.

    2008-03-01

    A new high density nanolithography method for the fabrication of a hierarchically ordered plasmonic mask employs silver (Ag) nano-particles (NPs) attached to the surface of an amine- functionalized two-dimensional (2D) pattern fabricated by laser interference lithography (IL). The bi-functional sol-gel hybrid material (BFHM) is a negative-tone resist and can be directly patterned by IL. Since the BFHM has both an amine-function and a methacryl function on each molecule, photopolymerization provides network formation and a set of binding sites for the Ag NPs. The Ag NPs were then attached onto the BFHM pillars by immersing the patterned sample in a solution. Hierarchically ordered arrays of Ag NPs could be made by a block copolymer comprised of 40nm diameter spherical P2VP domains having a spacing of 88nm, forming a hexagonal pattern covering the hexagonally arrayed BFHM pillars. Lithography experiments using 430 nm wavelength light demonstrate transfer of both a 350 nm periodic pattern and a 88nm patten to a positive-tone photoresist via plasmonic field enhancement arising from the collective and individual excitation of the closely spaced interacting Ag NPs on the hierarchically patterned BFHM.

  10. Block-based mask optimization for optical lithography.

    PubMed

    Ma, Xu; Song, Zhiyang; Li, Yanqiu; Arce, Gonzalo R

    2013-05-10

    Pixel-based optical proximity correction (PBOPC) methods have been developed as a leading-edge resolution enhancement technique (RET) for integrated circuit fabrication. PBOPC independently modulates each pixel on the reticle, which tremendously increases the mask's complexity and, at the same time, deteriorates its manufacturability. Most current PBOPC algorithms recur to regularization methods or a mask manufacturing rule check (MRC) to improve the mask manufacturability. Typically, these approaches either fail to satisfy manufacturing constraints on the practical product line, or lead to suboptimal mask patterns that may degrade the lithographic performance. This paper develops a block-based optical proximity correction (BBOPC) algorithm to pursue the optimal masks with manufacturability compliance, where the mask is shaped by a set of overlapped basis blocks rather than pixels. BBOPC optimization is formulated based on a vector imaging model, which is adequate for both dry lithography with lower numerical aperture (NA), and immersion lithography with hyper-NA. The BBOPC algorithm successively optimizes the main features (MF) and subresolution assist features (SRAF) based on a modified conjugate gradient method. It is effective at smoothing any unmanufacturable jogs along edges. A weight matrix is introduced in the cost function to preserve the edge fidelity of the printed images. Simulations show that the BBOPC algorithm can improve lithographic imaging performance while maintaining mask manufacturing constraints.

  11. Integration of plant viruses in electron beam lithography nanostructures

    NASA Astrophysics Data System (ADS)

    Alonso, Jose M.; Ondarçuhu, Thierry; Bittner, Alexander M.

    2013-03-01

    Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes.

  12. Microfluidic structures for LOC devices designed by laser lithography

    NASA Astrophysics Data System (ADS)

    Figurova, M.; Pudis, D.; Gaso, P.

    2016-12-01

    Nowadays, lab on a chip (LOC) applications are very popular in the field of biomedicine. LOC device works with biological materials and enables to arrange conventional laboratory operations on a small chip. Philosophy of LOC applications stands on quick and precise diagnostics process and technology, which uses cheap materials with possibility of rapid prototyping. LOC, as a time saving application, works with small volume of samples and reagents and enables better control over the sample. We present fabrication method of functional LOC chip for different biomedical microfluidic applications based on direct laser writing (DLW) lithography. We present fabrication of few types of microfluidic and micro-optic structures with different capabilities created by DLW system. The combination of DLW lithography in photoresist layer deposited on glass substrate and polydimethylsiloxane (PDMS) replica molding process were used for patterning of designed microstructures. Prepared microfluidic and micro-optic structures were observed by confocal microscope and microfluidic flow observations were investigated by conventional optical microscope and CCD camera.

  13. Lithography oriented DfM for 65 nm and beyond

    NASA Astrophysics Data System (ADS)

    Kyoh, S.; Kotani, T.; Kobayashi, S.; Ikeuchi, A.; Inoue, S.

    2006-03-01

    As Technology node is advancing, we are forced to use relatively low resolution lithography tool. And these situation results in degradation of pattern fidelity. hot spot, lithographic margin-less spot, appears frequently by conventional design rule methodology. We propose two design rule methodology to manage hot spot appearances in the stage of physical pattern determination. One is restricted design rule, under which pattern variation is very limited, so hot spot generation can be fully controlled. Second is complex design rule combined with lithography compliance check (LCC) and hot spot fixing (HSF). Design rule, by itself, has a limited ability to reduce hot spot generation. To compensate the limited ability, both LCC including optical proximity correction and process simulation for detecting hot spots and HSF for fixing the detected hot spots are required. Implementing those methodology into design environment, hot spot management can be done by early stage of physical pattern determination. Also newly developed tool is introduced to help designers easily fixing hot spots. By using this tool, the system of automatic LCC and HSF has been constructed. hot spots-less physical patterns through this system can be easily obtained and turn-back from manufacture to design can be avoided.

  14. Roll-to-Roll Nanoimprint Lithography Simulations for Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Jain, Akhilesh; Bonnecaze, Roger

    2015-11-01

    UV roll-to-roll nanoimprint lithography enables the patterning of features onto a flexible substrate for bendable electronics in a continuous process. One of the most important design goals in this process is to make the residual layer thickness of the photoresist in unpatterned regions as thin and uniform as possible. Another important goal is to minimize the imprint time to maximize throughput. We develop a multi-scale model to simulate the spreading of photoresist drops as the template is pressed against the substrate. We include the effect of capillary pressure on the bending of the substrate and show how this distorts uniformity in the residual thickness layer. Our simulation code is parallelized and can simulate the flow and merging of thousands of drops. We investigate the effect of substrate tension and the initial arrangement of drops on the residual layer thickness and imprint time. We find that for a given volume of photoresist, distributing that volume to more drops initially decreases the imprint time. We conclude with recommendations for scale-up and optimal operations of roll-to-roll nanoimprint lithography systems. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing high performance computing resources.

  15. Mobile laser lithography station for microscopic two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Leinenbach, F.; Breunig, H. G.; König, K.

    2015-03-01

    We present a mobile laser lithography station for 3D structuring by microscopic two-photon polymerization. For structuring the Coherent Vitara UBB titanium:sapphire femtosecond laser is used, which has a power output of 500mW and generates pulses with a central wavelength of 810nm. The laser pulses have a tunable bandwidth from 50nm to 250nm. The pulses are temporally compressed using chirped mirrors to a minimum duration of less than 15fs at the sample. The laser power reaching the sample can be motionless controlled by a combination of a liquid crystal retarder and a polarizer within milliseconds. The sample is placed onto a microscope stage which has a movement range of 300µm in the X, Y and Z direction with an accuracy of 2nm. Sample imaging is possible with a microscope camera simultaneous to the structuring. The pulses are focused by a 40X microscope objective (1.3NA) onto the sample. To operate the lithography station, we developed a LabVIEW-based software which controls sample position, laser power and objective height and as well as the microscope camera. Furthermore, CAD data can be read and converted into sample position data. By combining all these components, a fully automatic structuring of a sample with sub-micrometer precision is possible.

  16. Scatterometry-based process control for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Tsuda, Hirotaka; Komori, Motofumi; Matsuki, Kazuto; Abe, Hideaki; Jung, Woo-Yung

    2016-03-01

    In principal, the critical dimension (CD) of Nanoimprint lithography (NIL) pattern is determined by the CD of the template pattern. Unless one template is changed to another, NIL does not have a knob for direct control of the CD, such as the exposure dose and focus in optical lithography. Alternatively, the CD would be controlled by adjusting the thickness of the residual layer underneath the NIL pattern and controlling the etching process to transfer the pattern to a substrate. Controlling the residual layer thickness (RLT) can change the etching bias, resulting in the control of the CD of etched pattern. RLT is controllable by the resist dispense condition of the inkjet. For CD control, the metrology of RLT and feedback of the results to the dispense condition are extremely important. Scatterometry is the most promising metrology for the task because it is nondestructive 3D metrology with high throughput. In this paper, we discuss how to control CD in the NIL process and propose a process control flow based on scatterometry.

  17. Integration of plant viruses in electron beam lithography nanostructures.

    PubMed

    Alonso, Jose M; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-03-15

    Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes.

  18. Scalable, high performance, enzymatic cathodes based on nanoimprint lithography.

    PubMed

    Pankratov, Dmitry; Sundberg, Richard; Sotres, Javier; Suyatin, Dmitry B; Maximov, Ivan; Shleev, Sergey; Montelius, Lars

    2015-01-01

    Here we detail high performance, enzymatic electrodes for oxygen bio-electroreduction, which can be easily and reproducibly fabricated with industry-scale throughput. Planar and nanostructured electrodes were built on biocompatible, flexible polymer sheets, while nanoimprint lithography was used for electrode nanostructuring. To the best of our knowledge, this is one of the first reports concerning the usage of nanoimprint lithography for amperometric bioelectronic devices. The enzyme (Myrothecium verrucaria bilirubin oxidase) was immobilised on planar (control) and artificially nanostructured, gold electrodes by direct physical adsorption. The detailed electrochemical investigation of bioelectrodes was performed and the following parameters were obtained: open circuit voltage of approximately 0.75 V, and maximum bio-electrocatalytic current densities of 18 µA/cm(2) and 58 µA/cm(2) in air-saturated buffers versus 48 µA/cm(2) and 186 µA/cm(2) in oxygen-saturated buffers for planar and nanostructured electrodes, respectively. The half-deactivation times of planar and nanostructured biocathodes were measured to be 2 h and 14 h, respectively. The comparison of standard heterogeneous and bio-electrocatalytic rate constants showed that the improved bio-electrocatalytic performance of the nanostructured biocathodes compared to planar biodevices is due to the increased surface area of the nanostructured electrodes, whereas their improved operational stability is attributed to stabilisation of the enzyme inside nanocavities.

  19. Large area patterning using interference and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Bläsi, B.; Tucher, N.; Höhn, O.; Kübler, V.; Kroyer, T.; Wellens, Ch.; Hauser, H.

    2016-04-01

    Interference lithography (IL) is the best suited technology for the origination of large area master structures with high resolution. In prior works, we seamlessly pattern areas of up to 1.2 x 1.2 m2 with periodic features, i.e. a diffraction grating with a period in the micron range. For this process we use an argon ion laser emitting at 363.8 nm. Thus, feasible periods are in the range of 100 μm to 200 nm. Edge-defined techniques or also called (self-aligned) double patterning processes can be used to double the spatial frequency of such structures. This way, we aim to reduce achievable periods further down to 100 nm. In order to replicate master structures, we make use of nanoimprint lithography (NIL) processes. In this work, we present results using IL as mastering and NIL as replication technology in the fields of photovoltaics as well as display and lighting applications. In photovoltaics different concepts like the micron-scale patterning of the front side as well as the realization of rear side diffraction gratings are presented. The benefit for each is shown on final device level. In the context of display and lighting applications, we realized various structures ranging from designed, symmetric or asymmetric, diffusers, antireflective and/or antiglare structures, polarization optical elements (wire grid polarizers), light guidance and light outcoupling structures.

  20. High efficiency diffraction grating for EUV lithography beamline monochromator

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Naulleau, P.; Artemiev, N. A.; Lum, P.; Padmore, H. A.

    2016-09-01

    A blazed diffraction grating for the EUV lithography Beamline 12.0.1 of the Advanced Light Source has been fabricated using optical direct write lithography and anisotropic wet etching technology. A variable line spacing pattern was recorded on a photoresist layer and transferred to a hard mask layer of the grating substrate by a plasma etch. Then anisotropic wet etching was applied to shape triangular grating grooves with precise control of the ultralow blaze angle. Variation of the groove density along the grating length was measured with a Long Trace Profiler (LTP). Fourier analysis of the LTP data confirmed high groove placement accuracy of the grating. The grating coated with a Ru coating demonstrated diffraction efficiency of 69.6% in the negative first diffraction order which is close to theoretical efficiency at the wavelength of 13.5 nm. This work demonstrates an alternative approach to fabrication of highly efficient and precise x-ray diffraction gratings with ultra-low blaze angles.

  1. Massively Multiplexed Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Boya, Radha; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-03-01

    Cantilever-free scanning probe lithography has emerged as a low-cost technique for rapidly patterning nanoscale materials. In this architecture, an array of probes is fabricated on a soft backing layer that provides mechanical compliance to each probe while an underlying hard surface maintains the structural integrity of the array. One drawback of this technique is that each probe in the array acts simultaneously and thus generates a copy of the same pattern. Here, we discuss recent efforts to incorporate heaters into these probe arrays so that when a given heater is activated, the thermal expansion of the elastomer actuates a single tip. We find thermal actuation to be powerful enough to actuate individual tips over 4 μm with minimal crosstalk, fast enough to actuate on relevant time scales (20 ms), and scalable by virtue of being electrically addressable. Furthermore, tuning the individual heaters allows for variability in the arrays to be compensated for precisely, resulting in high quality nanopatterning. The addition of tunable actuators transforms cantilever-free scanning probe lithography into a technique capable of true desktop nanofabrication.

  2. Self-assembled dummy patterns for lithography process margin enhancement

    NASA Astrophysics Data System (ADS)

    Moon, James; Nam, Byoung-Sub; Jeong, Joo-Hong; Nam, Byung-Ho; Yim, Dong Gyu

    2007-03-01

    Over the last couple of years, Design For Manufacturability (DFM) has progressed from concept to practice. What we thought then is actually applied to the design step to meet the high demand placed upon very high tech devices we make today. One of the DFM procedures that benefit the lithography process margin is generation of dummy patterns. Dummy pattern generated at design step enables stable yet high lithography process margin for many of the high technology device. But actual generation of the dummy pattern is very complex and risky for many of the layer used for memory devices. Dummy generation for simple pattern layers such as Poly or Isolation layer is not so difficult since pattern composed for these layers are usually 1 dimensional or very simple 2 dimensional patterns. But for interconnection layers that compose of complex 2 dimensional patterns, dummy pattern generation is very risky and requires lots of time and effort to safely place the dummy patterns. In this study, we propose simple self assembled dummy (SAD) generation algorithm to place dummy pattern for the complex 2 dimensional interconnection layers. This algorithm automatically self assembles dummy pattern based on the original design layout, therefore insuring the safety and simplicity of the generated dummy to the original design. Also we will evaluate SAD on interconnection layer using commercial Model Based Verification (MBV) tool to verify its applicability for both litho process margin and DFM perspective.

  3. Mask image position correction for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Saito, Masato; Itoh, Masamitsu; Ikenaga, Osamu; Ishigo, Kazutaka

    2008-05-01

    Application of double patterning technique has been discussed for lithography of HP 3X nm device generation. In this case, overlay budget for lithography becomes so hard that it is difficult to achieve it with only improvement of photomask's position accuracy. One of the factors of overlay error will be induced by distortion of photomask after chucking on the mask stage of exposure tool, because photomasks are bended by the force of vacuum chucking. Recently, mask flatness prediction technique was developed. This technique is simulating the surface shape of mask when it is on the mask stage by using the flatness data of free-standing state blank and the information of mask chucking stage. To use this predicted flatness data, it is possible to predict a pattern position error after exposed and it is possible to correct it on the photomask. A blank supplier developed the flatness data transfer system to mask vender. Every blanks are distinguished individually by 2D barcode mark on blank which including serial number. The flatness data of each blank is linked with this serial number, and mask vender can use this serial number as a key code to mask flatness data. We developed mask image position correction system by using 2D barcode mark linked to predicted flatness data, and position accuracy assurance system for these masks. And with these systems, we made some masks actually.

  4. Lithography focus/exposure control and corrections to improve CDU

    NASA Astrophysics Data System (ADS)

    Kim, Young Ki; Yelverton, Mark; Lee, Joungchel; Cheng, Jerry; Wei, Hong; Kim, Jeong Soo; Gutjahr, Karsten; Gao, Jie; Karur-Shanmugam, Ram; Herrera, Pedro; Huang, Kevin; Volkovich, Roie; Pierson, Bill

    2013-04-01

    As leading edge lithography moves to advanced nodes which requires better critical dimension (CD) control ability within wafer. Current methods generally make exposure corrections by field via factory automation or by sub-recipe to improve CD uniformity. KLA-Tencor has developed a method to provide CD uniformity (CDU) control using a generated Focus/Exposure (F/E) model from a representative process. Exposure corrections by each field can be applied back to the scanner so as to improve CD uniformity through the factory automation. CDU improvement can be observed either at after lithography or after etch metrology steps. In addition to corrections, the graphic K-T Analyzer interface also facilitates the focus/exposure monitoring at the extreme wafer edge. This paper will explain the KT CDFE method and the application in production environment. Run to run focus/exposure monitoring will be carried out both on monitoring and production wafers to control the wafer process and/or scanner fleet. CDU improvement opportunities will be considered as well.

  5. 76 FR 81518 - Notice of Issuance of Final Determination Concerning Laser-Based Multi-Function Office Machines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... SECURITY U.S. Customs and Border Protection Notice of Issuance of Final Determination Concerning Laser... laser-based multi-function office machines. Based upon the facts presented, CBP has concluded in the... of the laser-based multi-function office machine, and it is at their assembly and programming...

  6. Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber

    NASA Astrophysics Data System (ADS)

    Jing-Hui, Liu; Jin-Rong, Tian; He-Yang, Guoyu; Run-Qin, Xu; Ke-Xuan, Li; Yan-Rong, Song; Xin-Ping, Zhang; Liang-Bi, Su; Jun, Xu

    2016-03-01

    We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber operating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 μs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets. Project supported by the National Scientific Research Project of China (Grant No. 61177047), Beijing Municipal Natural Science Foundation, China (Grant No. 1102005), and the Basic Research Foundation of Beijing University of Technology, China (Grant No. X3006111201501).

  7. Performance of a 1.35NA ArF immersion lithography system for 40-nm applications

    NASA Astrophysics Data System (ADS)

    de Klerk, Jos; Wagner, Christian; Droste, Richard; Levasier, Leon; Jorritsma, Louis; van Setten, Eelco; Kattouw, Hans; Jacobs, Jowan; Heil, Tilmann

    2007-03-01

    Water based immersion lithography is now widely recognized a key enabler for continued device shrinks beyond the limits of classical dry lithography. Since 2004, ASML has shipped multiple TWINSCAN immersion systems to IC manufacturers, which have facilitated immersion process integration and optimization. In early 2006, ASML commenced shipment of the first immersion systems for 45nm volume production, featuring an innovative in-line catadioptric lens with a numerical aperture (NA) of 1.2 and a high transmission polarized illumination system. A natural extension of this technology, the XT:1900Gi supports the continued drive for device shrinks that the semiconductor industry demands by offering 40nm half-pitch resolution. This tool features a projection lens based on the already proven in-line catadioptric lens concept but with an enhanced, industry leading NA of 1.35. In this paper, we will discuss the immersion technology challenges and solutions, and present performance data for this latest dual wafer stage TWINSCAN immersion system.

