Science.gov

Sample records for laser-driven ife power

  1. Preliminary Identification of Accident Initiating Events for IFE Power Plants

    SciTech Connect

    Cadwallader, Lee Charles; Latkowsk, J. F.

    2001-10-01

    This paper presents initial results of a task to identify accident initiating events for inertial fusion energy (IFE) power plant designs. Initiating events (IEs) are a fundamental building block of a probabilistic risk assessment; they are the ‘accident starters’ that are analyzed to determine the risks posed to members of the public in the vicinity of the power plant. The IE results for the SOMBRERO design are presented in tabular form. The SOMBRERO design was analyzed since it is representative of dry chamber wall, laser driven designs. This work is used to characterize IFE plant risk and to identify potential design changes that would mitigate the plant risk.

  2. CO2 laser-driven Stirling engine. [space power applications

    NASA Technical Reports Server (NTRS)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  3. Status of IFE safety and environmental activities in the US

    NASA Astrophysics Data System (ADS)

    Reyes, S.; Latkowski, J. F.; Meier, W. R.; Sawan, M.

    2007-07-01

    This paper presents an overview of recent progress in the area of inertial fusion energy (IFE) safety and environment (S&E) in the US. Over the past several years, a significant effort has been devoted towards the development of S&E analyses for future IFE power plants. We have completed the safety assessment of various baseline IFE power plant concepts, including simulation of accident scenarios and accident consequences analyses, S&E studies of candidate target materials and discussions on waste management issues. The results from this work have allowed for a better understanding of the behaviour of radioactive sources and hazardous materials within the IFE power plant, identification of the energy sources that could mobilize those materials in case of an accident and assessment of waste management options for IFE. Currently, ongoing S&E studies for IFE are focusing on emerging design concepts, which include support to the high average power laser (HAPL) program for development of a dry-wall, laser-driven IFE power plant and collaboration with the Z-pinch IFE program for the production of an economically attractive power plant using high-yield Z-pinch-driven targets. In this paper, the main safety issues related to the HAPL and Z-IFE programs are reviewed, some recent safety highlights are presented and future directions in the IFE S&E area are proposed.

  4. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  5. Electricity production from laser-driven fusion reactors: technological aspects of power conversion chambers

    NASA Astrophysics Data System (ADS)

    Kulcinski, Gerald L.

    2000-01-01

    One of the most important considerations for laser driven fusion power plants is the safe and efficient operation of the chamber that contains the thermonuclear energy released from the target. Several approaches to the design of such a chamber are described in this paper and the critical issues associated with protection of the first wall, the performance of the structural materials, and the cost are discussed. Presently, the need for direct drive illumination of the cryogenic targets makes the use of liquid first wall protection problematical at best. The use of dry first walls protected with a few torr of an inert gas seems to hold the most promise.

  6. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  7. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  8. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    SciTech Connect

    Negoita, F. Gugiu, M. Petrascu, H. Petrone, C. Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; and others

    2015-02-24

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr{sub 3}(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  9. Laser-Driven Micro-Ship and Micro-Turbine by Water-Powered Propulsion

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Yamaguchi, Masashi; Yabe, Takashi; Aoki, Keiichi; Oozono, Hirokazu; Oku, Takehiro; Taniguchi, Kazumoto; Nakagawa, Masamichi

    2003-05-01

    In this paper, we report experimental demonstration of propulsion of 100-weight object with only 668mJ/5ns YAG laser. This is made possible by water overlay structure and the effort to reduce the friction by putting the object on water surface or using a levitating system which we call on ``air-slider''. Furthermore, several water supply systems provided the repetitive propulsion. In addition, we found the laser-driven micro-turbine would provide an interesting application area in driving micro-obstacle.

  10. Activation Cross Sections Improvements needed for IFE Power Reactors Designs

    SciTech Connect

    Rodriguez, A; Cabellos, O; Sanz, J; FalQuina, R; Latkowski, J; Reyes, S

    2003-10-02

    Uncertainties in the prediction of the neutron induced long-lived activity in the natural elements from H to Bi due to activation cross section uncertainties are estimated assuming as neutron environment those of the HYLIFE-II and Sombrero vessel structures. The latest available activation cross section data are employed. The random variables used in the uncertainty analysis have been the concentration limits (CL's) corresponding to hands-on recycling, remote recycling and shallow land burial, quantities typically considered in ranking elements under waste management considerations. The CL standard value (CL{sub nom}), i.e. without uncertainties, is compared with the 95th percentile CL value (CL95). The results of the analysis are very helpful in assessing the quality of the current activation data for IFE applications, providing a rational basis for programmatic priority assignments for new cross sections measurements or evaluations. The HYLIFE-II results shown that a significant error is estimated in predicting the activation of several elements. The estimated errors in the Sombrero case are much less important.

  11. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  12. The High-Yield Lithium-Injection Fusion-Energy (HYLIFE)-II inertial fusion energy (IFE) power plant concept and implications for IFE

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1995-06-01

    In the High-Yield Lithium-Injection Fusion-Energy (HYLIFE) power plant design, lithium is replaced by molten salt. HYLIFE-II [Fusion Technol. 25, 5 (1994)] is based on nonflammable, renewable-liquid-wall fusion target chambers formed with Li2BeF4 molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect-drive targets. Building fusion chambers from existing materials with life-of-plant structural walls behind the liquid walls, while still meeting non-nuclear grade construction and low-level waste requirements, has profound implications for inertial fusion energy (IFE) development. Fluid-flow work and computational fluid dynamics predict chamber clearing adequate for 6 Hz pulse rates. Predicted electricity cost is reduced about 30% to 4.4¢/kWh at 1 GWe and 3.2¢/kWh at 2 GWe. Development can be foreshortened and cost reduced by obviating expensive neutron sources to develop first-wall materials. The driver and chamber can be upgraded in stages, avoiding separate and sequential facilities. Important features of a practical IFE power plant are ignition and sufficient gain in targets; low-cost, efficient, rep-ratable driver; and low-cost targets.

  13. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  14. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  15. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  16. The HYLIFE-2 inertial fusion energy power plant concept and implications for IFE

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1994-11-01

    HYLIFE-II is based on nonflammable, renewable-liquid-wall fusion target chambers formed with Li2BeF4 molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect-drive targets. Building fusion chambers from existing materials with life-of-plant structural walls behind the liquid walls, while still meeting non-nuclear grade construction and low-level waste requirements, has profound implications for IFE development. Fluid-flow work and computational fluid dynamics predict chamber clearing adequate for 6-Hz pulse rates. Predicted electricity cost is reduced about 30% to 4.4 cents/kWh at 1 GWe. Development can be foreshortened and cost reduced by obviating expensive neutron sources to develop first-wall materials. The driver and chamber can be upgraded in stages, avoiding separate and sequential facilities. The most important features of a practical inertial fusion power plant are sufficient ignition and gain in targets; a low-cost, efficient, rep-ratable driver; and low-cost targets.

  17. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  18. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  19. Photonic laser-driven accelerator for GALAXIE

    SciTech Connect

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B.

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  20. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    NASA Astrophysics Data System (ADS)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  1. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    PubMed

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-09

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  2. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    PubMed Central

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  3. Economic Systems Modeling for Laser IFE and the Potential advantages of Fast Ignition

    SciTech Connect

    Meier, W R

    2006-06-06

    An updated systems code for a laser-driven IFE power plant has been developed as part of the U.S. High Average Power Laser (HAPL) program. The cost of electricity (COE) is calculated using standardized methods for fusion reactor studies. In this paper, we describe the systems code and present results for capital cost and COE as a function of key design variables and parameters. We show how the COE varies as a function of driver energy and pulse repetition rate for different lasers. We examine the dependence of COE on other parameters such as laser cost ($/J), laser efficiency, plant efficiency, and net power output of the plant. Finally we compare results for a plant using direct-drive central ignition targets to results with fast ignition targets and note the potential advantages of fast ignition for various assumptions.

  4. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 1, Executive summary and overview, Final report

    SciTech Connect

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe.

  5. DOSIMETRIC EVALUATION OF LASER-DRIVEN X-RAY AND NEUTRON SOURCES UTILIZING XG-III PS LASER WITH PEAK POWER OF 300 TERAWATT.

    PubMed

    Yang, Bo; Qiu, Rui; Jiao, Jinlong; Lu, Wei; Zhang, Zhimeng; Zhou, Weimin; Ma, Chi; Zhang, Hui; Li, Junli

    2017-04-13

    Current short-pulse high-intensity lasers can accelerate electrons and proton/ions to energies of giga-electron volts. For certain advanced applications, laser-accelerated electrons and protons are optimised for high-energy X-ray and neutron generation at the XG-III picosecond (ps) laser beamline. These energetic X-ray and neutron beams can significantly affect radiation safety at the facility; therefore, proper evaluation of the radiological hazards induced by laser-driven X-ray and neutron sources is required. This study presents a dosimetric evaluation of laser-driven X-ray and neutron sources at the XG-III ps laser beamline. The 'source terms' of the laser-accelerated electrons and protons are characterised utilising the particle-in-cell method and an analytical model, respectively. The Monte Carlo code FLUKA is used to calculate prompt and residual dose yields due to all radiation field components and the number of residual activated nuclei. Our results can provide a reference for radiation hazard analysis at short-pulse high-intensity laser facilities worldwide. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Progress and critical issues for IFE blanket and chamber research

    SciTech Connect

    Abdou, M.; Kulcinski, G.L.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.; Schultz, K.R.; Tillack, M.S.

    1999-06-23

    Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.

  7. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  9. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  10. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  11. High-average power 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2017-02-01

    Thulium-doped fiber lasers are an attractive concept for the generation of mid-infrared (mid-IR) ultrashort pulses around 2 μm wavelength with an unprecedented average power. To date, these systems deliver >150 W of average power and GW-class pulse peak powers with output pulse durations of a few hundreds of fs. As some applications can greatly benefit from even shorter pulse durations, the spectral broadening and subsequent temporal pulse compression can be a key enabling technology for high average power few-cycle laser sources around 2 μm wavelength. In this contribution we demonstrate the nonlinear compression of ultrashort pulses from a high repetition rate Tm-doped fiber laser using a nitrogen gas-filled hollow capillary. Pulses with 4 GW peak power, 46 fs FWHM duration at an average power of 15.4 W have been achieved. This is, to the best of our knowledge, the first 2 μm laser delivering intense, GW-pulses with sub 50-fs pulse duration and an average power of >10 W. Based on this result, we discuss the next steps towards a 100 W-level, GW-class few-cycle mid-IR laser.

  12. Summary of IFE Activities at LLNL

    SciTech Connect

    Meier, W; Barnard, J; Callahan-Miller, B D; Payne, S

    2001-05-18

    Lawrence Livermore National Laboratory (LLNL) is engaged in a broad range of activities that support the development of Inertial Fusion Energy (IFE). These include (1) the construction of the National Ignition Facility (NIF); (2) target design for both laser and heavy ion drivers, including work on fast ignition; (3) heavy ion driver development; (4) diode pumped solid state laser (DPSSL) development; and (5) chamber and power plant design and assessment activities. These efforts are summarized in this report.

  13. Laser Driven, Extreme Compression Science

    NASA Astrophysics Data System (ADS)

    Eggert, Jon

    2014-03-01

    Extreme-compression science is blessed by a number of new techniques and facilities that are shattering previous experimental limitations: static pressures above 600 GPa, equation of state (EOS) experiments on pulsed-power machines, picosecond-resolved x-ray diffraction on free-electron lasers, and many new experiments on high-energy lasers. Our goals, using high-energy lasers, have been to push the limits of high pressure accessible to measurement and to bridge the gap between static- and dynamic-compression experiments by exploring off-Hugoniot states. I will review laser techniques for both shock- and ramp-compression experiments, and discuss a variety of diagnostics. I will present recent results including: impedance-matching Hugoniot experiments, absolute-Hugoniot implosive-shock radiography, coupled radiometry and velocimetry, ramp-compression EOS, and in-situ x-ray diffraction and absorption spectroscopy into the TPa regime. As the National Ignition Facility (NIF) transitions to a laser user facility for basic and applied science, we are transferring many of these techniques. The unprecedented quality and variety of diagnostics available, coupled with exquisite pulse-shaping predictability and control make the NIF a premier facility for extreme-compression experiments.

  14. Laser Driven, Extreme Compression Science

    NASA Astrophysics Data System (ADS)

    Eggert, Jon

    2013-06-01

    Extreme-compression science is blessed by a number of new techniques and facilities that are shattering previous experimental limitations: static pressures above 600 GPa, equation of state (EOS) experiments on pulsed-power machines, picosecond-resolved x-ray diffraction on free-electron lasers, and many new experiments on high-energy lasers. Our goals, using high-energy lasers, have been to push the limits of high pressure accessible to measurement and to bridge the gap between static- and dynamic-compression experiments by exploring off-Hugoniot states. I will review laser techniques for both shock- and ramp-compression experiments, and discuss a variety of diagnostics. I will present recent results including: impedance-matching Hugoniot experiments, absolute-Hugoniot implosive-shock radiography, coupled radiometry and velocimetry, ramp-compression EOS, and in-situ x-ray diffraction and absorption spectroscopy into the TPa regime. As the National Ignition Facility (NIF) transitions to a laser user facility for basic and applied science, we are transferring many of these techniques. The unprecedented quality and variety of diagnostics available, coupled with exquisite pulse-shaping predictability and control make the NIF a premier facility for extreme-compression experiments.

  15. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  16. Transition state theory for laser-driven reactions

    SciTech Connect

    Kawai, Shinnosuke; Bandrauk, Andre D.; Jaffe, Charles; Bartsch, Thomas; Palacian, Jesus; Uzer, T.

    2007-04-28

    Recent developments in transition state theory brought about by dynamical systems theory are extended to time-dependent systems such as laser-driven reactions. Using time-dependent normal form theory, the authors construct a reaction coordinate with regular dynamics inside the transition region. The conservation of the associated action enables one to extract time-dependent invariant manifolds that act as separatrices between reactive and nonreactive trajectories and thus make it possible to predict the ultimate fate of a trajectory. They illustrate the power of our approach on a driven Henon-Heiles system, which serves as a simple example of a reactive system with several open channels. The present generalization of transition state theory to driven systems will allow one to study processes such as the control of chemical reactions through laser pulses.

  17. Hydrodynamic analysis of laser-driven cylindrical implosions

    SciTech Connect

    Ramis, R.

    2013-08-15

    Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.

  18. Studying astrophysical particle acceleration with laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  19. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  20. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  1. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  2. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  3. Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    2016-10-01

    Collisionless shocks - supersonic plasma flows in which the interaction length scale is much shorter than the collisional mean free path - are common phenomena in space and astrophysical systems, including the solar wind, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei. These systems have been studied for decades, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present experiments that demonstrate the formation of collisionless shocks utilizing the Phoenix laser laboratory and the LArge Plasma Device (LAPD) at UCLA. We also show recent observations of magnetized collisionless shocks on the Omega EP laser facility that extend the LAPD results to higher laser energy, background magnetic field, and ambient plasma density, and that may be relevant to recent experiments on strongly driven magnetic reconnection. Lastly, we discuss a new experimental regime for shocks with results from high-repetition (1 Hz), volumetric laser-driven measurements on the LAPD. These large parameter scales allow us to probe the formation physics of collisionless shocks over several Alfvénic Mach numbers (MA), from shock precursors (magnetosonic solitons with MA < 1) to subcritical (MA < 3) and supercritical (MA > 3) shocks. The results show that collisionless shocks can be generated using a laser-driven magnetic piston, and agree well with both 2D and 3D hybrid and PIC simulations. Additionally, using radiation-hydrodynamic modeling and measurements from multiple diagnostics, the different shock regimes are characterized with dimensionless formation parameters, allowing us to place disparate experiments in a common and predictive framework.

  4. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  5. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  6. Laser-driven magnetized liner inertial fusion

    DOE PAGES

    Davies, J. R.; Barnak, D. H.; Betti, R.; ...

    2017-06-05

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  7. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  8. Laser-driven magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Sefkow, A. B.; Peterson, K. J.; Sinars, D. B.; Weis, M. R.

    2017-06-01

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ˜10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ˜200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.

  9. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  10. Effect of Multi-Shot X-Ray Exposures in IFE Armor Materials

    SciTech Connect

    Latkowski, J F; Abbott, R P; Schmitt, R C; Bell, B K

    2004-12-10

    As part of the High Average Power Laser (HAPL) program the performance of tungsten as an armor material is being studied. While the armor would be exposed to neutrons, x-rays and ions within an inertial fusion energy (IFE) power plant, the thermomechanical effects are believed to dominate. Using a pulsed x-ray source, long-term exposures of tungsten have been completed at fluences that are of interest for the IFE application. Modeling is used in conjunction with experiments on the XAPPER x-ray damage facility in an effort to recreate the effects that would be expected in an operating IFE power plant. X-ray exposures have been completed for a variety of x-ray fluences and number of shots. Analysis of the samples suggests that surface roughening has a threshold that is very close to the fluences that reproduce the peak temperatures expected in an IFE armor material.

  11. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W.R.; Raffray, A.R.; Abdel-Khalik, S.I.; Kulcinski, G.L.; Latowski, J.F.; Najmabadi, F.; Olson, C.L.; Peterson, P.F.; Ying, A.; Yoda, M.

    2003-07-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including drywall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall (favored by heavy ion and z-pinch drivers). Recent progress and remaining challenges in developing IFE chambers are reviewed.

  12. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  13. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy.

    PubMed

    Khaghani, Dimitri; Lobet, Mathieu; Borm, Björn; Burr, Loïc; Gärtner, Felix; Gremillet, Laurent; Movsesyan, Liana; Rosmej, Olga; Toimil-Molares, Maria Eugenia; Wagner, Florian; Neumayer, Paul

    2017-09-12

    The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pulses of intensities ~10(17-18) W/cm(2). In comparison with standard planar targets, we witness strongly enhanced hot-electron production and proton acceleration both in terms of maximum energies and particle numbers. Supporting our experimental results, two-dimensional particle-in-cell simulations show an increase in laser energy conversion into hot electrons, leading to stronger acceleration fields. This opens a window of opportunity for further improvements of laser-driven ion acceleration systems.

  14. Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.

    2016-10-01

    Magneto-inertial fusion (MIF) is an approach that combines the implosion and compression of fusion fuel (a hallmark of inertial fusion) with strongly magnetized plasmas that suppress electron heat losses (a hallmark of magnetic fusion). It is of interest because it could potentially reduce some of the traditional velocity, pressure, and convergence ratio requirements of inertial confinement fusion (ICF). The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed to enable a test of the scaling of MagLIF over a range of absorbed energy from of the order of 20 kJ (on OMEGA) to 500 kJ (on Z). It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for the Omega Laser Facility that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diam plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a 10-T axial magnetic field, generated by MIFEDS (magneto-inertial fusion electrical discharge system), the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over a 0.7-mm height have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. Preliminary results from the first integrated experiments combining magnetization, compression, and preheat will be reported for the first time. The scaling of laser-driven MagLIF from OMEGA up to the 1800 kJ available on the NIF (National Ignition Facility) will also be described briefly. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Ultra-bright laser-driven neutron source

    NASA Astrophysics Data System (ADS)

    Roth, M.; Favalli, A.; Bagnoud, V.; Bridgewater, J.; Deppert, O.; Devlin, M.; Falk, K.; Fernndez, J.; Gautier, D.; Guler, N.; Henzlova, D.; Hornung, J.; Iliev, M.; Ianakiev, K.; Kleinschmidt, A.; Koehler, K.; Palaniyappan, S.; Poth, P.; Schaumann, G.; Swinhoe, M.; Taddeucci, T.; Tebartz, A.; Wagner, Florian; Wurden, G.

    2015-11-01

    Short-pulse laser-driven neutron sources have become a topic of interest since their brightness and yield have recently increased by orders of magnitude. Using novel target designs, high contrast - high power lasers and compact converter/moderator setups, these neutron sources have finally reached intensities that make many interesting applications possible. We present the results of two experimental campaigns on the GSI PHELIX and the LANL Trident lasers from 2015. We have produced an unprecedented neutron flux, mapped the spatial distribution of the neutron production as well as its energy spectra and ultimately used the beam for first applications to show the prospect of these new compact sources. We also made measurements for the conversion of energetic neutrons into short epithermal and thermal neutron pulses in order to evaluate further applications in dense plasma research. The results address a large community as it paves the way to use short pulse lasers as a neutron source. This can open up neutron research to a broad academic community including material science, biology, medicine and high energy density physics to universities and therefore can complement large scale facilities like reactors or particle accelerators.

  16. Particle acceleration in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2016-10-01

    Particle acceleration induced by magnetic reconnection is a promising candidate for producing the nonthermal emissions associated with explosive astrophysical phenomena. We have used two- and three-dimensional particle-in-cell simulations to explore the possibility of studying particle acceleration from reconnection in laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies up to two orders of magnitude larger than the initial thermal energy. The nonthermal electrons gain energy primarily by the reconnection electric field near the X-points, and particle injection into the reconnection layer and escape from the finite system establishes a distribution of energies resembling a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for suprathermal electron acceleration in terms of experimentally tunable parameters. Finally, we investigate future experiments with a more energetic laser drive and larger system size. We discuss the influence of plasmoids on the particle acceleration, and the use of proton radiography to probe plasmoids. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  17. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  18. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  19. All-laser-driven Thomson X-ray sources

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald P.

    2015-10-01

    We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications - in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

  20. Nuclear Design Considerations for Z-IFE Chambers

    SciTech Connect

    Meier, W R; Schmitt, R C; Abbott, R P; Latkowski, J F; Reyes, S

    2005-02-02

    Z-pinch driven IFE (Z-IFE) requires the design of a repetitive target insertion system that allows coupling of the pulsed power to the target with adequate standoff, and a chamber that can withstand blast and radiation effects from large yield targets. The present strategy for Z-IFE is to use high yield targets ({approx}2-3 GJ/shot), low repetition rate per chamber ({approx}0.1 Hz), and 10 chambers per power plant. In this study, we propose an alternative power plant configuration that uses very high yield targets (20 GJ/shot) in a single chamber operating at 0.1 Hz. A thick-liquid-wall chamber is proposed to absorb the target emission (x-rays, debris and neutrons) and mitigate the blast effects on the chamber wall. The target is attached to the end of a conical shaped Recyclable Transmission Line (RTL) made from a solid coolant (e.g., frozen flibe), or a material that is easily separable from the coolant (e.g., steel). The RTL/target assembly is inserted through a single opening at the top of the chamber for each shot. This study looks at the RTL material choice from a safety and environmental point of view. Materials were assessed according to waste disposal rating (WDR) and contact dose rate (CDR). Neutronics calculations, using the TART2002 Monte Carlo code from Lawrence Livermore National Laboratory (LLNL), were performed for the RTL and Z-IFE chamber, and key results reported here.

  1. Laser-driven magnetized liner inertial fusion on OMEGA

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Davies, J. R.; Betti, R.; Bonino, M. J.; Campbell, E. M.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; Regan, S. P.; Sefkow, A. B.; Harvey-Thompson, A. J.; Peterson, K. J.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Chang, P.-Y.

    2017-05-01

    Magneto-inertial fusion (MIF) combines the compression of fusion fuel, a hallmark of inertial confinement fusion (ICF), with strongly magnetized plasmas that suppress electron heat losses, a hallmark of magnetic fusion. It can reduce the traditional velocity, pressure, and convergence ratio requirements of ICF. The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed on OMEGA to test the scaling of MagLIF over a range of absorbed energy of the order of 1 kJ on OMEGA to 500 kJ on Z. It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for OMEGA that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diameter plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a ˜10-T axial magnetic field, generated by a Magneto-inertial fusion electrical discharge system, the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over 0.7 mm have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. The preliminary results from the first integrated experiments combining magnetization, compression, and preheat demonstrating a roughly 2 x increase in the neutron yield will be reported here for the first time.

  2. Particle acceleration in laser-driven magnetic reconnection

    DOE PAGES

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-03

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order ofmore » magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. Finally, these results open the way for novel experimental studies of particle acceleration induced by reconnection.« less

  3. Particle acceleration in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-01

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order of magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. These results open the way for novel experimental studies of particle acceleration induced by reconnection.

  4. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  5. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  6. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  7. Interferometry and high speed photography of laser-driven flyer plates

    SciTech Connect

    Paisley, D.L.; Montoya, N.I.; Stahl, D.B.; Garcia, I.A.

    1989-01-01

    Laser-driven thin (2-10-/mu/ thick) plates of aluminum and copper are accelerated to velocities /ge/5 km/s by a 1.06-/mu/ wavelength Nd:YAG 8-10 ns FWHM laser pulse at power densities 0.7-4.0 GW/cm/sup 2/. Accelerations /ge/10/sup 9/ km/s/sup 2/ have been achieved. The acceleration and velocity of these 0.4-1.0-mm-diameter plates are experimentally recorded by velocity interferometry (VISAR) and the planarity of impact by streak photography. 6 refs., 7 figs.

  8. Dry-Wall Survival Under IFE Conditions

    SciTech Connect

    Raffray, A.R.; El-Guebaly, L.; Federici, G.; Haynes, D.; Najmabadi, F.; Petti, D.

    2004-11-15

    The chamber wall armor is subject to demanding conditions in inertial fusion energy (IFE) chambers. IFE operation is cyclic in nature, and key issues are (a) chamber evacuation to ensure that after each shot the chamber returns to a quiescent state in preparation for the target injection and the firing of the driver for the subsequent shot and (b) armor lifetime that requires that the armor accommodate the cyclic energy deposition while providing the required lifetime. Armor erosion would impact both of these requirements. Tungsten and carbon are considered as armor for IFE dry-wall chambers based on their high-temperature and high-heat-flux accommodation capabilities. This paper assesses the requirements on armor imposed by the operating conditions in IFE, including energy deposition density, time of deposition, and frequencies; describes their impact on the performance of the candidate armor materials; and discusses the major issues.

  9. Intrinsic normalized emittance growth in laser-driven electron accelerators

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A. R.; Serafini, L.; Antici, P.

    2013-01-01

    Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m) generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  10. Picosecond metrology of laser-driven proton bursts

    PubMed Central

    Dromey, B.; Coughlan, M.; Senje, L.; Taylor, M.; Kuschel, S.; Villagomez-Bernabe, B.; Stefanuik, R.; Nersisyan, G.; Stella, L.; Kohanoff, J.; Borghesi, M.; Currell, F.; Riley, D.; Jung, D.; Wahlström, C.-G.; Lewis, C.L.S.; Zepf, M.

    2016-01-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter. PMID:26861592

  11. Pulsed X-Ray Exposures and Modeling for Tungsten as an IFE First Wall Material

    SciTech Connect

    Latkowski, J F; Abbott, R P; Schmitt, R C

    2004-09-21

    Dry-wall inertial fusion energy (IFE) power plants must survive repeated exposure to target threats that include x-rays, ions, and neutrons. While this exposure may lead to sputtering, exfoliation, transmutation, and swelling, more basic effects are thermomechanical in nature. In the present work, we use the newly developed RadHeat code to predict time-temperature profiles in a tungsten armor, which has been proposed for use in an IFE power plant. The XAPPER x-ray damage experiment is used to simulate thermal effects by operating at fluences that produce similar peak temperatures, temperature gradients, or thermomechanical stresses. Soft x-ray fluences in excess of 1 J/cm{sup 2} are possible. Using RadHeat, we determine the XAPPER x-ray fluence needed to simulate thermomechanical effects expected in a typical IFE case of interest. Here, we report our findings and detail directions for future experiments and modeling.

  12. Recent developments in laser-driven polarized sources

    NASA Astrophysics Data System (ADS)

    Young, L.; Coulter, K. P.; Holt, R. J.; Kinney, E. R.; Kowalczyk, R. S.; Potterveld, D. H.; Zghiche, A.

    1990-12-01

    Recent progress in the performance of laser-driven sources of polarized hydrogen and deuterium is described. The current status of the prototype source, I = 2.5 times 10(exp 17)s(exp -1), polarization = 0.29 (including atomic fraction), is comparable to classical Stern-Gerlach sources. A scheme to improve source performance by approximately an order of magnitude, using a combination of optical-pumping spin-exchange and RF transitions, is outlined.

  13. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  14. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  15. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  16. Propagation and Interactions of Ultrahigh Power Light: Relativistic Nonlinear Optics

    DTIC Science & Technology

    2014-09-30

    3 1. Controllable laser pulses from the high-power Diocles laser system ...................................... 4 1.1...phase control for transform limited pulses .............................. 7 2. Laser -driven wakefield acceleration...14 3. Laser -driven x-ray source

  17. IFE Final Optics and Chamber Dynamics Modeling and Experiments Final Technical Report

    SciTech Connect

    F. Najmabadi; M. S. Tillack

    2006-01-11

    Our OFES-sponsored research on IFE technology originally focused on studies of grazing-incidence metal mirrors (GIMM's). After the addition of GIMM research to the High Average Power Laser (HAPL) program, our OFES-sponsored research evolved to include laser propagation studies, surface material evolution in IFE wetted-wall chambers, and magnetic intervention. In 2003, the OFES IFE Technology program was terminated. We continued to expend resources on a no-cost extension in order to complete student research projects in an orderly way and to help us explore new research directions. Those explorations led to funding in the field of extreme ultraviolet lithography, which shares many issues in common with inertial fusion chambers, and the field of radiative properties of laser-produced plasma.

  18. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  19. Seeding Magnetic Fields for Laser-Driven Flux Compression in High-Energy-Density Plasmas

    SciTech Connect

    Gotchev, O.V.; Knauer, J.P.; Chang, P.Y.; Jang, N.W.; Shoup III, M.J.; Meyerhofer, D.D.; Betti, R.

    2010-03-23

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity—a way of reaching higher gains than is possible with conventional ICF.

  20. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas

    SciTech Connect

    Gotchev, O. V.; Knauer, J. P.; Shoup, M. J. III; Chang, P. Y.; Jang, N. W.; Meyerhofer, D. D.; Betti, R.

    2009-04-15

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 {Omega}) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity--a way of reaching higher gains than is possible with conventional ICF.

  1. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  2. Electron Weibel Instability Mediated Laser Driven Electromagnetic Collisionless Shock

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Mima, Kunioki; Cai, Hong-Bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X. T.

    2015-11-01

    As a fundamental nonlinear structure, collisionless shock is widely studied in astrophysics. Recently, the rapidly-developing laser technology provides a good test-bed to study such shock physics in laboratory. In addition, the laser driven shock ion acceleration is also interested due to its potential applications. We explore the effect of external parallel magnetic field on the collisionless shock formation and resultant particle acceleration by using the 2D3V PIC simulations. We show that unlike the electrostatic shock generated in the unmagnetized plasma, the shock generated in the weakly-magnetized laser-driven plasma is mostly electromagnetic (EM)-like with higher Mach number. The generation mechanism is due to the stronger transverse magnetic field self-generated at the nonlinear stage of the electron Weibel instability which drastically scatters particles and leads to higher energy dissipation. Simulation results also suggest more ions are reflected by this EM shock and results in larger energy transfer rate from the laser to ions, which is of advantage for applications such as neutron production and ion fast ignition.

  3. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator.

    PubMed

    Gopal, A; Herzer, S; Schmidt, A; Singh, P; Reinhard, A; Ziegler, W; Brömmel, D; Karmakar, A; Gibbon, P; Dillner, U; May, T; Meyer, H-G; Paulus, G G

    2013-08-16

    We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

  4. Laser driven MeV proton beam focussing by auto-charged electrostatic lens configuration

    NASA Astrophysics Data System (ADS)

    Kar, S.; Markey, K.; Simpson, P. T.; Bellei, C.; Green, J. S.; Nagel, S. R.; Kneip, S.; Carroll, D. C.; Dromey, B.; Willingale, L.; Clark, E. L.; McKenna, P.; Najmudin, Z.; Krushelnick, K.; Norreys, P.; Clarke, R. J.; Neely, D.; Borghesi, M.; Schiavi, A.; Zepf, M.

    2008-06-01

    Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 109 V/m) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.

  5. Density-transition based electron injector for laser driven wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Buck, A.; Sears, C. M. S.; Mikhailova, J. M.; Tautz, R.; Herrmann, D.; Geissler, M.; Krausz, F.; Veisz, L.

    2010-09-01

    We demonstrate a laser wakefield accelerator with a novel electron injection scheme resulting in enhanced stability, reproducibility, and ease of use. In order to inject electrons into the accelerating phase of the plasma wave, a sharp downward density transition is employed. Prior to ionization by the laser pulse this transition is formed by a shock front induced by a knife edge inserted into a supersonic gas jet. With laser pulses of 8 fs duration and with only 65 mJ energy on target, the accelerator produces a monoenergetic electron beam with tunable energy between 15 and 25 MeV and on average 3.3 pC charge per electron bunch. The shock-front injector is a simple and powerful new tool to enhance the reproducibility of laser-driven electron accelerators, is easily adapted to different laser parameters, and should therefore allow scaling to the energy range of several hundred MeV.

  6. Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Aurand, B.; Brown, C. G.; Constantin, C. G.; Everson, E. T.; Glenzer, S. H.; Schaeffer, D. B.; Tauschwitz, A.; Niemann, C.

    2012-07-01

    Laser-produced plasmas are often used as bright x-ray backlighters for time-resolved plasma diagnostics, but such backlighters simultaneously generate damaging electromagnetic pulse (EMP). A laser-driven Ar gas jet x-ray source has been measured with magnetic flux B-dot probes to produce 20 times ±37% less integrated EMP in the 0.5-2.5 GHz band than a solid chlorinated plastic foil, while retaining 85% of the laser to ≈3 keV x-ray conversion efficiency. These results are important for future backlighter development, since tailoring target density may provide a way to reduce EMP even as laser power increases.

  7. Flyer Velocity Characteristics of the Laser-Driven Miniflyer System

    SciTech Connect

    Gehr, R.J.; Harper, R.W.; Robbins, D.L.; Rupp, T.D.; Sheffield, S.A.; Stahl, D.B.

    1999-07-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity, are discussed.

  8. Spectral and spatial characterisation of laser-driven positron beams

    SciTech Connect

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  9. Investigation of Laser Driven Charge Clusters in Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Njoya, Oumarou; Tsang, Thomas; Tarka, Michal; Fairbank, William; Kumar, Krishna; Rao, Triveni; nEXO Collaboration

    2017-01-01

    We report on progress made in testing the concept of a laser driven in-situ electron lifetime monitoring system for a large Liquid Xenon Time Projection Chamber (LXe TPC). In our setup we use a 150-ns, 262-nm UV pulse (4th harmonic of YLF laser) to generate electrons from a gold photocathode; the laser couples to the photocathode via a 600- μm optical fiber. The electrons drift 20-mm in a uniform electric field inside the LXe-filled cell. The drift velocity and effects of diffusion are measured. Our setup is able to distinguish photo-emission due to gold from the multi-photon ionization of LXe by different drift times; this allows us to infer the cross section of the two-photon ionization process in LXe. Finally, we discuss preliminary studies of the stability, quantum efficiency, and work function of gold in a Xe environment. Department of Energy.

  10. Spectral and spatial characterisation of laser-driven positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2017-01-01

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  11. Ultrafast laser-driven proton sources and dynamic proton imaging

    SciTech Connect

    Nickles, Peter V.; Schnuerer, Matthias; Sokollik, Thomas; Ter-Avetisyan, Sargis; Sandner, Wolfgang; Amin, Munib; Toncian, Toma; Willi, Oswald; Andreev, Alexander

    2008-07-15

    Ion bursts, accelerated by an ultrafast (40 fs) laser-assisted target normal sheath acceleration mechanism, can be adjusted so as to deliver a nearly pure proton beam. Such laser-driven proton bursts have predominantly a low transverse emittance and a broad kinetic spectrum suitable for continuous probing of the temporal evolution of spatially extended electric fields that arise after laser irradiation of thin foils. Fields with a strength of up to 10{sup 10} V/m were measured with a new streaklike proton deflectometry setup. The data show the temporal and spatial evolution of electric fields that are due to target charge-up and ion-front expansion following intense laser-target interaction at intensities of 10{sup 17}-10{sup 18} W/cm{sup 2}. Measurement of the field evolution is important to gain further insight into lateral electron-transport processes and the influence of field dynamics on ion beam properties.

  12. Spectral and spatial characterisation of laser-driven positron beams

    DOE PAGES

    Sarri, G.; Warwick, J.; Schumaker, W.; ...

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less

  13. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  14. Laser-Driven Shock Compression Results on Deuterium

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Moon, S. J.; Foord, M. E.; Boehly, T. R.; Collins, T. J. B.; Vianello, E.; Jacobs-Perkins, D.; Meyerhofer, D. D.

    2003-10-01

    Laser-driven shock wave experiments have been performed at OMEGA to explore the equation of state of deuterium under double and single shock compression. We have developed a new technique of using a calibrated, high-pressure transparent material, quartz, which has enabled precision optical interferometer measurements of shock velocities. This approach significantly reduces the possibility of systematic error arising from shock unsteadiness. In the double-shock experiments, where quartz is used as a re-shock anvil, the results indicate deuterium has a compressibility that is close to the new SESAME and ab initio models below 1 Mbar but exhibits higher compressibility at larger pressures. In the single-shock, aluminum impedance-match experiments, quartz is used to accurately infer the shock velocity in aluminum; results from these recent experiments will be presented.

  15. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  16. Classical chaos and harmonic generation in laser driven nanorings

    NASA Astrophysics Data System (ADS)

    Castiglia, Giuseppe; Corso, Pietro Paolo; Cricchio, Dario; De Giovannini, Umberto; Frusteri, Biagio; Fiordilino, Emilio

    2016-12-01

    A quantum ring driven by an intense laser field emits light in the form of high-harmonic radiation resulting from the strong acceleration experienced by the active electrons forced to move on a curved trajectory. The spectrum of the emitted light is rich and strongly dependent on the parameters of the problem. In order to investigate the physical origin of such variability, we focus on the seemingly simple problem of a laser-driven charge constrained to a ring from a classical standpoint. As it turns out, the dynamics of such a classical electron is governed by a nonlinear equation which results into a chaotic motion—by nature depending on the initial conditions in an unpredictable way. Our results indicate that the quantum harmonic spectra are reminiscent of the classical counterpart and suggest the existence of a line connecting the quantum and classical realms.

  17. Laser-driven injector of electrons for IOTA

    NASA Astrophysics Data System (ADS)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  18. Characterization of short-pulse laser driven neutron source

    NASA Astrophysics Data System (ADS)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  19. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  20. Pulsed radiobiology with laser-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  1. Edge-pumped multi-slab amplifier for inertial fusion energy (IFE)

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Xiaomin; Li, Mingzhong; Cui, Xudong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang

    2016-11-01

    We proposed a novel laser amplifier for inertial fusion energy (IFE) based on an edge-pumped, gas-cooled multi-slab architecture. Compared to the face-pumped laser amplifiers for IFE, this architecture enables the pump, coolant and laser propagating orthogonally in the amplifier, thereby decoupling them in space and being beneficial to construction of the amplifier. To satisfy the high efficiency required for IFE, high-irradiance rectangle-waveguide coupled diode laser arrays are employed in the edge-pumped architecture and the pump light will be homogenized by total internal reflection. A traverse gradient doping profile is applied to the gain media, thus the pump absorption and gain uniformity can be separately optimized. Furthermore, the laser beam normal to the surfaces of the gas-cooled slabs will experience minimum thermal wavefront distortions in the amplifier head and ensure high beam quality. Since each slab has its own pump source and uniform gain in the aperture, power scaling can be easily achieved by placing identical slabs along the laser beam axis. Our investigations might provide an efficient and convenient way to design and optimize the amplifiers for IFE.

  2. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  3. Experimental studies of laser target interactions in an ambient gas, under IFE conditions

    NASA Astrophysics Data System (ADS)

    Stamper, J. A.; Lehmberg, R. H.; Lehecka, T.; Deniz, A. V.; McLean, E. A.; Sethian, J. D.

    2004-07-01

    Studies of reactor designs for inertial fusion energy (IFE) have indicated that some of the material requirements can be alleviated if the target chamber is filled with a low-pressure inert gas (<1 Torr). The experiments described in this paper examine the effects of such an ambient gas on the laser-target interactions relevant to laser-driven IFE. These experiments used the Nike KrF laser facility at the Naval Research Laboratory to irradiate uncoated 78 µm thick polystyrene (CH) foil targets at focal intensities around 1014 W cm-2. They compared the laser-target interactions in different inert gases (xenon, argon or krypton) at several ambient pressures up to 1 Torr with that of the vacuum (reference) case. The diagnostics included streaked rear-surface emission at wavelengths 460-540 nm and side-on shadowgraphy at 263 nm. The results of this study were encouraging. In spite of initial concerns about resonantly enhanced nonlinear optical effects in the Xe gas, we found no evidence of laser beam break-up, spreading, or attenuation. The shock breakout profiles (from emitted light) and the front and rear surface plasma profiles (from shadowgraphy) remained smooth and symmetric in all cases. The central shock breakout times, and thus the central laser irradiances, were about the same for the target in an inert gas as in vacuum. Our analysis indicates that the large nonlinear optical processes in atomic Xe are self-limiting because the converging beam ionizes the gas, thereby removing the atoms from the most intense part.

  4. Small Inertial Fusion Energy (IFE) demonstration reactors

    SciTech Connect

    Hogan, W.J.

    1991-10-03

    ICF target design studies done for the Nova Upgrade have identified conditions under which the target ignition ``cliff`` is shifted to much lower drive energy albeit with the penalty that the gain achieved at a given energy is also smaller. These targets would repeatedly produce the output and spectra of a higher gain targets at low yield. They should, thus, allow building much smaller R&D reactors with full thermonuclear effects. Demonstration reactor at the 1 to 100 MW{sub e} level appear to be feasible with driver energies of 0.5 to 2.0 MJ per pulse. These smaller, less expensive test and demonstration facilities should result in lower IFE development cost. If the U.S. government builds a driver and target factory, it is also conceivable that commercial organizations could build their own scaled concepts of IFE reactors using the beams and targets supplied by the government`s facilities.

  5. Sexual assault in Ile-Ife, Nigeria

    PubMed Central

    Badejoko, Olusegun Olalekan; Anyabolu, Henry Chineme; Badejoko, Bolaji Olusola; Ijarotimi, Adebimpe Omotade; Kuti, Oluwafemi; Adejuyigbe, Ebunoluwa Aderonke

    2014-01-01

    Background: Sexual assault (SA) is a shattering malevolence against women. This study determined the burden, periodicity, presentation and management of SA in Ile-Ife, Nigeria. Materials and Methods: Retrospective analysis of the hospital records of 76 SA survivors managed over a 5-year period (2007-2011) in Obafemi Awolowo University Teaching Hospitals complex (OAUTHC), Ile-Ife. Results: Sexual assault accounted for 0.69% of all female and 5.2% of all gynaecological emergencies in OAUTHC, Ile-Ife. The survivors’ ages ranged from 4 to 50 years (mean = 17.7 ± 8.8years) and adolescents made up for 48%. The peak prevalence of SA was in February and December and among adults and under-16-year-old survivors, respectively. Daytime and weekday SA were significantly more common among the under-16-year-old survivors (P = 0.008). Majority of the survivors (62%) knew their assailant(s). Neighbours were the commonest perpetrators identified (28.2%) and the assailants’ house was the commonest location (39.4%). Weapons were involved in 29.6% of cases and various injuries were identified in 28.2% of the survivors. Hospital presentation was within 24 hours in majority (76.1%) of the survivors, but rape kit examinations were not performed as the kits were not available. Although appropriate medical management was routinely commenced, only 12.7% of survivors returned for follow-up. Conclusions: Seasonal and diurnal patterns exist in the prevalence of SA in Ile-Ife and most survivors that reported in the hospital presented early. Rape kit examinations were, however, not executed, due to non-availability. Personnel training, protocol development, provision of rape kits and free treatment of SA survivors are, therefore, recommended. Public enlightenment on preventive strategies based on the observed periodicity and age patterns is also suggested. PMID:25013260

  6. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  7. The Development of a Laser-Driven Flyer System

    NASA Astrophysics Data System (ADS)

    Greenaway, M. W.; Field, J. E.

    2004-07-01

    This paper describes recent advances to a laser-driven flyer system. In this technique, laser-induced plasma is used to drive miniature flyer plates at velocities approaching 10 km/s. The flyers are launched from substrate-backed metal films and are typically less than 1 mm in diameter and a few microns thick. The system has found application in detonics, high-strain rate testing and micrometeorite simulation. Recent advances described here are concerned with manipulating the flyer profile and enhancing performance. A fiber-optic delivery system is used to alter the spatial intensity distribution of the launch pulse. High-speed photography was used to verify the effectiveness of this technique as illustrated by the excellent correlation between beam profile and flyer shape. A technique using bi-layered films was developed with a view to improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near three.

  8. Hugoniot and spall data from the laser-driven miniflyer

    NASA Astrophysics Data System (ADS)

    Warnes, R. H.; Paisley, D. L.; Tonks, D. L.

    1996-05-01

    The laser-driven miniflyer has been developed as a small-sized complement to the propellant- or gas-driven gun with which to make material property measurements. Flyer velocities typically range from 0.5 to 1.5 km/s, depending on the energy of the launching laser and the flyer dimensions. The 10-50 μm-thick flyers, 1-3 mm in diameter, and comparably small targets require very little material and are easy to recover for post-experiment analysis. To measure and improve the precision of our measurements, we are conducting an extensive series of experiments impacting well-characterized Cu, Al, and Au on several transparent, calibrated, windows (PMMA, LiF, and sapphire). Measurement of the impact and interface velocities with a high-time-resolution velocity interferometer (VISAR) gives us a point on the Hugoniot of the flyer material. These are then compared to published Hugoniot data taken with conventional techniques. In the spall experiments, a flyer strikes a somewhat thicker target of the same material and creates a spall in the target. Measuring the free-surface velocity of the target gives information on the compressive elastic-plastic response of the target to the impact, the tensile spall strength, and the strain rate at which the spall occurred. Volumetric strain rates at spall in these experiments are frequently in the 106-108s-1 range, considerably higher than the 103-104s-1 range obtainable from gas gun experiments.

  9. Laser-driven nuclear-polarized hydrogen internal gas target

    NASA Astrophysics Data System (ADS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-06-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1×1018atoms/s , where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells.

  10. Laser-driven nuclear-polarized hydrogen internal gas target

    SciTech Connect

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-06-15

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10{sup 18} atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells.

  11. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  12. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  13. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  14. Reaching high flux in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2017-08-01

    Since the first experimental observation of laser-driven ion acceleration, optimizing the ion beams' characteristics aiming at levels enabling various key applications has been the primary challenge driving technological and theoretical studies. However, most of the proposed acceleration mechanisms and strategies identified as promising, are focused on providing ever higher ion energies. On the other hand, the ions' energy is only one of several parameters characterizing the beams' aptness for any desired application. For example, the usefulness of laser-based ion sources for medical applications such as the renowned hadron therapy, and potentially many more, can also crucially depend on the number of accelerated ions or their flux at a required level of ion energies. In this work, as an example of an up to now widely disregarded beam characteristic, we use theoretical models and numerical simulations to systematically examine and compare the existing proposals for laser-based ion acceleration in their ability to provide high ion fluxes at varying ion energy levels.

  15. A laser-driven source of polarized hydrogen and deuterium

    SciTech Connect

    Young, L.; Holt, R.J.; Gilman, R.A.; Kowalczyk, R.; Coulter, K.

    1989-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin-exchange optical pumping is being developed. This source is designed to operate as an internal target in an electron storage ring for fundamental studies of spin-dependent structure of nuclei. It has the potential to exceed the flux from existing conventional sources (3 /times/ 10/sup 16//s) by an order of magnitude. Currently, the source delivers hydrogen at a flux of 8 /times/ 10/sup 16/ atoms/s with an atomic polarization of 24% and deuterium at 6 /times/ 10/sup 16/ atoms/s with a polarization of 29%. Technical obstacles which have been overcome, with varying degrees of success are complete Doppler-coverage in the optical-pumping stage without the use of a buffer gas, wall-induced depolarization and radiation-trapping. Future improvements should allow achievement of the design goals of 4 /times/ 10/sup 17/ atoms/s with a polarization of 50%. 8 refs., 2 figs.

  16. Investigation of the dynamic behavior of laser-driven flyers

    SciTech Connect

    Trott, W.M. )

    1994-07-10

    Various aspects of the dynamic behavior of laser-accelerated flyer plates (e.g., planarity, cohesion, thickness, etc.) have been examined using several high-speed optical techniques. Images of accelerating flyers have been obtained by means of fast-framing photography and with an electronic image converter streak camera operated in an image motion configuration. These data are compared to records of flyer velocity vs. time as a function of laser fluence as well as impact particle velocity measurements on lithium fluoride witness plates.'' Flyer materials examined include pure aluminum and a composite material containing a thin layer of aluminum oxide. Composite flyers exhibit superior performance due to better planarity and cohesion, increased thickness vs. displacement, and significantly higher velocity for a given driving energy. With proper tailoring of flyer properties and driving laser parameters, laser-driven acceleration of thin flyer plates offers a promising, laboratory-scale approach to quantitative studies requiring well-controlled, short-pulse shcok compression. [copyright]American Institute of Physics

  17. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    NASA Astrophysics Data System (ADS)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  18. Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    SciTech Connect

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-15

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  19. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  20. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source.

    PubMed

    Wenz, J; Schleede, S; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2015-07-20

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.

  1. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  2. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production

    NASA Astrophysics Data System (ADS)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Joglekar, A. S.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Thomas, A. G. R.; Van Woerkom, L.; Krushelnick, K.

    2011-08-01

    Laser-driven d(d, n)-3He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1-3) × 1019 W cm-2, it was found that the bulk targets produced a high yield (5 × 104 neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stopping power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catcher neutron production.

  3. IFE14 and OSI Technologies (Invited)

    NASA Astrophysics Data System (ADS)

    Arndt, R. H.; Macleod, G.

    2013-12-01

    The On-Site Inspection (OSI) regime is the final verification pillar of the Comprehensive Test Ban Treaty. Unlike the International Monitoring System (IMS) and the International Data Centre (IDC) which are under interim operations during the CTBTO Preparatory Commission an OSI cannot occur until after entry into force of the treaty. The Preparatory Commission has been charged with developing the methodologies and the training curricula and determining the equipment required for conducting an OSI. An Integrated Field Exercise (IFE) of all the technologies and techniques following Treaty guidelines and structures is utilized to determine the progress being made by the Preparatory Commission in completing its OSI mandate. IFE14 will be conducted in a 1000 km2 area near the Dead Sea in Jordan next year. In order to adequately test the verification regimes the data utilized from the triggering event throughout the five weeks of the inspection must be scientifically credible and internally consistent so that the inspection team members performing the OSI remain immersed in the exercise and not distracted unrealistic or scientifically improbable data. This means the data simulation starts at the beginning with the triggering event(s) and carries on through the OSI techniques of visual observation including MSIR, measurement of seismic aftershocks, measurement of radioactivity fields, collection and analysis of environmental samples (solids, liquids, and gases, utilization of geophysical techniques: active seismic, resonance seismometry, gravimetry, magnetometry, and electrical conductivity measurements and lastly drilling to obtain radioactive samples. IFE14 will not utilize resonance seismometry or drilling to obtain radioactive samples for cost and time reasons but all other techniques will be utilized. A full understanding of the triggering event and the geologic and geophysical regime of the inspection area needs to be in place to ensure the scientifically credible

  4. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    PubMed

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  5. Simplified laser-driven flyer plates for shock compression science

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn E.; Shaw, William L.; Zheng, Xianxu; Dlott, Dana D.

    2012-10-01

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s-1 and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  6. Simplified laser-driven flyer plates for shock compression science.

    PubMed

    Brown, Kathryn E; Shaw, William L; Zheng, Xianxu; Dlott, Dana D

    2012-10-01

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s(-1) and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  7. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  8. Simplified laser-driven flyer plates for shock compression science

    SciTech Connect

    Brown, Kathryn E.; Shaw, William L.; Zheng Xianxu; Dlott, Dana D.

    2012-10-15

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s{sup -1} and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  9. Testing IFE materials on Z.

    SciTech Connect

    Olson, Craig Lee; Rochau, Gregory Alan; Peterson, Robert R.; Tanaka, Tina Joan

    2004-12-01

    On a single-pulse basis, the tungsten armor for the chamber walls in a laser inertial fusion energy power plant must withstand X-ray fluences of 0.4-1.2 J/cm{sup 2} with almost no mass loss, and preferably no surface changes. We have exposed preheated tungsten samples to 0.27 and 0.9 J/cm{sup 2} X-ray fluence from the Z accelerator at Sandia National Laboratories to determine the single-shot X-ray damage threshold. Earlier focused ion beam analysis has shown that rolled powdered metal formed tungsten and tungsten alloys, will melt when exposed to 2.3 J/cm{sup 2} on Z, but not at 1.3 J/cm{sup 2}. Three forms of tungsten single-crystal (SING), chemical-vapor-deposited (CVD), and rolled powdered metal (PWM) were exposed to fluence levels of 0.9 J/cm{sup 2} without any apparent melting. However, the CVD and PWM sample surfaces were rougher after exposure than the SING sample, which was not roughened. BUCKY (1D) calculations show a threshold of 0.5 J/cm{sup 2} for melting on Z. The present experiments indicate no melting but limited surface changes occur with polycrystalline samples (PWM and CVD) at 0.9 J/cm{sup 2} and no surface changes other than debris for samples at 0.27 J/cm{sup 2}.

  10. Process Model of the Gas Recovery System in an IFE reactor

    NASA Astrophysics Data System (ADS)

    Gentile, Charles; Aristova, Maria

    2007-11-01

    It is necessary to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. In order to observe the interaction of all components, a chemical process model is developed as part of the conceptual design phase of the project. Initially, the reactants, system structure, and processes are defined using the known contents of the vacuum vessel exhaust. The output, which will include physical properties and chemical content of the products, is analyzed to determine the most efficient and productive system parameters. The results of the modeling will be presented in this paper. This modeling exercise will be instrumental in optimizing and closing the fusion fuel cycle in the IFE power reactor.