  8. Loss of hydrogen atoms in H{sub 2} plasma on the surfaces of materials used in EUV lithography

    SciTech Connect

    Zyryanov, S. M.; Kovalev, A. S.; Lopaev, D. V.; Malykhin, E. M.; Rakhimov, A. T.; Rakhimova, T. V.; Koshelev, K. N.; Krivtsun, V. M.

    2011-10-15

    Low-pressure hydrogen is an important component of the working medium in extreme ultraviolet (EUV) projection lithography. Under the action of EUV photons and fast secondary electrons on the gas medium, plasma and atomic hydrogen, actively interacting with the surface, are produced. This interaction is very important, because it largely determines the lifetime of the multilayered EUV optics. In this study, the loss of atomic hydrogen under the conditions of a low pressure (<10 Torr) RF plasma discharge on the surfaces of materials used in EUV lithography is investigated. The surface loss probabilities of H atoms on these materials are measured. It is shown that surface recombination of atomic hydrogen goes according to the Eley-Rideal mechanism via direct recombination of H atoms from the gas phase with chemically and physically adsorbed atoms. In this case, the surface recombination probability is mainly determined by the density of chemical adsorption sites. The density of adsorption sites and the desorption energy of H atoms are estimated. The desorption energy of physically adsorbed H atoms on pure metal surfaces (or surfaces exposed to plasma) is about 0.5 eV, and the density of sorption sites is close to the surface density of atoms. This results in a high loss probability of H atoms on metals ({approx}0.1). Therefore, to provide efficient transportation of hydrogen atoms, it is necessary to use materials with the lowest loss probability of H atoms, i.e., dielectrics.

  9. Demonstration of electronic pattern switching and 10x pattern demagnification in a maskless micro-ion beam reduction lithography system

    NASA Astrophysics Data System (ADS)

    Ngo, V. V.; Akker, B.; Leung, K. N.; Noh, I.; Scott, K. L.

    2002-05-01

    A proof-of-principle ion projection lithography (IPL) system called Maskless Micro-ion beam Reduction Lithography (MMRL) has been developed and tested at the Lawrence Berkeley National Laboratory (LBNL) for future integrated circuits (ICs) manufacturing and thin film media patterning. This MMRL system is aimed at completely eliminating the first stage of the conventional IPL system that contains the complicated beam optics design in front of the stencil mask and the mask itself. It consists of a multicusp RF plasma generator, a multi-beamlet pattern generator, and an all-electrostatic ion optical column. Results from ion beam exposures on PMMA and Shipley UVII-HS resists using 75 keV H+ are presented in this paper. Proof-of-principle electronic pattern switching together with 10x reduction ion optics (using a pattern generator made of nine 50-(micro)m switchable apertures) has been performed and is reported in this paper. In addition, the fabrication of a micro-fabricated pattern generator on an SOI membrane is also presented.

  10. Numerical and experimental study of near-field scanning optical lithography using nanoscale bowtie apertures with ultrasmall gap size

    NASA Astrophysics Data System (ADS)

    Ding, Li; Qin, Jin; Chen, Yang; Wang, Liang

    2016-07-01

    Nanoscale ridge apertures have been demonstrated to be applied for high-resolution lithography. We performed a numerical study of nanoscale bowtie apertures with different outline dimensions and gap sizes to analyze their detailed field distribution for near-field scanning optical lithography (NSOL). It is found that the high image contrast, which is necessary for good quality lithography, is obtained in the near-field region and decays quickly with increasing distance. Furthermore, a smaller gap size achieves higher image contrast and deeper depth of focus. With the NSOL system, static and scanning lithography experiments are conducted. Combined with the passive flexure stage for contact control, we achieved 18-nm lithography resolution.

  11. Character Projection Mask Set Optimization for Enhancing Throughput of MCC Projection Systems

    NASA Astrophysics Data System (ADS)

    Sugihara, Makoto; Matsunaga, Yusuke; Murakami, Kazuaki

    Character projection (CP) lithography is utilized for maskless lithography and is a potential for the future photomask manufacture because it can project ICs much faster than point beam projection or variable-shaped beam (VSB) projection. In this paper, we first present a projection mask set development methodology for multi-column-cell (MCC) systems, in which column-cells can project patterns in parallel with the CP and VSB lithographies. Next, we present an INLP (integer nonlinear programming) model as well as an ILP (integer linear programming) model for optimizing a CP mask set of an MCC projection system so that projection time is reduced. The experimental results show that our optimization has achieved 33.4% less projection time in the best case than a naive CP mask development approach. The experimental results indicate that our CP mask set optimization method has virtually increased cell pattern objects on CP masks and has decreased VSB projection so that it has achieved higher projection throughput than just parallelizing two column-cells with conventional CP masks.

  12. The New X-Ray Lithography Beamline BL1 At DELTA

    SciTech Connect

    Lietz, D.; Paulus, M.; Sternemann, C.; Berges, U.; Hippert, B.; Tolan, M.

    2010-06-23

    Lithography using synchrotron radiation in the x-ray regime provides a powerful method to produce mechanical components of sub-millimeter size with a very good quality for microtechnological applications. In recent years the demand for x-ray lithography beamtime for industrial production of microparts increased rapidly resulting in the development of new experimental endstations at synchrotron radiation sources dedicated for the production of micromechanical devices. We present in this work the layout of the new x-ray lithography beamline BL1 at the synchrotron radiation source DELTA in Dortmund and discuss first results of exposure tests.

  13. Direct laser writing defects in holographic lithography-created photonic lattices.

    PubMed

    Sun, Hong-Bo; Nakamura, Atsushi; Kaneko, Koshiro; Shoji, Satoru; Kawata, Satoshi

    2005-04-15

    As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.

  14. Two new types of microneedle array fabricated by x-ray lithography

    NASA Astrophysics Data System (ADS)

    Li, Yigui; Sugiyama, Susumu

    2004-12-01

    The microneedle for blood extraction and painless injection is a rapidly growing area of interest in bio-applications. Two new types of microneedle array are designed and developed for biomedical application. The one is hollow PMMA microneedle array with very shape tip fabricated by two times X-ray lithography (one time is with X-ray mask and one time is without X-ray mask). The other is PMMA microneedle array with tips and fluid channels fabricated by an X-ray lithography technique. The resist stage of the X-ray system driven by actuators is to realize movement lithography.

  15. A novel optical lithography implement utilizing third harmonic generation via metallic tip enhanced near field

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhu, Ning; Mei, Ting; He, Miao; Li, Hao; Chen, Zhenshi

    2017-01-01

    A novel scheme for near-field optical lithography utilizing a metallic tip illuminated by femtosecond laser pulses with proper polarization has been presented. The strongly enhanced near field at the metallic tip offers a localized excitation source for the third harmonic generation in the nonlinear material. The generated third harmonic via excitation of nonlinear photoresist provides good exposure contrast due to the cubic intensity dependence. The spatial resolution of this novel lithography scheme is shown to be better than that of the conventional lithography technique.

  16. Coulomb blur advantage of a multi-shaped beam lithography approach

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Doering, Hans-Joachim; Elster, Thomas; Stolberg, Ines A.

    2009-03-01

    This paper describes a new multi beam approach in electron beam lithography called Multi Shaped Beam (MSB). Based on the well known Variable Shaped Beam (VSB) principle, the single shaped beam arrangement is extended and complemented by an array of individually controlled shaped beams. The positive effect of the MSB approach on resolution limiting stochastic beam blur due to Coulomb interactions will be highlighted applying detailed electron-optical Monte-Carlo simulations. To verify the feasibility of the above-mentioned new approach, there is also depicted a proof-of-lithography test stand based on a complete e-beam-lithography system containing MSB-specific hardware and software components.

  17. Advanced photomask fabrication by e-beam lithography for mask aligner applications

    NASA Astrophysics Data System (ADS)

    Weichelt, T.; Bourgin, Y.; Banasch, M.; Zeitner, U. D.

    2016-10-01

    Photomasks contain geometric information that will be transferred to substrates or pre-structured surfaces. Conventional mask aligner lithography in the sense of shadow printing of the photomask suffers from limited achievable resolution. Photomask and substrate are typically separated by an air gap causing diffraction effects and hence affecting the minimum structure size. Even though contact lithography offers a resolution in the wavelengthscale, yield problems and contamination of the photomask are its drawbacks. Using proximity lithography, these problems can be avoided since it profits from a contact-free exposure process. To overcome the resolution limitation of the shadow printing mode more advanced diffraction based photo masks need to be used.

  18. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    SciTech Connect

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.; Wietsma, Thomas W.; Gratton, Enrico; Vasdekis, Andreas

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  19. Method for the protection of extreme ultraviolet lithography optics

    DOEpatents

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  20. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  1. Field Emitter Arrays and Displays Produced by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Bernhardt, A F

    2004-12-28

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter ({approx}10nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters ({approx}100nm diameter electron guns) for CTC's ThinCRT{trademark} displays, which have been fabricated to diagonal dimensions > 13. Additional technological applications of ion tracking lithography will be briefly covered.

  2. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography.

    PubMed

    Moore, J S; Xantheas, S S; Grate, J W; Wietsma, T W; Gratton, E; Vasdekis, A E

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  3. Adhesive lithography for fabricating organic electronic and optoelectronics devices.

    PubMed

    Wang, Zhe; Xing, Rubo; Yu, Xinhong; Han, Yanchun

    2011-07-01

    Improvements in organic electronic materials have led to novel device applications, ranging from large-area flexible displays to lightweight plastic electronics. Progress on these applications would benefit from development of low-cost fabrication techniques for organic semiconductors. In this review, several fabrication processes based on adhesion force (i.e. van der Waals forces, thiol-metal reactions, and cold welding) are introduced. These patterning techniques are dry patterning techniques, i.e., the electronic materials are patterned from the raised regions of molds onto a substrate directly by additive or subtractive patterning methods. Patterning of organic small molecule, polymer thin films and metal electrodes by adhesive lithography is demonstrated. The operating properties of patterned organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs) are comparable with the performance of devices fabricated by conventional evaporation deposition methods.

  4. Adhesive lithography for fabricating organic electronic and optoelectronics devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Xing, Rubo; Yu, Xinhong; Han, Yanchun

    2011-07-01

    Improvements in organic electronic materials have led to novel device applications, ranging from large-area flexible displays to lightweight plastic electronics. Progress on these applications would benefit from development of low-cost fabrication techniques for organic semiconductors. In this review, several fabrication processes based on adhesion force (i.e. van der Waals forces, thiol-metal reactions, and cold welding) are introduced. These patterning techniques are dry patterning techniques, i.e., the electronic materials are patterned from the raised regions of molds onto a substrate directly by additive or subtractive patterning methods. Patterning of organic small molecule, polymer thin films and metal electrodes by adhesive lithography is demonstrated. The operating properties of patterned organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs) are comparable with the performance of devices fabricated by conventional evaporation deposition methods.

  5. Nanofluidic devices for dielectrophoretic mobility shift assays by soft lithography

    NASA Astrophysics Data System (ADS)

    Viefhues, M.; Regtmeier, J.; Anselmetti, D.

    2012-11-01

    We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduce the flow height of the microchannel. Several realizations of the ridge layout and nanochannel height are demonstrated, depicting the high potential of this technique. The nanochannels proved to be stable even for width-to-height aspect ratios of 873:1. Additionally, an application of these submicrometer structures is presented with a new technique of a dielectrophoretic mobility shift assay (DEMSA). The DEMSA was used to detect different DNA variants, e.g. protein-DNA-complexes, via a shift in (dielectrophoretically retarded) migration velocities within an array of nanoslits.

  6. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    NASA Astrophysics Data System (ADS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-06-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts.

  7. Ice-assisted electron beam lithography of graphene

    NASA Astrophysics Data System (ADS)

    Gardener, Jules A.; Golovchenko, J. A.

    2012-05-01

    We demonstrate that a low energy focused electron beam can locally pattern graphene coated with a thin ice layer. The irradiated ice plays a crucial role in the process by providing activated species that locally remove graphene from a silicon dioxide substrate. After patterning the graphene, the ice resist is easily removed by sublimation to leave behind a clean surface with no further processing. More generally, our findings demonstrate that ice-assisted e-beam lithography can be used to pattern very thin materials deposited on substrate surfaces. The procedure is performed in situ in a modified scanning electron microscope. Desirable structures such as nanoribbons are created using the method. Defects in graphene from electrons backscattered from the bulk substrate are identified. They extend several microns from the e-beam writing location. We demonstrate that these defects can be greatly reduced and localized by using thinner substrates and/or gentle thermal annealing.

  8. "Sketch and Peel" Lithography for High-Resolution Multiscale Patterning.

    PubMed

    Chen, Yiqin; Xiang, Quan; Li, Zhiqin; Wang, Yasi; Meng, Yuhan; Duan, Huigao

    2016-05-11

    We report a unique lithographic process, termed "Sketch and Peel" lithography (SPL), for fast, clean, and reliable patterning of metallic structures from tens of nanometers to submillimeter scale using direct writing technology. The key idea of SPL process is to define structures using their presketched outlines as the templates for subsequent selective peeling of evaporated metallic layer. With reduced exposure area, SPL process enables significantly improved patterning efficiency up to hundreds of times higher and greatly mitigated proximity effect compared to current direct writing strategy. We demonstrate that multiscale hierarchical metallic structures with arbitrary shapes and minimal feature size of ∼15 nm could be defined with high fidelity using SPL process for potential nanoelectronic and nano-optical applications.

  9. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  10. Fabrication of Protein Dot Arrays via Particle Lithography

    PubMed Central

    Taylor, Zachary R.; Patel, Krupa; Spain, Travis; Keay, Joel C.; Jernigen, Jeremy D.; Sanchez, Ernest S.; Grady, Brian P.; Johnson, Matthew B.; Schmidtke, David W.

    2009-01-01

    The ability to pattern a surface with proteins on both the nanometer and micrometer scale has attracted considerable interest due to its applications in the fields of biomaterials, biosensors, and cell adhesion. Here we describe a simple particle lithography technique to fabricate substrates with hexagonally patterned dots of protein surrounded by a protein-repellant layer of poly(ethylene glycol) (PEG). Using this bottom-up approach, dot arrays of three different proteins (fibrinogen, P-selectin, and human serum albumin) were fabricated. The size of the protein dots (450 nm - 1.1 μm) was independent of the protein immobilized, but could be varied by changing the size of the latex spheres (diameter = 2 - 10 μm) utilized in assembling the lithographic bead monolayer. These results suggest that this technique can be extended to other biomolecules and will be useful in applications where arrays of protein dots are desired. PMID:19670836

  11. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers

    NASA Astrophysics Data System (ADS)

    Whitworth, G. L.; Zhang, S.; Stevenson, J. R. Y.; Ebenhoch, B.; Samuel, I. D. W.; Turnbull, G. A.

    2015-10-01

    Solvent immersion imprint lithography (SIIL) was used to directly nanostructure conjugated polymer films. The technique was used to create light-emitting diffractive optical elements and organic semiconductor lasers. Gratings with lateral features as small as 70 nm and depths of ˜25 nm were achieved in poly(9,9-dioctylfluorenyl-2,7-diyl). The angular emission from the patterned films was studied, comparing measurement to theoretical predictions. Organic distributed feedback lasers fabricated with SIIL exhibited thresholds for lasing of ˜40 kW/cm2, similar to those made with established nanoimprint processes. The results show that SIIL is a quick, convenient and practical technique for nanopatterning of polymer photonic devices.

  12. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  13. Stimulated Emission Depletion Lithography with Mercapto-Functional Polymers

    PubMed Central

    2016-01-01

    Surface reactive nanostructures were fabricated using stimulated emission depletion (STED) lithography. The functionalization of the nanostructures was realized by copolymerization of a bifunctional metal oxo cluster in the presence of a triacrylate monomer. Ligands of the cluster surface cross-link to the monomer during the lithographic process, whereas unreacted mercapto functionalized ligands are transferred to the polymer and remain reactive after polymer formation of the surface of the nanostructure. The depletion efficiency in dependence of the cluster loading was investigated and full depletion of the STED effect was observed with a cluster loading exceeding 4 wt %. A feature size by λ/11 was achieved by using a donut-shaped depletion beam. The reactivity of the mercapto groups on the surface of the nanostructure was tested by incubation with mercapto-reactive fluorophores. PMID:26816204

  14. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  15. Novel fluorinated compounds for releasing material in nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, Tsuneo; Mitsuhashi, Hisashi; Morita, Masamichi

    2013-03-01

    In recent years, utilization and reduction of pattern size are following nanoimprint lithography (NIL) quickly. In nanoimprinting, since it is contact printing, a higher separation force might cause damages to the master and imprinting tool, degradation in pattern quality as well. There is a mold-release characteristic of a master and resin as one of the biggest subjects in utilization. Although Optool DSXTM (DAIKIN Ind. Ltd.) is an de facto standard as mold releasing reagent now, there is a problem in durability at UV-NIL. Then, we focused on the material which raises the mold-release characteristic of resist. The new fluorinated copolymers based on α-chloroacrylate and the low molecular weight perfluorocompounds, added to resist was developed. In this paper, we will report these synthesis method, specific properties such as static contact angle, releasing force and further fluorinated compounds were segregated resin surface.

  16. Vitreous carbon mask substrate for X-ray lithography

    DOEpatents

    Aigeldinger, Georg; Skala, Dawn M.; Griffiths, Stewart K.; Talin, Albert Alec; Losey, Matthew W.; Yang, Chu-Yeu Peter

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  17. EUV mask surface cleaning effects on lithography process performance

    SciTech Connect

    George, Simi; Baclea-an, Lorie Mae; Naulleau, Patrick; Chen, Robert J.; Liang, Ted

    2010-06-18

    The reflective, multilayer based, mask architectures for extreme ultraviolet (EUV) lithography are highly susceptible to surface oxidation and contamination. As a result, EUV masks are expected to undergo cleaning processes in order to maintain the lifetimes necessary for high volume manufacturing. For this study, the impact of repetitive cleaning of EUV masks on imaging performance was evaluated. Two, high quality industry standard, EUV masks are used for this study with one of the masks undergoing repeated cleaning and the other one kept as a reference. Lithographic performance, in terms of process window analysis and line edge roughness, was monitored after every two cleans and compared to the reference mask performance. After 8x clean, minimal degradation is observed. The cleaning cycles will be continued until significant loss imaging fidelity is found.