  11. Overview of IFE chamber and target technologies R&D in the U.S.

    SciTech Connect

    Meier, W R; Abdou, M A; Kulcinski, G L; Moir, R W; Nobile, A; Peterson, P F; Petti, D A; Schultz, K R; Tillack, M S; Yoda, M

    2000-09-22

    The U.S. Department of Energy, Office of Fusion Energy Science (OFES) formed the Virtual Laboratory for Technology (VLT) to develop the technologies needed to support near term fusion experiments and to provide the basis for future magnetic and inertial fusion energy power plants. The scope of the inertial fusion energy (IFE) element of the VLT includes the fusion chamber, driver/chamber interface, target fabrication and injection, and safety and environmental assessment for IFE. Lawrence Livermore National Laboratory, in conjunction with other laboratories, universities and industry, has written an R&D plan to address the critical issues in these areas over the next 5 years in a coordinated manner. This paper provides an overview of the US. research activities addressing these critical issues.

  12. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  13. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    NASA Astrophysics Data System (ADS)

    Fakhari, Moein; Fallahi, Arya; Kärtner, Franz X.

    2017-04-01

    We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  14. A high velocity impact experiment of micro-scale ice particles using laser-driven system

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.

    2014-11-01

    A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.

  15. Overview of laser-driven generation of electron-positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Dieckmann, M. E.; Kourakis, I.; di Piazza, A.; Reville, B.; Keitel, C. H.; Zepf, M.

    2015-08-01

    Electron-positron (e-p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e-p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.

  16. Rf and space-charge induced emittances in laser-driven rf guns

    SciTech Connect

    Kim, Kwang-Je; Chen, Yu-Jiuan

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs.

  17. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  18. Rep-Rated X-ray Damage and Ablation Experiments for IFE and ICF Applications

    SciTech Connect

    Latkowski, J F; Abbott, R P; Payne, S A; Reyes, S; Schmitt, R C; Speth, J A

    2003-09-08

    The response of materials to high-dose x-ray exposures needs to be understood for inertial fusion energy (IFE) and inertial confinement fusion applications, where the requirements for IFE are considerably more stringent. In the IFE context, x-ray damage and/or small levels of ablation are of importance for component survivability, generation of debris, and contamination. Ablation quantities of even 1 angstrom per shot would result in material removal of more than 1 cm per year of operation. If even one part in a million of this material made its way to the final optics, it would coat them with a thickness equivalent to several waves of the laser light. Also, small-scale melting and thermomechanical effects, such as fatigue, can result from x-ray heating. These effects potentially become important when multiple shots are considered, and thus, their study requires use of rep-rated experiments. As a part of the High-Average Power Laser Program, the XAPPER experiment has been initiated at Lawrence Livermore National Laboratory. XAPPER produces high doses of low-energy x-rays at repetition rates of up to 10 Hz. Study of x-ray damage is underway. An overview of facility capabilities, results to date, and future plans are provided.

  19. Effect of nonthermal electrons on the shock formation in a laser driven plasma

    SciTech Connect

    Nicolaï, Ph. Feugeas, J.-L.; Nguyen-bui, T.; Tikhonchuk, V.; Batani, D.; Maheut, Y.; Antonelli, L.

    2015-04-15

    In the laser-driven inertial fusion schemes and specifically in the shock ignition concept, non thermal electrons may be generated. By depositing their energy far from the origin, they can significantly modify the target hydrodynamics. It is shown in this paper that these electrons may affect the laser-driven shock formation and its propagation through the target. These changes are induced by the target heating and depend on the electron energy spectrum. Furthermore, results of some passive diagnostic may be misinterpreted, indicating an apparent different pressure.

  20. Creation and characterization of free-standing cryogenic targets for laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Tebartz, Alexandra; Bedacht, Stefan; Hesse, Markus; Astbury, Sam; Clarke, Rob; Ortner, Alex; Schaumann, Gabriel; Wagner, Florian; Neely, David; Roth, Markus

    2017-09-01

    A technique for the creation of free-standing cryogenic targets for laser-driven ion acceleration is presented, which allows us to create solid state targets consisting of initially gaseous materials. In particular, the use of deuterium and the methods for its preparation as a target material for laser-driven ion acceleration are discussed. Moving in the phase diagram through the liquid phase leads to the substance covering an aperture on a cooled copper frame where it is solidified through further cooling. An account of characterization techniques for target thickness is given, with a focus on deducing thickness values from distance values delivered by chromatic confocal sensors.

  1. Measurement of p{sub zz} of the laser-driven polarized deuterium target

    SciTech Connect

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-08-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T {yields} n + {sup 4}He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described.

  2. Mechanism and Model of Laser-Driven Mass Transport in Thin Films of Azo Polymers

    DTIC Science & Technology

    2007-11-02

    and Model of Laser-Driven Mass Transport in Thin Films of Azo Polymers by C. J. Barrett, A. Natansohn, and P. Rochon Submitted for publication in...DATE June 23, 1998 Tprhnjr.fil P^nnr I’: 4. TITLE AHO SU3TITLE Mechanism and Model of Laser-Driven Mass Transport in Thin Films of Azo Polymers...TRANSPORT IN THIN FILMS OF AZO POLYMERS Christopher J. Barrett’, Almeria L. Natansohn1, and Paul L. Rochon2. ’Dept. of Chemistry. Queen’s

  3. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  4. Laser-driven flyer application in thin film dissimilar materials welding and spalling

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Wang, Yuliang

    2017-10-01

    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  5. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  6. Prospects For and Progress Towards Laser-Driven Particle Therapy Accelerators

    SciTech Connect

    Cowan, T. E.; Schramm, U.; Burris-Mog, T.; Fiedler, F.; Kraft, S. D.; Zeil, K.; Bussmann, M.; Gaillard, S.; Herrmannsdoerfer, T.; Kluge, T.; Schmidt, B.; Sobiella, M.; Sauerbrey, R.; Baumann, M.; Enghardt, W.; Pawelke, J.; Flippo, K.; Harres, K.; Nuernberg, F.; Roth, M.

    2010-11-04

    Recent advances in laser-ion acceleration have motivated research towards laser-driven compact accelerators for medical therapy. Realizing laser-ion acceleration for medical therapy will require adapting the medical requirements to the foreseeable laser constraints, as well as advances in laser-acceleration physics, beam manipulation and delivery, real-time dosimetry, treatment planning and translational research into a clinical setting.

  7. Target Injector and Sabot Remover for IFE

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroki; Kameyama, Nobukazu

    2012-10-01

    Target injectors for IFE are required to inject targets to the reactor center at a velocity of over 100 m/s with accuracy of several millimeters. A target injector system with a magnetic sabot remover is developed to demonstrate injection of polystyrene targets. A typical target used in this study is 4.0 mm in diameter and 0.8 mg in weight. It is inserted in to an aluminum sabot that is 9.2 mm in outer diameter and 40 mm in length. They are accelerated together by a pneumatic gun. Before injection into the reactor, the sabot is removed for laser irradiation. The sabot remover is composed of Neodymium magnets array that generates Lorentz force as a result of interaction between the magnets' field and induced current on the sabot. The Neodymium magnets are 14 mm at inner diameter and 316 mT on its surface. The magnetic array is designed and optimized its magnets number for complete target extraction. The theoretically and experimentally confirmed deceleration rate of the sabot is 60.2 m/s/s per one meter. The targets are shot into the vacuum chamber after extraction from the sabot at accelerated velocity of 30 m/s. The experimentally obtained injection accuracy is 5.3 mm in horizontal direction and 4.8 mm in vertical direction.

  8. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  9. Laser-driven hypersonic air-breathing propulsion simulator

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Lo, Edmond Y.; Pugh, Evan R.

    1992-01-01

    A feasibility study is presented of simulating airbreathing propulsion on small scale hypersonic models using laser energy. The laser heat addition scheme allows simultaneous inlet and exhaust flows during wind tunnel testing of models with scramjet models. The proposed propulsion simulation concept has extended the Kantrowitz (1974) idea to propulsive wind tunnel models of hypersonic aircraft. Critical issues in aeropropulsive testing of models based on a ramjet power plant are addressed which include transfer of the correct amount of energy to the flowing gas, efficient absorption of laser energy into the gas, and test performance under tunnel reservoir conditions and at reasonable Reynolds numbers.

  10. Characterization of a novel, short pulse laser-driven neutron source

    SciTech Connect

    Jung, D.; Falk, K.; Guler, N.; Devlin, M.; Favalli, A.; Fernandez, J. C.; Gautier, D. C.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Merrill, F.; Schoenberg, K.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.; Deppert, O.; and others

    2013-05-15

    We present a full characterization of a short pulse laser-driven neutron source. Neutrons are produced by nuclear reactions of laser-driven ions deposited in a secondary target. The emission of neutrons is a superposition of an isotropic component into 4π and a forward directed, jet-like contribution, with energies ranging up to 80 MeV. A maximum flux of 4.4 × 10{sup 9} neutrons/sr has been observed and used for fast neutron radiography. On-shot characterization of the ion driver and neutron beam has been done with a variety of different diagnostics, including particle detectors, nuclear reaction, and time-of-flight methods. The results are of great value for future optimization of this novel technique and implementation in advanced applications.

  11. An online, energy-resolving beam profile detector for laser-driven proton beams

    SciTech Connect

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U.; Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P.; Karsch, L.

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  12. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  13. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  14. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  15. High-speed x-ray radiographic measurement of laser-driven hydrodynamic instability

    NASA Astrophysics Data System (ADS)

    Shiraga, Hiroyuki; Azechi, Hiroshi; Nakai, Mitsuo; Shigemori, Keisuke; Nishikino, Masaharu; Sakaiya, Tatsuhiro; Fujioka, Shinsuke; Tamari, Yohei; Yamanaka, Tatsuhiko

    2003-07-01

    Hydrodynamic instability in laser-irradiated targets have been investigated in detail by using ultra high-speed x-ray radiographic technique. Recently developed high-resolution x-ray imaging for laser-driven Rayleigh-Taylor (RT) instability experiments as well as data including RT growth rate, ablation density and plasma density profile are desribed. Results are of great importance for comprehensive understanding of the dispersion relation of the laser-driven RT instability. Especially, direct observation of the ablation density was first achieved with temporal and spatial resolutions of 100 ps and 3 μm, respectively. Imaging techniques includes x-ray Moire imaging, x-ray penumbral imaging and Fresnel phase zone plate imaging coupled with x-ray streak cameras or x-ray CCD cameras. Experiments were performed by using Gekko-XII/HIPER laser system at the Institute of Laser Engineering, Osaka University.

  16. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  17. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  18. Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston

    SciTech Connect

    Schaeffer, D. B.; Everson, E. T.; Constantin, C. G.; Bondarenko, A. S.; Morton, L. A.; Niemann, C.; Winske, D.; Flippo, K. A.; Montgomery, D. S.; Gaillard, S. A.

    2012-07-15

    We present experiments on the Trident laser facility at Los Alamos National Laboratory which demonstrate key elements in the production of laser-driven, magnetized, laboratory-scaled astrophysical collisionless shocks. These include the creation of a novel magnetic piston to couple laser energy to a background plasma and the generation of a collisionless shock precursor. We also observe evidence of decoupling between a laser-driven fast ion population and a background plasma, in contrast to the coupling of laser-ablated slow ions with background ions through the magnetic piston. 2D hybrid simulations further support these developments and show the coupling of the slow to ambient ions, the formation of a magnetic and density compression pulses consistent with a collisionless shock, and the decoupling of the fast ions.

  19. Study of shockwave method for diagnosing the radiation fields of laser-driven gold hohlraums

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Lan, Ke; Huo, Wenyi; Lai, Dongxian; Gao, Yaoming; Pei, Wenbing

    2013-11-01

    Besides the routinely used broad-band x-ray spectrometer (Dante or SXS), ablative shock-wave method is often used to diagnose the radiation fields of laser-driven Hohlraums. The x-ray ablation process of Aluminum and Titanium is studied numerically with a 1-D radiation hydrodynamic code RDMG [F. Tinggui et al., Chin. J. Comput. Phys. 16, 199 (1999)], based on which a new scaling relation of the equivalent radiation temperature with the ablative shock velocity in Aluminum plates is proposed, and a novel method is developed for determining simultaneously the radiation temperature and the M-band (2-4 keV) fraction in laser-driven gold Hohlraums.

  20. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-18

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  1. Radiological Issues for the Thin Liquid Walls of ARIES-IFE Study

    SciTech Connect

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Waganer, L.; Raffray, R.

    2003-09-15

    Heavy ion beam driven inertial fusion energy (IFE) power plants employ liquid wall materials to protect the structure against the energetic x-rays, ions, and debris emitted from the target following each shot. The objective of this assessment is to identify the radiological issues of the candidate liquid wall materials (Pb, LiPb, Sn, and Flibe) using the ARIES-IFE radiation chamber environment. The issues to be addressed include the radioactivity level and liquid waste minimization for waste management. Specifically, the liquids are evaluated with regard to the Class C limitation for waste disposal, a top-level requirement for all ARIES power plant designs. Two extreme cases were analyzed; the worst case is separation of the liquid wall material (highest radiation exposure) and the breeder (lowest radiation exposure), and the best case is the mixing of the two liquid streams. Both tangential and porous wall injection schemes were examined. Pb and LiPb are more radioactive than Sn and Flibe. For the liquid breeder system, the porous wall injection scheme with mixed liquid flows results in the lowest waste disposal rating and smallest waste stream achieved in our study.

  2. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    PubMed

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  3. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Ohtani, Toshiro; Sasoh, Akihiro; Choi, Jeong-Yeol

    2004-03-30

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  4. Line-imaging VISAR for laser-driven equations of state experiments

    NASA Astrophysics Data System (ADS)

    Mikhaylyuk, A. V.; Koshkin, D. S.; Gubskii, K. L.; Kuznetsov, A. P.

    2016-11-01

    The paper presents the diagnostic system for velocity measurements in laser- driven equations of state experiments. Two Mach-Zehnder line-imaging VISAR-type (velocity interferometer system for any reflector) interferometers form a vernier measuring system and can measure velocity in the interval of 5 to 50 km/s. Also, the system includes a passive channel that records target luminescence in the shock wave front. Spatial resolution of the optical layout is about 5 μm.

  5. High Brightness, Laser-Driven X-ray Source for Nanoscale Metrology and Femtosecond Dynamics

    SciTech Connect

    Siders, C W; Crane, J K; Semenov, V; Betts, S; Kozioziemski, B; Wharton, K; Wilks, S; Barbee, T; Stuart, B; Kim, D E; An, J; Barty, C

    2007-02-26

    This project developed and demonstrated a new, bright, ultrafast x-ray source based upon laser-driven K-alpha generation, which can produce an x-ray flux 10 to 100 times greater than current microfocus x-ray tubes. The short-pulse (sub-picosecond) duration of this x-ray source also makes it ideal for observing time-resolved dynamics of atomic motion in solids and thin films.

  6. The MIT Laser-Driven Target of Nuclear Polarized Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2007-04-01

    The laser-driven target at the Massachusetts Institute of Technology (MIT) produced nuclear polarized hydrogen gas in a configuration similar to that used in scattering experiments. The best result achieved was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1 × 1018 atoms/s.

  7. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    DOE PAGES

    Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William; ...

    2016-05-26

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  8. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  9. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    SciTech Connect

    Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William; Kline, John L.; Merritt, Elizabeth Catherine; Loomis, Eric Nicholas; Capelli, Deanna; Schmidt, Derek William; Schmitt, Mark J

    2016-05-26

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  10. Numerical Simulation of Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ohnishi, N.; Ogino, Y.; Sawada, K.; Ohtani, T.; Mori, K.; Sasoh, A.

    2006-05-02

    To achieve a higher thrust performance in the laser-driven in-tube accelerator operation, numerical analysises have been carried out. The computational code covers from the generation of the blast wave to its interactions with the projectile and the acceleration wall. The thrust history and the momentum coupling coefficient evaluated from the numerical simulation depend on the fill pressure and the projectile shape. The confinement effect can be clearly found using the projectile attached with a shroud.

  11. Laser-driven Implosion Simulations with the Kull Code

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas B.; Owen, J. Michael; Madsen, Niel K.

    1999-11-01

    We present results of two- and three-dimensional simulations of implosion of a gamma-law gas driven by absorption of energy from an external laser source. Laser light propagation and power deposition were modeled with a recently-developed package(T. B. Kaiser, J. L. Milovich, A. I. Shestakov, M. K. Prasad, Bulletin of the A.P.S. 43), paper R8Q 26 (1998). that uses geometrical optics and inverse-bremsstrahlung to model the relevant physical processes, while the hydrodynamics calculations used a finite-volume, staggered-grid ALE scheme, and electron heat transport was treated diffusively. The simulations were performed with Kull, an ASCI code currently being developed at LLNL to model ICF experiments and astrophysical phenomena.

  12. Laser-driven vehicles: from inner space to outer space

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi; Phipps, Claude R.; Aoki, Keiichi; Yamaguchi, Masashi; Ogata, Yoichi; Shiho, Makoto; Inoue, Gen; Onda, Masahiko; Horioka, Kazuhiko; Kajiwara, Itsuro; Yoshida, Kunio

    2002-09-01

    Laser supported propulsion of a micro-airplane with water-covered ablator is demonstrated. The repetitive use of overlay structure is experimentally demonstrated with specially-designed water supply. The various transparent overlay is investigated by the CIP-based hydrodynamic code and experiments by pendulum and semi-conductor load cell. The momentum coupling efficiency of 5000 N-sec/MJ has been achieved by ORION experiments that agree with the simulation code. With the maximum efficiency approximately 105 N- sec/MJ predicted by the simulation, 30 pulses of MJ laser can give the sound speed to 10tons airplane. The concept can also be used for driving a micro-ship inside human body and a robot under the accidental circumstance of nuclear power reactor in which large amount of neutron source makes electronic device useless.

  13. Two color laser driven THz generation in clustered plasma

    NASA Astrophysics Data System (ADS)

    Malik, Rakhee; Uma, R.; Kumar, Pawan

    2017-07-01

    A scheme of terahertz (THz) generation, using nonlinear mixing of two color laser (fundamental ω1 and slightly frequency shifted second harmonic ω2 ) in clustered plasma, is investigated. The lasers exert ponderomotive force on cluster electrons and drive density perturbations at 2 ω1 and ω2-ω1 . The density perturbations beat with the oscillatory velocities to produce nonlinear current at ω2-2 ω1 , generating THz radiation. The radiation is enhanced due to cluster plasmon resonance and by phase matching introduced through a density ripple. The generation involves third order nonlinearity and does not require a magnetic field or inhomogeneity to sustain it. We report THz power conversion efficiency ˜ 10-4 at 1 μm and 0.5 μm wavelengths with intensity ˜ 3 ×1014W/cm 2 .

  14. Thin Liquid Wall Behavior Under IFE Cyclic Operation

    SciTech Connect

    Raffray, A.R.; Abdel-Khalik, S.I.; Haynes, D.; Najmabadi, F.; Sharpe, J.P.

    2003-07-15

    An inertial fusion energy (IFE) wetted wall configuration provides the advantage of a renewable armor to accommodate the threat spectra. Key issues are the re-establishment of the thin liquid armor and the state of the chamber environment prior to each shot relative to the requirements imposed by the driver and target thermal and injection control.

  15. Monochromatic computed tomography with a compact laser-driven X-ray source

    PubMed Central

    Achterhold, K.; Bech, M.; Schleede, S.; Potdevin, G.; Ruth, R.; Loewen, R.; Pfeiffer, F.

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered. PMID:23425949

  16. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  17. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  18. Computational Design of Short Pulse Laser Driven Iron Opacity Experiments

    NASA Astrophysics Data System (ADS)

    Martin, Madison E.; London, Richard A.; Goluoglu, Sedat; Whitley, Heather D.

    2015-11-01

    Opacity is a critical parameter in the transport of radiation in systems such as inertial confinement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would benefit from experimental validation of theoretical opacity models. Short pulse lasers can be used to heat targets to higher temperatures and densities than long pulse lasers and pulsed power machines, thus potentially enabling access to emission spectra at conditions relevant to solar models. In order to ensure that the relevant plasma conditions are accessible and that an emission measurement is practical, we use computational design of experiments to optimize the target characteristics and laser conditions. Radiation-hydrodynamic modeling, using HYDRA, is used to investigate the effects of modifying laser irradiance, target dimensions, and dopant dilution on the plasma conditions and emission of an iron opacity target. Several optimized designs reaching temperatures and densities relevant to the radiative zone of the sun will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  19. Laser driven launch vehicles for continuous access to space

    NASA Astrophysics Data System (ADS)

    Rollins, C. J.; Bailey, A.; Gelb, A.; Gauthier, M.; Goldey, C.; Lo, E.; Resendes, D.; Rosen, D.; Weyl, G.

    1990-04-01

    The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency.

  20. Laser driven launch vehicles for continuous access to space

    NASA Technical Reports Server (NTRS)

    Rollins, C. J.; Bailey, A.; Gelb, A.; Gauthier, M.; Goldey, C.; Lo, E.; Resendes, D.; Rosen, D.; Weyl, G.

    1990-01-01

    The availability of megawatt laser systems in the next century will make laser launch systems from ground to orbit feasible and useful. Systems studies indicate launch capabilities of 1 ton payload per gigawatt laser power. Recent research in ground to orbit laser propulsion has emphasized laser supported detonation wave thrusters driven by repetitively pulsed infrared lasers. In this propulsion concept each laser repetition cycle consists of two pulses. A lower energy first pulse is used to vaporize a small amount of solid propellant and then after a brief expansion period, a second and higher energy laser pulse is used to drive a detonation wave through the expanded vapor. The results are reported of numerical studies comparing the detonation wave properties of various candidate propellants, and the simulation of thruster performance under realistic conditions. Experimental measurements designed to test the theoretical predictions are also presented. Measurements are discussed of radiance and opacity in absorption waves, and mass loss and momentum transfer. These data are interpreted in terms of specific impulse and energy conversion efficiency.

  1. Free-electron lasers driven by laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Isono, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Laser-plasma accelerators (LPAs) have the potential to drive compact free-electron lasers (FELs). Even with LPA energy spreads typically at the percent level, the e-beam brightness can be excellent, due to the low normalized emittance (<0.5 µm) and high peak current (multi-kA) resulting from the ultra-short e-beam duration (few fs). It is critical, however, that in order to mitigate the effect of percent-level energy spread, one has to actively manipulate the phase-space distribution of the e-beam. We provide an overview of the methods proposed by the various LPA FEL research groups. At the BELLA Center at LBNL, we are pursuing the use of a chicane for longitudinal e-beam decompression (therefore greatly reducing the slice energy spread), in combination with short-scale-length e-beam transportation with an active plasma lens and a strong-focusing 4-m-long undulator. We present ELEGANT & GENESIS simulations on the transport and FEL gain, showing strong enhancement in output power over the incoherent background, and present estimates of the 3D gain length for deviations from the expected e-beam properties (varying e-beam lengths and emittances). To highlight the role of collective effects, we also present ELEGANT & GENESIS simulation results.

  2. Structure of a laser-driven radiative shock

    NASA Astrophysics Data System (ADS)

    Chaulagain, U.; Stehlé, C.; Larour, J.; Kozlová, M.; Suzuki-Vidal, F.; Barroso, P.; Cotelo, M.; Velarde, P.; Rodriguez, R.; Gil, J. M.; Ciardi, A.; Acef, O.; Nejdl, J.; de Sá, L.; Singh, R. L.; Ibgui, L.; Champion, N.

    2015-12-01

    Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. The physical structure of these shocks is complex and experimental benchmarks are needed to provide a deeper understanding of the physics at play. In addition, experiments provide unique data for testing radiation hydrodynamics codes which, in turn, are used to model astrophysical phenomena. Radiative shocks have been studied on various high-energy laser facilities for more than a decade, highlighting the importance of radiation on the plasma dynamics. Particularly the PALS facility has focused in producing radiative shocks with typical velocities of ∼50-60 km s-1 in xenon at a fraction of a bar. In addition PALS has the unique capability of producing the most powerful XUV laser available today (21.2 nm (58.4 eV), 0.15 ns), opening the door to new diagnostics of dense plasmas. Here we present results of XUV imaging of the precursor and post-shock structure of radiative shocks generated in xenon in this facility, together with time-and-space resolved measurements of the XUV self-emission using fast diode. The experimental results are interpreted with the help of 2D ARWEN radiative hydrodynamics simulations and state-of-the art monochromatic opacities.

  3. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  4. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  5. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  6. Development of Laser-Driven Proton and Electron Sources Using APRI 100-TW Ti:Sapphire Laser System

    SciTech Connect

    Choi, I. W.; Hafz, N.; Jeong, T. M.; Kim, H. T.; Kim, C. M.; Yu, T. J.; Sung, J. H.; Hong, K.-H.; Lee, S. K.; Noh, Y.-C.; Ko, D.-K.; Lee, J.; Orimo, S.; Yogo, A.; Sagisaka, A.; Ogura, K.; Mori, M.; Li, Z.; Ma, J.; Pirozhkov, A. S.

    2008-06-24

    At the Advanced Photonics Research Institute (APRI) in Korea, we have a Ti:sapphire laser system which delivers laser pulses of 100-TW peak power and 32-fs pulse duration at the repetition rate of 10 Hz. This laser facility is being used to develop compact laser-driven proton and electron sources. Energetic protons are produced by irradiating the laser pulse on a thin foil target made of copper and polyimide via the target normal sheath acceleration. Proton beam with maximum energy of up to 4 MeV was generated from a polyimide target, and showed high energy conversion efficiency from laser to proton energy. Generation of high-energy electron beams by the laser wakefield acceleration was performed by focusing the laser pulses onto a 4 mm-long He-gas jet. Quasi-monoenergetic electron beam with peak energy of 45 MeV and maximum energy of 130 MeV was produced. The quality and characteristics of electron beams are strongly dependent on the laser-plasma interaction length which depends on focal length of the focusing optics.

  7. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  8. Intelligent Front-end Electronics for Silicon photodetectors (IFES)

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Gruber, Lukas; Suzuki, Ken; Zmeskal, Johann; Widmann, Eberhard

    2016-05-01

    While high channel density can be easily achieved for big experiments using custom made microchips, providing something similar for small and medium size experiments imposes a challenge. Within this work we describe a novel and cost effective solution to operate silicon photodetectors such as silicon photo multipliers (SiPM). The IFES modules provide the bias voltage for the detectors, a leading edge discriminator featuring time over threshold and a differential amplifier, all on one printed circuit board. We demonstrate under realistic conditions that the module is usable for high resolution timing measurements exploiting both charge and time information. Furthermore we show that the modules can be easily used in larger detector arrays. All in all this confirms that the IFES modules are a viable option for a broad range of experiments if cost-effectiveness and small form factor are required.

  9. Inertial Fusion Energy (IFE) concepts, target physics subgroup

    SciTech Connect

    Tabak, M

    1999-07-01

    The target physics subgroup met for three days of three hour sessions and discussed several questions: Session 1A: What are the key scientific issues for validating each target concept and how can they be resolved; Session 1B: How can existing (and new?) facilities be used to test each concept; Session 1C: (1) What IFE target physics issues will not be resolved on NIF; (2) What is required to get to high yield; and (3) What is the significance to IFE of experimentally demonstrating high yield/high gain? During the discussions, the third question actually turned into a debate concerning the related question of whether or not a single-shot high yield facility is necessary prior to the ETF.

  10. Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.

    PubMed

    Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David

    2006-07-07

    Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.

  11. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-30

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  12. External injection into a laser-driven plasma accelerator with sub-femtosecond timing jitter

    NASA Astrophysics Data System (ADS)

    Ferran Pousa, A.; Assmann, R.; Brinkmann, R.; Martinez de la Ossa, A.

    2017-07-01

    The use of external injection in plasma acceleration is attractive due to the high control over the electron beam parameters, which can be tailored to meet the plasma requirements and therefore preserve its quality during acceleration. However, using this technique requires an extremely fine synchronization between the driver and witness beams. In this paper, we present a new scheme for external injection in a laser-driven plasma accelerator that would allow, for the first time, sub-femtosecond timing jitter between laser pulse and electron beam.

  13. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  14. Femtosecond laser-driven shock-induced dislocation structures in iron

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomoki; Sano, Tomokazu; Arakawa, Kazuto; Sakata, Osami; Tajiri, Hiroo; Hirose, Akio

    2014-12-01

    We found that a femtosecond laser-driven shock wave induces marked changes in dislocation structure in iron over a fluence range from 1.3 to 8.3 J/cm2. Transmission electron microscopy observations showed a change in dislocation structure from lath structures with twist boundaries to only laths, and an increase in depth where laths begin to appear, with increasing fluence. X-ray diffraction results showed the distribution of crystallite sizes corresponding to the change in dislocation structure. We proposed that the dislocation structure is determined by the laser fluence, through the change in the duration of the shock wave.

  15. Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma

    SciTech Connect

    Tanabe, M; Nishimura, H; Ohnishi, N; Fournier, K B; Fujioka, S; Iwamae, A; Hansen, S B; Nagai, K; Girard, F; Primout, M; Villette, B; Brebion, D; Mima, K

    2009-02-23

    The propagation of a laser-driven heat-wave into a Ti-doped aerogel target was investigated. The temporal evolution of the electron temperature was derived by means of Ti K-shell x-ray spectroscopy, and compared with two-dimensional radiation hydrodynamic simulations. Reasonable agreement was obtained in the early stage of the heat-wave propagation. In the later phase, laser absorption, the propagation of the heat wave, and hydrodynamic motion interact in a complex manner, and the plasma is mostly re-heated by collision and stagnation at the target central axis.

  16. A laser driven source of spin polarized atomic hydrogen and deuterium

    SciTech Connect

    Poelker, M.; Coulter, K.P.; Holt, R.J.; Jones, C.E.; Kowalczyk, R.S.; Young, L.; Toporkov, D.

    1993-07-01

    Recent results from a laser-driven source of polarized hydrogen (H) and deuterium (D) are presented. The performance of the source is described as a function of atomic flow rate and magnetic field. The data suggest that because atomic densities in the source are high, the system can approach spin-temperature equilibrium although applied magnetic fields are much larger than the critical field of the atoms. The authors also observe that potassium contamination in the source emittance can be reduced to a negligible amount using a teflon-lined transport tube.

  17. Laser driven quasi-isentropic compression experiments (ICE) for dynamically loading materials at high strain rates

    SciTech Connect

    Smith, R; Eggert, J; Celliers, P; Jankowski, A; Lorenz, T; Moon, S; Edwards, M J; Collins, G

    2006-03-30

    We demonstrate the recently developed technique of laser driven isentropic compression (ICE) for dynamically compressing Al samples at high loading rates close to the room temperature isentrope and up to peak stresses above 100GPa. Upon analysis of the unloading profiles from a multi-stepped Al/LiF target a continuous path through Stress-Density space may be calculated. For materials with phase transformations ramp compression techniques reveals the location of equilibrium phase boundaries and provide information on the kinetics of the lattice re-ordering.

  18. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  19. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    SciTech Connect

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J. -L.; Maynard, G.; Cros, B.

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  20. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    SciTech Connect

    Vogel, Sven C.

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  1. Obstetric hysterectomy: trend and outcome in Ile-Ife, Nigeria.

    PubMed

    Badejoko, O O; Awowole, I O; Ijarotimi, A O; Badejoko, B O; Loto, O M; Ogunniyi, S O

    2013-08-01

    Worldwide, the incidence of obstetric hysterectomy is expected to be on the decline due to improvements in obstetric care. This hospital-based 10-year review (2001-10) was performed to determine its incidence and outcome in Ile-Ife, Nigeria. The trend was determined by comparing the current incidence with that from two previous studies from the same centre. There were 58 obstetric hysterectomies and 15,194 deliveries during the review period, giving a rate of 3.8/1,000 deliveries. A rising trend was observed in the obstetric hysterectomy rate in Ile-Ife over two decades (1990-2010). Uterine rupture was the commonest indication (60%). Postoperative complications such as sepsis, vesico-vaginal fistula and renal failure affected 34.5% of the patients. Maternal and fetal case fatality rates were 18.2% and 43.6%, respectively. The obstetric hysterectomy rate in Ile-Ife is high and the trend is rising. Universal access to skilled birth attendance is advocated to reduce uterine rupture and consequently obstetric hysterectomy.

  2. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    SciTech Connect

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  3. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    SciTech Connect

    Meier, W; Bibeau, C

    2005-10-25

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of {approx}2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies.

  4. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    SciTech Connect

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  5. The Laser-driven Flyer System for Space Debris Hypervelocity Impact Simulations

    NASA Astrophysics Data System (ADS)

    Gong, Zizheng; Dai, Fu; Yang, Jiyun; Hou, Mingqiang; Zheng, Jiandong; Tong, Jingyu; Pang, Hewei

    2009-06-01

    The Laser-driven flyer (LDF) technique is showing promiseful in simulating micro meteoroids and orbital debris (M/OD) hypervelocity impacting effects. LDF system with a single pulses from a Q-switched Nd: glass laser, of 15 ns duration and up to 20J energy, launched the aluminum films of 5 μm thickness up to 8.3km/s velocity was developed in Beijing Institute of Spacecrafts Environment Engineering(BISEE), CAST. The quantitative relationships between the flyer velocity and the laser energy, the width of laser pulse, the diameter of laser focal spot, and the flyer thickness were analyzed, according to Lawrence-Gurney model, and compared with the experimental results. Some experimental aspects in our efforts on the space debris Hypervelocity impacts on the outer surfaces functional material, such as the thermal control material, window glass, and OSR etc., are reviewed. Though still developing, the Laser-driven flyer technique has been demonstrated promise in simulating micro M/OD hypervelocity impacting effects.

  6. Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Xia, G.; Smith, J. D. A.; Welsch, C. P.

    2017-07-01

    The acceleration of a beam of electrons has been observed in a dielectric laser-driven accelerator with a gradient of 300 MV/m. It opens the way to building a particle accelerator "on a chip" much more cheaply than a conventional one. This paper investigates numerically an efficient dielectric laser-driven accelerating structure, based on dual-gratings with a Bragg reflector. The design of the structure boosts the accelerating field in the channel, thereby increasing the accelerating gradient by more than 70% compared to bare dual-gratings, from analytical calculations. This is supported by two-dimensional (2D) particle-in-cell simulations, where a 50 MeV electron bunch is loaded into an optimized 100-period structure to interact with a 100 fs pulsed laser having a peak field of 2 GV/m. It demonstrates a loaded accelerating gradient of 1.48 ± 0.10 GV/m, which is (85 ± 26)% higher than that of bare dual-gratings. In addition, studies of the diffraction effect show that the optimized structure should be fabricated with a vertical size of J/ wx ≥ 0.20 in order to generate an acceptable accelerating performance.

  7. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  8. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team

    2016-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.

  9. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    PubMed

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  10. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    SciTech Connect

    Kar, S. Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M.; Brauckmann, S.; Giesecke, A. L.; Willi, O.

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  11. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  12. New approaches in clinical application of laser-driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, Katalin; Szabó, Rita Emilia; Polanek, Róbert; Szabó, Zoltán.; Brunner, Szilvia; Tőkés, Tünde

    2017-05-01

    The planned laser-driven ionizing beams (photon, very high energy electron, proton, carbon ion) at laser facilities have the unique property of ultra-high dose rate (>Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, carry the potential to develop novel laser-driven methods towards compact hospital-based clinical application. The enhanced flexibility in particle and energy selection, the high spatial and time resolution and extreme dose rate could be highly beneficial in radiotherapy. These approaches may increase significantly the therapeutic index over the currently available advanced radiation oncology methods. We highlight two nuclear reactionbased binary modalities and the planned radiobiology research. Boron Neutron Capture Therapy is an advanced cell targeted modality requiring 10B enriched boron carrier and appropriate neutron beam. The development of laser-based thermal and epithermal neutron source with as high as 1010 fluence rate could enhance the research activity in this promising field. Boron-Proton Fusion reaction is as well as a binary approach, where 11B containing compounds are accumulated into the cells, and the tumour selectively irradiated with protons. Due to additional high linear energy transfer alpha particle release of the BPFR and the maximum point of the Bragg-peak is increased, which result in significant biological effect enhancement. Research at ELI-ALPS on detection of biological effect differences of modified or different quality radiation will be presented using recently developed zebrafish embryo and rodent models.

  13. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  14. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  15. Determination of critical energy criteria for hexanitrostilbene using laser-driven flyer plates

    NASA Astrophysics Data System (ADS)

    Bowden, Mike D.; Maisey, Matthew P.

    2008-08-01

    Laser-driven flyer plates comprise of one or more thin layers forming a foil coated onto a transparent substrate. Irradiation of the foil/substrate interface with a Q-switched laser pulse produces a plasma, the expansion of which forms a flyer plate, which can reach velocities in excess of 5 km/s. These plates impart shocks in excess of 50 GPa, with duration of less than a nanosecond. This shock is sufficient to initiate secondary explosives such as Hexanitrostilbene (HNS) and Pentaerythritol Tetranitrate (PETN). Thresholds of detonators based on laser-driven flyer plates are typically measured in terms of energy. By using a Photonic Doppler Velocimeter (PDV) we measure the velocity of the flyer plate at the threshold energy. This allows calculation of the shock pressure and duration imparted to the explosive. By initiating HNS with a variety of flyer thicknesses, from 3 to 5 μm, we are able to evaluate Pnτ in this extreme shock regime. The calculated value of n is compared to published values and discussed for similar systems. We are also able to use the James Criterion to analyze the initiation, with values of Ec and Σc being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  16. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  17. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  18. X-ray phase-contrast tomography with a compact laser-driven synchrotron source

    PubMed Central

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D.; Pfeiffer, Franz

    2015-01-01

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced––and more challenging––X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches. PMID:25902493

  19. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  20. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  1. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  2. Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2016-08-01

    A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.

  3. A 10 GeV laser driven accelerator: the BELLA project

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Albert, O.; Esarey, E.; Geddes, C. G. R.; Gonsalves, A.; Matlis, N. H.; Nakamura, K.; Panasenko, D.; Plateau, G. R.; Schroeder, C. B.; Toth, Cs.; Bruhwiler, D. L.; Cary, J. R.; Bakeman, M.; Cormier-Michel, E.; Cowan, T.; Hooker, S. M.

    2007-11-01

    GeV class beams have been generated from a laser driven accelerator ootnotetextW.P. Leemans et al., Nature Physics 2, 696-699 (2006); K. Nakamura et al., Phys. Plasmas 14, 056708 (2007). The experiments used a cm-scale capillary discharge produced plasma channel to guide and control the process of acceleration, similar to the use of laser produced channels ootnotetextC.G.R. Geddes et al., Nature 431, 538-541 (2004), and 40 TW laser pulses. Lower plasma density and cm-scale channel length resulted in up to 1 GeV beams, in good agreement with simulations. This forms the basis for the next milestone experiment: a 10 GeV laser driven accelerator. As part of the BELLA project at LBNL, scaling of these experiments to the 10 GeV level is now underway. We will discuss experimental plans for the implementation of a 1 m scale channel guided laser wakefield accelerator and a petawatt class laser system.

  4. Structure and dynamics of plasma interfaces in laser-driven hohlraums

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Sio, H.; Frenje, J. A.; Séguin, F. H.; Birkel, A.; Petrasso, R. D.; Wilks, S. C.; Amendt, P. A.; Remington, B. A.; Masson-Laborde, P.-E.; Laffite, S.; Tassin, V.; Betti, R.; Sanster, T. C.; Fitzsimmons, P.; Farrell, M.

    2016-10-01

    Understanding the structure and dynamics of plasma interfaces in laser-driven hohlraums is important because of their potential effects on capsule implosion dynamics. To that end, a series of experiments was performed to explore critical aspects of the hohlraum environment, with particular emphasis on the role of self-generated spontaneous electric and magnetic fields at plasma interfaces, including the interface between fill-gas and Au-blowoff. The charged fusion products (3-MeV DD protons and 14.7-MeV D3He protons generated in shock-driven, D3He filled backlighter capsule) pass through the subject hohlraum and form images on CR-39 nuclear track detectors, providing critical information. Important physics topics, including ion diffusive mix and Rayleigh-Taylor instabilities, will be studied to illuminate ion kinetic dynamics and hydrodynamic instability at plasma interfaces in laser-driven hohlraums. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  5. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  6. Quantum signature for laser-driven correlated excitation of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Wu, Huaizhi; Li, Yong; Yang, Zhen-Biao; Zheng, Shi-Biao

    2017-01-01

    The excitation dynamics of a laser-driven Rydberg-atom system exhibits a cooperative effect due to the interatomic Rydberg-Rydberg interaction, but the large many-body system with inhomogeneous Rydberg coupling is hard to exactly solve or numerically study by density-matrix equations. In this paper, we find that the laser-driven Rydberg-atom system with most of the atoms being in the ground state can be described by a simplified interaction model resembling the optical Kerr effect if the distance-dependent Rydberg-Rydberg interaction is replaced by an infinite-range coupling. We can then quantitatively study the effect of the quantum fluctuations on the Rydberg excitation with the interatomic correlation involved and analytically calculate the statistical characteristics of the excitation dynamics in the steady state, revealing the quantum signature of the driven-dissipative Rydberg-atom system. The results obtained here will be of great interest for other spin-1/2 systems with spin-spin coupling.

  7. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly

    NASA Astrophysics Data System (ADS)

    Tikhonchuk, V. T.; Bailly-Grandvaux, M.; Santos, J. J.; Poyé, A.

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit—the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  8. Safety Issues of HG and PB as IFE Target Materials: Radiological Versus Chemical Toxicity

    SciTech Connect

    Reyes, S; Latkowski, J F; Cadwallader, L C; Moir, R W; Rio, G. D; Sanz, J

    2002-11-11

    We have performed a safety assessment of mercury and lead as possible hohlraum materials for Inertial Fusion Energy (IFE) targets, including for the first time a comparative analysis of the radiological and toxicological consequences of an accidental release. In order to calculate accident doses to the public, we have distinguished between accidents at the target fabrication facility and accidents at other areas of the power plant. Regarding the chemical toxicity assessment, we have used the USDOE regulations to determine the maximum allowable release in order to protect the public from adverse health effects. Opposite to common belief, it has been found that the chemical safety requirements for these materials appear to be more stringent than the concentrations that would result in an acceptable radiological dose.

  9. Selection of IFE target materials from a safety and environmental perspective

    NASA Astrophysics Data System (ADS)

    Latkowski, J. F.; Sanz, J.; Reyes, S.; Gomez del Rio, J.

    2001-05-01

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S&E) characteristics. The present work focuses on the recycling, waste management and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S&E characteristics.

  10. Selection of IFE target materials from a safety and environmental perspective

    SciTech Connect

    Latkowski, J F; Reyes, S; Sanz, J; Gomez del Rio, J

    2000-03-01

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost, and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S and E) characteristics. The present work focuses on the recycling, waste management, and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S and E characteristics.

  11. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E∼20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  12. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  13. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  14. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  15. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)

    SciTech Connect

    Yang, Xiaoyi; Xiao, Chijie Chen, Yihang; Xu, Tianchao; Lin, Chen; Wang, Long; Xu, Min; Yu, Yi

    2016-11-15

    Based on large energy spread of laser-driven ion beam (LIB), a new method, the Laser-driven Ion-beam Trace Probe (LITP), was suggested recently to diagnose the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) in toroidal devices. Based on another property of LIB, a wide angular distribution, here we suggested that LITP could be extended to get 2D B{sub p} profile or 1D profile of both poloidal and radial magnetic fields at the same time. In this paper, we show the basic principle, some preliminary simulation results, and experimental preparation to test the basic principle of LITP.

  16. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H.

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  17. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  18. Towards a novel laser-driven method of exotic nuclei extraction−acceleration for fundamental physics and technology

    SciTech Connect

    Nishiuchi, M. Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V. Kondo, K.; and others

    2016-04-15

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction–acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  19. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  20. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Kar, S.; Ahmed, H.; Krygier, A. G.; Doria, D.; Clarke, R.; Fernandez, J.; Freeman, R. R.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Lewis, C. L. S.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Nersisyan, G.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Ruiz, J. A.; Vassura, L.; Zepf, M.; Borghesi, M.

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6 +, O8 +, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  1. Teller Medal Lecture IFSA2001: Problems and solutions in the design and analysis of early laser driven high energy density and ICF target physics experiments (IFSA 2001)

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai D.

    2016-10-01

    The high energy density (HED) and inertial confinement fusion (ICF) physics community relies on increasingly sophisticated high power laser driven experiments to advance the field. We review early work in the design and analysis of such experiments, and discuss the problems encountered. By finding solutions to those problems we put the field on firmer ground, allowing the community to develop it to the exciting stage it is in today. Specific examples include: drive and preheat in complex hohlraum geometries with the complicating effects of sample motion; and issues in the successful design of laboratory soft x-ray lasers and in the invention of methods to reduce the required optical laser driver energy by several orders of magnitude.

  2. Teller Medal Lecture IFSA2001: Problems and Solutions in the Design and Analysis of Early Laser Driven High Energy Density and ICF Target Physics Experiments

    SciTech Connect

    Rosen, M D

    2001-08-20

    The high energy density (HED) and inertial confinement fusion (ICF) physics community relies on increasingly sophisticated high power laser driven experiments to advance the field. We review early work in the design and analysis of such experiments, and discuss the problems encountered. By finding solutions to those problems we put the field on firmer ground, allowing the community to develop it to the exciting stage it is in today. Specific examples include: drive and preheat in complex hohlraum geometries with the complicating effects of sample motion; and issues in the successful design of laboratory soft x-ray lasers and in the invention of methods to reduce the required optical laser driver energy by several orders of magnitude.

  3. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    SciTech Connect

    Alejo, A.; Kar, S. Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Green, J. S.; Notley, M.; Fernandez, J.; Fuchs, J.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; and others

    2014-09-15

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  4. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers.

    PubMed

    Alejo, A; Kar, S; Ahmed, H; Krygier, A G; Doria, D; Clarke, R; Fernandez, J; Freeman, R R; Fuchs, J; Green, A; Green, J S; Jung, D; Kleinschmidt, A; Lewis, C L S; Morrison, J T; Najmudin, Z; Nakamura, H; Nersisyan, G; Norreys, P; Notley, M; Oliver, M; Roth, M; Ruiz, J A; Vassura, L; Zepf, M; Borghesi, M

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C(6+), O(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  5. The light ion LMF and its relevance to IFE

    SciTech Connect

    Olson, R.E.; Allshouse, G.O.; Cook, D.L.; Lockner, T.R.; Mazarakis, M.G.; Olson, C.L.; Smith, D.L.

    1993-12-01

    The inertial confinement fusion (ICF) program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for ICF defense and energy applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The relevance of LMF technology to eventual inertial fusion energy (IFE) applications is assessed via a comparison of LMF technologies with those projected in the Light Ion Beam Reactor Assessment (LIBRA) conceptual reactor design study.

  6. Research and Development of a High Power-Laser Driven Electron-Accelerator Suitable for Applications

    DTIC Science & Technology

    2011-06-12

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of... any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a

  7. A pulsed-power electron accelerator using laser-driven photoconductive switches

    SciTech Connect

    Bamber, C.; Donaldson, W.R.; Lincke, E.; Melissinos, A.C. )

    1992-07-01

    The operation of a radical transmission line (RTC) based electron accelerator has been demonstrated. Electrons have been accelerated up to an energy of 11 KeV in a gap of 0.25 mm. This represents on average accelerating gradient of 44 MeV/m. Typical electron yields of 100 lc of charge per lunch were generated photoelectrically from the gold cathode surface.

  8. High-power tunable laser driven THz generation in corrugated plasma waveguides

    NASA Astrophysics Data System (ADS)

    Miao, Chenlong; Palastro, John P.; Antonsen, Thomas M.

    2017-04-01

    The excitation of Terahertz (THz) radiation by the interaction of an ultrashort laser pulse with the modes of a miniature corrugated plasma waveguide is considered. The axially corrugated waveguide supports the electromagnetic modes with appropriate polarization and subluminal phase velocities that can be phase matched to the ponderomotive potential associated with the laser pulse, making significant THz generation possible. This process is studied via full format Particle-in-Cell simulations that, for the first time, model the nonlinear dynamics of the plasma and the self-consistent evolution of the laser pulse in the case where the laser pulse energy is entirely depleted. It is found that the generated THz is characterized by lateral emission from the channel, with a spectrum that may be narrow or broad depending on the laser intensity. A range of realistic laser pulse and plasma parameters is considered with the goal of maximizing the conversion efficiency of optical energy to THz radiation. As an example, a fixed drive pulse (0.55 J) with a spot size of 15 μm and a duration of 15 fs produces a THz radiation of 37.8 mJ of in a 1.5 cm corrugated plasma waveguide with an on axis average density of 1.4 × 1018 cm-3.

  9. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  10. High-Power Free-Electron Lasers Driven by RF Linear Accelerators

    DTIC Science & Technology

    1989-05-16

    Sands Miss. Range, NM 88002-1198 University of California, Berkeley Berkeley, CA 94720 Dr. David Cartwright Los Alamos National Laboratory Prof. Frank...Prof. V. Jaccarino Dr. Darwin Ho Univ. of Calif. at Santa Barbara L-477 Santa Barbara, CA 93106 Lawrence Livermore National Laboratory P. 0. Box 808 Dr

  11. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  12. A simple model for estimating a magnetic field in laser-driven coils

    SciTech Connect

    Fiksel, Gennady; Fox, William; Gao, Lan; Ji, Hantao

    2016-09-26

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has been reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. Lastly, the results are compared with the published experimental data.

  13. New methods for high current fast ion beam production by laser-driven acceleration.

    PubMed

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  14. Laser-driven localization of collective CO vibrations in metal-carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Lisaj, Mateusz; Kühn, Oliver

    2014-11-01

    Using the example of a cobalt dicarbonyl complex it is shown that two perpendicular linearly polarized IR laser pulses can be used to trigger an excitation of the delocalized CO stretching modes, which corresponds to an alternating localization of the vibration within one CO bond. The switching time for localization in either of the two bonds is determined by the energy gap between the symmetric and asymmetric fundamental transition frequencies. The phase of the oscillation between the two local bond excitations can be tuned by the relative phase of the two pulses. The extend of control of bond localization is limited by the anharmonicity of the potential energy surfaces leading to wave packet dispersion. This prevents such a simple pulse scheme from being used for laser-driven bond breaking in the considered example.

  15. Laser-driven plasma beat-wave propagation in a density-modulated plasma.

    PubMed

    Gupta, Devki Nandan; Nam, In Hyuk; Suk, Hyyong

    2011-11-01

    A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the main plasma wave. The large phase velocity plasma wave can accelerate these electrons to higher energies. As a result, the electrons can attain high energies during the acceleration by the plasma waves in the presence of a periodic density modulation. The analytical results are compared with particle-in-cell simulations and are found to be in reasonable agreement.

  16. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These resultsmore » contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  17. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  18. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  19. A new experimental design for laser-driven shocks on precompressed and preheated water samples

    SciTech Connect

    Sollier, A.; Auroux, E.; Vauthier, J.-S.; Desbiens, N.; Bourasseau, E.; Maillet, J.-B.; Boustie, M.; He, H.; Resseguier, T. de; Berterretche, P.

    2007-12-12

    Laser driven shock measurements have been performed on precompressed and preheated water samples in order to reach states lying above the standard water Hugoniot in the pressure versus temperature diagram, which are representative of the thermodynamic parameters of water in the detonation products of high condensed explosives. In this experimental system, water is used as both target sample and window medium for VISAR diagnosis. We report the first experiments performed with the LCD's laser system at low shock pressure, on water samples preheated up to 300 deg. C and precompressed up to 300 bar. The results are used to check the predictions of the CARTE thermochemical code, and compared with the Sesame equation of state and with molecular Monte Carlo calculations.

  20. Equation of state measurements of warm dense carbon using laser-driven shock and release technique.

    PubMed

    Falk, K; Gamboa, E J; Kagan, G; Montgomery, D S; Srinivasan, B; Tzeferacos, P; Benage, J F

    2014-04-18

    We present a new approach to equation of state experiments that utilizes a laser-driven shock and release technique combined with spatially resolved x-ray Thomson scattering, radiography, velocity interferometry, and optical pyrometry to obtain independent measurements of pressure, density, and temperature for carbon at warm dense matter conditions. The uniqueness of this approach relies on using a laser to create very high initial pressures to enable a very deep release when the shock moves into a low-density pressure standard. This results in material at near normal solid density and temperatures around 10 eV. The spatially resolved Thomson scattering measurements facilitate a temperature determination of the released material by isolating the scattering signal from a specific region in the target. Our results are consistent with quantum molecular dynamics calculations for carbon at these conditions and are compared to several equation of state models.

  1. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  2. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  3. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy ${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.

  4. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  5. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; ...

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  6. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Fiuza, F.; Link, A.; Hazi, A.; Hill, M.; Hoarty, D.; James, S.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.; Park, J.; Sentoku, Y.; Williams, G. J.

    2015-05-01

    We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (˜EL2 ) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

  7. Thermally generated magnetic fields in laser-driven compressions and explosions

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1975-01-01

    The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.

  8. Beam quality study for a grating-based dielectric laser-driven accelerator

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2017-02-01

    Dielectric laser-driven accelerators (DLAs) based on grating structures are considered to be one of the most promising technologies to reduce the size and cost of future particle accelerators. They offer high accelerating gradients of up to several GV/m in combination with mature lithographic techniques for structure fabrication. This paper numerically investigates the beam quality for acceleration of electrons in a realistic dual-grating DLA. In our simulations, we use beam parameters of the future Compact Linear Accelerator for Research and Applications facility to load an electron bunch into an optimized 100-period dual-grating structure where it interacts with a realistic laser pulse. The emittance, energy spread, and loaded accelerating gradient for modulated electrons are then analyzed in detail. Results from simulations show that an accelerating gradient of up to 1.13 ± 0.15 GV/m with an extremely small emittance growth, 3.6%, can be expected.

  9. Demonstartion of density dependence of x-ray flux in a laser-driven hohlraum

    SciTech Connect

    Young, P E; Rosen, M D; Hammer, J H; Hsing, W S; Glendinning, S G; Turner, R E; Kirkwood, R; Schein, J; Sorce, C; Satcher, J; Hamza, A; Reibold, R A; Hibbard, R; Landen, O; Reighard, A; McAlpin, S; Stevenson, M; Thomas, B

    2008-02-11

    Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta{sub 2}O{sub 5} foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.