  18. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  19. Interpreting cost of ownership for mix-and-match lithography

    NASA Astrophysics Data System (ADS)

    Levine, Alan L.; Bergendahl, Albert S.

    1994-05-01

    Cost of ownership modeling is a critical and emerging tool that provides significant insight into the ways to optimize device manufacturing costs. The development of a model to deal with a particular application, mix-and-match lithography, was performed in order to determine the level of cost savings and the optimum ways to create these savings. The use of sensitivity analysis with cost of ownership allows the user to make accurate trade-offs between technology and cost. The use and interpretation of the model results are described in this paper. Parameters analyzed include several manufacturing considerations -- depreciation, maintenance, engineering and operator labor, floorspace, resist, consumables and reticles. Inherent in this study is the ability to customize this analysis for a particular operating environment. Results demonstrate the clear advantages of a mix-and-match approach for three different operating environments. These case studies also demonstrate various methods to efficiently optimize cost savings strategies.

  20. Nanopatterning by laser interference lithography: applications to optical devices.

    PubMed

    Seo, Jung-Hun; Park, Jung Ho; Kim, Seong-Il; Park, Bang Ju; Ma, Zhenqiang; Choi, Jinnil; Ju, Byeong-Kwon

    2014-02-01

    A systematic review, covering fabrication of nanoscale patterns by laser interference lithography (LIL) and their applications for optical devices is provided. LIL is a patterning method. It is a simple, quick process over a large area without using a mask. LIL is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with LIL are the platform for further fabrication of nanostructures and growth of functional materials used as the building blocks for devices. Demonstration of optical and photonic devices by LIL is reviewed such as directed nanophotonics and surface plasmon resonance (SPR) or large area membrane reflectors and anti-reflectors. Perspective on future directions for LIL and emerging applications in other fields are presented.

  1. Density variation of nanoscale patterns in thermal nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Woo, Young Seok; Kim, Jae Kwan; Lee, Dong Eon; Suh, Kahp Yang; Lee, Woo Il

    2007-12-01

    Density variation of nanoscale patterns in thermal nanoimprint lithography was studied both by experiments and molecular dynamics simulations. A simple soft imprinting technique was used to fabricate various nanopatterns (70nm and 600nm lines and 150nm dots) over a large area (2×3cm2). Local density was measured by the relative magnitude of van der Waals interactions between a sharp tip and the patterned surface. In order to investigate the mechanism of density variation, molecular dynamic simulations were performed. Experimental and simulation results demonstrated that the density of the pressed region (valleys) was higher than that of the cavity region (hills) when a simple amorphous polymer is thermally imprinted with a patterned mold.

  2. New spin-on metal hardmask materials for lithography processes

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; Rahman, Dalil; Anyadiegwu, Clement; Mckenzie, Douglas; Dioses, Alberto; Cho, Joonyeon; Padmanaban, Munirathna

    2013-03-01

    Since the critical dimensions in integrated circuit (IC) device fabrication continue to shrink below 32 nm, multilayer stacks with alternating etch selectivities are required for successful pattern transfer from the exposed photoresist to the substrate. Inorganic resist underlayer materials are used as hard masks in reactive ion etching (RIE) with oxidative gases. The conventional silicon hardmask has demonstrated good reflectivity control and reasonable etch selectivity. However, some issues such as the rework of trilayer stacks and cleaning of oxide residue by wet chemistry are challenging problems for manufacturability. The present work reveals novel spin-on underlayer materials containing significant amounts of metal oxides in the film after baking at normal processing conditions. Such an inorganic metal hardmask (MHM) has excellent etch selectivity in plasma etch processes of the trilayer stack. The composition has good long term shelf life and pot life stability based on solution LPC analysis and wafer defect studies, respectively. The material absorbs DUV wavelengths and can be used as a spin-on inorganic or hybrid antireflective coating to control substrate reflectivity under DUV exposure of photoresist. Some of these metal-containing materials can be used as an underlayer in EUV lithography to significantly enhance photospeed. Specific metal hard masks are also developed for via or trench filling applications in IRT processes. The materials have shown good coating and lithography performance with a film thicknesses as low as 10 nm under ArF dry or immersion conditions. In addition, the metal oxide films or residues can be partially or completely removed by using various wet-etching solutions at ambient temperature.

  3. Lithography-induced limits to scaling of design quality

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.

    2014-03-01

    Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.

  4. Conductive polycrystalline diamond probes for local anodic oxidation lithography

    NASA Astrophysics Data System (ADS)

    Ulrich, A. J.; Radadia, A. D.

    2015-11-01

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k Avg). The metal-coated and the DC tips with comparable k Avg showed comparable threshold voltages, whereas the MD tips with similar k Avg showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed (v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k Avg. This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.

  5. Conductive polycrystalline diamond probes for local anodic oxidation lithography.

    PubMed

    Ulrich, A J; Radadia, A D

    2015-11-20

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k(Avg)). The metal-coated and the DC tips with comparable k(Avg) showed comparable threshold voltages, whereas the MD tips with similar k(Avg) showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed(v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k(Avg). This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.

  6. 28nm node process optimization: a lithography centric view

    NASA Astrophysics Data System (ADS)

    Seltmann, Rolf

    2014-10-01

    Many experts claim that the 28nm technology node will be the most cost effective technology node forever. This results from primarily from the cost of manufacturing due to the fact that 28nm is the last true Single Patterning (SP) node. It is also affected by the dramatic increase of design costs and the limited shrink factor of the next following nodes. Thus, it is assumed that this technology still will be alive still for many years. To be cost competitive, high yields are mandatory. Meanwhile, leading edge foundries have optimized the yield of the 28nm node to such a level that that it is nearly exclusively defined by random defectivity. However, it was a long way to go to come to that level. In my talk I will concentrate on the contribution of lithography to this yield learning curve. I will choose a critical metal patterning application. I will show what was needed to optimize the process window to a level beyond the usual OPC model work that was common on previous nodes. Reducing the process (in particular focus) variability is a complementary need. It will be shown which improvements were needed in tooling, process control and design-mask-wafer interaction to remove all systematic yield detractors. Over the last couple of years new scanner platforms were introduced that were targeted for both better productivity and better parametric performance. But this was not a clear run-path. It needed some extra affords of the tool suppliers together with the Fab to bring the tool variability down to the necessary level. Another important topic to reduce variability is the interaction of wafer none-planarity and lithography optimization. Having an accurate knowledge of within die topography is essential for optimum patterning. By completing both the variability reduction work and the process window enhancement work we were able to transfer the original marginal process budget to a robust positive budget and thus ensuring high yield and low costs.

  7. Femtosecond laser based enucleation of porcine oocytes for somatic cell nuclear transfer

    NASA Astrophysics Data System (ADS)

    Kütemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2009-07-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer (SCNT) in recent years. However, this method still results in very low efficiencies around 1% which originate from suboptimal culture conditions and highly invasive techniques for oocyte enucleation and injection of the donor cell using micromanipulators. In this paper, we present a new minimal invasive method for oocyte imaging and enucleation based on the application of femtosecond (fs) laser pulses. After imaging of the oocyte with multiphoton microscopy, ultrashort pulses are focused onto the metaphase plate of MII-oocytes in order to ablate the DNA molecules. We show that fs laser based enucleation of porcine oocytes completely inhibits the first mitotic cleavage after parthenogenetic activation while maintaining intact oocyte morphology in most cases. In contrast, control groups without previous irradiation of the metaphase plate are able to develop to the blastocyst stage. Further experiments have to clarify the suitability of fs laser based enucleated oocytes for SCNT.

  8. Comparison of laser-based and monochromator-based thermodynamic temperature measurements

    SciTech Connect

    Eppeldauer, G. P.; Yoon, H. W.; Gibson, C. E.; Smith, A. W.; Neira, J.; Khromchenko, V. B.

    2013-09-11

    In this work, we describe comparisons between a laser-based and a monochromator-based radiance responsivity calibration of a radiation thermometer. The spectral selection of the radiation thermometer is performed using a spectrally broad photopic-response filter which was selected to minimize effects of convolution differences due to the spectral width of the laser-and the monochromator-based sources. The photopic-response filter is physically thick, which should also reduce possible interference fringes which can be problematic in the laser-based calibrations. We compare the radiance responsivities obtained using the two approaches and also compare the blackbody temperatures determined using the detector/monochromator based and the gold-point based calibration methods.

  9. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier.

    PubMed

    Koyama, Mio; Hirose, Tetsuya; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2011-01-17

    Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier is analyzed. An output power of 25 W was obtained for 53 W of pumping, with a peak power of 37 kW. Frequency doubling of the vortex output was demonstrated using a nonlinear PPSLT crystal. A second-harmonic output power of up to 1.5 W was measured at a fundamental power of 11.2 W.

  10. Diode Laser-Based Detection of Combustor Instabilities with Application to a Scramjet Engine

    DTIC Science & Technology

    2010-02-01

    combustion instability has focused primarily on subsonic turbulent combustors [7]. NOx emission regulations on gas turbines have driven the use of...Optical Access Laser Beam Location ermocouple eholder) Static Pressure Taps (Open circles)holders Combustor w, direct-connect scramjet flowpath. 4.8 s...AFRL-RZ-WP-TP-2010-2055 DIODE LASER-BASED DETECTION OF COMBUSTOR INSTABILITIES WITH APPLICATION TO A SCRAMJET ENGINE (POSTPRINT) Campbell

  11. Investigation of Plant-Pathogen Interaction by Laser-Based Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Puiu, A.; Giubileo, G.; Lai, A.

    2014-12-01

    The laser-based photoacoustic spectroscopy apparatus, constructed at ENEA Frascati (Italy), was applied to monitor trace amounts of ethylene emitted by plants in a stress condition. More specifically, in the present work, the biotic stress response of tomato mutant plants after inoculation with Phthorimaea operculella larvae ( Lepidoptera: Gelechiidae) was investigated. The principle of the method, the photoacoustic setup, the experimental work, and the results are being reported.

  12. A comparison of NH{sub 3} point monitoring and diode laser based path integrated measurements

    SciTech Connect

    Goldstein, N.; Richtsmeier, S.C.; Lee, J.; Bien, F.; Fetzer, G.J.; Groff, K.W.

    1994-12-31

    Measurements made using two different types of ammonia monitors during a two-month field study in the summer of 1994 are discussed. The first was a diode-laser based open path monitor designed for automated operation in an industrial environment. The second is a monitoring analyzer based on thermal decomposition of ammonia to NO and subsequent analysis by O{sub 3}-NO chemiluminescence. The two monitors provided consistent measurements of ammonia concentration during weeks of continuous unattended operation.

  13. Tomographic Imaging of Glass/Epoxy Composite with a Laser Based Ultrasonics Setup

    SciTech Connect

    Khanna, N.; Raghuram, V.; Munshi, P.; Kishore, N. N.; Arnold, W.

    2008-09-26

    The present work is an attempt to augment the classical laser-based-ultrasonics setup for tomographic imaging purposes. A Glass/epoxy composite with steel insert is the test specimen and time-of-flight data has been used for tomographic reconstruction. Multiplicative algebraic reconstruction technique is used for this limited-view experiment. The resulting image is able to bring out the strong metal features.

  14. Status of Real-Time Laser Based Ion Engine Diagnostics at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Williams, George J., Jr.

    2001-01-01

    The development status of laser based erosion diagnostics for ion engines at the NASA Glenn Research Center is discussed. The diagnostics are being developed to enhance component life-prediction capabilities. A direct measurement of the erosion product density using laser induced fluorescence (LIF) is described. Erosion diagnostics based upon evaluation of the ion dynamics are also under development, and the basic approach is presented. The planned implementation of the diagnostics is discussed.

  15. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    SciTech Connect

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera.

  16. CD-SEM measurement line-edge roughness test patterns for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin D.; Bishop, Michael; Villarrubia, John S.; Vladar, Andras E.

    2003-05-01

    The measurement of line-edge roughness (LER) has recently become a major topic of concern in the litho-metrology community and the semiconductor industry as a whole, as addressed in the 2001 ITRS roadmap. The Advanced Metrology Advisory Group (AMAG, a council composed of the chief CD-metrologists from the International SEMATECH consortium's Member Companies and from the National Institute of Standards and Technology, NIST) has begun a project to investigate this issue and to direct the CD-SEM supplier community towards a semiconductor industry-backed solution for implementation. The AMAG group has designed and built a 193 nm reticle that includes structures implementing a number of schemes to intentionally cause line edge roughness of various spatial frequencies and amplitudes. The lithography of these structures is in itself of interest to the litho-metrology community and will be discussed here. Measurements on different CD-SEMs of major suppliers will be used to comparatively demonstrate the current state of LER measurement. These measurements are compared to roughness determined off-line by analysis of top-down images from these tools. While no official standard measurement algorithm or definition of LER measurement exists, definitions used in this work are presented and compared in use. Repeatability of the measurements and factors affecting their accuracy will be explored, as well as how CD-SEM parameters can effect the measurements.

  17. Laser-scan lithography onto ultra-fine pipes 100 μm in diameter

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Sagara, Tomoya; Horiuchi, Toshiyuki

    2016-05-01

    It is required to develop a simple but effective method for fabricating micro components with cylindrical shapes such as spring parts used for contact-probe springs of electrical testing systems. Here, laser-scan lithography was researched for printing fine resist patterns used for etching masks on ultra-fine stainless-steel pipes with a diameter of 100 μm. At first, a pipe was coated with 3-μm thick positive resist. Second, the resist is exposed to laser light. As the laser light source, a violet laser with a wavelength of 408 nm was used. The laser beam was reshaped in a circle, and irradiated on the pipe by reducing it in 1/20 using a reduction projection optics composed of a 10X objective lens and a 2X imaging lens. The pipe was supported by the chuck of rotation stage, and exposured by moving it up and down and rotating it. The pipe position was adjusted as the laser spot came on the pipe center using the XY stage. Linearly arrayed 22 slit patterns with a length of 180 μm and a separation of 70μm were printed at each 90° rotation angle. That is, 88 slits in total were delineated at an exposure speed of 110 μm/s.

  18. Step and flash imprint lithography: a new approach to high-resolution patterning

    NASA Astrophysics Data System (ADS)

    Colburn, Matthew; Johnson, Stephen C.; Stewart, Michael D.; Damle, S.; Bailey, Todd C.; Choi, Bernard; Wedlake, M.; Michaelson, Timothy B.; Sreenivasan, S. V.; Ekerdt, John G.; Willson, C. Grant

    1999-06-01

    An alternative approach to lithography is being developed based on a dual-layer imprint scheme. This process has the potential to become a high-throughput means of producing high aspect ratio, high-resolution patterns without projection optics. In this process, a template is created on a standard mask blank by using the patterned chromium as an etch mask to produce high-resolution relief images in the quartz. The etched template and a substrate that has been coated with an organic planarization layer are brought into close proximity. A low-viscosity, photopolymerizable formulation containing organosilicon precursors is introduced into the gap between the two surfaces. The template is then brought into contact with the substrate. The solution that is trapped in the relief structures of the template is photopolymerized by exposure through the backside of the quartz template. The template is separated from the substrate, leaving a UV-curved replica of the relief structure on the planarization layer. Features smaller than 60 nm in size have been reliably produced using this imprinting process. The resolution silicon polymer images are transferred through the planarization layer by anisotropic oxygen reactive ion etching. This paper provides a progress report on our efforts to evaluate the potential of this process.

  19. Multilayer coated optics for an alpha-class extreme ultraviolet lithography system

    SciTech Connect

    Folta, J A; Grabner, R F; Hudyma, R M; Montcalm, C; Schmidt, M A; Spiller, E; Walton, C C; Wedowski, M

    1999-08-25

    We present the results of coating the first set of optical elements for an alpha-class extreme-ultraviolet (EUV) lithography system, the Engineering Test Stand (ETS). The optics were coated with Mo/Si multilayer mirrors using an upgraded DC-magnetron sputtering system. Characterization of the near-normal incidence EUV reflectance was performed using synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory. Stringent requirements were met for these multilayer coatings in terms of reflectance, wavelength matching among the different optics, and thickness control across the diameter of each individual optic. Reflectances above 65% were achieved at 13.35 nm at near-normal angles of incidence. The run-to-run reproducibility of the reflectance peak wavelength was maintained to within 0.4%, providing the required wavelength matching among the seven multilayer-coated optics. The thickness uniformity (or gradient) was controlled to within {+-}0.25% peak-to-valley (P-V) for the condenser optics and {+-}0.1% P-V for the four projection optics, exceeding the prescribed specification for the optics of the ETS.

  20. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  1. In vivo X-ray elemental imaging of single cell model organisms manipulated by laser-based optical tweezers

    PubMed Central

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; De Rijcke, Maarten; Bauters, Stephen; Deruytter, David; Vandegehuchte, Michiel; Van Nieuwenhove, Ine; Janssen, Colin; Burghammer, Manfred; Vincze, Laszlo

    2015-01-01

    We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in vivo elemental imaging in a two-dimensional (2D) projection mode in free-standing biological microorganisms or single cells, present in their aqueous environment. Using the model organism Scrippsiella trochoidea, a first proof of principle experiment at beamline ID13 of the European Synchrotron Radiation Facility (ESRF) demonstrates the feasibility of the OT XRF methodology, which is applied to study mixture toxicity of Cu-Ni and Cu-Zn as a result of elevated exposure. We expect that the new OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability. PMID:25762511

  2. Run time scanner data analysis for HVM lithography process monitoring and stability control

    NASA Astrophysics Data System (ADS)

    Chung, Woong Jae; Kim, Young Ki; Tristan, John; Kim, Jeong Soo; Subramany, Lokesh; Li, Chen; Riggs, Brent; Ramanathan, Vidya; Karur-Shanmugam, Ram; Hoo, George; Gao, Jie; Golotsvan, Anna; Huang, Kevin; Pierson, Bill; Robinson, John

    2014-04-01

    There are various data mining and analysis tools in use by high-volume semiconductor manufacturers throughout the industry that seek to provide robust monitoring and analysis capabilities for the purpose of maintaining a stable lithography process. These tools exist in both online and offline formats and draw upon data from various sources for monitoring and analysis. This paper explores several possible use cases of run-time scanner data to provide advanced overlay and imaging analysis for scanner lithography signatures. Here we demonstrate several use-cases for analyzing and stabilizing lithography processes. Applications include high order wafer alignment simulations in which an optimal alignment strategy is determined by dynamic wafer selection, reporting statistics data and analysis of the lot report and the sub-recipe as a sort of non-standard lot report, visualization of key lithography process parameters, and scanner fleet management (SFM)

  3. Advances in roll-to-roll imprint lithography for display applications

    NASA Astrophysics Data System (ADS)

    Jeans, Albert; Almanza-Workman, Marcia; Cobene, Robert; Elder, Richard; Garcia, Robert; Gomez-Pancorbo, Fernando; Jackson, Warren; Jam, Mehrban; Kim, Han-Jun; Kwon, Ohseung; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Taussig, Carl; Jeffrey, Frank; Braymen, Steve; Hauschildt, Jason; Junge, Kelly; Larson, Don; Stieler, Dan

    2010-03-01

    A solution to the problems of roll-to-roll lithography on flexible substrates is presented. We have developed a roll-toroll imprint lithography technique to fabricate active matrix transistor backplanes on flexible webs of polyimide that have a blanket material stack of metals, dielectrics, and semiconductors. Imprint lithography produces a multi-level 3- dimensional mask that is then successively etched to pattern the underlying layers into the desired structures. This process, Self-Aligned Imprint Lithography (SAIL), solves the layer-to-layer alignment problem because all masking levels are created with one imprint step. The processes and equipment required for complete roll-to-roll SAIL fabrication will be described. Emphasis will be placed on the advances in the roll-to-roll imprint process which have enabled us to produce working transistor arrays.

  4. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-07-01

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified.

  5. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  6. Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold.

    PubMed

    Kim, Bong Hoon; Lee, Duck Hyun; Kim, Ju Young; Shin, Dong Ok; Jeong, Hu Young; Hong, Seonki; Yun, Je Moon; Koo, Chong Min; Lee, Haeshin; Kim, Sang Ouk

    2011-12-15

    Mussel-inspired interfacial engineering is synergistically integrated with block copolymer (BCP) lithography for the surface nanopatterning of low surface energy substrate materials, including, Teflon, graphene, and gold. The image shows the Teflon nanowires and their excellent superhydrophobicity.

  7. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  8. Overcome the process limitation by using inverse lithography technology with assist feature

    NASA Astrophysics Data System (ADS)

    Shim, Yeon-Ah; Jun, Sungho; Choi, Jaeyoung; Choi, Kwangseon; Han, Jae-won; Wang, Kechang; McCarthy, John; Xiao, Guangming; Dai, Grace; Son, DongHwan; Zhou, Xin; Cecil, Tom; Kim, David; Baik, Ki-Ho

    2011-04-01

    Patterning of contact hole using KrF lithography system for the sub 90nm technology node is one of the most challenging tasks. Contact hole pattern can be printed using Off-Axis Illumination(OAI) such as dipole or Quasar or Quadrupole at KrF lithography system. However this condition usually offer poor image contrast and poor Depth Of Focus(DOF), especially isolated contact hole. Sub-resolution assist features (SRAF) have been shown to provide significant process window enhancement and across chip CD variation reduction. The insertion of SRAF in a contact design is mostly done using rule based scripting. However the rule based SRAF strategy that has been followed historically is not always able to increase the process window of these 'forbidden pitches' sufficiently to allow sustainable manufacturing. Especially in case of random contact hole, rule-based SRAF placement is almost impossible task. We have used an inverse lithography technique to treat random contact hole. In this paper we proved the impact of SRAF configuration. Inverse lithography technique was successfully used to treat random contact holes. It is also shown that the experimental data are easily predicted by calibrating aerial image simulation results. Finally, a methodology for optimizing SRAF rules using inverse lithography technology is described. As a conclusion, we suggest methodology to set up optimum SRAF configuration with rule and inverse lithography technology.

  9. Analysis of multi-e-beam lithography for cutting layers at 7-nm node

    NASA Astrophysics Data System (ADS)

    Zhao, Lijun; Wei, Yayi; Ye, Tianchun

    2016-10-01

    Technology node scaling to the 7-nm node, self-aligned quadruple patterning plus cutting/blocking is widely adopted as a lithography solution for critical line and space layers. The cutting/blocking process can be done by 193i or EUV lithography. Due to resolution requirements in both X/Y directions, 193i requires two or three exposures to accomplish the cutting/blocking process, and the overlay among the exposures must be controlled very tightly. EUV can accomplish cutting/blocking by one exposure. However, the extremely high cost of EUV tool and mask, together with not so high throughput, appears to suggest that EUV lithography is not a cost-effective solution. From both technical and cost perspectives, we explore the possibility of using multi-e-beam lithography as an alternative solution for 7-nm cutting/blocking layers. First, we analyze design rules, which define resolution and overlay requirements of the cutting/blocking patterns. Then we report the lithography performance data of our leading-edge multi-e-beam tool and compare them with the cutting/blocking requirements. Finally, we do the cost analysis. Our results indicate that multi-e-beam lithography has a cost per wafer per layer advantage if it can commit a resolution of 32-nm half pitch, an overlay of <2.8 nm, and a throughput of 5 to 10 wph.

  10. Nanofabrication at 1nm resolution by quantum optical lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pavel, Eugen

    2015-08-01

    A major problem in the optical lithography was the diffraction limit. Here, we report and demonstrate a lithography method, Quantum Optical Lithography [1,2], able to attain 1 nm resolution by optical means using new materials (fluorescent photosensitive glass-ceramics and QMC-5 resist). The performance is several times better than that described for any optical or Electron Beam Lithography (EBL) methods. In Fig. 1 we present TEM images of 1 nm lines recorded at 9.6 m/s. a) b) Fig. 1 TEM images of: a) multiple 1 nm lines written in a fluorescent photosensitive glass-ceramics sample; b) single 1 nm line written in QMC-5 resist. References [1] E. Pavel, S. Jinga, B.S. Vasile, A. Dinescu, V. Marinescu, R. Trusca and N. Tosa, "Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer", Optics and Laser Technology, 60 (2014) 80-84. [2] E. Pavel, S. Jinga, E. Andronescu, B.S. Vasile, G. Kada, A. Sasahara, N. Tosa, A. Matei, M. Dinescu, A. Dinescu and O.R. Vasile, "2 nm Quantum Optical Lithography", Optics Communications,291 (2013) 259-263

  11. High resolution patterning for flexible electronics via roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Sabik, Sami; de Riet, Joris; Yakimets, Iryna; Smits, Edsger

    2014-03-01

    Flexible electronics is a growing field and is currently maturing in applications such as displays, smart packaging, organic light-emitting diodes and organic photovoltaic cells. In order to process on flexible substrates at high throughput and large areas, novel patterning techniques will be essential. Conventional optical lithography is limited in throughput as well as resolution, and requires several alignment steps to generate multi-layered patterns, required for applications such as thin-film transistors. It therefore remains a complex and expensive process. Nanoimprint lithography is an emerging alternative to optical lithography, demonstrating patterning capabilities over a wide range of resolutions, from several microns down to a few nanometres. For display applications, nanoimprint lithography can be used to pattern various layers. Micron sized thin-film transistors for backplane can be fabricated where a self-aligned geometry is used to decrease the number of alignment steps, and increase the overlay accuracy. In addition, nano-structures can be used for optical applications such as anti-reflective surfaces and nano patterned transparent electrodes. Imprint lithography is a fully roll-to-roll compatible process and enables large area and high throughput fabrication for flexible electronics. In this paper we discuss the possibilities and the challenges of large area patterning by roll-to-roll nanoimprint lithography, reviewing micron and nano sized structures realized on our roll-to-roll equipment. Nano patterned transparent electrodes, moth-eye antireflective coatings, and multilevel structures will be covered.

  12. A simple and residual-layer-free solute-solvent separation soft lithography method

    NASA Astrophysics Data System (ADS)

    Dai, Xianglu; Xie, Huimin

    2015-09-01

    A solute-solvent separation soft lithography (3S soft lithography) is reported in this paper, which aims at offering a residual-layer-free micromachining technique that can be realized in an ordinary laboratory conveniently. In 3S soft lithography, a polydimethylsiloxane (PDMS) block containing micro-structure relief serves as the stamp, and the resist (as the solute) is dissolved in a solvent to form a solution before being molded by the stamp. During the molding process, the stamp absorbs the solvent and filters the resist; as a result, the resist can solidify on the substrate and replicate the pattern on the stamp. To improve the global geometric uniformity of the duplicated pattern, a hybrid PDMS stamp whose effectiveness is verified by the finite element analysis is used. Moreover, the liquid bridge phenomenon is creatively applied to remove the bubble defects caused during the molding process. The pattern transfer fidelity of 3S soft lithography is analyzed, and some suggestions are summarized for performing a high quality 3S soft lithography based on the experimental results. Verified by our experiment, the micro-structure fabricated by 3S soft lithography can serve as a mask for the following etching, and a lattice with minimum line width of 200 nm has been successfully fabricated on the silicon wafer in our study.

  13. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  14. The Dawn of Nuclear Photonics with Laser-based Gamma-rays

    SciTech Connect

    Barty, C J

    2011-03-17

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects

  15. Deep x-ray lithography with the SU-8 resist

    NASA Astrophysics Data System (ADS)

    Singleton, Laurence; Bogdanov, Alexei L.; Peredkov, Serguei; Wilhelmi, Oliver; Schneider, Andreas; Cremers, Carsten; Megtert, Stephan; Schmidt, Andreas

    2001-08-01

    Although the process of deep x-ray lithography with PMMA achieves good resolution, it requires significant exposure times because of the low sensitivity of PMMA to x-rays. Therefore resist materials, which can achieve high resolution, but which are inherently more sensitive than PMMA, are desirable. Here it is shown, that x-ray exposures of the SU-8 resist can achieve high resolution with substantially reduced exposure times. Irradiation at the synchrotron source of DCI at Lure (Paris) and MAXLAB (Lund, Sweden) demonstrated a reduced exposure time for a 600 micrometers thick SU-8 relative to PMMA. The does needed to obtain standing structures was 30 J/Cm3 for DCI and 52 J/CM3 for MAXLAB. A 600 micrometers thick PMMA resist requires a typical bottom does of 4 kJ/cm3, so Su-8 is considerably more sensitive to x-rays than PMMA. Preliminary critical dimension measurements (CD) of the 600 micrometers SU-8 resist structures have been obtained for the entire height of the structure, which was exposed at DCI. The CD measurements were made in a Scanning Electron Microscope (SEM) using 10 micrometers wide structures, which have a 20micrometers pitch, this being used to calibrate the measurements. These measurements show that the gain in the critical dimension per structure edge is dependent on the bottom dose. Doses of 30 J/cm3 achieved a CD gain per edge of +0.5 micrometers , while doses of 40 J/cm3 Yielded a CD gain per edge of 0.9 micrometers . However, the gain in the CD per edge is critically dependent on the solvent content in the resist. Doses of 40 J/cm3 into a resist with a 2% residual solvent content yielded CD gains per edge of 0.3micrometers . In addition, the dose profile in the resist does not change the CD values significantly. It has been shown that the resolution of the x-ray exposed SU-8 structures compare quite favorable with PMMA, but the exposure time for SU-8 is approximately 100 times less than that for PMMA. This significantly improves throughput for

  16. Mask characterization for CDU budget breakdown in advanced EUV lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2012-11-01

    As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget

  17. Evaluation of EUV resist performance using interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, E.; Yildirim, O.; Verspaget, C.; Tsugama, N.; Hoefnagels, R.; Rispens, G.; Ekinci, Y.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) stands as the most promising solution for the fabrication of future technology nodes in the semiconductor industry. Nonetheless, the successful introduction of EUVL into the extremely competitive and stringent high-volume manufacturing (HVM) phase remains uncertain partly because of the still limiting performance of EUV resists below 16 nm half-pitch (HP) resolution. Particularly, there exists a trade-off relationship between resolution (half-pitch), sensitivity (dose) and line-edge roughness (LER) that can be achieved with existing materials. This trade-off ultimately hampers their performance and extendibility towards future technology nodes. Here we present a comparative study of highly promising chemically amplified resists (CARs) that have been evaluated using the EUV interference lithography (EUV-IL) tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). In this study we have focused on the performance qualification of different resists mainly for 18 nm and 16 nm half-pitch line/space resolution (L/S = 1:1). Among the most promising candidates tested, there are a few choices that allow for 16 nm HP resolution to be achieved with high exposure latitude (up to ~ 33%), low LER (down to 3.3 nm or ~ 20% of critical dimension CD) and low dose-to-size (or best-energy, BE) < 41 mJ/cm2 values. Patterning was even demonstrated down to 12 nm HP with one of CARs (R1UL1) evaluated for their extendibility beyond the 16 nm HP resolution. 11 nm HP patterning with some pattern collapse and well resolved patterns down 12 nm were also demonstrated with another CAR (R15UL1) formulated for 16 nm HP resolution and below. With such resist it was possible even to obtain a small process window for 14 nm HP processing with an EL ~ 8% (BE ~ 37 mJ/cm2, LER ~ 4.5 nm). Though encouraging, fulfilling all of the requirements necessary for high volume production, such as high resolution, low LER, high photon

  18. Progress in coherent lithography using table-top extreme ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution

  19. Epitaxial patterning of thin-films: conventional lithographies and beyond

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Krishnan, Kannan M.

    2014-09-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices.

  20. Reactive polymers: a route to nanoimprint lithography at low temperatures

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karl; Reuther, Freimut; Carlberg, Patrick; Fink, Marion; Gruetzner, Gabi; Montelius, Lars

    2003-06-01

    To utilize the potential of nanoimprint lithography (NIL) you need polymers, which give relief patterns with good thermal and etch resistance, a necessity for subsequent process steps. Thermoplastic polymers with high thermal stability require high imprint temperatures. Such temperatures can cause polymer degradation and problems with pattern transfer due to the different coefficients of thermal expansion of substrate, polymer and stamp. The characteristics and benefits of two types of cross-linking prepolymers with low glass transition temperature (Tg) for nanoimprinting are described. They are soluble in organic solvents and their solutions can be processed like those of poly (methyl methacrylate) (PMMA). The imprinted patterns receive high thermal and mechanical stability through cross-linking polymerization and exhibit high plasma etch resistance. The course of the polymerization was investigated to determine the appropriate conditions for the imprint process. In thermally cross-linking allyl polymers, the cross-linking occurs during imprinting. Process time and temperature depend on the polymerization rate. Volume shrinkage during the polymerization does not adversely affect imprinting. Photochemically cross-linking epoxy-based polymers permit imprint temperatures below 100°C and short imprint times. Tg of the prepolymer determines the imprint temperature. The cross-linking reaction and structural stabilization is performed after imprinting. SEM images demonstrate the realization of the cross-linking polymer approach. Isolated lines down to 50 nm width confirm the successful application of the polymers.

  1. Fabrication of magnetic trilayer stripes using interference lithography

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; MacArthur, James; McMichael, Robert

    2009-03-01

    Both theoretical (PRB, 74, 024424, 2006) and experimental (APL, 90, 232504, 2007) studies of a single layer magnetic film edge have shown that the edge-mode of magnetization precession detected by ferromagnetic resonance (FMR) is an effective tool to probe magnetic properties of thin film edges. To extend the measurement technique to realistic devices such as spin-valves or tunnel junctions, magnetic multilayer stripes have to be fabricated. Here, we present the fabrication of Py/Cu/Co magnetic trilayer stripes by interference lithography. A resist stack consisting of positive photoresist 1805 and WIDE-B anti-reflective coating (ARC) is exposed by a blue laser at 405nm using Lloyd's mirror interferometer. Optimal soft-baking temperature of ARC results in an undercut during the development of the photoresist. This undercut facilitates the lift-off process after the evaporation of Py/Cu/Co trilayer. A uniform array of trilayer stripes with a period of ˜620nm was obtained. This work has been supported in part by the NIST-CNST/UMD-NanoCenter Cooperative Agreement and NIST CNST-NSF REU #DMR-0754115.

  2. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography

    PubMed Central

    Pang, Yu; Shu, Yi; Shavezipur, Mohammad; Wang, Xuefeng; Mohammad, Mohammad Ali; Yang, Yi; Zhao, Haiming; Deng, Ningqin; Maboudian, Roya; Ren, Tian-Ling

    2016-01-01

    Microstructures with flexible and stretchable properties display tremendous potential applications including integrated systems, wearable devices and bio-sensor electronics. Hence, it is essential to develop an effective method for fabricating curvilinear and flexural microstructures. Despite significant advances in 2D stretchable inorganic structures, large scale fabrication of unique 3D microstructures at a low cost remains challenging. Here, we demonstrate that the 3D microstructures can be achieved by grayscale lithography to produce a curved photoresist (PR) template, where the PR acts as sacrificial layer to form wavelike arched structures. Using plasma-enhanced chemical vapor deposition (PECVD) process at low temperature, the curved PR topography can be transferred to the silicon dioxide layer. Subsequently, plasma etching can be used to fabricate the arched stripe arrays. The wavelike silicon dioxide arch microstructure exhibits Young modulus and fracture strength of 52 GPa and 300 MPa, respectively. The model of stress distribution inside the microstructure was also established, which compares well with the experimental results. This approach of fabricating a wavelike arch structure may become a promising route to produce a variety of stretchable sensors, actuators and circuits, thus providing unique opportunities for emerging classes of robust 3D integrated systems. PMID:27345766

  3. Print-to-Pattern Dry Film Photoresist Lithography

    PubMed Central

    Garland, Shaun P.; Murphy, Terrence M.

    2014-01-01

    Here we present facile microfabrication processes, referred to as Print-to-Pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The Print-to-Pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 μm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping. PMID:25125799

  4. Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography.

    PubMed

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Wu, Kedi; Limburg, Connor; Jiang, Peng; Ziegler, Kirk J

    2017-03-01

    A tunable nanosphere lithography (NSL) technique is combined with metal-assisted etching of silicon (Si) to fabricate ordered, high-aspect-ratio Si nanowires. Non-close-packed structures are directly prepared via shear-induced ordering of the nanospheres. The spacing between the nanospheres is independent of their diameters and tuned by changing the loading of nanospheres. Nanowires with spacings between 110 and 850 nm are easily achieved with diameters between 100 and 550 nm. By eliminating plasma or heat treatment of the nanospheres, the diameter of the nanowires fabricated is nearly identical to the nanosphere diameter in the suspension. The elimination of this step helps avoid common drawbacks of traditional NSL approaches, leading to the high-fidelity, large-scale fabrication of highly crystalline, nonporous Si nanowires in ordered hexagonal patterns. The ability to simultaneously control the diameter and spacing makes the NSL technique more versatile and expands the range of geometries that can be fabricated by top-down approaches.