  10. New methods for high current fast ion beam production by laser-driven accelerationa)

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  11. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  12. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    SciTech Connect

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  13. Physical approach to adhesion testing using laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Bolis, C.; Berthe, L.; Boustie, M.; Arrigoni, M.; Barradas, S.; Jeandin, M.

    2007-05-01

    This paper deals with an adhesion test of coatings using laser-driven shock waves. Physical aspects concerning laser-matter interaction, shock wave propagation and interface fracture strength are described. This comprehensive approach using two numerical codes (HUGO and SHYLAC) allows the determination of mechanisms responsible for coating debonding and a quantitative evaluation of fracture strength. From this description, a coating test protocol is also designed. To diagnose coating debonding, it is based on the analysis of experimental rear free surface velocity profiles measured by velocity interferometer system for any reflectors (VISAR). Ni electrolytic coating (70-90 µm) deposited on a Cu substrate (120-190 µm) is used for the experimental validation of the test. The fracture strength is 1.49 ± 0.01 GPa for a laser pulse duration of 10 ns at 1.064 µm.

  14. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    SciTech Connect

    Albertazzi, B.; D'Humières, E.; Lancia, L.; Antici, P.; Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J.; Böcker, J.; Swantusch, M.; Willi, O.; Bonlie, J.; Cauble, B.; Shepherd, R.; Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T.; Chen, S. N.; Sentoku, Y.; and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  15. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  16. Laser-driven proton scaling laws and new paths towards energy increase

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C. A.; Kaluza, M.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Schreiber, J.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-01-01

    The past few years have seen remarkable progress in the development of laser-based particle accelerators. The ability to produce ultrabright beams of multi-megaelectronvolt protons routinely has many potential uses from engineering to medicine, but for this potential to be realized substantial improvements in the performances of these devices must be made. Here we show that in the laser-driven accelerator that has been demonstrated experimentally to produce the highest energy protons, scaling laws derived from fluid models and supported by numerical simulations can be used to accurately describe the acceleration of proton beams for a large range of laser and target parameters. This enables us to evaluate the laser parameters needed to produce high-energy and high-quality proton beams of interest for radiography of dense objects or proton therapy of deep-seated tumours.

  17. Femtosecond powder diffraction with a laser-driven hard X-ray source.

    PubMed

    Zamponi, F; Ansari, Z; Woerner, M; Elsaesser, T

    2010-01-18

    X-ray powder diffraction with a femtosecond time resolution is introduced to map ultrafast structural dynamics of polycrystalline condensed matter. Our pump-probe approach is based on photoexcitation of a powder sample with a femtosecond optical pulse and probing changes of its structure by diffracting a hard X-ray pulse generated in a laser-driven plasma source. We discuss the key aspects of this scheme including an analysis of detection sensitivity and angular resolution. Applying this technique to the prototype molecular material ammonium sulfate, up to 20 powder diffraction rings are recorded simultaneously with a time resolution of 100 fs. We describe how to derive transient charge density maps of the material from the extensive set of diffraction data in a quantitative way.

  18. First results on cell irradiation with laser-driven protons on the TARANIS system

    SciTech Connect

    Kar, S.; Doria, D.; Kakolee, K. F.; Prasad, R.; Litt, S.; Ahmed, H.; Nersisyan, G.; Lewis, C.; Zepf, M.; Borghesi, M.; Schettino, G.; Prise, K. M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K. J.

    2013-07-26

    The ultra short duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen’s University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live, cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  19. A simple model for estimating a magnetic field in laser-driven coils

    SciTech Connect

    Fiksel, Gennady; Fox, William; Gao, Lan; Ji, Hantao

    2016-09-26

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has been reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. Lastly, the results are compared with the published experimental data.

  20. A simple model for estimating a magnetic field in laser-driven coils

    NASA Astrophysics Data System (ADS)

    Fiksel, Gennady; Fox, William; Gao, Lan; Ji, Hantao

    2016-09-01

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has been reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. The results are compared with the published experimental data.

  1. Micro-punching process based on spallation delamination induced by laser driven-flyer

    NASA Astrophysics Data System (ADS)

    Di, Jianke; Zhou, Ming; Li, Jian; Li, Chen; Zhang, Wei; Amoako, George

    2012-01-01

    In this article, we proposed a micro-punching process for microstructure on films based on laser driven-flyer induced spallation delamination phenomenon at the interface between a film and its substrate. To validate such a micro-punching process, a series of experiments were carried out for fabrication of microstructures on Au films coated on K9 glass substrates and polyimide substrate. Results show that through such a punching process, the microstructure on Au films can be fabricated efficiently and the spatial resolution is able to reach micron level. Moreover, we found that this method was more suitable for films coated on soft substrates rather than that coated on brittle substrates due to the additional destruction of the brittle substrate. This micro-punching process has a wide range of potential application in microfluidic devices, biodevices and other MEMS devices.

  2. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Lee, S.; Shiroto, T.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Sunahara, A.; Ohnishi, N.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.; Fujioka, S.

    2016-06-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  3. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C.; Buffechoux, S.; Albertazzi, B.; Capelli, D.; Antici, P.; Levy, A.; Fuchs, J.; Lecherbourg, L.; Marjoribanks, R. S.

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  4. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  5. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas.

    PubMed

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Sefkow, Adam B; Shah, Rahul C; Fernández, Juan C

    2015-12-11

    Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼10(12) V m(-1)) and magnetic (∼10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  6. A simple model for estimating a magnetic field in laser-driven coils

    DOE PAGES

    Fiksel, Gennady; Fox, William; Gao, Lan; ...

    2016-09-26

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has beenmore » reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. Lastly, the results are compared with the published experimental data.« less

  7. Numerical Study of a Multi-stage Dielectric Laser-driven Accelerator

    NASA Astrophysics Data System (ADS)

    Wei, Yelong; Xia, Guoxing; Smith, Jonathan. D. A.; Hanahoe, Kieran; Mete, Oznur; Jamison, Steve P.; Welsch, Carsten P.

    In order to overcome the limits of commonly used radiofrequency accelerators, it is highly desirable to reduce the unit cost and increase the maximum achievable accelerating gradient. Dielectric laser-driven accelerators (DLAs) based on grating structures have received considerable attention due to maximum acceleration gradients of several GV/m and mature lithographic techniques for structure fabrication. This paper explores different spatial harmonics excited by an incident laser pulse and their interaction with the electron beam from the non-relativistic (25 keV) to the highly relativistic regime in double-grating silica structures. The achievable acceleration gradient for different spatial harmonics and the optimal compromise between maximum acceleration gradient and simplicity of structure fabrication are discussed. Finally, the suitability of a multi-stage DLA which would enable the acceleration of electrons from 25 keV to relativistic energies is discussed.

  8. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams.

    PubMed

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-11-01

    Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements.

  9. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    NASA Astrophysics Data System (ADS)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  10. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  11. Utilizing a Low-Cost, Laser-Driven Interactive System (LaDIS) to Improve Learning in Developing Rural Regions

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Chang, Chun-Yen

    2014-01-01

    This study proposes an innovation Laser-Driven Interactive System (LaDIS), utilizing general IWBs (Interactive Whiteboard) didactics, to support student learning for rural and developing regions. LaDIS is a system made to support traditional classroom practices between an instructor and a group of students. This invention effectively transforms a…

  12. Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source.

    PubMed

    Schick, D; Bojahr, A; Herzog, M; von Korff Schmising, C; Shayduk, R; Leitenberger, W; Gaal, P; Bargheer, M

    2012-02-01

    We present an experimental setup of a laser-driven x-ray plasma source for femtosecond x-ray diffraction. Different normalization schemes accounting for x-ray source intensity fluctuations are discussed in detail. We apply these schemes to measure the temporal evolution of Bragg peak intensities of perovskite superlattices after ultrafast laser excitation.

  13. Utilizing a Low-Cost, Laser-Driven Interactive System (LaDIS) to Improve Learning in Developing Rural Regions

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Chang, Chun-Yen

    2014-01-01

    This study proposes an innovation Laser-Driven Interactive System (LaDIS), utilizing general IWBs (Interactive Whiteboard) didactics, to support student learning for rural and developing regions. LaDIS is a system made to support traditional classroom practices between an instructor and a group of students. This invention effectively transforms a…

  14. Numerical analysis of Laser Driven Rayleigh-Tayor instability at short wavelength

    NASA Astrophysics Data System (ADS)

    Nagatomo, Hideo; Ohnishi, Naofumi; Mima, Kunioki; Nishihara, Katsunobu; Sawada, Keisuke; Takabe, Hideaki

    2001-10-01

    For the inertial confinement fusion, it is important to simulate and predict the hydrodynamic instabilities. An integrated implosion simulation code was developed in ILE Osaka for IFE and other application usage. This new 2-D implosion code is based on ALE algorithm extended from CIP method which is robust and less numerical dissipation. To validate the code, various simulations of implosion and planner target were performed. In this presentation, the analysis of Rayleigh-Taylor instability will be shown mainly. In recent experiment by GXII Laser, the growth of RT instability at the range of short wavelength of the perturbation below the 30μm were measured with precision. Numerical analysis of the same condition using the new code was performed. The detail result will be shown in this presentation.

  15. Evaluation of Fluidized Beds for Mass Production of IFE Targets

    SciTech Connect

    Huang, H.; Vermillion, B.A.; Brown, L.C.; Besenbruch, G.E.; Goodin, D.T.; Stemke, R.W.; Stephens, R.B.

    2005-01-15

    Of the building blocks of an inertial fusion energy (IFE) plant, target fabrication remains a significant credibility issue. For this reason, an extensive parametric study has been conducted on mass production of glow discharge polymer (GDP) shells in a vertical fluidized bed. Trans-2-butene was used as a reactant gas with hydrogen as a diluting and etching agent. Coating rates in the range of 1 to 2 {mu}m/h were demonstrated on batches of 30 shells where National Ignition Facility-quality surfaces were obtained for 3- to 5-{mu}m-thick coatings. Thick coatings up to 325 {mu}m were also demonstrated that are visually transparent, without void and stress fracture. A phenomenological understanding of the GDP growth mechanisms to guide future experiments was further established. Specifically, gas-phase precipitation and high-impact collisions were identified as the main surface-roughening mechanisms. The former produces dense cauliflower-like surface patterns that can be eliminated by adjusting the gas flow rates and the flow ratio. The latter produces isolated domelike surface defects that can be reduced by introducing concerted motion between the shells. By converting from a vertical to a horizontal configuration, fully transparent coatings were obtained on 350 shells. Collisions in a fluidized bed have been identified as the limiting factor in meeting IFE specifications, and a related-rotary kiln technique is recommended for scale-up.

  16. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  17. High-speed imaging of Raleigh-Taylor instabilities in laser-driven plates

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Gillespie, Calvin H.; Trott, Wayne M.

    1997-05-01

    We have previously reported our observations of the dynamic behavior of laser driven plates. Recent improvements and modification of the imaging techniques have identified and provided measurements of Raleigh-Taylor (R-T) instabilities that occur in these events. The microscope system in the LLNL Micro Detonics Facility, was converted to an epi- illuminated polarization configuration. A double pulse nanosecond illuminator and a second independently focusable frame camera were also added to the system. A laser driven plate, that is a dense solid driven by a laser heated, lower density plasma, is inherently R-T unstable. The characteristics and growth of the instability determine whether or not the plate remains intact. In earlier reports we correlated the surface patterning of thin plates with the fiber-optical transmission modes. In subsequent experiments we noted that the plasma burn through patterning in thin plates and the surface patterning of thicker plates did not correspond to the thin plate early time patterning. These observations led to the suspicion of R-T instability. A series of experiments correlating plate thickness and pattern spatial frequency has verified the instability. The plates are aluminum, deposited on the ends of optical fibers. They are launched by a YAG laser pulse traveling down the fiber. Plate velocities are several kilometers per second and characteristic dimensions of the instabilities are a few to tens of microns. Several techniques were used to examine the plates, the most successful being specularly reflecting polarization microscopy looking directly at the plate as it flies toward the camera. These images gave data on the spatial frequencies of the instabilities but could not give the amplitudes. To measure the amplitude of the instability a semi-transparent witness plate was placed a known distance from the plate. As above, the plate was observed using the polarization microscope but using the streak camera as the detector

  18. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    DOE PAGES

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...

    2016-10-17

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  19. Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility

    SciTech Connect

    Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; Merrill, Frank Edward; Falk, Katerina; Jung, D.; Tybo, Joshua L.; Wilde, Carl Huerstel; Croft, Stephen; Danly, Christopher R.; Deppert, O.; Devlin, Matthew James; Fernandez, Juan Carlos; Gautier, Donald Cort; Geissel, M; Haight, Robert Cameron; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Johnson, Randall Philip; Schaumann, G.; Schoenberg, Kurt Francis; Schollmeier, M.; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wender, Stephen Arthur; Wurden, Glen Anthony; Roth, Markus

    2016-10-17

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical

  20. Urinary schistosomiasis among school children in Ile-Ife, Nigeria.

    PubMed

    Amole, B O; Jinadu, M K

    1994-09-01

    A study of urinary schistosomiasis among 553 randomly selected primary and secondary school children in Ile-Ife township in 1988 shows that nearly half (48.5%) of the school children were infected. There was a sharp increase in both the prevalence and intensity of the infection up to age 13 years which then declined slightly by age 14. About 50% of the infected school children had gross hematuria. There was an association between the intensity of the infection and the presence of hematuria. The main strategies recommended for the control of the infection were regular disinfection of ponds and streams in the town and adequate treatment of infected school children, backed up with school health education programme.

  1. Childhood intussusception in Ile-ife: what has changed?

    PubMed

    Talabi, Ademola Olusegun; Sowande, Oludayo Adedapo; Etonyeaku, Chiduziem Amarachukwu; Adejuyigbe, Olusanya

    2013-01-01

    Intussusception is one of the most common causes of intestinal obstruction in children. While the outcome has improved in the developed nations, the same cannot be said of the developing countries, more especially in the sub-Saharan region. This study aims to review our current experience in the management of childhood intussusception and factors affecting surgical outcome at the Obafemi Awolowo University Teaching Hospitals Complex Ile-Ife. This was a retrospective study of 78 patients treated for intussusception at paediatric surgical unit of Obafemi Awolowo University Teaching Hospitals Complex Ile-Ife between January 1993 and December 2011. The case notes of the patients were retrieved and the following information was recorded: Demographic characteristics, month of occurrence, clinical presentation, investigations, and management as well as the post-operative outcome. The patients were divided into two groups in terms of outcome. There were 58 males and 20 females (M:F = 2.9-1). The age of most of the patients was between 3 months and 9 months with peak incidence at 6 months. Most patients 46 (58.9%) were seen during the dry season of December to April. Only six patients (7.7%) presented within 24 hours of onset of illness. More than half of the patients presented after 24 hours. Passage of red currant stool, vomiting, abdominal pain, fever, and abdominal distension, passage of watery stool, anal protrusion and palpable abdominal mass in various combinations were the clinical features. All the patients had surgical operations. The most common type of intussusception was ileo-colic type in 64 patients (82.1%). Intestinal resection rate was 41%. The overall mortality rate was 15.4%. There was a delay in presentation of children with intussusception with high post-operative mortality.

  2. Indication for eye removal in Ile-Ife, Nigeria.

    PubMed

    Adeoye, A O; Onakpoya, O H

    2007-12-01

    The indication for surgical eye removal reflects the pattern of severe ocular diseases in a given community and gives insight into the causes of uniocular blindness. It is an unfortunate end to certain ocular morbidities. In instances where the fellow eye is already blind, it then becomes even more grievous. The aim of the study is to find out the reasons for surgical eye removal in Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC) Ile-Ife. Nigeria. Retrospective analytic study of records of all patients who had their eyes removed in the Ophthalmic theatre of OAUTHC Ile-Ife from January 1994 - December 2003 were reviewed without prejudice to method of such removal. A total of 94 eyes were removed during this 10 year period, out of which 92 records were available for inclusion in this study. 30.4% of the patients were below 10 years of age. The male to female ratio was 2.1:1. All cases of eye removal were uniocular. Trauma was the leading cause of eye removal (43.4%) while orbito-ocular tumour was next (30.4%). Tumour was the leading cause of eye removal in the paediatric age group (87.2%) with Retinoblastoma being the commonest indication. Six out of the 92 (6.5%) patients studied unfortunately were already blind in the second eye; in this group of individuals the reason for eye removal was preventable in 83.3%. Most of the indications for eye removal were avoidable. Eye health education is needful for the general populace and particularly for individuals with an 'only' eye.

  3. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Devicea)

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Gekelman, W.; Niemann, C.

    2014-05-01

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.

  4. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-03-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  5. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

    DOE PAGES

    Obst, Lieselotte; Gode, Sebastian; Rehwald, Martin; ...

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (Ø 5 μm) and planar (20 μm × 2 μm). In bothmore » cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. As a result, this is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.« less

  6. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    PubMed

    Obst, Lieselotte; Göde, Sebastian; Rehwald, Martin; Brack, Florian-Emanuel; Branco, João; Bock, Stefan; Bussmann, Michael; Cowan, Thomas E; Curry, Chandra B; Fiuza, Frederico; Gauthier, Maxence; Gebhardt, René; Helbig, Uwe; Huebl, Axel; Hübner, Uwe; Irman, Arie; Kazak, Lev; Kim, Jongjin B; Kluge, Thomas; Kraft, Stephan; Loeser, Markus; Metzkes, Josefine; Mishra, Rohini; Rödel, Christian; Schlenvoigt, Hans-Peter; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Ziegler, Tim; Schramm, Ulrich; Glenzer, Siegfried H; Zeil, Karl

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10(9) particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.

  7. Cost reduction study for the LANL KrF laser-driven LMF design

    SciTech Connect

    Not Available

    1989-10-27

    This report is in fulfillment of the deliverable requirements for the optical components portions of the LANL-KrF Laser-Driven LMF Design Cost Reduction Study. This report examines the future cost reductions that may accrue through the use of mass production, innovative manufacturing techniques, and new materials. Results are based on data collection and survey of optical component manufacturers, BDM experience, and existing cost models. These data provide a good representation of current methods and technologies from which future estimates can be made. From these data, a series of scaling relationships were developed to project future costs for a selected set of technologies. The scaling relationships are sensitive to cost driving parameters such as size and surface figure requirements as well as quantity requirements, production rate, materials, and manufacturing processes. In addition to the scaling relationships, descriptions of the selected processes were developed along with graphical representations of the processes. This report provides a useful tool in projecting the costs of advanced laser concepts at the component level of detail. A mix of the most diverse yet comparable technologies was chosen for this study. This yielded a useful, yet manageable number of variables to examine. The study has resulted in a first-order cost model which predicts the relative cost behavior of optical components within different variable constraints.

  8. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  9. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  10. Ultrafast probing of magnetic field growth inside a laser-driven solenoid.

    PubMed

    Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

  11. Parameter study of a laser-driven dielectric accelerator for radiobiology research

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Otsuki, Shohei; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Aimidula, Aimiding

    2014-12-01

    A parameter study for a transmission grating type laser-driven dielectric accelerator (TG-LDA) was performed. The optimum pulse laser width was concluded to be 2 ps from the restrictions on the optical damage threshold intensity and the nonlinear optical effects such as the self-phase modulation and self-focus. An irradiation intensity of 5× {{10}11} W c{{m}-2} (2 GV m-1) was suitable for a silica TG-LDA with a pulse width range from 1 ps to 10 ps. The higher order harmonics of the axial electric field distribution was capable of accelerating electrons provided that the electron speed approximately satisfies the conditions of v/c=1/2,1/3, or 1/4. The electrons at the initial energy of 20 kV are accelerated by an acceleration field strength of 20 MV m-1, and the electrons were accelerated by higher fields as the speed increased. For relativistic energy electrons,the acceleration gradient was 600 MV {{m}-1}.

  12. Femtosecond-Laser-Driven Cluster-Based Plasma Source for High-Resolution Ionography

    SciTech Connect

    Faenov, A. Ya.; Pikuz, T. A.; Fukuda, Y.; Kando, M.; Kotaki, H.; Homma, T.; Kawase, K.; Kameshima, T.; Mori, M.; Sakaki, H.; Hayashi, Y.; Nakamura, T.; Pirozhkov, A.; Yogo, A.; Tampo, M.; Bolton, P.; Daido, H.; Tajima, T.; Pikuz, S. A. Jr.; Kartashev, V.

    2009-07-25

    The intense isotropic source of multicharged ions, with energy above 300 keV, was produced by femtosecond Ti:Sa laser pulses irradiation (intensity of approx4x10{sup 17} W/cm{sup 2}) of the He and CO{sub 2} gases mixture expanded in supersonic jet. High contrast ionography images have been obtained for 2000 dpi metal mesh, 1 mum polypropylene and 100 nm Zr foils, as well as for different biological objects. Images were recorded on 1 mm thick CR-39 ion detector placed in contact with back surface of the imaged samples, at the distances 140-160 mm from the plasma source. The obtained spatial resolution of the image was approx600 nm. A 100 nm object thickness difference was resolved very well for both Zr and polymer foils. The multicharged ion energy for Carbon and Oxygen ions passing through the 1 mum polypropylene foil is estimated to give the energy of more than 300 keV. An almost equal number of ions were measured with total number of about 10{sup 8} per shot at a different direction from plasma source. Easy production of different sub-MeV ions in wide space angle, recognizes femtosecond-laser-driven-cluster-based plasma as a well-suited bright source for novel type of submicron ionography to image different media, including nanofoils, membranes, and other low-contrast objects.

  13. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect

    Jiang, Shaoen; Jing, Longfei Ding, Yongkun; Huang, Yunbao

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  14. Experimental and numerical study of laser-driven spallation on aluminum with VISAR diagnostic

    NASA Astrophysics Data System (ADS)

    Tollier, L.; Bartnicki, Eric; Fabbro, Remy

    1996-09-01

    Laser-driven shock experiments in combination with VISAR technique have been performed to study the ablation pressure, the dynamic damage and spallation for aluminum targets with thicknesses in the 25-500 micrometers range. Shock- waves up to 100 kbar have been generated by laser irradiation intensities from 1010-1012 W/cm2 with a wavelength of 1.06 micrometers and pulses duration of 20-30 ns. The pressure profile has been determined using the laser-matter interaction code FILM, its amplitude has been compared with the one inferred by the VISAR velocity measurements. This temporal profile has been also used as a boundary condition applied at the front face of the target in the hydrodynamic code SHYLAC. Recorded free surface velocities from VISAR measurements exhibiting spallation features have been compared with numerical SHYLAC simulations to asses a continuous kinetic model of ductile spallation implemented in the code. Good agreement has been found between measured and predicted rear surface velocities for irradiation conditions leading to damage from void nucleation to complete spallation. Recovered samples have been examined by means of metallographic methods to compare the simulated damage with the experimental one tin terms of spall thickness and damage zone size.

  15. Experimental and numerical study of laser-driven spallation with visar diagnostic

    NASA Astrophysics Data System (ADS)

    Tollier, L.; Bartnicki, E.; Fabbro, R.

    1996-05-01

    Laser-driven shock experiments in combination with VISAR technique have been performed to study the ablation pressure, the dynamic damage and spallation for Aluminum and Copper targets with thicknesses in the 25-500 μm range. Shock-waves up to 100 kbar have been generated by laser irradiation intensities from 1010-1012W/cm2 with a wavelength of 1,06 μm and pulses duration of 20-30 ns. The pressure profile has been determined using the laser-matter interaction code FILM, its amplitude has been compared with the one inferred by the VISAR velocity measurements. This temporal profile has been also used as a boundary condition applied at the front face of the target in the hydrodynamic code EFHYD-2D. Recorded free surface velocities from VISAR measurements exhibiting spallation features have been compared with numerical EFHYD simulations to assess a continuous kinetic model of ductile spallation implemented in the code. Good agreement has been found between measured and predicted rear surface velocities for irradiation conditions leading to damage from void nucleation to complete spallation. Recovered samples have been examined by means of metallographic methods to compare the simulated damage with the experimental one in terms of spall thickness and damage zone size.

  16. Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device

    SciTech Connect

    Schaeffer, D. B. Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Gekelman, W.; Niemann, C.; Winske, D.

    2014-05-15

    The interaction of a laser-driven super-Alfvénic magnetic piston with a large, preformed magnetized ambient plasma has been studied by utilizing a unique experimental platform that couples the Raptor kJ-class laser system [Niemann et al., J. Instrum. 7, P03010 (2012)] to the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the University of California, Los Angeles. This platform provides experimental conditions of relevance to space and astrophysical magnetic collisionless shocks and, in particular, allows a detailed study of the microphysics of shock formation, including piston-ambient ion collisionless coupling. An overview of the platform and its capabilities is given, and recent experimental results on the coupling of energy between piston and ambient ions and the formation of collisionless shocks are presented and compared to theoretical and computational work. In particular, a magnetosonic pulse consistent with a low-Mach number collisionless shock is observed in a quasi-perpendicular geometry in both experiments and simulations.

  17. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    NASA Astrophysics Data System (ADS)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  18. Indirect ignition of energetic materials with laser-driven flyer plates.

    PubMed

    Dean, Steven W; De Lucia, Frank C; Gottfried, Jennifer L

    2017-01-20

    The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 μm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.

  19. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  20. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  1. Time-dependent quantum chemistry of laser driven many-electron molecules.

    PubMed

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH2, treated in a 3-21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10(15) W/cm(2)), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.

  2. Heat Loss in a Laser-Driven, Magnetized, X-Ray Source with Thermoelectric Terms

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Velikovich, A. L.; Kemp, G. E.; Colvin, J. D.; Koning, J.; Fournier, K. B.

    2016-10-01

    The efficiency of laser-driven K-shell radiation sources, i.e., pipes containing a gas or a metal foam, may be improved by using an axial magnetic field to thermally insulate the pipe wall from the hot interior. A planar, self-similar solution for the magnetic and thermal diffusion is developed to model the near wall physics that includes the thermoelectric Nernst and Ettingshausen effects. This solution extends previous work for the MagLIF concept to include the full dependence of the transport coefficients on the electron Hall parameter. The analytic solution assumes a constant pressure. This case is matched with a 1D MHD code, which is then applied to the case allowing for pressure gradients. These numerical solutions are found to evolve toward the self-similar ones. The variation of the time integrated heat loss with and without the thermoelectric terms will be examined. The present work provides a verification test for general MHD codes that use Braginskii's or Epperlein-Haines' transport model to account for thermoelectric effects. NRL supported by the DOE/NNSA. LLNL work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  3. Time-dependent quantum chemistry of laser driven many-electron molecules

    SciTech Connect

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH{sub 2}, treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10{sup 15} W/cm{sup 2}), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.

  4. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  5. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  6. Propagation of Laser-Driven Relativistic Electron Beam inside Solid Dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Jobe, D.; Spielman, R.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Bychenkov, V. Yu.

    2011-10-01

    Laser probing diagnostics shadowgraphy, interferometry and polarimetry was used for comprehensive characterization of ionization wave dynamics inside glass target induced by laser-driven relativistic electron beam. Experiment was done using 50-TW Leopard laser at University of Nevada Reno. It has been shown that for laser flax ~2 ×1018W/cm2 hemispheric ionization wave propagates with c/3 speed has smooth electron density distribution, absorbing probing green beam in 2-10 times. Maximum of free-electron density inside glass target is ~2x1019cm-3, which correspond to ionization ~0.1%. Magnetic and electric fields do not exceed ~15 kG and ~1 MV/cm. Electron temperature has hot-ring structure with maximum 0.1-0.5 eV. The topology of the interference phase shift shows the signature of the ``fountain effect'', a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields. The very low ionization, ~0.1%, observed after the heating pulse suggests a fast recombination at the sub-ps time scale. Work was supported by the DOE/NNSA under UNR grant DE-FC52-06NA27616 and grant DE-PS02-08ER08-16.