  5. Stat-LRC: statistical rules check for variational lithography

    NASA Astrophysics Data System (ADS)

    Sreedhar, Aswin; Kundu, Sandip

    2010-03-01

    As interconnect densities increase with each technology generation, the lithographic processes required to print all features with acceptable irregularities have become more complex. Restricted design rules (RDR) and modelbased Design for Manufacturability (DFM) guidelines have been added to the existing Design Rule Check (DRC) software to prevent unprintable patterns to be drawn on the mask by predicting their imprint on the wafer. It is evident from analyses of predicted patterns that edge placement errors have a continuous distribution, hence a pass/fail cut-off is somewhat arbitrary. In this paper, we describe a methodology to perform Statistical Lithography Rules Check (Stat-LRC) involving design yield based on interconnect linewidth distribution for variation in lithographic input error sources. In this scheme, a list of error locations indicating polygons that have yield below a user specified threshold are listed. The overall design yield is recovered by trading-off slightly poorer EPE distributions for lines with short runs with excellent ones. The simulation/analysis environment is fully automated and yield recovery improvement has been demonstrated.

  6. Alternative stitching method for massively parallel e-beam lithography

    NASA Astrophysics Data System (ADS)

    Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume

    2015-07-01

    In this study, a stitching method other than soft edge (SE) and smart boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced exposure latitude without throughput cost, making use of the fact that the two beams that pass through the stitching region can deposit up to 2× the nominal dose. The method requires a complex proximity effect correction that takes a preset stitching dose profile into account. Although the principle of the presented stitching method can be multibeam (lithography) systems in general, in this study, the MAPPER FLX 1200 tool is specifically considered. For the latter tool at a metal clip at minimum half-pitch of 32 nm, the stitching method effectively mitigates beam-to-beam (B2B) position errors such that they do not induce an increase in critical dimension uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. A 5-nm direct overlay impact from the B2B position errors cannot be reduced by a stitching strategy.

  7. Patterned assembly of colloidal particles by confined dewetting lithography.

    PubMed

    Celio, Hugo; Barton, Emily; Stevenson, Keith J

    2006-12-19

    We report the assembly of colloidal particles into confined arrangements and patterns on various cleaned and chemically modified solid substrates using a method which we term "confined dewetting lithography" or CDL for short. The experimental setup for CDL is a simple deposition cell where an aqueous suspension of colloidal particles (e.g., polystyrene spheres) is placed between a floating deposition template (i.e., metal microgrid) and the solid substrate. The voids of the deposition template serve as an array of micrometer-sized reservoirs where several hydrodynamic processes are confined. These processes include water evaporation, meniscus formation, convective flow, rupturing, dewetting, and capillary-bridge formation. We discuss the optimal conditions where the CDL has a high efficiency to deposit intricate patterns of colloidal particles using polystyrene spheres (PS; 4.5, 2.0, 1.7, 0.11, 0.064 microm diameter) and square and hexagonal deposition templates as model systems. We find that the optimization conditions of the CDL method, when using submicrometer, sulfate-functionalized PS particles, are primarily dependent on minimizing attractive particle-substrate interactions. The CDL methodology described herein presents a relatively simple and rapid method to assemble virtually any geometric pattern, including more complex patterns assembled using PS particles with different diameters, from aqueous suspensions by choosing suitable conditions and materials.

  8. Print-to-pattern dry film photoresist lithography

    NASA Astrophysics Data System (ADS)

    Garland, Shaun P.; Murphy, Terrence M., Jr.; Pan, Tingrui

    2014-05-01

    Here we present facile microfabrication processes, referred to as print-to-pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The print-to-pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 µm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution, which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping.

  9. Customized illumination shapes for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Ling, Moh Lung; Chua, Gek Soon; Lin, Qunying; Tay, Cho Jui; Quan, Chenggen

    2008-03-01

    In this paper, a study on customized illumination shape configurations as resolution enhancement for 45nm technology node will be presented. Several new source shape configurations will be explored through simulation based on 193nm immersion lithography on 6% Attenuated Phase Shift Mask. Forbidden pitch effect is commonly encountered in the application of off axis illumination (OAI). The illumination settings are often optimized to allow maximum process window for a pitch. This is done by creating symmetrical distribution of diffraction order on the pupil plane. However, at other pitch, the distribution of diffraction order on the pupil plane results in severe degradation in image contrast and results in significant critical dimension (CD) fluctuation. The problematic pitch is often known as forbidden pitch. It has to be avoided in the design and thus limited the pitch range to be imaged for particular illumination. An approach to modify off axis illumination to minimize the effect of forbidden pitch is explored in this study. The new customized shape for one dimensional line and space pattern is modified from current off axis illumination. Simulation study is done to evaluate the performance some customized shapes. The extent of CD fluctuation and CD through pitch uniformity is analyzed to determine the performance enhancement of the new illumination shapes. From simulation result, the proposed modification have significantly improved the through pitch performance and minimized the effect of forbidden pitch.

  10. Interdigitated multicolored bioink micropatterns by multiplexed polymer pen lithography.

    PubMed

    Brinkmann, Falko; Hirtz, Michael; Greiner, Alexandra M; Weschenfelder, Markus; Waterkotte, Björn; Bastmeyer, Martin; Fuchs, Harald

    2013-10-11

    Multiplexing, i.e., the application and integration of more than one ink in an interdigitated microscale pattern, is still a challenge for microcontact printing (μCP) and similar techniques. On the other hand there is a strong demand for interdigitated patterns of more than one protein on subcellular to cellular length scales in the lower micrometer range in biological experiments. Here, a new integrative approach is presented for the fabrication of bioactive microarrays and complex multi-ink patterns by polymer pen lithography (PPL). By taking advantage of the strength of microcontact printing (μCP) combined with the spatial control and capability of precise repetition of PPL in an innovative way, a new inking and writing strategy is introduced for PPL that enables true multiplexing within each repetitive subpattern. Furthermore, a specific ink/substrate platform is demonstrated that can be used to immobilize functional proteins and other bioactive compounds over a biotin-streptavidin approach. This patterning strategy aims specifically at application by cell biologists and biochemists addressing a wide range of relevant pattern sizes, easy pattern generation and adjustment, the use of only biofriendly, nontoxic chemicals, and mild processing conditions during the patterning steps. The retained bioactivity of the fabricated cm(2) area filling multiprotein patterns is demonstrated by showing the interaction of fibroblasts and neurons with multiplexed structures of fibronectin and laminin or laminin and ephrin, respectively.

  11. Large-Area Semiconducting Graphene Nanomesh Tailored by Interferometric Lithography

    PubMed Central

    Kazemi, Alireza; He, Xiang; Alaie, Seyedhamidreza; Ghasemi, Javad; Dawson, Noel Mayur; Cavallo, Francesca; Habteyes, Terefe G.; Brueck, Steven R. J.; Krishna, Sanjay

    2015-01-01

    Graphene nanostructures are attracting a great deal of interest because of newly emerging properties originating from quantum confinement effects. We report on using interferometric lithography to fabricate uniform, chip-scale, semiconducting graphene nanomesh (GNM) with sub-10 nm neck widths (smallest edge-to-edge distance between two nanoholes). This approach is based on fast, low-cost, and high-yield lithographic technologies and demonstrates the feasibility of cost-effective development of large-scale semiconducting graphene sheets and devices. The GNM is estimated to have a room temperature energy bandgap of ~30 meV. Raman studies showed that the G band of the GNM experiences a blue shift and broadening compared to pristine graphene, a change which was attributed to quantum confinement and localization effects. A single-layer GNM field effect transistor exhibited promising drive current of ~3.9 μA/μm and ON/OFF current ratios of ~35 at room temperature. The ON/OFF current ratio of the GNM-device displayed distinct temperature dependence with about 24-fold enhancement at 77 K. PMID:26126936

  12. Electron beam inspection methods for imprint lithography at 32 nm

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Sreenivasan, S. V.; Resnick, Douglas J.

    2009-01-01

    Step and Flash Imprint Lithography redefines nanoimprinting. This novel technique involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned solid on the substrate. Compatibility with existing CMOS processes requires a mask infrastructure in which resolution, inspection and repair are all addressed. The purpose of this paper is to understand the limitations of inspection at half pitches of 32 nm and below. A 32 nm programmed defect mask was fabricated. Patterns included in the mask consisted of an SRAM Metal 1 cell, dense lines, and dense arrays of pillars. Programmed defect sizes started at 4 nm and increased to 48 nm in increments of 4 nm. Defects in both the mask and imprinted wafers were characterized scanning electron microscopy and the measured defect areas were calculated. These defects were then inspected using a KLA-T eS35 electron beam wafer inspection system. Defect sizes as small as 12 nm were detected, and detection limits were found to be a function of defect type.

  13. Optimization of BARC process for hyper-NA immersion lithography

    NASA Astrophysics Data System (ADS)

    Lee, Kilyoung; Lee, Junghyung; Lee, Sungkoo; Park, Dongheok; Bok, Cheolkyu; Moon, Seungchan

    2008-03-01

    The extension of current 193nm immersion lithography technology is depending on increasing the numerical aperture (NA). High-resolution imaging requires the decrease of photoresist thickness to compensate for smaller depth of focus (DOF) and prevent pattern collapse. Poor etch selectivity between photoresist and BARC reads to the use of thinner BARC with faster etch-rate. Also, controlling reflectance over a wider range of incident angles for hyper-NA above 1.0 gives more challenge for thin BARC. To reduce substrate reflectivity, various material strategies (dual-layer BARC such as organic/inorganic BARC or organic/organic BARC, Si-based ARC/spin-on carbon (SOC), and so on) have been introduced through many papers. Organic dual-layer BARC is capable of suppressing reflectivity through wide range of incident angles. But, the inevitable increase of its thickness is not a desirable direction due to the decreasing trend of photoresist thickness. When amorphous carbon (a-C) is used as a hardmask for sub-stack, the combination of organic/inorganic BARC (i.e. SiON) is currently well known process. Si-ARC/SOC may be the promising candidates of hardmask because Si component of Si-ARC affords a high etch selectivity to photoresist and its combination with SOC decreases reflectance. The optical constants of above organic materials can be tuned to control the substrate reflectivity for hyper-NA.

  14. Evaluation of fluorinated dissolution inhibitors for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Hamad, Alyssandrea H.; Houlihan, Francis M.; Seger, Larry; Chang, Chun; Ober, Christopher K.

    2003-06-01

    Fluorinated diesters were synthesized and evaluated as dissolution inhibitors (DIs) for 157 nm lithography. The results of dissolution rate measurements, exposure studies, and etching experiments on blends of fluorinated polymers containing these dissolution inhibitors are reported. It was shown that the DIs effectively slow the dissolution rate of the matrix polymer, poly(hexafluorohydroxyisopropyl styrene) (PHFHIPS). Etching studies show that they enhance the plasma etch resistance of poly(methyl methacrylate) using tetrafluoromethane plasma. Addition of the best performing dissolution inhibitor, cyclohexane-1,4-dicarboxylic acid bis-(1-cyclohexyl-2,2,2-trifluoro-1-methyl-ethyl) ester) (FCDE1) to candidate 157 nm photoresist polymers, Duvcor and poly(hexafluorohydroxyisopropyl styrene)-co-poly(t-butyl methacrylate) [pPHFHIPS-co-pt-BMA], improves the imaging behavior of these polymers. Our attempts to elucidate the mechanism of dissolution inhibition for this series of compounds will be discussed. Fourier Transform Infrared (FTIR) studies in conjunction with dissolution rate measurements performed on a series of DI analogues suggest a mechanism based on hydrogen bonding.

  15. Solid-state lasers for x-ray lithography

    SciTech Connect

    Manes, K.R.

    1989-12-01

    Background technical and cost information are compiled on four solid-state laser systems for x-ray lithography. If one takes a single work station on an IBM synchrotron beam-line as a standard, there is no near-term glass laser driven source to equal it. Our least cost near-term solid-state laser which can meet all the requirements is CVL pumped Ti:sapphire, but the high cost of CVL pumping makes its long-term salability questionable. The most attractive long-term option appears to be diode pumped Nd:YAG with Vortek arc-lamp pumped Nd:YAG as a low risk backup. Both of these solid-state options appear to significantly undercut synchrotron based x-ray sources in capital cost and probably also in operating costs as well as safety considerations. Once engineering development of solid-state x-ray lithographic laser systems is complete, one to a few kilowatt crystalline lasers should be producible for between $1 million and $2 million. 23 refs., 25 figs., 4 tabs.

  16. The effect of radial polarization in multiphoton lithography

    NASA Astrophysics Data System (ADS)

    Lin, Le; Zheng, Mei-Ling; Dong, Xian-Zi; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2015-10-01

    Considering the axially symmetric polarization and intensity distribution, radially polarized (RP) laser beam has comparatively higher axial component of electric field and smaller size of focal spot compared to linearly polarized (LP) laser. In this study, the effect of radial polarization on multiphoton fabrication has been studied, and polymer spots and lines are chosen as the study objects of 2D micro/nano structures of multiphoton lithography. These structures were fabricated with IP-L, a commercial negative photoresist, by RP fs-pulse laser beam which was tightly focused by an objective lens with high numerical aperture. Multiple experimental conditions, such as fabrication power, exposure time and scanning velocity, were verified in order to observe the structural variation of these polymer structures. On the basis of measurement from images of the scanning electron microscope, the transverse and longitudinal sizes of polymer spots and lines could be analyzed, and the relationship between the aspect ratio (AR) and the above experimental conditions could be acquired. The statistical results agree with our predictions that the RP laser beam can significantly reduce the AR, and the AR in RP laser fabrication has little correlation with conditions besides fabrication power, such as exposure time and scanning velocity.

  17. High index fluoride materials for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Nawata, T.; Inui, Y.; Masada, I.; Nishijima, E.; Satoh, H.; Fukuda, T.

    2006-03-01

    We tried to investigate various kinds of metal fluoride materials which have higher gravity than CaF II and cubic crystal system, and we found out barium lithium fluoride (BaLiF 3) and potassium yttrium fluoride (KY 3F 10) as candidates for the last lens material. We have developed unique Czochralski (CZ) machines and techniques for the growth of large calcium fluoride single crystals. And we applied these technologies to the growth of fluoride high index materials. We have succeeded to grow the large BaLiF 3 single crystal with 120mm in diameter and a KY 3F 10 single crystal, and measured their basic properties such as refractive index, VUV transmittance, birefringence, and so on. As a result of our basic research, we found out that BaLiF 3 single crystal is transparent at VUV region, and the refractive index at 193nm is 1.64, and KY 3F 10 single crystal has the index of 1.59 at the wavelength of 193nm which is slightly higher than fused silica. We expect that these fluoride high index materials are useful for the last lens material of the next generation immersion lithography.

  18. Maskless Plasmonic Lithography at 22 nm Resolution

    PubMed Central

    Pan, Liang; Park, Yongshik; Xiong, Yi; Ulin-Avila, Erick; Wang, Yuan; Zeng, Li; Xiong, Shaomin; Rho, Junsuk; Sun, Cheng; Bogy, David B.; Zhang, Xiang

    2011-01-01

    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing. PMID:22355690

  19. Aryl sulfonates as neutral photoacid generators (PAGs) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sulc, Robert; Blackwell, James M.; Younkin, Todd R.; Putna, E. Steve; Esswein, Katherine; DiPasquale, Antonio G.; Callahan, Ryan; Tsubaki, Hideaki; Tsuchihashi, Tooru

    2009-03-01

    EUV lithography (EUVL) is a leading candidate for printing sub-32 nm hp patterns. In order for EUVL to be commercially viable at these dimensions, a continuous evolution of the photoresist material set is required to simultaneously meet the aggressive specifications for resolution, resist sensitivity, LWR, and outgassing rate. Alternative PAG designs, especially if tailored for EUVL, may aid in the formation of a material set that helps achieve these aggressive targets. We describe the preparation, characterization, and lithographic evaluation of aryl sulfonates as non-ionic or neutral photoacid generators (PAGs) for EUVL. Full lithographic characterization is reported for our first generation resist formulation using compound H, MAP-1H-2.5. It is benchmarked against MAP-1P-5.0, which contains the well-known sulfonium PAG, triphenylsulfonium triflate (compound P). Z-factor analysis indicates nZ32 = 81.4 and 16.8 respectively, indicating that our first generation aryl sulfonate formulations require about 4.8x improvement to match the results achieved with a model onium PAG. Improving the acid generation efficiency and use of the generated byproducts is key to the continued optimization of this class of PAGs. To that end, we believe EI-MS fragmentation patterns and molecular simulations can be used to understand and optimize the nature and efficiency of electron-induced PAG fragmentation.

  20. Signal response metrology (SRM): a new approach for lithography metrology

    NASA Astrophysics Data System (ADS)

    Pandev, Stilian; Fang, Fang; Kim, Young Ki; Tsai, Jamie; Vaid, Alok; Subramany, Lokesh; Sanko, Dimitry; Ramanathan, Vidya; Zhou, Ren; Venkataraman, Kartik; Haupt, Ronny

    2015-03-01

    CD uniformity requirements at 20nm and more advanced nodes have challenged the precision limits of CD-SEM metrology, conventionally used for scanner qualification and in-line focus/dose monitoring on product wafers. Optical CD metrology has consequently gained adoption for these applications because of its superior precision, but has been limited adopted, due to challenges with long time-to-results and robustness to process variation. Both of these challenges are due to the limitations imposed by geometric modeling of the photoresist (PR) profile as required by conventional RCWA-based scatterometry. Signal Response Metrology (SRM) is a new technique that obviates the need for geometric modeling by directly correlating focus, dose, and CD to the spectral response of a scatterometry tool. Consequently, it suggests superior accuracy and robustness to process variation for focus/dose monitoring, as well as reducing the time to set up a new measurement recipe from days to hours. This work describes the fundamental concepts of SRM and the results of its application to lithography metrology and control. These results include time to results and measurement performance data on Focus, Dose and CD measurements performed on real devices and on design rule metrology targets.

  1. Replica mold for nanoimprint lithography from a novel hybrid resin.

    PubMed

    Lee, Bong Kuk; Hong, Lan-Young; Lee, Hea Yeon; Kim, Dong-Pyo; Kawai, Tomoji

    2009-10-06

    The use of durable replica molds with high feature resolution has been proposed as an inexpensive and convenient route for manufacturing nanostructured materials. A simple and fast duplication method, involving the use of a master mold to create durable polymer replicas as imprinting molds, has been demonstrated using both UV- and thermal nanoimprinting lithography (NIL). To obtain a high-durability replicating material, a dual UV/thermal-curable, organic-inorganic hybrid resin was synthesized using a sol-gel-based combinatorial method. The cross-linked hybrid resin exhibited high transparency to UV light and resistance to organic solvents. Molds made of this material showed good mechanical properties (Young's modulus=1.76 GPa) and gas permeability. The low viscosity of the hybrid resin (approximately 29 cP) allowed it to be easily transferred to relief nanostructures on transparent glass substrates using UV-NIL at room temperature and low pressure (0.2 MPa) over a relatively short time (80 s). A low surface energy release agent was successfully coated onto the hybrid mold surface without destroying the imprinted nanostructures, even after O2 plasma treatment. Nanostructures with feature sizes down to 80 nm were successfully reproduced using these molds in both UV- and thermal-NIL processes. After repeating 10 imprinting cycles at relatively high temperature and pressure, no detectable collapse or contamination of the replica surface was observed. These results indicate that the hybrid molds could tolerate repeated UV- and thermal-NIL processes.