  7. Propagation of a laser-driven relativistic electron beam inside a solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ˜2 × 1018 W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ˜2 × 1019 cm-3, which corresponds to an ionization level of ˜0.1%. Magnetic fields and electric fields do not exceed ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ˜0.7 eV. The topology of the interference phase shift shows the signature of the “fountain effect”, a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  8. On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments

    SciTech Connect

    Swift, D C; Kraus, R G

    2007-11-15

    Radiation hydrodynamics simulations were used to study the effect of plastic ablators in laser-driven shock experiments. The sensitivity to composition and equation of state was found to be 5-10% in ablation pressure. As was found for metals, a laser pulse of constant irradiance gave a pressure history which decreased by several percent per nanosecond. The pressure history could be made more constant by adjusting the irradiance history. The impedance mismatch with the sample gave an increase o(100%) in the pressure transmitted into the sample, for a reduction of several tens of percent in the duration of the peak load applied to the sample, and structured the release history by adding a release step to a pressure close to the ablation pressure. Algebraic relations were found between the laser pulse duration, the ablator thickness, and the duration of the peak pressure applied to the sample, involving quantities calculated from the equations of state of the ablator and sample using shock dynamics.

  9. A Transformative Imaging Capability Using Laser Driven Multi MeV Photon Sources

    NASA Astrophysics Data System (ADS)

    Gautier, Donald; Espy, Michelle; Palaniyappan, Sasi; Mendez, Jacob; Nelson, Ronald; Hunter, James; Fernandez, Juan; los alamos national laboratory Team

    2016-10-01

    Recent results from the LANL Trident Laser demonstrate the practical use of a laser of this class ( 70 J, 600 fs) as a multi MeV photon source. The utilization of novel targets operating in the relativistic transparency regime of laser-plasmas has enabled this development. The electron population made from these targets, when coupled to a suitable high-Z converter foil placed near the laser target, produces an intense >1 MeV photon source with a small source size compared to conventional sources. When coupled with efficient imaging detectors, this laser-driven hard x-ray source provides new capabilities to address current non-destructive and dynamic testing problems that require a quantum jump in resolution. ``Flash'' (pulse picosecond) photon imaging, micro-focus resolution enhancement, good object penetration, and magnification (4x) with sufficient dose (>10 Rad/sr) for practical application have all been demonstrated at the LANL Trident Laser, as summarized in this presentation.

  10. Mechanism and Control of High-Intensity-Laser-Driven Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Lin, T.; Flippo, K.; Rever, M.; Maksimchuk, A.; Umstadter, D.

    2004-12-01

    We discuss the optimization and control of laser-driven proton beams. Specifically, we report on the dependence of high-intensity laser accelerated proton beams on the material properties of various thin-film targets. Evidence of star-like filaments and beam hollowing (predicted from the electrothermal instability theory) is observed on Radiochromic Film (RCF) and CR-39 nuclear track detectors. The proton beam spatial profile is found to depend on initial target conductivity and target thickness. For resistive target materials, these structured profiles are explained by the inhibition of current, due to the lack of a return current. The conductors, however, can support large propagating currents due to the substantial cold return current which is composed of free charge carriers in the conduction band to neutralize the plasma from the interaction. The empirical plot shows relationship between the maximum proton energy and the target thickness also supports the return current and target normal sheath acceleration (TNSA) theory. We have also observed filamentary structures in the proton beam like those expected from the Weibel instability in the electron beam. Along with the ion acceleration, a clear electron beam is detected by the RCF along the tangent to the target, which is also the surface direction of target plate.

  11. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  12. Penumbral imaging for measurement of the ablation density in laser-driven targets

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Heya, Manabu; Shigemori, Keisuke; Nakai, Mitsuo; Azechi, Hiroshi; Nakai, Sadao; Yamanaka, Tatsuhiko

    2002-07-01

    One-dimensional (1D) penumbral imaging technique with high spatial resolution has been developed, and applied to density profile measurements in laser-driven Rayleigh-Taylor instability experiments at a GEKKO XII-HIPER laser system. A laser-irradiated planar target was observed with side-on x-ray backlighting. A penumbral image of an x-ray radiograph was made by using a knife-edge imager. The x-ray radiograph was, then, reconstructed by differentiating the penumbral image with a proper Wiener filtering. A density profile was deduced from the reconstructed x-ray radiograph. In a proof-of-principle experiment, the density profile of a polystyrene (PS) target before laser irradiation was measured by using this method, and high spatial resolution of 3-4 μm was demonstrated. A laser-irradiated PS target in the acceleration phase was observed. The experimentally observed density profile was found to be consistent with the prediction by a 1D hydrodynamic simulation code. The x-ray penumbral imaging is a very simple and useful technique with high spatial resolution for research in hydrodynamics relevant to inertial fusion energy.

  13. Towards controlled flyer acceleration by a laser-driven mini flyer

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Fedotov, Vitalij; Baek, Wonkye; Yoh, Jack J.

    2014-06-01

    A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

  14. Laser-driven neutron production from bulk and pitcher-catcher targets

    NASA Astrophysics Data System (ADS)

    Maksimchuk, Anatoly; Willingale, L.; Matsuoka, T.; Thomas, A. G. R.; Krushelnick, K.; Petrov, G. M.; Davis, J.; Ovchinnikov, V. M.; Freeman, R. R.; Joglekar, A.; Murphy, C. D.; Woerkom, L. Van

    2010-11-01

    As an important step in the development of the highly directional compact neutron source from the reaction ^7Li(d,xn) [1] we have studied the laser-driven fusion neutron production d(d,n)^3He from bulk deuterated plastic targets and compared it to a pitcher-catcher target method using the same laser and detector arrangement. For laser intensities of up to I = 3.10^19 Wcm^2 it was found that the bulk targets produced a high yield (5.10^4 neutrons/steradian) beamed preferentially in the laser propagation direction. The inhibition of the deuteron acceleration by a proton rich contamination layer is likely to significantly reduce the pitcher-catcher neutron production. Two-dimensional particle-in-cell simulations were performed to model the deuteron beam acceleration, the results of which were coupled to a Monte Carlo code to calculate the expected neutron beam properties. Numerical analysis suggests the pitcher-catcher targets would become more efficient at higher laser intensities. This work was supported by DTRA and the NRL. [1] J. Davis et al., PPCF 52, 045015 (2010).

  15. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-07-08

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  16. Laser driven short-term thermal angioplasty: enhancement of drug delivery performance by heating with tension

    NASA Astrophysics Data System (ADS)

    Suganuma, Kao; Homma, Rie; Shimazaki, Natsumi; Ogawa, Emiyu; Arai, Tsunenori

    2017-02-01

    To enhance drug delivery performance of drug eluting balloon (DEB) against re-stenosis, we have proposed a heating drug delivery during balloon dilatation using our laser driven short-term thermal angioplasty which may realize to suppress surrounding thermal injury. We studied an influence of vessel dilatation parameters on the heating drug delivery. These parameters were classified into two different forces, that is, circumferential tension and inter-luminal pressure. We think these parameters were not able to determine only by balloon pressure. The circumferential tension with 0-30 mN/mm2 was added to a porcine carotid artery using an automatic stage. Various temperature solutions with 37, and 70°C of hydrophobic fluorescent Rhodamine B with 3 μg/ml in concentration were dropped on pig carotid wall. We measured a defined drug delivery amount as well as delivery depth by a microscopic fluorescence measurement on the cross section of the solution delivered vessel. In the case of 37°C, we found the intima surface drug amount with 7 mN/mm2 was increased as 10-20 times as other tension cases. On the other hand, at 70°C, we found the optimum tension with 30 mN/mm2. We found the drug delivery enhancement might be related to the change of super microscopic surface structure of the vessel. We predict that the collagen thermal denaturation of the vessel wall might play important role to the drug delivery.

  17. Development of a low-debris laser driven tape drive soft x-ray source

    NASA Astrophysics Data System (ADS)

    Alnaimi, Radhwan

    2017-06-01

    This paper focuses on debris mitigation in a laser driven tape drive x-ray source. A smart design is being used to minimise the effect of shockwave reflection from the target's back and a continuous rough pumping is utilised to obtain an efficient purging of big lumpy debris particles out of the interaction chamber. The effect of low pressure (3-6 mbar) nitrogen buffer gas is studied together with a moderate magnetic field (0.14 Tesla) on both debris spall and hot ions trajectory. The target material for this work is a 15 μm VHS video tape composed of Mylar as carrier film with Fe2O3 and CrO2 powder. The experiments were conducted using a long pulsed 800ps, 50 Hz Nd: YAG laser. The results obtained appeared to be promising in reducing the damaging effect of large debris particles (between 50 and 140 microns) as well as small particles (~ 5 microns) that deteriorates the efficiency of delicate optics.

  18. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  19. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  20. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Pérez, F.; Fournier, K. B.; May, M. J.; Felter, T. E.; Bagge-Hansen, M.; Kucheyev, S.

    2014-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material (F. Pérez et al., Physics of Plasmas 21, 023102 (2014)). Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In more recent experiments with Cu-loaded carbon nanotube foam, however, we find the opposite behavior; that is, the simulations under-predict the measured heat-front velocity. We present details of the Cu foam experiments and comparisons with simulations, and then discuss implications for models of heat-front slowing in foams of a more-recent gas vs. foam comparison experiment. F. Pérez presents the design and results of this comparison experiment in a companion presentation. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, with partial support from a DTRA Basic Research grant.

  1. Effect of resistivity gradient on laser-driven electron transport and ion acceleration

    SciTech Connect

    Zhuo, H. B.; Yang, X. H.; Ma, Y. Y.; Li, X. H.; Zhou, C. T.; Yu, M. Y.

    2013-09-15

    The effect of resistivity gradient on laser-driven electron transport and ion acceleration is investigated using collisional particle-in-cell simulation. The study is motivated by recent proton acceleration experiments [Gizzi et al., Phys. Rev. ST Accel. Beams 14, 011301 (2011)], which showed significant effect of the resistivity gradient in layered targets on the proton angular spread. This effect is reproduced in the present simulations. It is found that resistivity-gradient generation of magnetic fields and inhibition of electron transport is significantly enhanced when the feedback interaction between the magnetic field and the fast-electron current is included. Filamentation of the laser-generated hot electron jets inside the target, considered as the origin of the nonuniform proton patterns observed in the experiments, is clearly suppressed by the resistive magnetic field. As a result, the electrostatic sheath field at the target back surface acquires a relatively smooth profile, which contributes to the superior quality of the proton beams accelerated off layered targets in the experiments.

  2. Measurements of ultrafast laser-driven ionization and extreme gas nonlinearity

    NASA Astrophysics Data System (ADS)

    Zahedpour, Sina; Cheng, Yu-Hsiang; Wahlstrand, Jared; Milchberg, Howard

    2013-10-01

    A 2D spectral interferometry method for measuring high laser field phenomena such as laser-driven ionization and high field nonlinearity is introduced. The method is based on Single-shot Supercontinuum Spectral Interferometry, in which a chirped supercontinuum is used to probe the time-dependent refractive index induced by a pump pulse. A thin gas target ensures uniform intensity and minimizes refraction of the probe beam due to refractive index gradients. An imaging spectrometer allows measurement of the spatial dependence of the response along one direction. To measure in 2D, a motorized mirror scans the probe beam across the spectrometer slit. The technique has 3 micron spatial and 5 fs temporal resolution. The effective interaction length is measured interferometrically, allowing absolute calibration of the refractive index change. We present measurements of the absolute ionization rates of noble and molecular gases and their high field nonlinear response. Work supported by the Air Force Office of Scientific Research, the Office of Naval Research, the National Science Foundation, and the Dept. of Energy.

  3. Dosimetric effects of energy spectrum uncertainties in radiation therapy with laser-driven particle beams.

    PubMed

    Schell, S; Wilkens, J J

    2012-03-07

    Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.

  4. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    PubMed

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.

  5. Diode-pumped solid state lasers (DPSSLs) for Inertial Fusion Energy (IFE)

    SciTech Connect

    Krupke, W.F.

    1996-10-01

    The status of diode-pumped, transverse-gas-flow cooled, Yb-S-FAP slab lasers is reviewed. Recently acquired experimental performance data are combined with a cost/performance IFE driver design code to define a cost-effective development path for IFE DPSSL drivers. Specific design parameters are described for the Mercury 100J/10 Hz, 1 kW system (first in the development scenario).

  6. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    SciTech Connect

    Wootton, K. P.; Wu, Z.; Cowan, B. M.; Hanuka, A.; Makasyuk, I. V.; Peralta, E. A.; Soong, K.; Byer, R. L.; England, R. J.

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  7. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  8. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  9. Recreating planetary interiors in the laboratory by laser-driven ramp-compression

    NASA Astrophysics Data System (ADS)

    Coppari, Federica

    2015-06-01

    Recent advances in laser-driven compression now allow to reproduce conditions existing deep inside large planets in the laboratory. Ramp-compression allows to compress matter along a thermodynamic path not accessible through standard shock compression techniques, and opens the way to the exploration of new pressure, density and temperature conditions. By carefully tuning the laser pulse shape we can compress the material to extremely high pressure and keep the temperature relatively low (i.e. below the melting temperature). In this way, we can probe solid states of matter at unprecedented high pressures. This loading technique has been combined with diagnostics generally used in condensed matter physics, such as x-ray diffraction and x-ray absorption spectroscopy (EXAFS, Extended X-ray Absorption Fine Structure, in particular), to provide a complete picture of the behavior of matter in-situ during compression. X-ray diffraction provides a snapshot of the structure and density of the material, while EXAFS has been used to infer the temperature. Simultaneous optical velocimetry measurements using VISAR (Velocity Interferometer for Any Reflector) yield an accurate determination of the pressure history during compression. In this talk I will present some of the results obtained in ramp-compression experiments performed at the Omega Laser Facility (University of Rochester) where the phase maps of planetary relevant materials, such as Fe, FeO and MgO, have been studied to unprecedented high pressures. Our data provide experimental constraints on the equations of state, strength and structure of these materials expected to dominate the interiors of massive rocky extra-solar planets and a benchmark for theoretical simulations. Combination of these new experimental data with models for planetary formation and evolutions is expected to improve our understanding of complex dynamics occurring in the Universe. This work was performed under the auspices of the US Department of

  10. Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2017-06-01

    Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.

  11. Recent developments in laser-driven and hollow-core fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Digonnet, M. J. F.; Chamoun, J. N.

    2016-05-01

    Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.

  12. The novel drug delivery to vascular wall using laser driven thermal balloon: basic study ex vivo

    NASA Astrophysics Data System (ADS)

    Suganuma, Kao; Homma, Rie; Shimazaki, Natsumi; Ogawa, Emiyu; Arai, Tsunenori

    2016-10-01

    To enhance drug delivery performance of popular drug eluting balloon against re-stenosis after angioplasty, we have an idea regarding to adjacent use of our unique laser driven thermal balloon of which characteristics could realize short term and uniform temperature elevation to modify drug delivery characteristics. We have already reported a delivery enhancement effect using this idea, however, detailed characteristics have not been studied yet. We studied balloon dilatation in terms of vascular circumferential tension on the heating drug delivery performance using porcine carotid artery wall ex vivo. The extracted carotid artery was used and circumferential tension of 0-30 mN/mm2 was added. Heating drug delivery was performed on this carotid artery with the heated solution of hydrophobic fluorescent Rhodamine B with 3 μg/ml in concentration at 37 and 70°C. We obtained a defined drug delivery quantity as well as delivery depth by a microscopic fluorescence measurement on a cross section of the drug delivered vessel wall. In the cases of 70°C, we found the drug penetration increase against 3°C case. We predict that the collagen thermal denaturation of the vessel wall may play important role to this penetration. In the case of 3°C, we found the drug concentration on the intimal surface with 7 mN/mm2 was increased as 10-30 times as other tension values. We found surface grooves in this case using an electron micrography. Therefore, we think that the drug delivery enhancement might be related to the groove formations of the vessel wall.

  13. PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II

    SciTech Connect

    Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.

    2008-09-22

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets.

  14. Bright MeV-energy x-ray beams from a compact all-laser-driven inverse-Compton-scattering source

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2012-10-01

    Bright MeV energy x-ray beams produced by conventional inverse-Compton-scattering sources are used for nuclear physics research, but their large size (>100-m) restricts accessibility and utilization for real-world radiological applications. By developing a method to integrate a compact laser-driven accelerator with Compton scattering, we have developed a source that produces MeV energy x-rays, but with a four orders-of-magnitude increase in peak brightness, and yet has a size (< 10 m) small enough to fit in a hospital laboratory, or even on a portable platform. Our design employs two independently adjustable laser pulses---one to accelerate electrons by means of a high-gradient laser wakefield, and one to Compton scatter. The use of two separate pulses from the same high-peak-power laser system allowed us to independently optimize the electron accelerator and the Compton scattering process. It also allowed the electron bunch and scattering laser pulse to be spatially overlapped on the micron scale, and be synchronized with femtosecond timing accuracy. The resulting x-ray photon energy was peaked at 1 MeV, and reached up to 4 MeV, which is twenty times higher than from an earlier all-laser-driven Compton source with a different design [K. Ta Phuoc et al., Nature Photonics 6, 308 (2012)]. The total photon number was measured to be 2x10^7; the source size was 5 μm; and the beam divergence angle was ˜10 mrad. The measurements were found to be consistent with a theoretical model that included realistic beams. We also discuss the results of the first application of the source, namely, the diagnosis---with micron resolution---of both the radiation source size and the emittance of a laser-wakefield-accelerated electron beam. Ultrafast nuclear science can also be enabled by MeV x-ray energy combined with ultrashort pulse duration (fs).

  15. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    SciTech Connect

    Logan, B.G.

    1992-03-06

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a Bang per Buck'' figure-of-merit {approx gt} 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant.

  16. Preliminary experience with laparoscopic surgery in Ile-Ife, Nigeria.

    PubMed

    Adisa, A O; Arowolo, O A; Salako, A A; Lawal, O O

    2009-12-01

    This study presents a pioneer experience with laparoscopic operations in a General Surgical unit of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria. Consecutive patients who had laparoscopic operations from April through December 2008 were prospectively studied. Following clinical diagnosis, initial diagnostic laparoscopy was undertaken in all patients, followed by therapeutic open or laparoscopic procedures. All procedures were done under general anaesthesia. Duration of operation and outcome including complications were recorded. In all, there were 12 patients (8 males, 4 females), aged 15 to 50 years. Eight patients had clinical diagnoses of acute appendicitis, one each had undetermined right lower abdominal pain suspected ectopic gestation, adhesive intestinal obstruction and metastatic liver disease. The first 4 patients with inflammed appendix confirmed at laparoscopy had open appendicectomy. Of the next cohort of 5 patients, laparoscopic appendicectomy was completed in four but converted to open procedure in one. Normal findings were noted in the lady with suspected ectopic gestation. Laparoscopic adhesiolysis was done for adhesive intestinal obstruction while a laparoscopic liver biopsy was done for the patient with metastatic liver disease. Operative time ranged from 55-105 minutes with marked reduction in operation time as confidence and experience grew. No intraoperative complication was observed but one patient had superficial port site infection postoperatively. We conclude that with good patient selection and some improvisation, laparoscopic general surgical operations are feasible with acceptable outcome even in a poor resource setting.

  17. Analyses in Support of Z-IFE: LLNL Progress Report for FY-04

    SciTech Connect

    Meier, W; Abbott, R; Latkowski, J; Moir, R; Reyes, S; Schmitt, R

    2004-10-06

    During the last quarter of FY2004, Lawrence Livermore National Laboratory (LLNL) conducted a brief study of power plant options for a z-pinch-based inertial fusion energy (Z-IFE) power plant. Areas that were covered include chamber design, thick-liquid response, neutronics and activation, and systems studies. This report summarizes the progress made in each of these areas, provides recommendations for improvements to the basic design concept, and identifies future work that is needed. As a starting point to the LLNL studies, we have taken information provided in several publications and presentations. In particular, many of the basic parameters were taken from the ZP-3 study, which is described in reference 4. The ZP-3 design called for 12 separate target chambers, with any 10 of them operating at a given time. Each chamber would be pulsed at a repetition rate of 0.1 Hz with a target yield of 3 GJ. Thus, each chamber would have a fusion power of 300 MW for a power plant total of 3000 MW. The ZP-3 study considered several options for the recyclable transmission lines (RTL). Early in the study, the LLNL group questioned the use of many chambers as well as the yield limitation of 3 GJ. The feeling was that a large number of chambers would invariably lead to a considerably higher system cost than for a system with fewer chambers. Naturally, this trend would be somewhat offset by the increased availability that might be possible with many chambers. Reference 4 points out that target yields as high as 20 GJ would be possible with currently available manufacturing technology. The LLNL team considered yields ranging from 3 to 20 GJ. Our findings indicate that higher yields, which lead one to fewer chambers, make the most sense from an economic point of view. Systems modeling, including relative economics, is covered in Section 2. Regardless of the number of chambers of the fusion yield per target, a Z-IFE power plant would make use of a thick-liquid wall protection scheme

  18. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  19. Using Laser-driven Shocks to Study the Phase Diagrams Of Low-Z Materials at Mbar Pressures and eV Temperatures

    SciTech Connect

    Celliers, P. M.; Eggert, J. H.; Hicks, D. G.; Bradley, D. K.; Collins, G. W.; Boehly, T. R.; Miller, J. E.; Brygoo, S.; Loubeyre, P.; McWilliams, R. S.; Jeanloz, R.

    2007-08-02

    Accurate phase diagrams for simple molecular fluids and solids (H2, He, H2O, SiO2, and C) and their constituent elements at eV temperatures and pressures up to tens of Mbar are integral to planetary models of the gas giant planets (Jupiter, Saturn, Uranus and Neptune), and the rocky planets. Laboratory experiments at high pressure have, until recently, been limited to around 1 Mbar. These pressures are usually achieved dynamically with explosives and two-stage light-gas guns, or statically with diamond anvil cells. Current and future high energy laser and pulsed power facilities will be able to produce tens of Mbar pressures in these light element materials. This presentation will describe the capabilities available at current high energy laser facilities to achieve these extreme conditions, and focus on several examples including water, silica, diamond-phase-carbon, helium and hydrogen. Under strong shock compression all of these materials become electronic conductors, and are transformed eventually to dense plasmas. The experiments reveal some details of the nature of this transition. To obtain high pressure data closer to planetary isentropes advanced compression techniques are required. We are developing a promising technique to achieve higher density states: precompression of samples in a static diamond anvil cell followed by laser driven shock compression. This technique and results from the first experiments with it will be described. Details about this topic can be found in some of our previous publications.

  20. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.

    2016-12-01

    We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  1. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  2. Multi-Fluid Interpenetration Mixing in X-ray and Directly Laser driven ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas

    2003-10-01

    Mix between a surrounding shell and the fuel leads to degradation in ICF capsule performance. Both indirectly (X-ray) and directly laser driven implosions provide a wealth of data to test mix models. One model, the multi-fluid interpenetration mix model of Scannapieco and Cheng (Phys. Lett. A., 299, 49, 2002), was implemented in an ICF code and applied to a wide variety of experiments (e.g. J. D. Kilkenny et al., Proc. Conf Plasm. Phys. Contr. Nuc. Fus. Res. 3, 29(1988), P. Amendt, R. E. Turner, O. L. Landen, Phy. Rev. Lett., 89, 165001 (2002), or Li et al., Phy. Rev. Lett, 89, 165002 (2002)). With its single adjustable parameter fixed, it replicates well the yield degradation with increasing convergence ratio for both directly and indirectly driven capsules. Often, but not always the ion temperatures with mixing are calculated to be higher than in an unmixed implosion, agreeing with observations. Comparison with measured directly driven implosion yield rates ( from the neutron temporal diagnostic or NTD) shows mixing increases rapidly during the burn. The model also reproduces the decrease of the fuel "rho-r" with fill gas pressure, measured by observing escaping deuterons or secondary neutrons. The mix model assumes fully atomically mixed constituents, but when experiments with deuterated plastic layers and 3He fuel are modeled, less that full atomic mix is appropriate. Applying the mix model to the ablator - solid DT interface in indirectly driven ignition capsules for the NIF or LMJ suggests that the capsules will ignite, but that burn after ignition may be somewhat degraded. Situations in which the Scannapieco and Cheng model fails to agree with experiments can guide us to improvements or the development of other models. Some directly driven symmetric implosions suggest that in highly mixed situations, a higher value of the mix parameter may needed. Others show the model underestimating the fuel burn temperature. This work was performed by the Los Alamos

  3. ELIMED: a new hadron therapy concept based on laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy

    2013-05-01

    Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up

  4. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study

    SciTech Connect

    Hofmann, K; Wilkens, J; Masood, U; Pawelke, J

    2014-06-01

    Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number of laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.

  5. Gas dynamics and radiative heat transfer in IFE chambers with emphasis on the HYLIFE-II design

    NASA Astrophysics Data System (ADS)

    Jantzen, Caron Ann

    Gas dynamics in a heavy-ion inertial-fusion energy power plant have been modeled using the two-dimensional code, TSUNAMI. After fusion, approximately 2/3 of the yield energy will be given off as 14 Mev neutrons and the remaining third partitioned between target x-rays and debris energy. The chamber dynamic events which follow the fusion event occur over three distinct time periods, permitting separation of the underlying phenomena. Simulations of the HYLIFE-II reactor design were then run and results compared using both ideal-gas and partialionization equations of state. Results from a cylindrically symmetric simulation indicate that an initial, low density, burst of high-energy particles enters the final focus section of the heavy ion driver within 120mus of the blast and a second, larger, density rise occurs approximately 100mus later. Uncertainty in IFE target design motivated a parametric study of the x-ray to debris kinetic energy. Increasing this ratio lead to more jet ablation by target x-rays and, therefore, higher chamber densities. Chamber averaged temperature remained high, around 2.1 eV. Therefore, a subsequent study considered secondary radiation emitted by this hot vapor. The photon transport equation was applied in a finite difference model to both the target and ablation regions. Result indicated that radiation from the expanding target debris supplies 15MJ of energy to the liquid jets within the first 12mus of target ignition and becomes negligible beyond that time. In an inertial fusion energy (IFE) target chamber using thick-liquid protection, placing liquid surfaces close to the fusion target helps reduce pumping cost and final-focus stand-off distance. An additional issue then becomes the impulse load delivered to protective jets by target debris and x-ray ablated material since this pressure load provides the most important boundary condition for the subsequent liquid hydraulic response, pocket disruption, droplet generation, and pocket

  6. Proof-Of-Principle Experiment for Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-03-01

    We recently achieved the first experimental observation of laser-driven particle acceleration of relativistic electrons from a single Gaussian near-infrared laser beam in a semi-infinite vacuum. This article presents an in-depth account of key aspects of the experiment. An analysis of the transverse and longitudinal forces acting on the electron beam is included. A comparison of the observed data to the acceleration viewed as an inverse transition radiation process is presented. This is followed by a detailed description of the components of the experiment and a discussion of future measurements.