  2. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography

    NASA Astrophysics Data System (ADS)

    Pang, Yu; Shu, Yi; Shavezipur, Mohammad; Wang, Xuefeng; Mohammad, Mohammad Ali; Yang, Yi; Zhao, Haiming; Deng, Ningqin; Maboudian, Roya; Ren, Tian-Ling

    2016-06-01

    Microstructures with flexible and stretchable properties display tremendous potential applications including integrated systems, wearable devices and bio-sensor electronics. Hence, it is essential to develop an effective method for fabricating curvilinear and flexural microstructures. Despite significant advances in 2D stretchable inorganic structures, large scale fabrication of unique 3D microstructures at a low cost remains challenging. Here, we demonstrate that the 3D microstructures can be achieved by grayscale lithography to produce a curved photoresist (PR) template, where the PR acts as sacrificial layer to form wavelike arched structures. Using plasma-enhanced chemical vapor deposition (PECVD) process at low temperature, the curved PR topography can be transferred to the silicon dioxide layer. Subsequently, plasma etching can be used to fabricate the arched stripe arrays. The wavelike silicon dioxide arch microstructure exhibits Young modulus and fracture strength of 52 GPa and 300 MPa, respectively. The model of stress distribution inside the microstructure was also established, which compares well with the experimental results. This approach of fabricating a wavelike arch structure may become a promising route to produce a variety of stretchable sensors, actuators and circuits, thus providing unique opportunities for emerging classes of robust 3D integrated systems.

  3. Revisiting the layout decomposition problem for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Park, Chul-Hong; Xu, Xu; Yao, Hailong

    2008-10-01

    In double patterning lithography (DPL) layout decomposition for 45nm and below process nodes, two features must be assigned opposite colors (corresponding to different exposures) if their spacing is less than the minimum coloring spacing.5, 11, 14 However, there exist pattern configurations for which pattern features separated by less than the minimum coloring spacing cannot be assigned different colors. In such cases, DPL requires that a layout feature be split into two parts. We address this problem using a layout decomposition algorithm that incorporates integer linear programming (ILP), phase conflict detection (PCD), and node-deletion bipartization (NDB) methods. We evaluate our approach on both real-world and artificially generated testcases in 45nm technology. Experimental results show that our proposed layout decomposition method effectively decomposes given layouts to satisfy the key goals of minimized line-ends and maximized overlap margin. There are no design rule violations in the final decomposed layout. While we have previously reported other facets of our research on DPL pattern decomposition,6 the present paper differs from that work in the following key respects: (1) instead of detecting conflict cycles and splitting nodes in conflict cycles to achieve graph bipartization,6 we split all nodes of the conflict graph at all feasible dividing points and then formulate a problem of bipartization by ILP, PCD8 and NDB9 methods; and (2) instead of reporting unresolvable conflict cycles, we report the number of deleted conflict edges to more accurately capture the needed design changes in the experimental results.

  4. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography

    PubMed Central

    2016-01-01

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays. PMID:26905779

  5. Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography

    PubMed Central

    2011-01-01

    In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys. PMID:27502648

  6. Novel metal containing resists for EUV lithography extendibility

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Sayan, Safak; Dei, Satoshi; Pollentier, Ivan; Kuwahara, Yuhei; Vandenberghe, Geert; Nafus, Kathleen; Shiratani, Motohiro; Nakagawa, Hisashi; Naruoka, Takehiko

    2016-03-01

    Strong interest has recently developed among the researchers in the use of metals in extreme ultraviolet (EUV) lithography photoresists [1, 2] aiming to simultaneously achieve the resolution, line-width roughness and sensitivity (RLS) requirements for 10nm technology node and below and have the highest productivity with low exposure dose requirements (below 20mJ/cm2). In this paper two different metal containing resists (MCR) are discussed: the first one uses metal oxide nanoparticles (NP) bonded with ligands as an alternative non chemically amplified EUV photoresist; the second one introduces a metal species (the sensitizer) into a conventional chemically amplified EUV photoresist. In both cases, the metal is added to the resist system to increase the absorption of EUV photons as well as increase the generation of secondary electrons, thereby making more effective use of the dose. The initial work is focused on manufacturing compatibility, concerning metal cross-contamination, outgassing and hydrides formation risk. Next, lithographic performance is evaluated with respect to the RLS requirements by patterning on NXE:3300 full field scanner exposure tool, with particular emphasis on the material stability of different formulations.. Finally, imaging results at different processing conditions are also reported and discussed.

  7. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.

    PubMed

    Rickard, Jonathan James Stanley; Farrer, Ian; Oppenheimer, Pola Goldberg

    2016-03-22

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays.

  8. Thermo-curable epoxy systems for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Chang; Lien-Chung Hsu, Steve

    2010-01-01

    In this work, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL.

  9. Optimizing the lithography model calibration algorithms for NTD process

    NASA Astrophysics Data System (ADS)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2016-03-01

    As patterns shrink to the resolution limits of up-to-date ArF immersion lithography technology, negative tone development (NTD) process has been an increasingly adopted technique to get superior imaging quality through employing bright-field (BF) masks to print the critical dark-field (DF) metal and contact layers. However, from the fundamental materials and process interaction perspectives, several key differences inherently exist between NTD process and the traditional positive tone development (PTD) system, especially the horizontal/vertical resist shrinkage and developer depletion effects, hence the traditional resist parameters developed for the typical PTD process have no longer fit well in NTD process modeling. In order to cope with the inherent differences between PTD and NTD processes accordingly get improvement on NTD modeling accuracy, several NTD models with different combinations of complementary terms were built to account for the NTD-specific resist shrinkage, developer depletion and diffusion, and wafer CD jump induced by sub threshold assistance feature (SRAF) effects. Each new complementary NTD term has its definite aim to deal with the NTD-specific phenomena. In this study, the modeling accuracy is compared among different models for the specific patterning characteristics on various feature types. Multiple complementary NTD terms were finally proposed to address all the NTD-specific behaviors simultaneously and further optimize the NTD modeling accuracy. The new algorithm of multiple complementary NTD term tested on our critical dark-field layers demonstrates consistent model accuracy improvement for both calibration and verification.

  10. Electrical biomolecule detection using nanopatterned silicon via block copolymer lithography.

    PubMed

    Jeong, Chang Kyu; Jin, Hyeong Min; Ahn, Jae-Hyuk; Park, Tae Jung; Yoo, Hyeon Gyun; Koo, Min; Choi, Yang-Kyu; Kim, Sang Ouk; Lee, Keon Jae

    2014-01-29

    An electrical biosensor exploiting a nanostructured semiconductor is a promising technology for the highly sensitive, label-free detection of biomolecules via a straightforward electronic signal. The facile and scalable production of a nanopatterned electrical silicon biosensor by block copolymer (BCP) nano-lithography is reported. A cost-effective and large-area nanofabrication, based on BCP self-assembly and single-step dry etching, is developed for the hexagonal nanohole patterning of thin silicon films. The resultant nanopatterned electrical channel modified with biotin molecules successfully detects the two proteins, streptavidin and avidin, down to nanoscale molarities (≈1 nm). The nanoscale pattern comparable to the Debye screening length and the large surface area of the three-dimensional silicon nanochannel enable excellent sensitivity and stability. A device simulation confirms that the nanopatterned structure used in this work is effective for biomolecule detection. This approach relying on the scalable self-assembly principle offers a high-throughput manufacturing process for clinical lab-on-a-chip diagnoses and relevant biomolecular studies.

  11. Development of highly reliable synchrotron radiation lithography beamline

    SciTech Connect

    Okada, K.; Fujii, K.; Kawase, Y.; Nagano, M.

    1988-01-01

    The reliable beamline structure for synchrotron radiation lithography has been investigated using the Photon Factory storage ring (2.5 GeV). The recently built beamline aims at attaining system reliability and safety. This beamline, one of three branch lines split from a basic beamline, is a 10/sup -7/ Pa ultrahigh-vacuum system with an oscillating mirror. In addition to a 40 ms fast closing valve (FCV) and an acoustic delay line (ADL), installed in the basic beamline, a <15 ms FCV and 40 ms ADL were set up to protect the storage ring from accidental breakdown. The FCV and ADL were placed far upstream of the oscillating mirror, to cope with accidental gas leakage caused by the oscillating mechanism. A vacuum breakdown test demonstrated that the FCV and ADL are greatly effective in vacuum protection. In order to protect operators from x-ray exposure, two auxiliary shutters made of tantalum were placed upstream of the oscillating mirror. The oscillating mirror, driven through bellows by a combination of a direct current servomotor and a cam mechanism, enabled a highly reliable oscillation. A double-structured bellows was adopted to provide against gas leakage. In addition, a silicon carbide plane mirror (40 x 17 x 4 cm) was employed because of its high-heat-resistance capability.

  12. Development of maskless electron-beam lithography using nc-Si electron-emitter array

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Ikegami, N.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Cakir, S.; Ohyi, H.; Koshida, N.; Esashi, M.

    2013-03-01

    This study demonstrated our prototyped Micro Electro Mechanical System (MEMS) electron emitter which is a nc-Si (nanocrystalline silicon) ballistic electron emitter array integrated with an active-matrix driving LSI for high-speed Massively Parallel Electron Beam Direct Writing (MPEBDW) system. The MPEBDW system consists of the multi-column, and each column provides multi-beam. Each column consists of emitter array, a MEMS condenser lens array, an MEMS anode array, a stigmator, three-stage deflectors to align and to scan the multi beams, and a reduction lens as an objective lens. The emitter array generates 100x100 electron beams with binary patterns. The pattern exposed on a target is stored in one of the duplicate memories in the active matrix LSI. After the emission, each electron beam is condensed into narrow beam in parallel to the axis of electron optics of the system with the condenser lens array. The electrons of the beams are accelerated and pass through the anode array. The stigmator and deflectors make fine adjustments to the position of the beams. The reduction lens in the final stage focuses all parallel beams on the surface of the target wafer. The lens reduces the electron image to 1%-10% in size. Electron source in this system is nc-Si ballistic surface electron emitter. The characteristics of the emitter of 1:1 projection of e-beam have been demonstrated in our previous work. We developed a Crestec Surface Electron emission Lithography (CSEL) for mass production of semiconductor devices. CSEL system is 1:1 electron projection lithography using surface electron emitter. In first report, we confirmed that a test bench of CSEL resolved below 30 nm pattern over 0.2 um square area. Practical resolution of the system is limited by the chromatic aberration. We also demonstrated the CSEL system exposed deep sub-micron pattern over full-field for practical use. As an interim report of our development of MPEBDW system, we evaluated characteristics of the

  13. 90nm node contact hole patterning through applying model based OPC in KrF lithography

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Doo; Lee, Sang-Uk; Choi, Jaeyoung; Kim, Jeahee; Han, Jaewon

    2008-03-01

    As semiconductor technologies move toward 90nm generation and below, contact hole is one of the most challenging features to print in the semiconductor manufacturing process. There are two principal difficulties in order to define small contact hole pattern on wafer. One is insufficient process margin besides poor resolution compared with line & space pattern. The other is that contact hole should be made through pitches and sometimes random contact hole pattern should be fabricated. Therefore advanced ArF lithography scanner should be used for small contact hole printing with RETs (Resolution Enhancement Techniques) such as immersion lithography, OPC(Optical Proximity Correction), PSM(Phase Shift Mask), high NA(Numerical Aperture), OAI(Off-Axis Illumination), SRAF(Sub-resolution Assistant Feature), mask biasing and thermal flow. Like this, ArF lithography propose the method of enhancing resolution, however, we must spend an enormous amount of CoC(cost of ownership) to utilize ArF photolithography process than KrF. In this paper, we suggest the method of contact holes patterning by using KrF lithography tool in 90nm sFlash(stand alone Flash)devices. For patterning of contact hole, we apply RETs which combine OAI and Model based OPC. Additionally, in this paper we present the result of hole pattern images which operate ArF lithography equipment. Also, this study describes comparison of two wafer images that ArF lithography process which is used mask biasing and Rule based OPC, KrF lithography process which is applied hybrid OPC.

  14. Real-time quantum cascade laser-based infrared microspectroscopy in-vivo

    NASA Astrophysics Data System (ADS)

    Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.

    2016-03-01

    Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.

  15. Collinearity alignment of probe beams in a laser-based Faraday effect diagnostica)

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2012-10-01

    Two counter-rotating circularly polarized beams are used in a laser-based polarimetry diagnostic providing a phase measurement of the Faraday effect. Collinearity of these beams is a key issue that affects measurement accuracy. Spatial offset from even small misalignment induces systematic error due to density gradient and path length difference. Here, we report an alignment technique using a rotating dielectric wedge, which is capable of reducing spatial offset of two probe beams below 0.1 mm for beams with 40 mm diameter. With optimized alignment, 0.05° Faraday effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0.01°.

  16. Quantum cascade laser-based substance detection: approaching the quantum noise limit

    NASA Astrophysics Data System (ADS)

    Kuffner, Peter C.; Conroy, Kathryn J.; Boyson, Toby K.; Milford, Greg; Mabrok, Mohamed A.; Kallapur, Abhijit G.; Petersen, Ian R.; Calzada, Maria E.; Spence, Thomas G.; Kirkbride, Kennith P.; Harb, Charles C.

    2011-06-01

    A consortium of researchers at University of New South Wales (UNSW@ADFA), and Loyola University New Orleans (LU NO), together with Australian government security agencies (e.g., Australian Federal Police), are working to develop highly sensitive laser-based forensic sensing strategies applicable to characteristic substances that pose chemical, biological and explosives (CBE) threats. We aim to optimise the potential of these strategies as high-throughput screening tools to detect prohibited and potentially hazardous substances such as those associated with explosives, narcotics and bio-agents.

  17. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  18. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri

  19. Two-frequency picosecond laser based on composite vanadate crystals with {sigma}-polarised radiation

    SciTech Connect

    Sirotkin, A A; Sadovskiy, S P; Garnov, Sergei V

    2013-07-31

    A two-frequency picosecond laser based on {alpha}-cut Nd:YVO{sub 4}-YVO{sub 4} composite vanadate crystals is experimentally studied for the s-polarised radiation at the {sup 4}F{sub 3/2} - {sup 4}I{sub 11/2} transition with frequency tuning using Fabry-Perot etalons of different thickness. The difference between the radiation wavelengths was tuned within the range of 1.2-4.4 nm. In the mode-locking regime, the two-frequency radiation power was 280 mW at an absorbed pump power of 12 W. (lasers)

  20. Laser-Based Methods for Detection of Nitric Oxide in Plants.

    PubMed

    Mandon, Julien; Mur, Luis A J; Harren, Frans J M; Cristescu, Simona M

    2016-01-01

    Nitric oxide (NO) plays an important role in plant signaling and in response to various stress conditions. Therefore, real-time measurements of NO production provide better insights into understanding plant processes and can help developing strategies to improve food production and postharvest quality. Using laser-based spectroscopic methods, sensitive, online, in planta measurements of plant-pathogen interactions are possible. This chapter introduces the basic principle of the optical detectors using different laser sources for accurate monitoring of fast dynamic changes of NO production. Several applications are also presented to demonstrate the suitability of these detectors for detection of NO in plants.

  1. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  2. Ultra-short DBR fiber laser based sensor for arterial pulse monitoring

    NASA Astrophysics Data System (ADS)

    Sun, Qizhen; Wo, Jianghai; Wang, He; Liu, Deming

    2014-05-01

    An ultra-short DBR fiber laser based device for arterial pulse wave monitoring is proposed and demonstrated. As the sensing element, the 10mm length laser cavity is mounted onto a soft plastic plate and then embedded into textile. Deformation of the textile, involving the transverse force subjected by the laser cavity, is proportional to the vibration caused by the arterial pulse. The sensing principle is based on the linear relationship between the beat frequency of the laser and the transverse force. Laboratory studies demonstrate that the sensor could achieve real-time and accurate measurement of the weak and dynamical arterial pulse signal.

  3. Multi-wavelength erbium-doped fiber laser based on random distributed feedback

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyang; Dong, Xinyong; Jiang, Meng; Yu, Xia; Shum, Ping

    2016-09-01

    We experimentally demonstrated a multi-wavelength erbium-doped fiber laser based on random distributed feedback via a 20-km-long single-mode fiber together with a Sagnac loop mirror. The number of channels can be modulated from 2 to 8 at room temperature when the pump power is changed from 30 to 180 mW, indicating that wavelength competition caused by homogenous gain broadening of erbium-doped fiber is significantly suppressed. Other advantages of the laser include low cost, low-threshold pump power and simple fabrication.

  4. Mutual injection phase locking coherent combination of solid-state lasers based on corner cube.

    PubMed

    Cheng, Yong; Liu, Xu; Wan, Qiang; Zhu, Mengzhen; Mi, Chaowei; Tan, Chaoyong; Wei, Shangfang; Chen, Xia

    2013-12-01

    Coherent beam combination is an effective way to develop high-power lasers with high beam quality and high brightness. Coherent combination of six solid-state lasers based on the technique of mutual injection phase locking by using the natural coherent combination property of corner cube is first investigated. The coherent combination with 15.3 J of output energy, 1.7 mrad of divergent angle is obtained, and the combining efficiency is as high as 95.6% at 10 Hz and 85 A. The far-field profile is flattened protuberance.

  5. A laser-based sensor system for tire tread deformation measurement

    NASA Astrophysics Data System (ADS)

    Xiong, Yi; Tuononen, Ari

    2014-11-01

    Optical tire sensors are powerful engineering tools that can reveal the mechanisms behind tire-road interactions. This paper presents a laser-based sensor system to measure tire-tread block deformation. The methodology and corresponding procedure for the system are introduced. Practical issues, such as tire sensor localization, are discussed. Validation experiments were conducted on a chassis dynamometer, and an asymmetric tire tread deformation along the contact patch was observed. It is proposed that asymmetric tread deformation is due to rolling resistance. The measurements under different operational conditions, including the rolling direction, wheel load, rolling velocity, and inflation pressure, were analyzed in the context of rolling resistance.