  7. Laser-driven shock experiments in pre-compressed water: Implications for magnetic field generation in Icy Giant planets

    SciTech Connect

    Lee, K; Benedetti, L R; Jeanloz, R; Celliers, P M; Eggert, J H; Hicks, D G; Moon, S J; Mackinnon, A; Henry, E; Koenig, M; Benuzzi-Mounaix, A; Collins, G W

    2005-11-10

    Laser-driven shock compression of pre-compressed water (up to 1 GPa precompression) produces high-pressure, -temperature conditions in the water inducing two optical phenomena: opacity and reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semi-conductor to electronic conductor transition in water and is found at pressures above {approx}130 GPa for single-shocked samples pre-compressed to 1 GPa. This electronic conduction provides an additional contribution to the conductivity required for magnetic field generation in Icy Giant planets like Uranus and Neptune.

  8. Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity: Formation of Sinusoid Beam Shapes and Coherent Trajectories

    SciTech Connect

    Nemeth, Karoly; Li Yuelin; Shang Hairong; Harkay, Katherine C.; Shen Baifei; Crowell, Robert; Cary, John R.

    2009-01-22

    High amplitude coherent electron-trajectories have been seen in 3D particle-in-cell simulations of the colliding pulse injection scheme of laser-wakefield accelerators in the bubble regime, and explained as a consequence of laser-driven coherent betatron oscillation in our recent paper [K. Nemeth et al., Phys. Rev. Lett. 100, 095002 (2008)]. In the present paper we provide more details on the shape of the trajectories, their relationship to the phase velocity of the laser and indicate the dependence of the phenomenon on the accuracy of the numerical representation and choice of laser/plasma parameters.

  9. Laser-IORT: a laser-driven source of relativistic electrons suitable for Intra-Operative Radiation Therapy of tumors

    SciTech Connect

    Gamucci, A.; Giulietti, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, Ph.; Galy, J.; Giulietti, D.; Hamilton, D. J.; Sarri, G.

    2010-02-02

    In a recent experiment [1] a high efficiency regime of stable electron acceleration to kinetic energies ranging from 10 to 40 MeV has been achieved. The main parameters of the electron bunches are comparable with those of bunches provided by commercial Radio-Frequency based Linacs currently used in Hospitals for Intra-Operative Radiation Therapy (IORT). IORT is an emerging technique applied in operating theaters during the surgical treatment of tumors. Performances and structure of a potential laser-driven Hospital accelerator are compared in detail with the ones of several commercial devices. A number of possible advantages of the laser based technique are also discussed.

  10. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    importance for the fusion power plant research programmes. The objective of this Technical Meeting was to examine in an integrated way all the safety aspects anticipated to be relevant to the first fusion power plant prototype expected to become operational by the middle of the century, leading to the first generation of economically viable fusion power plants with attractive S&E features. After screening by guest editors and consideration by referees, 13 (out of 28) papers were accepted for publication. They are devoted to the following safety topics: power plant safety; fusion specific operational safety approaches; test blanket modules; accident analysis; tritium safety and inventories; decommissioning and waste. The paper `Main safety issues at the transition from ITER to fusion power plants' by W. Gulden et al (EU) highlights the differences between ITER and future fusion power plants with magnetic confinement (off-site dose acceptance criteria, consequences of accidents inside and outside the design basis, occupational radiation exposure, and waste management, including recycling and/or final disposal in repositories) on the basis of the most recent European fusion power plant conceptual study. Ongoing S&E studies within the US inertial fusion energy (IFE) community are focusing on two design concepts. These are the high average power laser (HAPL) programme for development of a dry-wall, laser-driven IFE power plant, and the Z-pinch IFE programme for the production of an economically-attractive power plant using high-yield Z-pinch-driven targets. The main safety issues related to these programmes are reviewed in the paper `Status of IFE safety and environmental activities in the US' by S. Reyes et al (USA). The authors propose future directions of research in the IFE S&E area. In the paper `Recent accomplishments and future directions in the US Fusion Safety & Environmental Program' D. Petti et al (USA) state that the US fusion programme has long recognized that the S

  11. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  12. Management of Primary Dysmenorrhea by School Adolescents in ILE-IFE, Nigeria

    ERIC Educational Resources Information Center

    Ogunfowokan, Adesola A.; Babatunde, Oluwayemisi A.

    2010-01-01

    Dysmenorrhea is a problem that girls and women face and often manage themselves with or without support from health professionals. A cross-sectional, descriptive study was conducted among adolescents with dysmenorrhea (N = 150) in Ile-Ife, Nigeria. The aims of the study were to determine their knowledge of menstruation and primary dysmenorrhea,…

  13. Management of Primary Dysmenorrhea by School Adolescents in ILE-IFE, Nigeria

    ERIC Educational Resources Information Center

    Ogunfowokan, Adesola A.; Babatunde, Oluwayemisi A.

    2010-01-01

    Dysmenorrhea is a problem that girls and women face and often manage themselves with or without support from health professionals. A cross-sectional, descriptive study was conducted among adolescents with dysmenorrhea (N = 150) in Ile-Ife, Nigeria. The aims of the study were to determine their knowledge of menstruation and primary dysmenorrhea,…

  14. Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Mori, W. B.; Winjum, B. J.

    2014-10-01

    We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.

  15. Diffusion and Focusing: Phonological Variation and Social Networks in Ile-Ife, Nigeria.

    ERIC Educational Resources Information Center

    Salami, L. Oladipo

    1991-01-01

    Reports on the application of the concept of social network to the process of language usage among Yoruba-speaking city dwellers in Ile-Ife, Southwestern Nigeria. The study focuses on phonetic/phonological variation within common spoken Yoruba. (41 references) (GLR)

  16. Parental Socio-Economic Status as Correlate of Child Labour in Ile-Ife, Nigeria

    ERIC Educational Resources Information Center

    Elegbeleye, O. S.; Olasupo, M. O.

    2012-01-01

    This study investigated the relationship between parental socio-economic status and child labour practices in Ile-Ife, Nigeria. The study employed survey method to gather data from 200 parents which constituted the study population. Pearson Product Moment Correlation and t-test statistics were used for the data analyses. The outcome of the study…

  17. Parental Socio-Economic Status as Correlate of Child Labour in Ile-Ife, Nigeria

    ERIC Educational Resources Information Center

    Elegbeleye, O. S.; Olasupo, M. O.

    2012-01-01

    This study investigated the relationship between parental socio-economic status and child labour practices in Ile-Ife, Nigeria. The study employed survey method to gather data from 200 parents which constituted the study population. Pearson Product Moment Correlation and t-test statistics were used for the data analyses. The outcome of the study…

  18. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Nilson, P.; Igumenshchev, I.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2016-10-01

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 x 1014 W/cm2. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code DRACO when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included. The work provides significant insight into the generation and transport of Biermann fields in laser-produced plasmas, particularly those used in laser-driven magnetic reconnection and laboratory astrophysics experiments. deceased.

  19. A treatment planning study to assess the feasibility of laser-driven proton therapy using a compact gantry design

    SciTech Connect

    Hofmann, Kerstin M. Wilkens, Jan J.; Masood, Umar; Pawelke, Joerg

    2015-09-15

    Purpose: Laser-driven proton acceleration is suggested as a cost- and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and to determine limitations to comply with. Methods: Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. Results: The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10{sup 8} and 8.3 × 10{sup 9} to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even

  20. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  1. P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading.

    PubMed

    Kimura, T; Ozaki, N; Sano, T; Okuchi, T; Sano, T; Shimizu, K; Miyanishi, K; Terai, T; Kakeshita, T; Sakawa, Y; Kodama, R

    2015-04-28

    Pressure, density, and temperature data for H2O were obtained up to 260 GPa by using laser-driven shock compression technique. The shock compression technique combined with the diamond anvil cell was used to assess the equation of state models for the P-ρ-T conditions for both the principal Hugoniot and the off-Hugoniot states. The contrast between the models allowed for a clear assessment of the equation of state models. Our P-ρ-T data totally agree with those of the model based on quantum molecular dynamics calculations. These facts indicate that this model is adopted as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range.

  2. Study on the dynamic behavior of matters using laser-driven shock waves in the water confinement

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Yoh, Jack J.

    2015-06-01

    The strain rates achievable in laser-driven shock experiments overlap with gas gun and can reach much higher values. The laser-based method also has advantages in terms of system size, cost, repeatability, and controllability. In this research, we aim to measure equation of state, Hugoniot elastic limit, strain rate, and compressive yield strength of target samples by making use of the velocity interferometer or the VISAR. High pressure shock wave is generated by a Q-switched Nd:YAG laser operating at 1.064 μm wavelength with pulse energy up to 3 joules and 9 ns pulse duration. All the experiments are conducted in the water confinement to increase the peak stresses to an order of GPa. Furthermore, quantitative comparisons are made to the existing shock data in order to emphasize the novelty of the proposed setup which is relatively simple and reliable. Corresponding author.

  3. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  4. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  5. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 10{sup 9} Gy/s

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Ahmed, H.; Lewis, C. L.; Nersisyan, G.; Prasad, R.; Zepf, M.; Borghesi, M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Kirkby, K. J.; Merchant, M. J.; Kavanagh, J.; Prise, K. M.; Schettino, G.

    2012-03-15

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  6. A treatment planning study to assess the feasibility of laser-driven proton therapy using a compact gantry design.

    PubMed

    Hofmann, Kerstin M; Masood, Umar; Pawelke, Joerg; Wilkens, Jan J

    2015-09-01

    Laser-driven proton acceleration is suggested as a cost- and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and to determine limitations to comply with. Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10(8) and 8.3 × 10(9) to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even more restricted to stay between 1.4

  7. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.

    PubMed

    Schaeffer, D B; Fox, W; Haberberger, D; Fiksel, G; Bhattacharjee, A; Barnak, D H; Hu, S X; Germaschewski, K

    2017-07-14

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  8. Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule: N-methyl-6-quinolone

    NASA Astrophysics Data System (ADS)

    Klamroth, Tillmann

    2006-04-01

    We report time-dependent configuration interaction singles calculations for the ultrafast laser driven many-electron dynamics in a polyatomic molecule, N-methyl-6-quinolone. We employ optimal control theory to achieve a nearly state-selective excitation from the S0 to the S1 state, on a time scale of a few (≈6) femtoseconds. The optimal control scheme is shown to correct for effects opposing a state-selective transition, such as multiphoton transitions and other, nonlinear phenomena, which are induced by the ultrashort and intense laser fields. In contrast, simple two-level π pulses are not effective in state-selective excitations when very short pulses are used. Also, the dependence of multiphoton and nonlinear effects on the number of states included in the dynamical simulations is investigated.

  9. Magnetic Field Generation by the Nonlinear Rayleigh--Taylor Instability in Laser-Driven Planar Plastic Targets

    NASA Astrophysics Data System (ADS)

    Gao, L.; Igumenshchev, I. V.; Hu, S. X.; Stoeckl, C.; Froula, D. H.; Nilson, P. M.; Davies, J. R.; Betti, R.; Meyerhofer, D. D.; Haines, M. G.

    2012-10-01

    Magnetic field generation during the nonlinear phase of the Rayleigh--Taylor (RT) instability in an ablatively driven plasma using ultrafast laser-driven proton radiography has been measured. Thin plastic foils were irradiated with ˜4-kJ, 2.5-ns laser pulses focused to an intensity of ˜10^14 W/cm^2 on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the RT instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  10. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Fox, W.; Haberberger, D.; Fiksel, G.; Bhattacharjee, A.; Barnak, D. H.; Hu, S. X.; Germaschewski, K.

    2017-07-01

    We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12 . Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

  11. Comparison of SPE, IFE, and FLC in Monitoring Patients with Multiple Myeloma After Autologous Stem Cell Transplantation.

    PubMed

    Li, Wei; Zhou, Jia-Zi; Chang, Hui-Rong; Dai, Li-Jun; Zhu, Zi-Ling; Feng, Yu-Feng; Gong, Fei-Ran; Wu, De-Pei

    2015-12-01

    Conventionally, serum protein electrophoresis (SPE) and serum immunofixation electrophoresis (IFE) are used as primary methods to diagnose and monitor multiple myeloma (MM). Recently, serum-free light chain (FLC) assay has been incorporated into hematological screening programs for myeloma. The purpose of this study is to compare the performance of the three methods in monitoring MM patients after autologous stem cell transplantation (ASCT). SPE, serum IFE and serum FLC assay were performed on 38 MM patients who underwent ASCT. In total, four patients had unexpected protein bands (UPBs) and 13 patients had relapsed after ASCT. Our results indicate that IFE is more sensitive than SPE and FLC assay in detection of UPBs and relapse. The results of IFE may provide useful information in advance of patient relapse.

  12. Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Wei, H. Y.; Russell, C. T.

    2013-06-01

    The solar wind contains many magnetic structures, and most of them have identifiable correlated changes in the flowing plasma. However, the very characteristic rise and fall of the magnetic field in an interplanetary field enhancement has no clear solar wind counterpart. It appears to be a pure magnetic ``barrier'' that transfers solar wind momentum to charged dust produced in collisions of interplanetary bodies in the size range of tens to hundreds of meters. This transfer lifts the fine scale dust out of the Sun's gravitational well. We demonstrate the lack of field-plasma correlation with several examples from spacecraft records as well as show an ensemble average velocity profile during IFEs which is consistent with our IFE formation hypothesis.

  13. The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data

    NASA Astrophysics Data System (ADS)

    Wu, Hu; Muiller, Jurgen; Brieden, Phillip

    2015-03-01

    An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.

  14. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    SciTech Connect

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable {open_quotes}Integrated Research Experiment{close_quotes} (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, {open_quotes}the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenology{close_quotes}. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well.

  15. Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1.

    PubMed

    Friday, Andrew J; Henderson, Melissa A; Morrison, J Kaitlin; Hoffman, Jenna L; Keiper, Brett D

    2015-12-15

    Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.

  16. Regulation of sperm-specific proteins by IFE-1, a germline-specific homolog of eIF4E, in C. elegans.

    PubMed

    Kawasaki, Ichiro; Jeong, Myung-Hwan; Shim, Yhong-Hee

    2011-02-01

    ABSTEACT: IFE-1 is one of the five C. elegans homologs of eIF4E, which is the mRNA 5' cap-binding component of the translation initiation complex eIF4F. Depletion of IFE-1 causes defects in sperm, suggesting that IFE-1 regulates a subset of genes required for sperm functions. To further understand the molecular function of IFE-1, proteomic analysis was performed to search for sperm proteins that are downregulated in ife-1(ok1978); fem-3(q20) mutants relative to the fem-3(q20) control. The fem-3(q20) mutant background was used because it only produces sperm at restrictive temperature. Total worm proteins were subjected to 2D-DIGE, and differentially expressed protein spots were further identified by MALDI-TOF mass spectrometry. Among the identified proteins, GSP-3 and Major Sperm Proteins (MSPs) were found to be significantly down-regulated in the ife-1(ok1978) mutant. Moreover, RNAi of gsp-3 caused an ife-1-like phenotype. These results suggest that IFE-1 is required for efficient expression of some sperm-specific proteins, and the fertilization defect of ife-1 mutant is caused mainly by a reduced level of GSP-3.

  17. Transmutation of high-level fission products and actinides in a laser-driven fusion reactor

    SciTech Connect

    Basov, N.; Rozanov, V.B. ); Belousov, N.I.; Grishunin, P.A.; Kharitonov, V.V. ); Subbotin, V.I. )

    1992-11-01

    Incineration of [sup 90]Sr and [sup 137]Cs b thermal or fast neutrons is a very difficult problem. A 14-MeV neutron source based on intertial confinement fusion is a more appropriate choice. For the first time, the contribution of the (n,2n) reaction to incineration is revealed. The energy and nuclei balance for a system of several nuclear power plants and a fusion reactor for transmutation is analyzed. If the fusion reactor supports a sufficient number of nuclear power plants, it need not produce energy or tritium. Target and blanket material problems are considered. This paper reports that laser fusion incinerator has the best prospects because of its fast neutron spectrum and high driver efficiency by target gain product.

  18. Laser driven terahertz generation in hot plasma with step density profile

    SciTech Connect

    Kumar, Manoj Jeong, Young Uk; Tripathi, Vipin Kumar

    2015-06-15

    An analytical formalism of terahertz (THz) radiation generation by beating of two lasers in a hot plasma with step density profile is developed. The lasers propagate obliquely to plasma surface normal, and the nonlinearity arises through the ponderomotive force. The THz is emitted in the specular reflection direction, and the yield is enhanced due to coupling with the Langmuir wave when the plasma frequency is close to THz frequency. The power conversion efficiency maximizes at an optimum angle of incidence.

  19. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    SciTech Connect

    Williams, George J.; Gilland, James H.

    2009-03-16

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  20. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    NASA Astrophysics Data System (ADS)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  1. Two-color-laser-driven direct electron acceleration in infinite vacuum.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2011-03-15

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed.

  2. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  3. Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry

    SciTech Connect

    Curtis, Alexander D.; Banishev, Alexandr A.; Shaw, William L.; Dlott, Dana D.

    2014-04-15

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s{sup −1} impacts with transparent target materials. Laser-launching Al flyers 25–100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  4. Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Gwynne, D.; Doria, D.; Ahmed, H.; Carroll, D. C.; Clarke, R. J.; Neely, D.; Scott, G. G.; Borghesi, M.; Kar, S.

    2016-10-01

    Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams.

  5. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Yin, Yan; Ma, Yan-Yun; Zhu, Qing-Jun

    2015-12-15

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D{sup +} and T{sup +}. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 10{sup 16 }J/m{sup 3}, which is about five orders of magnitude higher than the threshold for high energy density physics, 10{sup 11 }J/m{sup 3}. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 10{sup 35}/m{sup 3} s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  6. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  7. Ion spectrometer composed of time-of-flight and Thomson parabola spectrometers for simultaneous characterization of laser-driven ions.

    PubMed

    Choi, I W; Kim, C M; Sung, J H; Yu, T J; Lee, S K; Kim, I J; Jin, Y-Y; Jeong, T M; Hafz, N; Pae, K H; Noh, Y-C; Ko, D-K; Yogo, A; Pirozhkov, A S; Ogura, K; Orimo, S; Sagisaka, A; Nishiuchi, M; Daito, I; Oishi, Y; Iwashita, Y; Nakamura, S; Nemoto, K; Noda, A; Daido, H; Lee, J

    2009-05-01

    An ion spectrometer, composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), has been developed to measure energy spectra and to analyze species of laser-driven ions. Two spectrometers can be operated simultaneously, thereby facilitate to compare the independently measured data and to combine advantages of each spectrometer. Real-time and shot-to-shot characterizations have been possible with the TOFS, and species of ions can be analyzed with the TPS. The two spectrometers show very good agreement of maximum proton energy even for a single laser shot. The composite ion spectrometer can provide two complementary spectra measured by TOFS with a large solid angle and TPS with a small one for the same ion source, which are useful to estimate precise total ion number and to investigate fine structure of energy spectrum at high energy depending on the detection position and solid angle. Advantage and comparison to other online measurement system, such as the TPS equipped with microchannel plate, are discussed in terms of overlay of ion species, high-repetition rate operation, detection solid angle, and detector characteristics of imaging plate.

  8. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    NASA Astrophysics Data System (ADS)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Luo, Wen; Yin, Yan

    2016-06-01

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 1020 W/cm2 irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 1017 W/cm2 interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 1021/(s mm2 mrad2 0.1 keV) to 6.0 × 1021/(s mm2 mrad2 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  9. Theory of Strength and High-Rate Plasticity in BCC Metals Laser-Driven to High Pressures

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Barton, N. R.; Cavallo, R. M.; Hawreliak, J. A.; Maddox, B. R.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Comley, A. J.; Ross, P. W.; Brickner, N.

    2012-10-01

    High-rate plastic deformation is the subject of increasing experimental activity. High energy laser platforms such as those at the National Ignition Facility and the Laboratory for Laser Energetics offer the possibility to study plasticity at extremely high rates in shock waves and, importantly, in non-shock ramp-compression waves. Here we describe the theory of high-rate deformation of metals and how high energy lasers can be, and are, used to study the mechanical strength of materials under extreme conditions. Specifically, we describe how LLNL's multiscale strength model has been used to interpret the microscopic plastic flow in laser-driven Rayleigh-Taylor strength experiments, and how molecular dynamics (MD) and plasticity theory have been used to help understand in-situ diffraction based strength experiments for tantalum. The multiscale model provides information about the dislocation flow associated with plasticity and makes predictions that are compared with the experimental in-situ radiography of the Rayleigh-Taylor growth rate. We also use multi-million atom MD simulations inform the analytic theory of 1D to 3D plastic relaxation and compare to diffraction.

  10. Laser-driven gel microtool for single-cell manipulation based on temperature control with a photothermal conversion material

    NASA Astrophysics Data System (ADS)

    Hayakawa, T.; Kikukawa, M.; Maruyama, H.; Arai, F.

    2016-12-01

    We propose a laser-driven hybrid gel microtool for stable single-cell manipulation. The microtool is made of a microbead dyed with multiwalled carbon nanotubes (MWNT) and thermosensitive poly (N-isopropylacrylamide) gel coating. The gel adheres to cells at high temperatures but not at low temperatures. We can manipulate single cells without direct laser irradiation by adhering the cells to the gel on the microtool using the cell-adhesion property of the gel. The microtool is heated by trapping it with optical tweezers to make its surface cell-adhesive during the manipulation. Furthermore, we can control the optical heating property of the microtool by dyeing the microbeads with MWNT ink. The laser-heating-induced temperature increase of the microtool can be controlled from 4.2 °C to 23.5 °C by varying the concentration of MWNT ink. We succeeded in fabricating the proposed microtool and demonstrated single-cell transportation using the microtool without direct laser irradiation of the cell.

  11. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. Laser-driven short-duration heating angioplasty: chronic artery lumen patency and histology in porcine iliac artery

    NASA Astrophysics Data System (ADS)

    Shimazaki, Natsumi; Kunio, Mie; Naruse, Sho; Arai, Tsunenori; Sakurada, Masami

    2012-02-01

    We proposed a short-duration heating balloon angioplasty. We designed a prototype short-duration heating balloon catheter that can heat artery media to 60-70°C within 15-25 s with a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. The purpose of this study was to investigate chronic artery lumen patency as well as histological alteration of artery wall after the short-duration heating balloon dilatation with porcine healthy iliac artery. The short-term heating balloon dilated sites were angiographically patent in acute (1 hour) and in chronic phases (1 and 4 weeks). One week after the dilatation, smooth muscle cells (SMCs) density in the artery media measured from H&E-stained specimens was approx. 20% lower than that in the reference artery. One and four weeks after the dilatations, normal structure of artery adventitia was maintained without any incidence of thermal injury. Normal lamellar structure of the artery media was also maintained. We found that the localized heating restricted to artery media by the short-duration heating could maintain adventitial function and artery normal structure in chronic phase.

  13. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; Fournier, K. B.

    2016-10-01

    We present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%-100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ˜2 -3 × enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲ 4 × reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser. Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.

  14. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    DOE PAGES

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; ...

    2016-10-20

    Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser.more » Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.« less

  15. Development of long-duration, laser driven, cold x-ray sources on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; May, M. J.; Blue, B. E.; Colvin, J. D.; Fournier, K. B.; Moore, A. S.; Thorn, D. B.; Brown, C. G.; Fisher, J. H.; Newlander, C. D.; Davis, J. F.; Seiler, S. W.

    2016-10-01

    We present experimental and simulation results from an x-ray source development campaign on the National Ignition Facility laser that focused on temporally and spectrally tailoring the non-equilibrium x-ray emission from laser driven Xe gas-pipe targets. The goal of this work was to create a long-duration (> 10ns) x-ray environment that emulates 1keV blackbody emission. In one experiment, we investigated the use of sequentially driven 6ns trapezoidal pulses - which deliver more optimized laser performance than equivalent single pulse configurations - to create a 13ns total emission duration. While a successful demonstration of x-ray pulse shaping control, these sources resulted in too much low-photon-energy emission along the desired line-of-sight. Several filtering schemes were explored in subsequent experiments to remove the sub- 1.5keV emission, where we commissioned a new DIM-based, 16 channel, filtered x-ray diode array, SENTINEL, to assess line-of-sight filtering effectiveness. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, F.; Bolton, P. R.; Murakami, M.; Nomura, T.; Kawanishi, S.; Kondo, K.

    2011-01-01

    Human cancer cells are irradiated by laser-driven quasimonoenergetic protons. Laser pulse intensities at the 5×1019 W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels of up to 8 Gy, for which the single bunch dose rate is 1×107 Gy/s and the effective dose rate is 0.2 Gy/s for 1 Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20±0.11 using protons with a linear energy transfer of 17.1 keV/μm.

  17. Simulation study of enhancing laser driven multi-keV line-radiation through application of external magnetic fields

    SciTech Connect

    Kemp, G. E.; Colvin, J. D.; Blue, B. E.; Fournier, K. B.

    2016-10-20

    Here, we present a path forward for enhancing laser driven, multi-keV line-radiation from mid- to high-Z, sub-quarter-critical density, non-equilibrium plasmas through inhibited thermal transport in the presence of an externally generated magnetic field. Preliminary simulations with Kr and Ag suggest that as much as 50%–100% increases in peak electron temperatures are possible—without any changes in laser drive conditions—with magnetized interactions. The increase in temperature results in ~2–3× enhancements in laser-to-x-ray conversion efficiency for K-shell emission with simultaneous ≲4× reduction in L-shell emission using current field generation capabilities on the Omega laser and near-term capabilities on the National Ignition Facility laser. Increased plasma temperatures and enhanced K-shell emission are observed to come at the cost of degraded volumetric heating. Such enhancements in high-photon-energy x-ray sources could expand the existing laser platforms for increasingly penetrating x-ray radiography.

  18. Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Curtis, Alexander D.; Banishev, Alexandr A.; Shaw, William L.; Dlott, Dana D.

    2014-04-01

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s-1 impacts with transparent target materials. Laser-launching Al flyers 25-100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  19. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.

    PubMed

    Curtis, Alexander D; Banishev, Alexandr A; Shaw, William L; Dlott, Dana D

    2014-04-01

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s(-1) impacts with transparent target materials. Laser-launching Al flyers 25-100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  20. Laser-driven 6-16 keV x-ray imaging and backlighting with spherical crystals

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Rambo, P. K.; Schwarz, J.; Smith, I. C.; Porter, J. L.

    2014-10-01

    Laser-driven x-ray self-emission imaging or backlighting of High Energy Density Physics experiments requires brilliant sources with keV energies and x-ray crystal imagers with high spatial resolution of about 10 μ m. Spherically curved crystals provide the required resolution when operated at near-normal incidence, which minimizes image aberrations due to astigmatism. However, this restriction dramatically limits the range of suitable crystal and spectral line combinations. We present a survey of crystals and spectral lines for x-ray backlighting and self-emission imaging with energies between 6 and 16 keV. Ray-tracing simulations including crystal rocking curves have been performed to predict image brightness and spatial resolution. Results have been benchmarked to experimental data using both Sandia's 4 kJ, ns Z-Beamlet and 200 J, ps Z-Petawatt laser systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-15552A.