  6. Cleaning of optical components for high-power laser-based firing systems

    SciTech Connect

    Sparrow, B.D.; Hendrix, J.L.

    1993-08-01

    This report discusses the progress of AlliedSignal Inc., Kansas City Division (KCD), in addressing the issues of cleaning of hardware and optical components for laser-based firing sets. These issues are acceptability of cleaning processes and techniques of other government programs to the quality, reliability, performance, stockpile life, materials compatibility issues, and, perhaps most important, environmentally conscious manufacturing requirements of the Department of Energy (DOE). A review of ``previous cleaning art`` is presented using Military Standards (MIL STDs) and Military Interim Specifications (MISs) as well as empirical data compiled by the authors. Observations on processes and techniques used in building prototype hardware and plans for future work are presented.

  7. Time-domain study on reproducibility of laser-based soft-error simulation

    NASA Astrophysics Data System (ADS)

    Itsuji, Hiroaki; Kobayashi, Daisuke; Lourenco, Nelson E.; Hirose, Kazuyuki

    2017-04-01

    Studied is the soft error issue, which is a circuit malfunction caused by ion-radiation-induced noise currents. We have developed a laser-based soft-error simulation system to emulate the noise and evaluate its reproducibility in the time domain. It is found that this system, which utilizes a two-photon absorption process, can reproduce the shape of ion-induced transient currents, which are assumed to be induced from neutrons at the ground level. A technique used to extract the initial carrier structure inside the device is also presented.

  8. Development of Field-deployable Diode-laser-based Water Vapor Dial

    NASA Astrophysics Data System (ADS)

    Pham Le Hoai, Phong; Abo, Makoto; Sakai, Tetsu

    2016-06-01

    In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL) has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  9. Investigation of droplet ignition under microgravity conditions using laser-based techniques—an overview

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Paa, W.; Schmidl, G.; Triebel, W.; Eigenbrod, Ch

    2004-08-01

    Laser-based diagnostics like Laser Induced Fluorescence (LIF) and Particle Imaging Velocimetry are well established methods for combustion research under microgravity conditions. Especially the investigation of the ignition behaviour of single droplets and droplet arrays is important for future developments of internal combustion engines and power plants. Novel developments of experimental components like an solid state laser source (Advanced disk laser, ADL) and a high pressure insert (European High Pressure Insert, EHPI) for use in NASA's Combustion Integrated Rack are described. Innovative measuring methods to observe in a quantitative way the ignition process of droplets using LIF of formaldehyde and infrared absorption in carbon monoxide induced by quantum cascade lasers are presented.

  10. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    NASA Astrophysics Data System (ADS)

    Tian, Yaolan; Isotalo, Tero J.; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J.

    2017-02-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.

  11. Cubic Silsesquioxanes as a Green, High-Performance Mold Material for Nanoimprint Lithography

    SciTech Connect

    Ro, Hyun W.; Popova, Vera; Chen, Lei; Forster, Aaron M.; Ding, Yifu; Alvine, Kyle J.; Krug, Dave J.; Laine, Richard M.; Soles, Christopher L.

    2010-08-16

    Optical lithography deep in the UV spectrum is the predominate route for high-resolution, high-volume nanoscale pattering. However, state-of-the-art optical lithography tools are exceedingly expensive and this places serious limitations on the applications, technical sectors, and markets where highresolution patterning can be implemented. To date the only substantial market for high-end optical lithography tools has been semiconductor fabrication. Nanoimprint lithography (NIL) has recently emerged as an alternative to optical lithography and combines the potential of sub-fi ve-nanometer patterning resolution with the low cost and simplicity of a stamping process. [ 1–4 ] This has led to signifi cant efforts to implement NIL methods, not only for semiconductor logic devices, but also in fi elds as diverse as the direct patterning of interlayer dielectrics (ILDs) for back-end-of-line (BEOL) interconnect structures, [ 5–7 ] bitpatterned magnetic media for data storage, [ 8 , 9 ] and high-brightness light-emitting diodes (LEDs). [ 10 ] Some of these are new areas where nanoscale patterning has previously not been considered, and are made possible here by the low cost and simplicity of the NIL stamping processes.

  12. Hyper-NA imaging of 45nm node random CH layouts using inverse lithography

    NASA Astrophysics Data System (ADS)

    Hendrickx, E.; Tritchkov, A.; Sakajiri, K.; Granik, Y.; Kempsell, M.; Vandenberghe, G.

    2008-03-01

    The imaging of Contact Hole (CH) layouts is one of the most challenging tasks in hyper-NA lithography. Contact Hole layouts can be printed using different illumination conditions, but an illumination condition that provides good imaging at dense pitches (such as Quasar or Quadrupole illumination), will usually suffer from poor image contrast and Depth of Focus (DOF) towards the more isolated pitches. Assist Features (AF) can be used to improve the imaging of more isolated contact holes, but for a random CH layout, an AF placement rule would have to be developed for every CH configuration in the design. This makes optimal AF placement an almost impossible task for random layouts when using rule-based AF placement. We have used an inverse lithography technique by Mentor Graphics, to treat a random contact hole layout (drawn at minimal pitch 115nm) for imaging at NA 1.35. The combination of the dense 115nm pitch and available NA of 1.35 makes the use of Quasar illumination necessary, and the treatment of the clip with inverse lithography automatically generated optimal (model-based) AF for all geometries in the design. Because the inverse lithography solution consists of smooth shapes rather than rectangles, mask manufacturability becomes a concern. The algorithm allows simplification of the smooth shapes into rectangles and greatly improves mask write time. Wafer prints of clips treated with inverse lithography at NA 1.35 confirm the benefit of the assist features.

  13. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.

    PubMed

    Gan, Zongsong; Cao, Yaoyu; Evans, Richard A; Gu, Min

    2013-01-01

    The current nanofabrication techniques including electron beam lithography provide fabrication resolution in the nanometre range. The major limitation of these techniques is their incapability of arbitrary three-dimensional nanofabrication. This has stimulated the rapid development of far-field three-dimensional optical beam lithography where a laser beam is focused for maskless direct writing. However, the diffraction nature of light is a barrier for achieving nanometre feature and resolution in optical beam lithography. Here we report on three-dimensional optical beam lithography with 9 nm feature size and 52 nm two-line resolution in a newly developed two-photon absorption resin with high mechanical strength. The revealed dependence of the feature size and the two-line resolution confirms that they can reach deep sub-diffraction scale but are limited by the mechanical strength of the new resin. Our result has paved the way towards portable three-dimensional maskless laser direct writing with resolution fully comparable to electron beam lithography.

  14. 0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Vorbringer-Doroshovets, Nataliya; Balzer, Felix; Fuessl, Roland; Manske, Eberhard; Kaestner, Marcus; Schuh, Andreas; Zoellner, Jens-Peter; Hofer, Manuel; Guliyev, Elshad; Ahmad, Ahmad; Ivanov, Tzvetan; Rangelow, Ivo W.

    2013-03-01

    High Performance Single Nanometer Lithography (SNL) is an enabling technology for beyond CMOS and future nanoelectronics. To keep on with scaling down nanoelectronic components, novel instrumentation for nanometer precise placement, overlay alignment and measurement are an essential pre-requirement to realize Next Generation Lithography (NGL) systems. In particular, scanning probe based methods for surface modification and lithography are an emerging method for producing sub-10 nm features. In this study, we demonstrate nano-scale lithography using a scanning probe based method in combination with a Nanopositioning and Nanomeasuring Machine. The latter one has a measuring range of 25 mm x 25 mm x 5 mm, 0.1 nanometer resolution and outstanding nanometer accuracy. The basic concept consists of a special arrangement allowing Abbe error free measurements in all axes over the total scan range. Furthermore, the Nanopositioning and Nanomeasuring Machine is able to store the exact location that can be found again with an accuracy of less than 2.5 nanometers. This system is also predestinated for critical dimension, quality and overlay control. The integrated scanning probe lithography is based on electric-field-induced patterning of calixarene. As a result, repeated step response tests are presented in this paper.

  15. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    NASA Technical Reports Server (NTRS)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  16. Innovative laser based approaches to laryngeal cancer: what an engineer and physicist need to know

    NASA Astrophysics Data System (ADS)

    Burns, James A.

    2008-02-01

    Innovative laser-based approaches to laryngeal cancer include the clinical applications of two new technologies, photoangiolysis using a 532nm wavelength pulsed-KTP laser and fiber-based cutting using a 2μm wavelength thulium laser. Photoangiolysis is well-suited for treatment of minimally invasive glottic cancer and allows maximum preservation of phonatory surfaces needed for optimal voicing. The thulium laser offers an alternative to the carbon dioxide laser as an endolaryngeal cutting tool due to its enhanced hemostatic properties and fiber-based delivery. Clinical examples of pulsed-KTP laser involution of early glottic cancer will be presented in order to highlight the concept of targeting tumor angiogenesis in treating laryngeal cancer. The surgical experience using the thulium laser for complex endoscopic endolaryngeal excisions of large laryngeal cancers is presented to demonstrate the expanded clinical applications of endolaryngeal cutting offered by this laser. The laryngeal tissue effects of various laser power and pulse width (PW) settings, mode of delivery, active cooling to reduce thermal trauma, and wavelength selection have been extensively studied for the KTP and thulium lasers in both ex-vivo and live-perfusing models. The results from these studies, included herein, determine the clinical efficacy and safety of these innovative laser-based approaches to laryngeal cancer.

  17. Modern technology in artwork conservation: a laser-based approach for process control and evaluation

    NASA Astrophysics Data System (ADS)

    Tornari, V.; Zafiropulos, V.; Bonarou, A.; Vainos, N. A.; Fotakis, C.

    2000-10-01

    The present work includes a laser-based methodology for the cleaning of artworks, with emphasis on the preservation of their structural integrity and identity. Modern laser-based techniques and instrumentation offer new tools in the field of artwork and antiquities conservation, aiming to alleviate the traditionally applied methods from existing weaknesses. Although in several cases the use of lasers may give rise to superior results, there are still problems to be resolved in relation to the optimization of procedures for safeguarding from potential damage. Furthermore, several operational parameters have to be simultaneously controlled and the long-term effects induced by laser irradiation must be assessed in detail before a full exploitation of the new methods is established. The control of material removal during laser cleaning is achieved by using laser-induced breakdown spectroscopy (LIBS). This control relies on the collection of spectroscopic data by LIBS, which correspond to the in-depth compositional profile of the artifact. This technique may be combined with structural analysis by holographic interferometry. The latter is important for assessing structural changes, which may be induced during laser ablation. Selected examples of this type of applications in a carefully considered methodology are presented.

  18. High-spatial-resolution sub-surface imaging using a laser-based acoustic microscopy technique.

    PubMed

    Balogun, Oluwaseyi; Cole, Garrett D; Huber, Robert; Chinn, Diane; Murray, Todd W; Spicer, James B

    2011-01-01

    Scanning acoustic microscopy techniques operating at frequencies in the gigahertz range are suitable for the elastic characterization and interior imaging of solid media with micrometer-scale spatial resolution. Acoustic wave propagation at these frequencies is strongly limited by energy losses, particularly from attenuation in the coupling media used to transmit ultrasound to a specimen, leading to a decrease in the depth in a specimen that can be interrogated. In this work, a laser-based acoustic microscopy technique is presented that uses a pulsed laser source for the generation of broadband acoustic waves and an optical interferometer for detection. The use of a 900-ps microchip pulsed laser facilitates the generation of acoustic waves with frequencies extending up to 1 GHz which allows for the resolution of micrometer-scale features in a specimen. Furthermore, the combination of optical generation and detection approaches eliminates the use of an ultrasonic coupling medium, and allows for elastic characterization and interior imaging at penetration depths on the order of several hundred micrometers. Experimental results illustrating the use of the laser-based acoustic microscopy technique for imaging micrometer-scale subsurface geometrical features in a 70-μm-thick single-crystal silicon wafer with a (100) orientation are presented.

  19. Laser-based ultrasonic inspection with a fiber-coupled scanning Cassegrain system.

    PubMed

    McKie, Andrew D W; Addison, Robert C

    2002-12-01

    State-of-the-art integrally stiffened composite materials, manufactured for use in the next generation of commercial and military aircraft, are increasingly being used for structural components such as wings and fuselages. However, the complexity of the manufacturing processes can produce small variations in the shape of integrally stiffened composite structures. Thus, a priori knowledge of the nominal part shape often does not provide sufficient accuracy to allow an automated conventional ultrasonic inspection. In contrast, automated inspections of integrally stiffened structures can be performed using laser-based ultrasound techniques since a priori knowledge of the nominal part shape is adequate to scan the laser beams over the structure. This paper addresses the issues associated with the extension of laser-based ultrasonics to inspections in remote and limited access areas, and describes the implementation of a fiber-based remote and limited access LBU inspection system based upon a Cassegrain scanning and optical collection system. The ability to quickly and directly manipulate flexible low mass optical fibers equipped with specialized endoscopic scanning optics make fiber systems an attractive method for the development of limited and remote access inspection systems. The Cassegrain optical system is described in detail and both numerical and experimental validation of the system operational characteristics are presented.

  20. Development and use of a laser-based pipeline corrosion assessment system

    SciTech Connect

    Bruce, W.A.; Yapp, D.; Barborak, D.M.; Fingerhut, M.P.; Kania, R.

    1997-05-01

    The development and use of a simple laser-based system for accurately and efficiently measuring and assessing corrosion damage on the external surface of an exposed pipeline is described. The system uses a laser-based range sensor, which relies on optical spray, sensor movement, and the principal of triangulation to construct a three-dimensional measurement. Baseline subtraction, where a polynomial curve-fit is used to approximate the ideal pipe profile above the corroded area, is used. Future profiles are subtracted; from the ideal profile, and when differences are significant, corrosion depth measurements are made by constructing normal vectors at points along the ideal profile. A software program titled CorrosionPro 2.1 was developed to provide a means to playback and display data files generated by the system. The program uses the RSTRENG algorithm to assess the significance of the damage. Examples of the application of this system on large-diameter gas and oil pipelines are also described.

  1. Development of a laser-based process chain for manufacturing free form optics

    NASA Astrophysics Data System (ADS)

    Heidrich, S.; Richmann, A.; Willenborg, E.

    2012-06-01

    This paper presents the development of a laser based process chain for manufacturing fused silica optics. Due to disadvantages of conventional methods concerning costs and time when manufacturing optics with nonspherical shape, this process chain focuses on aspherical and free form surface geometries, but it is also capable of producing spherical optics. It consists of three laser based processing steps, which in combination produce the optics. In a first step, fused silica is ablated with laser radiation to produce the geometry of the optics. A subsequent laser polishing step reduces the surface roughness and a third step uses laser micro ablation to remove the last remaining redundant material. Most of the conducted experiments are carried out using CO2 laser radiation, but it is also possible to ablate material with ultra short pulse laser radiation. Besides describing the experimental setup and the mechanisms of the ablation and polishing step, the paper presents and discusses results achieved to date. Although the process chain is still under development, the single process steps already reach promising results for themselves and moreover, first elements are manufactured using the first two process steps together.

  2. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  3. Development of thermosets for thermal nanoimprint lithography at decreased temperatures

    NASA Astrophysics Data System (ADS)

    Reuther, Freimut; Kubenz, Mike; Schuster, Christine; Fink, Marion; Vogler, Marko; Gruetzner, Gabi; Grimm, Juergen; Kaeppel, Andi

    2005-05-01

    Prepolymers formed from multifunctional allyl monomers can beneficially used in nanoimprint lithography (NIL), since they cure as a consequence of heating during the imprint process. Thus they have the potential to enable NIL at comparatively low temperatures while the imprinted patterns concurrently show high thermal stability, in contrast to thermoplastic polymers, where the thermal behaviour of the imprinted patterns is closely related to the glass transition temperature (Tg) of the polymers. The use of allyl prepolymers for NIL was previously described, but only very few experimental data are known. In recent investigations on the application of allyl prepolymers for NIL a displacement of the patterns on the wafer has been observed after cooling down the imprinted polymer in the press. This could be avoided by detaching the stamp at the imprint temperature, i.e. without cooling down the press, which requires the polymer to be crosslinked to a great extent in this stage. Since high temperatures are necessary (150 °C - 190 °C), and the imprint time is still long, allyl prepolymers to be reported here have been modified aiming at a reduction of imprint temperature and time. The admixture of free-radical initiators increases the polymerization rate and allows the polymerization to start at lower temperatures. A reduced imprint temperature (100 °C) and shorter imprint time (10 min) are achieved. Additional polymer modification by plasticizers improves the material flow during the imprint due to a lower Tg. Recipes for polymer modifications have been found out, which result in thermally stable imprints under the specified processing conditions.

  4. Development of fluoropolymer for 193nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Shirota, Naoko; Takebe, Yoko; Sasaki, Takashi; Yokokoji, Osamu; Toriumi, Minoru; Masuhara, Hiroshi

    2006-03-01

    We had already developed several series of fluoropolymers, FPRs and FUGUs, having a partially fluorinated monocyclic structure and having acidic hydroxyl group, which acts as dissolution unit into alkaline solution. Then we have optimized these polymers for top-coat as the developer-soluble type in the 193nm immersion lithography. However the hydrophobicity of these polymers were a little poor due to its hydroxyl group. So we thought that the introduction of water repellent moiety into the these polymers structure is effective to improve the their hydrophobicity though the increase of water repellent unit in the polymer leads to lower dissolution rate in developer. To introduce as much as possible of hydrophobicity unit, we selected FUGU as platform, which has larger dissolution rate in developer than that of FPRs, We copolymerized FUGU with higher water-repellent component and obtained three copolymers, FUGU-CoA, FUGU-CoB, and FUGU-CoC. In this paper, we described characteristics and evaluation of these polymers. Most of these polymer showed an improvement of hydrophobicity, in particular FUGU-CoB had excellent hydrophobicity due to introduction bulky containing-fluorine group. In this study, we also investigated the interaction between the water and various polymers by using QCM method. The difference between FUGU and water repellent polymers for swelling behavior to water became clear by analysis of diffusion coefficient. We found that our new co-polymers have excellent diffusion coefficient than FUGU which was confirmed by QCM method used to evaluate water permeability and water diffusion in the materials.

  5. PVD prepared molecular glass resists for scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Neuber, Christian; Schmidt, Hans-Werner; Strohriegl, Peter; Wagner, Daniel; Krohn, Felix; Schedl, Andreas; Bonanni, Simon; Holzner, Felix; Rawlings, Colin; Dürig, Urs; Knoll, Armin W.

    2016-03-01

    In the presented work solvent-free film preparation from molecular glass resists, the evaluation of the patterning performance using thermal scanning probe lithography (tSPL) and an efficient etch transfer process are demonstrated. As the presented materials have a high tendency to crystallize and thus form crystalline films of bad quality when processed by solution casting, two component mixtures prepared by coevaporation were investigated. Stable amorphous films were obtained by selecting compatible material pairs for the coevaporation. One optimized material pair is based on trissubstituted, twisted resist materials with a distinct difference in molecular design. Here a high resolution tSPL prepared pattern of 18 nm half pitch in a 10 nm thick film is demonstrated. A further optimization is reported for "small" cubic silsequioxane molecules. Again single component films show independent to applied film preparation techniques bad film forming properties due to the high crystallinity of the symmetric cubic silsequioxane molecules. But coevaporation of the phenyl substituted octaphenylsilsequioxane combined with the fully aromatic 2,2',7,7'-tetraphenyl-9,9'-spirobi[fluorene] results in stable amorphous thin films. tSPL investigations demonstrate the patternability by writing high resolution line features of 20 nm half pitch. An important advantage of such a silicon rich resist material is that it can be directly converted to SiO2, yielding to a patterned hardmask of SiO2. This proof of principle is demonstrated and an efficient pattern transfer of 60 nm half pitch line into the underlying HM8006 is reported.

  6. Applications of nanoimprint lithography/hot embossing: a review

    NASA Astrophysics Data System (ADS)

    Chen, Yifang

    2015-11-01

    This review concentrates on the applications of nanoimprint lithography (NIL) and hot embossing for the fabrications of nanolectronic devices, nanophotonic metamaterials and other nanostructures. Technical challenges and solutions in NIL such as nanofabrication of templates, removal of residual resist, pattern displacement in thermal NIL arising from thermal expansion are first discussed. In the nanofabrication of templates, dry etch in plasma for the formation of multi-step structures and ultra-sharp tip arrays in silicon, nanophotonic chiral structures with high aspect ratio in SiC are demonstrated. A bilayer technique for nondestructive removal of residual resist in thermal NIL is described. This process is successfully applied for the fabrication of T-shape gates and functional high electron mobility transistors. However, pattern displacement intrinsically existing in thermal NIL/hot embossing owing to different thermal expansions in the template and substrate, respectively, limits its further development and scale-up. Low temperature even room temperature NIL (RTNIL) was then proposed on HSQ, trying to eliminate the pattern distortion by avoiding a thermal loop in the imprint. But, considerable pressure needed in RTNIL turned the major attentions to the development of UV-curing NIL in UV-curable monomers at low temperature. A big variety of applications by low-temperature UV-curing NIL in SU-8 are described, including high-aspect-ratio phase gratings, tagging technology by nanobarcode for DNA sequencing, nanofluidic channels, nanophotonic metamaterials and biosensors. Hot embossing, as a parallel technique to NIL, was also developed, and its applications on ferroelectric polymers as well as metals are reviewed. Therefore, it is necessary to emphasize that this review is mainly attempted to review the applications of NIL/embossing instead of NIL technique advances.

  7. Fabrication of phosphor micro-grids using proton beam lithography

    NASA Astrophysics Data System (ADS)

    Auzelyte, V.; Elfman, M.; Kristiansson, P.; Pallon, J.; Wegdén, M.; Nilsson, C.; Malmqvist, K.; Doyle, B. L.; Rossi, P.; Hearne, S. J.; Provencio, P. P.; Antolak, A. J.

    2006-01-01

    A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 μm by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a "Microscopic Gridded Phosphor" (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 μm directly fabricated a matrix of pillars in a 15 μm thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

  8. Clickable Antifouling Polymer Brushes for Polymer Pen Lithography.

    PubMed

    Bog, Uwe; de Los Santos Pereira, Andres; Mueller, Summer L; Havenridge, Shana; Parrillo, Viviana; Bruns, Michael; Holmes, Andrea E; Rodriguez-Emmenegger, Cesar; Fuchs, Harald; Hirtz, Michael

    2017-03-23

    Protein-repellent reactive surfaces that promote localized specific binding are highly desirable for applications in the biomedical field. Nonspecific adhesion will compromise the function of bioactive surfaces, leading to ambiguous results of binding assays and negating the binding specificity of patterned cell-adhesive motives. Localized specific binding is often achieved by attaching a linker to the surface, and the other side of the linker is used to bind specifically to a desired functional agent, as e.g. proteins, antibodies, and fluorophores, depending on the function required by the application. We present a protein-repellent polymer brush enabling highly specific covalent surface immobilization of biorecognition elements by strain-promoted alkyne-azide cycloaddition click chemistry for selective protein adhesion. The protein-repellent polymer brush is functionalized by highly localized molecular binding sites in the low micrometer range using polymer pen lithography (PPL). Because of the massive parallelization of writing pens, the tunable PPL printed patterns can span over square centimeter areas. The selective binding of the protein streptavidin to these surface sites is demonstrated while the remaining polymer brush surface is resisting nonspecific adsorption without any prior blocking by bovine serum albumin (BSA). In contrast to the widely used BSA blocking, the reactive polymer brushes are able to significantly reduce nonspecific protein adsorption, which is the cause of biofouling. This was achieved for solutions of single proteins as well as complex biological fluids. The remarkable fouling resistance of the polymer brushes has the potential to improve the multiplexing capabilities of protein probes and therefore impact biomedical research and applications.

  9. Combined dose and geometry correction (DMG) for low energy multi electron beam lithography (5kV): application to the 16nm node

    NASA Astrophysics Data System (ADS)

    Martin, Luc; Manakli, Serdar; Bayle, Sebastien; Belledent, Jérôme; Soulan, Sebastien; Wiedemann, Pablo; Farah, Abdi; Schiavone, Patrick

    2012-03-01

    Lithography faces today many challenges to meet the ITRS road-map. 193nm is still today the only existing industrial option to address high volume production for the 22nm node. Nevertheless to achieve such a resolution, double exposure is mandatory for critical level patterning. EUV lithography is still challenged by the availability of high power source and mask defectivity and suffers from a high cost of ownership perspective. Its introduction is now not foreseen before 2015. Parallel to these mask-based technologies, maskless lithography regularly makes significant progress in terms of potential and maturity. The massively parallel e-beam solution appears as a real candidate for high volume manufacturing. Several industrial projects are under development, one in the US, with the KLA REBL project and two in Europe driven by IMS Nanofabrication (Austria; MAPPER (The Netherlands). Among the developments to be performed to secure the takeoff of the multi-beam technology, the availability of a rapid and robust data treatment solution will be one of the major challenges. Within this data preparation flow, advanced proximity effect corrections must be implemented to address the 16nm node and below. This paper will detail this process and compare correction strategies in terms of robustness and accuracy. It will be based on results obtained using a MAPPER tool within the IMAGINE program driven by CEA-LETI, in Grenoble, France. All proximity effects corrections and the dithering step were performed using the software platform Inscale® from Aselta Nanographics. One important advantage of Inscale® is the ability to combine both model based dose and geometry adjustment to accurately pattern critical features. The paper will focus on the advantage of combining those two corrections at the 16nm node instead of using only geometry corrections. Thanks to the simulation capability of Inscale®, pattern fidelity and correction robustness will be evaluated and compared between

  10. High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Wedowski, M; Underwood, J H; Gullikson, E M; Bajt, S; Folta, J A; Kearney, P A; Montcalm, C; Spiller, E

    1999-12-29

    Synchrotron-based reflectometry is an important technique for the precise determination of optical properties of reflective multilayer coatings for Extreme Ultraviolet Lithography (EUVL). Multilayer coatings enable normal incidence reflectances of more than 65% in the wavelength range between 11 and 15 nm. In order to achieve high resolution and throughput of EUVL systems, stringent requirements not only apply to their mechanical and optical layout, but also apply to the optical properties of the multilayer coatings. Therefore, multilayer deposition on near-normal incidence optical surfaces of projection optics, condenser optics and reflective masks requires suitable high-precision metrology. Most important, due to their small bandpass on the order of only 0.5 nm, all reflective multilayer coatings in EUVL systems must be wavelength-matched to within {+-}0.05 nm. In some cases, a gradient of the coating thickness is necessary for wavelength matching at variable average angle of incidence in different locations on the optical surfaces. Furthermore, in order to preserve the geometrical figure of the optical substrates, reflective multilayer coatings need to be uniform to within 0.01 nm in their center wavelength. This requirement can only be fulfilled with suitable metrology, which provides a precision of a fraction of this value. In addition, for the detailed understanding and the further development of reflective multilayer coatings a precision in the determination of peak reflectances is desirable on the order of 0.1%. Substrates up to 200 mm in diameter and 15 kg in mass need to be accommodated. Above requirements are fulfilled at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley. This beamline proved to be precise within 0.2% (ms) for reflectance and 0.002 nm (rms) for wavelength.

  11. CD-SEM measurement line edge roughness test patterns for 193 nm lithography

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin D.; Bishop, Michael; Villarrubia, John S.; Vladar, Andras E.

    2003-07-01

    The measurement of line-edge roughness (LER) has recently become a major topic of concern in the litho-metrology community and the semiconductor industry as a whole, as addressed in the 2001 International Technology Roadmap for Semiconductors (ITRS) roadmap. The Advanced Metrology Advisory Group (AMAG, a council composed of the chief metrologists from the International SEMATECH (ISMT) consortium"s Member Companies and from the National Institute of Standards and Technology (NIST) has begun a project to investigate this issue and to direct the critical dimension scanning electron microscope (CD-SEM) supplier community towards a semiconductor industry-backed solution for implementation. The AMAG group has designed and built a 193 nm reticle that includes structures implementing a number of schemes to intentionally cause line edge roughness of various spatial frequencies and amplitudes. The lithography of these structures is in itself of interest to the litho-metrology community and will be discussed here. These structures, along with several other photolithography process variables, have been used to fabricate a set of features of varying roughness value and structure which span the LER process space of interest. These references are, in turn, useful for evaluation of LER measurement capability. Measurements on different CD-SEMs of major suppliers were used to demonstrate the current state of LER measurement. These measurements were compared to roughness determined off-line by analysis of top-down images from these tools. While no official standard measurement algorithm or definition of LER measurement exists, definitions used in this work are presented and compared in use. Repeatability of the measurements and factors affecting their accuracy were explored, as well as how CD-SEM parameters can affect the measurements.

  12. Development of liquid-jet laser-produced plasma light source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Abe, Tamotsu; Suganuma, Takashi; Imai, Yousuke; Sugimoto, Yukihiko; Someya, Hiroshi; Hoshino, Hideo; Soumagne, Georg; Komori, Hiroshi; Mizoguchi, Hakaru; Endo, Akira; Toyoda, Koichi

    2003-06-01

    The Extreme UV Lithography System Development Association (EUVA) was established in Japan in May 2002 and is supported by the Ministry of Economy, Trade and Industry (METI). EUVA started the light soruce development in September 2002. This development is done by the assocaition members Gigaphoton, Ushio, Komatsu, Canon, Nikon, the National Institute of Advanced Industrial Sciecne and Technology (AIST) and several Japanese universities. The target of the four-year project is the development of a EUV light source with 10W clean focus point power. For the end of the fiscal year 2003 the development of a 4W EUV light source (clean focus point power) is planned. Both, Laser-Produced-Plasma (LPP) and Discharge-Produced-Plasma (DPP) EUV light sources are investigated at first. Our group at the EUVA Hiratsuka R&D Center is working on LPP sources. We are currently focusing on the development of a driver laser and a liquid Xenon plasma target. The laser is a Nd:YAG MOPA (Master Oscillator and Power Amplifier) system oscillating at 1064 nm. Average power, repetition rate and pulse duration of the laser system are 500 Watt, 10 kHa and 30nsec, respectively. The Xenon liquefication system operates at a maximum pressure of 5MPa and a temperature range between 160 K and 190 K. The pressure inside the vacuum chamber is below 0.1Pa during system operation. This paper presents the current status of the EUV system component development as well as first experimental results of generated EUV radiation.

  13. Project: "Project!"

    ERIC Educational Resources Information Center

    Grayson, Katherine

    2007-01-01

    In November 2006, the editors of "Campus Technology" launched their first-ever High-Resolution Projection Study, to find out if the latest in projector technology could really make a significant difference in teaching, learning, and educational innovation on US campuses. The author and her colleagues asked campus educators,…

  14. High efficiency silicon nanodisk laser based on colloidal CdSe/ZnS QDs

    PubMed Central

    Wang, Yao-Chen; Yuan, Chi-Tsu; Yang, Yi-Chun; Wu, Meng-Chyi; Tang, Jau; Shih, Min-Hsiung

    2011-01-01

    Introduction Using colloidal CdSe/ZnS quantum dots in the submicron-sized silicon disk cavity, we have developed a visible wavelength nanodisk laser that operates under extremely low threshold power at room temperature. Methods Time-resolved photoluminescence (PL) of QDs; nanodisk by e-beam lithography. Results Observation of lasing action at 594 nm wavelength for quantum dots on a nanodisk (750 nm in diameter) cavity and an ultra-low threshold of 2.8 µW. Conclusion From QD concentration dependence studies we achieved nearly sevenfold increase in spontaneous emission (SE) rate. We have achieved high efficient and high SE coupling rate in such a QD nanodisk laser. PMID:22110875

  15. Beam stability investigation for a free electron lithographic laser based on an energy-recovery linac

    NASA Astrophysics Data System (ADS)

    Getmanov, Ya. V.; Vinokurov, N. A.; Shevchenko, O. A.; Davidyuk, I. V.

    2016-12-01

    According to leading producers of microelectronic devices, lithography based on free electron lasers (FEL) could become the main technology for the mass production of elements with a scale up to 5 nm in the near future. One of the main hindrances in this path is the absence of working FEL with the required parameters. A feasibility study devoted to the production of such an FEL based on a superconducting energyrecovery linac (ERL) has been carried out at the Budker Institute of Nuclear Physics (BINP). The ERL average current is limited by longitudinal and transverse instabilities, caused by the interaction of an electron beam with the fields induced by it in the superconducting cavities. The estimations of the threshold currents and parameters of the ERL required for the operation of FEL are obtained.

  16. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  17. Automatic layout feature extraction for lithography hotspot detection based on deep neural network

    NASA Astrophysics Data System (ADS)

    Matsunawa, Tetsuaki; Nojima, Shigeki; Kotani, Toshiya

    2016-03-01

    Lithography hotspot detection in the physical verification phase is one of the most important techniques in today's optical lithography based manufacturing process. Although lithography simulation based hotspot detection is widely used, it is also known to be time-consuming. To detect hotspots in a short runtime, several machine learning based methods have been proposed. However, it is difficult to realize highly accurate detection without an increase in false alarms because an appropriate layout feature is undefined. This paper proposes a new method to automatically extract a proper layout feature from a given layout for improvement in detection performance of machine learning based methods. Experimental results show that using a deep neural network can achieve better performance than other frameworks using manually selected layout features and detection algorithms, such as conventional logistic regression or artificial neural network.

  18. Investigation of Glass Polycapillaries for Use in Proximity X-Ray Lithography.

    NASA Astrophysics Data System (ADS)

    Klotzko, Ira L.

    There is predicted growth of the micro-electronics industry in the 1990's and into the early 21^{st} century. In order for manufacturers of IC's to stay competitive in this vast global market, devices will have to be faster, more sophisticated, and more capable. According to the National Technology Roadmap for Semiconductors by The Semiconductor Industry Association (SIA), feature sizes in device structures are required to decrease in size in order for these goals to be realized. Presently, manufacturers use lithography with deep-ultra-violet (DUV) ^{1,2} wavelengths to produce circuit features of 0.30 μm and below. Because the wavelength of radiation used is of the same size as the features, diffraction phenomenon has become a limiting factor. Industry must therefore choose a new lithographic technique that can overcome the difficulties caused by these relatively large wavelengths. Although, some techniques have the ability to produce feature sizes of 0.2 μm and below, such as electron -beam lithography, ion-beam lithography, synchrotron-x-ray lithography, and even some optical techniques, they have not all developed an economically feasible method of mass producing device structures with a variety of geometries ^{3,4,5}. One such technique, point source x-ray lithography (PXRL), using considerably smaller wavelengths than those used by the current state of the art, could assist optical lithography in economically producing future generations of IC's. The characteristics of an x-ray field needed for x-ray lithography (XRL) is critically important to the manufacturing process. The beam must have control over the divergences produced by the finite-wafer-mask distance and the finite source size, the dose must be uniform throughout the field of exposure, the wavelength must be such as to prevent device damage and to maximize the interaction with the photo-resist, and there must be enough intensity to minimize exposure time. Point-source-x-ray-lithography system

  19. Photoresist surface roughness characterization in additive lithography processes for fabrication of phase-only optical vortices

    NASA Astrophysics Data System (ADS)

    Poutous, Menelaos K.; Hosseinimakarem, Zahra; Johnson, Eric G.

    2012-10-01

    Roughness on the surface of phase-only micro-optical elements limits their performance. An optical vortex phase element was fabricated, using additive lithography, with an optimized process to achieve minimal surface roughness. Shipley S1827 photoresist was used in order to obtain the appropriate additive lithography dynamic range for the desired phase profile. We investigated the effects of both postapplied and postexposure baking processes, bias exposure dose, as well as the effects of surfactant in the developer. We found the resist surface roughness to be a function of both the temperature and the time of the postapplication baking cycles, as well as the developer surfactant content. Based on our findings, an empirical correlation model was constructed to relate the process parameters with surface roughness measured quantities. The maximum roughness of the optical surface, for the optimized process, was reduced to 40 percent of the value for the unoptimized process and the additive lithography useful exposure range was increased by 10 percent.

  20. 16 nm-resolution lithography using ultra-small-gap bowtie apertures

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Qin, Jin; Chen, Jianfeng; Zhang, Liang; Ma, Chengfu; Chu, Jiaru; Xu, Xianfan; Wang, Liang

    2017-02-01

    Photolithography has long been a critical technology for nanoscale manufacturing, especially in the semiconductor industry. However, the diffractive nature of light has limited the continuous advance of optical lithography resolution. To overcome this obstacle, near-field scanning optical lithography (NSOL) is an alternative low-cost technique, whose resolution is determined by the near-field localization that can be achieved. Here, we apply the newly-developed backside milling method to fabricate bowtie apertures with a sub-15 nm gap, which can substantially improve the resolution of NSOL. A highly confined electric near field is produced by localized surface plasmon excitation and nanofocusing of the closely-tapered gap. We show contact lithography results with a record 16 nm resolution (FWHM). This photolithography scheme promises potential applications in data storage, high-speed computation, energy harvesting, and other nanotechnology areas.