  1. Energetic metallic ion implantation in polymers via cost-effective laser-driven ion source

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Bilal; Rafique, M. Shahid; Ahmed, Rabia; Rafique, M.; Iqbal, Tahir; Hasan, Ali

    2017-07-01

    This research work reports the ions emission from the plasma generated by Nd:YAG laser having wavelength 1.064 μm, power 1.1 MW, pulse energy 10 mJ and intensity 1011 W/cm2 irradiated at 70° with respect to the target normal to the ions. These ions were accelerated through a home-made extraction assembly by means of a high voltage DC power supply. The energy of these ions were measured using Thomson parabola technique which utilizes Solid State Nuclear Track Detector (CR-39) and confirmed by Faraday cup as well that exploits a well-known technique known as time of flight. Interestingly, a significant increase in energy (from 490 to 730 keV) was observed with a discrete increase in acceleration potential from 0 to 18 kV. Polyethylene terephthalate (PET) and polypropylene were exposed to this recently developed ion source facility, to authenticate the reliability of this facility. The surface of the polymer is affected when energy of the irradiated ion is increased, which is evident from the optical micrographs. An increase in electrical conductivity was also observed with the increase in ion energy.

  2. Laser-driven formation of a high-pressure phase in amorphous silica.

    PubMed

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  3. Self-generated magnetic fields and electron transport in laser driven hohlraums

    NASA Astrophysics Data System (ADS)

    Edwards, John; Alley, Ed; Hammer, Jim; Town, Richard; Haines, Malcolm

    2002-11-01

    It is well known that magnetic fields can be generated during the interaction of an intense laser beam with solid targets. The principle source of magnetic field from Ohm's law is the familiar grad(T)xgrad(n) term, which results in Megagauss fields for laser intensities typical of inertial fusion and other high energy density experiments. In a hohlraum the main consequence of this is to increase the electron temperature by x2 near the laser entrance holes because of reduced thermal conduction in the cross-field (axial) direction. Despite the "localizing" effect of the magnetic field on the electrons, it appears that the diffusion approximation for electron heat flow breaks down, with the departure becoming progressively worse as the laser power is increased. The results of Lasnex simulations are used to illustrate these effects for laser powers ranging from 10TW to 500TW which cover conditions from Nova to NIF. Potential knock on consequences for inertial fusion are discussed. -This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  4. Development of short pulse laser driven micro-hohlraums as a source of EUV radiation

    NASA Astrophysics Data System (ADS)

    Krushelnick, Karl; Batson, Thomas; McKelvey, Andrew; Raymond, Anthony; Thomas, Alec; Yanovsky, Victor; Nees, John; Maksimchuk, Anatoly

    2015-11-01

    Experiments at large scale laser facilities such as NIF allow the radiativ properties of dens, high-temperature matter to be studied at previously unreachable regime, but are limited by cost and system availability. A scaled system using a short laser pulses and delivering energy to much smaller hohlraum could be capable of reaching comparable energy densities by depositing the energy in a much smaller volume before ablation of the wall material closes the cavit. The laser is tightl focused through the cavity and then expands to illuminate the wall. Experiments were performe using the Hercules Ti:Sapphire laser system at Michiga. Targets include cavities machined in bulk material using low laser power, and then shot in situ with a single full power pulse as well as micron scale pre-fabricate target. Spectral characteristics were measured using a soft X-ray spectromete, K-alpha x-ray imaging system and a filtered photo cathode array. Scalings of the radiation temperature were made for variations in the hohlraum cavit, the pulse duration as well as the focusing conditions. Proof of principle time resolved absorption spectroscopy experiments were also performe. These sources may allow opacity and atomic physics measurements with plasma an radiation temperatures comparable to much larger hohlraums, but with much higher repetition rate and in a university scale laboratory. We acknowledge funding from DTRA grant HDTRA1-11-1-0066.

  5. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    NASA Astrophysics Data System (ADS)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  6. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    PubMed

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-07

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  7. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  8. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    SciTech Connect

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  9. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments providemore » significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  10. Laser-driven formation of a high-pressure phase in amorphous silica

    SciTech Connect

    Salleo, Alberto; Taylor, Seth T.; Martin, Michael C.; Panero, Wendy R.; Jeanloz, Raymond; Genin, Francois Y.; Sands, Timothy

    2002-05-31

    A combination of electron diffraction and infrared reflectance measurements shows that synthetic silica transforms partially into stishovite under high-intensity (GW/cm2) laser irradiation, probably by the formation of a dense ionized plasma above the silica surface. During the transformation the silicon coordination changes from four-fold to six-fold and the silicon-oxygen bond changes from mostly covalent to mostly ionic, such that optical properties of the transformed material differ significantly from those of the original glass. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics applications such as inertial confinement fusion.

  11. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    SciTech Connect

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ∼1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ∼3 × 10{sup 16 }W/cm{sup 2}. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ∼40–50 T magnetic fields at the center of the coil ∼3–4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  12. Laser-driven vehicles - from inner-space to outer-space

    NASA Astrophysics Data System (ADS)

    Yabe, T.; Phipps, C.; Aoki, K.; Yamaguchi, M.; Nakagawa, R.; Baasandash, C.; Ogata, Y.; Shiho, M.; Inoue, G.; Onda, M.; Horioka, K.; Kajiwara, I.; Yoshida, K.

    Laser-supported propulsion of a micro-airplane with a water-covered ablator is demonstrated. The repetitive use of an overlay structure is experimentally demonstrated with a specially designed water supply. Various transparent overlays are investigated by the CIP-based hydrodynamic code and by experiments using a pendulum and using a semi-conductor load cell. A momentum-coupling efficiency of 104 Ns/MJ is achieved by water-exotic-target experiments, in agreement with the simulation code, which predicts a maximum efficiency of 105 Ns/MJ. The concept of laser-supported propulsion can also be used for driving a Mach 5 airplane in the stratosphere, a micro-ship inside the human body, and a robot in a nuclear power reactor accident, during which large numbers of neutrons make electronic devices useless.

  13. Operational experience with a free-electron laser driven by an rf photoinjector linac

    SciTech Connect

    O`Shea, P.G.

    1993-10-01

    For a number of years Los Alamos National Laboratory has been developing photocathode sources of high-brightness electron beams for FEL applications. The APEX FEL, which has been operational for over two years, was the first FEL to use a custom designed rf photoinjector as its electron source. The system consists of a 1.3 GHz, 6 MeV photoinjector with a multi-alkali photocathode illuminated by a frequency doubled ND:YLF drive-laser, followed by three separately powered accelerating structures that give a final electron energy of 40-MeV. The FEL has operated as an oscillator with either a permanent magnet or pulsed electromagnetic wigglers. Originally the FEL was designed to operate at a wavelengths near 3{mu}m, however the electron beam emittance and brightness are sufficient for harmonic lasing at much shorter wavelengths. We have demonstrated the tunability of the device from 0.37 to 11 {mu}m.

  14. Proposed Few-optical Cycle Laser-driven ParticleAccelerator Structure

    SciTech Connect

    Plettner, T.; Lu, P.; Byer, R.L.; /Stanford U., Ginzton Lab.

    2006-10-06

    We describe a transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles, however to preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. Finally, it shows potential for an unloaded gradient of 10 GeV/m with 10 fsec laser pulses and the possibility to accelerate 10{sup 6} electrons per bunch at an efficiency of 8%. The fabrication procedure and a proposed near term experiment with this accelerator structure are presented.

  15. GeV electron beams from cm-scale laser driven plasma based accelerators.

    NASA Astrophysics Data System (ADS)

    Leemans, Wim

    2006-10-01

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV/m) requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators (LWFA) produce electric fields of order 10-100 GV/m enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale [1-3]. In this talk, results will be presented on the first demonstration of the generation of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-50 TW were guided by a hydrogen filled capillary discharge waveguide [4]. Production of high-quality electron beams with 1 GeV energy by channelling a ˜40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide was observed [5]. Results will be discussed on the dependence of the electron beam characteristics on capillary properties, plasma density and laser parameters. [1] S.P.D. Mangles et al., Nature 431, 535-538 (2004). [2] C.G.R. Geddes et al., Nature 431, 538-541 (2004). [3] J. Faure et al., Nature 431, 541-544 (2004). [4] D.J. Spence and S.M. Hooker, Phys. Rev. E 63, 015401 (2001).[5] W.P. Leemans et al., submitted for publication.

  16. Idiopathic Focal Eosinophilic Enteritis (IFEE), an Emerging Cause of Abdominal Pain in Horses: The Effect of Age, Time and Geographical Location on Risk

    PubMed Central

    Archer, Debra C.; Costain, Deborah A.; Sherlock, Chris

    2014-01-01

    Background Idiopathic focal eosinophilic enteritis (IFEE) is an emerging cause of abdominal pain (colic) in horses that frequently requires surgical intervention to prevent death. The epidemiology of IFEE is poorly understood and it is difficult to diagnose pre-operatively. The aetiology of this condition and methods of possible prevention are currently unknown. The aims of this study were to investigate temporal and spatial heterogeneity in IFEE risk and to ascertain the effect of horse age on risk. Methodology/Principal Findings A retrospective, nested case-control study was undertaken using data from 85 IFEE cases and 848 randomly selected controls admitted to a UK equine hospital for exploratory laparotomy to investigate the cause of colic over a 10-year period. Generalised additive models (GAMs) were used to quantify temporal and age effects on the odds of IFEE and to provide mapped estimates of ‘residual’ risk over the study region. The relative risk of IFEE increased over the study period (p = 0.001) and a seasonal pattern was evident (p<0.01) with greatest risk of IFEE being identified between the months of July and November. IFEE risk decreased with increasing age (p<0.001) with younger (0–5 years old) horses being at greatest risk. The mapped surface estimate exhibited significantly atypical sub-regions (p<0.001) with increased IFEE risk in horses residing in the North-West of the study region. Conclusions/Significance IFEE was found to exhibit both spatial and temporal variation in risk and is more likely to occur in younger horses. This information may help to identify horses at increased risk of IFEE, provide clues about the aetiology of this condition and to identify areas that require further research. PMID:25463382

  17. Physics of laser-driven relativistic plasmas energetic X-rays, proton beams and relativistic electron transport in Petawatt laser experiments

    NASA Astrophysics Data System (ADS)

    Snavely, Richard Adolph

    2003-10-01

    experiments required the development of new laser-plasma diagnostics. Radio-chromic film detectors were developed for the first time for use in high-energy plasma diagnosis. Development of a large array of thermo-luminescent x-ray detectors is also covered. Novel techniques of nuclear activation are employed for the first time in laser plasma studies and are used to identify the unique features of laser-driven proton beams.

  18. Laser-driven ultraintense proton beams for high energy-density physics

    NASA Astrophysics Data System (ADS)

    Jablonski, Slawomir; Badziak, Jan; Parys, Piotr; Rosinski, Marcin; Wolowski, Jerzy; Szydlowski, Adam; Antici, P.; Fuchs, J.; Mancic, A.

    2008-04-01

    The results of studies of high-intensity proton beam generation from thin (1 -- 3μm) solid targets irradiated by 0.35-ps laser pulse of energy up to 15J and intensity up to 2x10^19 W/cm^2 are reported. It is shown that the proton beams of multi-TW power and intensity above 10^18 W/cm^2 at the source can be produced when the laser-target interaction conditions approach the Skin-Layer Ponderomotive Acceleration requirements. The laser-protons energy conversion efficiency and proton beam parameters remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 -- 0.2μm Au front layer) results in two-fold higher conversion efficiency and proton beam intensity than in the case of a plastic target. The values of proton beam intensities attained in our experiment are the highest among the ones measured so far.

  19. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  20. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  1. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  2. Laser-driven electron beam generation for secondary photon sources with few terawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Bohacek, K.; Chaulagain, U.; Horny, V.; Kozlova, M.; Krus, M.; Nejdl, J.

    2017-05-01

    Relativistic electron beams accelerated by laser wakefield have the ability to serve as sources of collimated, point-like and femtosecond X-ray radiation. Experimental conditions for generation of stable quasi-monoenergetic electron bunches using a femtosecond few-terawatt laser pulse (600 mJ, 50 fs) were investigated as they are crucial for generation of stable betatron radiation and X-ray pulses from inverse Compton scattering. A mixture of helium with argon, and helium with an admixture of synthetic air were tested for this purpose using different backing pressures and the obtained results are compared. The approach to use synthetic air was previously proven to stabilize the energy and energy spread of the generated electron beams at the given laser power. The accelerator was operated in nonlinear regime with forced self-injection and resulted in the generation of stable relativistic electron beams with an energy of tens of MeV and betatron X-ray radiation was generated in the keV range. A razor blade was tested to create a steep density gradient in order to improve the stability of electron injection and to increase the total electron bunch charge. It was proven that the stable electron and X-ray source can be built at small-scale facilities, which readily opens possibilities for various applications due to availability of such few-terawatt laser systems in many laboratories around the world.

  3. Temporal profile of betatron radiation from laser-driven electron accelerators

    NASA Astrophysics Data System (ADS)

    Horný, Vojtěch; Nejdl, Jaroslav; Kozlová, Michaela; Krůs, Miroslav; Boháček, Karel; Petržílka, Václav; Klimo, Ondřej

    2017-06-01

    The temporal profile of X-ray betatron radiation was theoretically studied for the parameters available with current laser systems. Characteristics of the betatron radiation were investigated for three different configurations of laser wakefield acceleration: typical self-injection regime and optical injection regime with perpendicularly crossed injection and drive beams, both achievable with 100 TW class laser, and ionization injection regime with a sub-10 TW laser system that was experimentally verified. Constructed spectrograms demonstrate that X-ray pulse durations are in the order of few tens of femtoseconds and the optical injection case reveals the possibility of generating X-ray pulses as short as 2.6 fs. The X-ray pulse duration depends mainly on the length of the trapped electron bunch as the emitted photons copropagate with the bunch with nearly the same velocity. These spectrograms were calculated using a novel simplified method based on the theory of Liénard-Wiechert potentials. It takes advantage of the fact that the electron oscillates transversally in the accelerating plasma wave in the wiggler regime and, thus, emits radiation almost exclusively in the turning points of its sine-like trajectory. Therefore, there are only few very narrow time intervals, which contribute significantly to the emission of radiation, while the rest can be neglected. These narrow time intervals are determined from the electron trajectories calculated using particle-in-cell simulations and the power spectrum at given point in far field is computed for each electron using the Fourier transform. Spectrograms of the emitted radiation are constructed by summing contributions of individual particles, since the incoherent nature of the electron bunch is assumed.

  4. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    PubMed

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  5. Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils.

    SciTech Connect

    Zinovev, A. V.; Veryovkin, I. V.; Moore, J. F.; Pellin, M. J.; Materials Science Division; Mass Think

    2007-11-01

    Laser-induced acoustic desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the single-photon ionization method combined with time-of-flight mass spectrometry, we have examined the neutral component of the desorbed flux in LIAD and compared it to that from direct laser desorption. These basic studies of LIAD, conducted for molecules of various organic dyes (rhodamine B, fluorescein, anthracene, coumarin, BBQ), have demonstrated detection of intact parent molecules of the analyte even at its surface concentrations corresponding to a submonolayer coating. In some cases (rhodamine B, fluorescein, BBQ), the parent molecular ion peak was accompanied by a few fragmentation peaks of comparable intensity, whereas for others, only peaks corresponding to intact parent molecules were detected. At all measured desorbing laser intensities (from 100 to 500 MW/cm{sup 2}), the total amount of desorbed parent molecules depended exponentially on the laser intensity. Translational velocities of the desorbed intact molecules, determined for the first time in this work, were of the order of hundreds of meters per second, less than what has been observed in our experiments for direct laser desorption, but substantially greater than the possible perpendicular velocity of the substrate foil surface due to laser-generated acoustic waves. Moreover, these velocities did not depend on the desorbing laser intensity, which implies the presence of a more sophisticated mechanism of energy transfer than direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. Also, the total flux of desorbed intact molecules as a function of the total number of desorbing laser pulses, striking the same point on the target, decayed following a power law rather than an exponential function, as would have been predicted by the shake-off model. To summarize, the

  6. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    SciTech Connect

    Romain, J.P.; Auroux, E.

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  7. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Yin, Yan; Luo, Wen

    2016-06-28

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 10{sup 20 }W/cm{sup 2} irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 10{sup 17 }W/cm{sup 2} interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV) to 6.0 × 10{sup 21}/(s mm{sup 2} mrad{sup 2} 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  8. Modeling Laser Effects on the Final Optics in Simulated IFE Environments

    SciTech Connect

    Nasr Ghoniem

    2004-08-14

    When laser light interacts with a material's surface, photons rapidly heat the electronic system, resulting in very fast energy transfer to the underlying atomic crystal structure. The intense rate of energy deposition in the shallow sub-surface layer creates atomic defects, which alter the optical characteristics of the surface itself. In addition, the small fraction of energy absorbed in the mirror leads to its global deformation by thermal and gravity loads (especially for large surface area mirrors). The aim of this research was to model the deformation of mirror surfaces at multiple length and time scales for applications in advanced Inertial Fusion Energy (IFE) systems. The goal is to control micro- and macro-deformations by material system and structural design. A parallel experimental program at UCSD has been set up to validate the modeling efforts. The main objective of the research program was to develop computer models and simulations for Laser-Induced Damage (LID) in reflective and transmissive final optical elements in IFE laser-based systems. A range of materials and material concepts were investigated and verified by experiments at UCSD. Four different classes of materials were considered: (1) High-reflectivity FCC metals (e.g. Cu, Au, Ag, and Al), (2) BCC metals (e.g. Mo, Ta and W), (3) Advanced material concepts (e.g. functionally graded material systems, amorphous coatings, and layered structures), and (4) Transmissive dielectrics (e.g. fused SiO2). In this report, we give a summary of the three-year project, followed by details in three areas: (1) Characterization of laser-induced damage; (2) Theory development for LIDT; and (3) Design of IFE reflective laser mirrors.

  9. The prevalence and intensity of gastrointestinal parasites of dogs in Ile-Ife, Nigeria.

    PubMed

    Sowemimo, Oluyomi A

    2009-03-01

    A study of gastrointestinal parasites in 269 faecal samples from dogs (Canis familiaris) collected from Ile-Ife, Nigeria between January and December 2004, revealed seven helminth species: Toxocara canis 33.8%, Ancylostoma sp. 34.6%, Toxascaris leonina 3.3%, Trichuris vulpis 3.7%, Dipylidium caninum 4.1%, Uncinaria stenocephala 0.7% and Taenia sp. 1.1%. The faecal egg intensities, determined as mean eggs per gram of faeces ( +/- SEM) were: T. canis 393.8 +/- 83.4, Ancylostoma sp. 101.5 +/- 32.8, T. leonina 14.3 +/- 7.9, T. vulpis 3.4 +/- 1.5, D. caninum 2.2 +/- 0.8, U. stenocephala 0.2 +/- 0.2. The prevalence of intestinal parasites was significantly higher (P < 0.05) in dogs of age 0-6 months than in older age groups. There was no significance difference in overall prevalence of intestinal helminth parasites between male (58.3%) and female (50.0%) dogs (P>0.05). The prevalence of helminth parasites was significantly higher (P < 0.05) in free-ranging than in kennelled dogs. The prevalence of helminth parasites was also significantly higher (P < 0.05) in African shepherds than in Alsatians and other exotic breeds. Each helminth parasite had similar prevalences and intensities among both genders (P>0.05) except in T. vulpis. The overall prevalence of intestinal parasites may continue to rise due to lack of functional veterinary clinics for dog care in Ile-Ife. Therefore, there is the need to establish a veterinary facility in Ile-Ife.

  10. The Dynamic Response of Thick-Liquid Shielding in Z-IFE Reactors

    SciTech Connect

    Abbott, R P

    2005-10-05

    A major concern in the design of thick-liquid protected inertial fusion reactors of all types is the dynamic response of the shielding liquid to the pulsed explosions. Induced liquid motion can stress and damage solid chamber structures such as the firstwall. In a z-pinch based inertial fusion (Z-IFE) reactor this issue becomes particularly critical due to the relatively large proposed target yields of several GJ. In this paper we summarize an analysis of the liquid response taking into account ablation of target facing surfaces, pocket venting, and neutron isochoric heating. The impact of varying several reactor parameters is also discussed.

  11. Geometric and blast effects of thin film cavity protection schemes for IFE reactors

    SciTech Connect

    Morley, N.B.; Ying, A.A.

    1995-12-31

    The flow of thin liquid films of liquids in geometric orientations and under blast conditions of an IFE reactor chamber is investigated. A inertial jet on an inverted hemispherical surface, indicative of the PROMETHEUS design, is modeled with a 1-D analysis. The behavior of the film and the conditions for adhesion of the jet are explored. Also, vertical film flow is modeled with a 2-D fluid code that tracts the free surface. A test case is presented where the development of a wavy surface is seen. This surface is subjected to pressure pulses typical of reactor cavity gas fluctuations and the surface is seen to be disrupted.

  12. Analyses in Support of Z-IFE LLNL Progress Report for FY-05

    SciTech Connect

    Moir, R W; Abbott, R P; Callahan, D A; Latkowski, J F; Meier, W R; Reyes, S

    2005-10-17

    The FY04 LLNL study of Z-IFE [1] proposed and evaluated a design that deviated from SNL's previous baseline design. The FY04 study included analyses of shock mitigation, stress in the first wall, neutronics and systems studies. In FY05, the subject of this report, we build on our work and the theme of last year. Our emphasis continues to be on alternatives that hold promise of considerable improvements in design and economics compared to the base-line design. Our key results are summarized here.

  13. Development of a Dry Wall Concept for Laser IFE Chambers

    SciTech Connect

    Blanchard, James P.; Martin, Carl J.

    2005-04-15

    The first wall of a laser fusion chamber will experience high heat loads pulsed at 5-10 Hz with pulse widths on the order of a few microseconds. This poses a challenging problem for dry wall designs, as the wall will be susceptible to a variety of failure modes. The primary design concept of the High Average Power Laser (HAPL) project is a ferritic steel first wall coated with tungsten armor. Due to the extreme heat loads, the armor will experience high temperatures, extensive yielding, and surface cracking. In order to evaluate the ability of this design to provide a suitable lifetime, a series of experiments to simulate chamber conditions using ions, x-rays, infrared heating, and lasers is under way. These experimental efforts have been coupled with numerical modeling to help determine likely failure modes and establish design criteria for chambers. This paper compares models for the thermomechanical effects seen in the tests to those expected in a full power chamber, in order to assess the ability of the tests to mimic the actual chamber performance. The tests are found to have some limitations, but they still offer excellent approximations of the true behavior.

  14. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  15. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  16. Turbulent Liquid Sheets for Protecting IFE Reactor Chamber First Walls

    SciTech Connect

    Durbin, S.G.; Yoda, M.; Abdel-Khalik, S.I.; Sadowski, D.L.

    2003-09-15

    Turbulent liquid sheets have been proposed to protect solid structures in fusion power plants by absorbing damaging radiation. Establishing an experimental design database for this flow would therefore be valuable in various thick liquid protection schemes. The effect of initial conditions on the flow free-surface fluctuation was studied experimentally for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) {delta} = 1 - 1.5 cm into ambient air. Sheets issuing from nozzles with both two- and three-dimensional fifth-order polynomial contractions with exit aspect ratios of 6.7 and 10 were investigated at Reynolds numbers ranging from 2 x 10{sup 4} to 1 x 10{sup 5}. Mean velocity and turbulence intensity profiles were measured just upstream of the nozzle exit using laser-Doppler velocimetry to quantify initial conditions. Planar laser-induced fluorescence was used to visualize the free surface geometry of the liquid sheet in the near-field region up to 25 {delta} downstream of the nozzle exit. Fluctuations of the free surface, or surface ripple, are characterized by the standard deviation in the position of the gas/liquid interface.

  17. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  18. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  19. Progress in the Extension of Free-Standing Target Technologies on IFE Requirements

    SciTech Connect

    Koresheva, E.R.; Aleksandrova, I.V.; Osipov, I.E.; Bazdenkov, S.V.; Chtcherbakov, V.I.; Koshelev, E.L.; Nikitenko, A.I.; Tolokonnikov, S.M.; Yaguzinskiy, L.S.; Baranov, G.D.; Safronov, A.I.; Timofeev, I.D.; Kuteev, B.V.; Kapralov, V.G

    2003-05-15

    Lebedev Physical Institute conducts a wide research and development program to supply targets for inertial fusion energy (IFE) research. Current essential results in that area include the following: (a) A free-standing target (FST) system has been created, which allows the filling, layering, characterizing, and placing of targets into a test optical chamber by injection at a rate of 0.1 Hz, (b) a special physical layout has been developed to carry out the layering experiments in a wide range of target diameters including reactor scaled ones, and (c) the reconstruction algorithms and scan system are under way to complete the FST system with a new subsystem for univalent target characterization based on microtomography. Specific issues for future IFE target technology and injection research are discussed, which include (a) adding a small doping to the fuel to form a cryogenic layer in a glassy state, (b) using large shells with a metallic layer onto the outer surface to shorten the layering time for reactor targets, (c) the cell for target motion driving application to FST technology, and (d) designing a prototypical facility for repeatable target fabrication and injection.

  20. Impact of intimate partner violence on anxiety and depression amongst women in Ile-Ife, Nigeria.

    PubMed

    Mapayi, Boladale; Makanjuola, R O A; Mosaku, S K; Adewuya, O A; Afolabi, O; Aloba, O O; Akinsulore, A

    2013-02-01

    Research into intimate partner violence in the Nigerian environment has been limited. The objective of this study was to determine, amongst a sample of women attending the Enuwa Primary Health Care Center, Ile-Ife, the association between intimate partner violence and anxiety/depression. A descriptive cross-sectional study was conducted amongst 373 women who attended the antenatal clinic and welfare units of a primary health centre in Ile-Ife using the Composite Abuse Scale, the Hospital Anxiety and Depression Scale and a socio-demographic scale as instruments. Slightly over a third (36.7 %) reported intimate partner violence within the past year, 5.6 % had anxiety and 15.5 % were depressed. Anxiety and depression in the respondents were significantly associated with intimate partner violence. Women were ten times more likely to report being depressed and 17 times more likely to report anxiety if they were in violent relationships. This research has shown that the magnitude of intimate partner violence within the study population is comparable to those found in the developing countries. There are significant associations between intimate partner violence, anxiety and depression amongst the study population and this fact undoubtedly has implications for the mental health of the Nigerian woman.

  1. Mechanical response and fatigue analysis of the first wall of the prometheus IFE reactor

    SciTech Connect

    El-Azab, A.; Ghoniem, N.M.

    1994-12-31

    Following the micro explosions in an Inertial Fusion Energy (IFE) reactor, the first wall structures are subjected to time-dependent mechanical and thermal loads, which result in stresses and displacements that vary with time. In the Prometheus IFE reactor the first wall is protected by a flowing thin film of liquid lead. The mechanical loading on the first wall includes two different mechanisms: (1) surface ablation momentum due to the early deposition of x-rays and the instantaneous evaporation of the protecting film, at the instant of the micro explosion, and (2) time dependent pressure due to propagating pressure waves that travel between the first wall and the center of the reactor chamber. Careful determination of the resulting stresses in the first wall structures helps choose and design these structures for maximum fatigue life time. In the present work, a solution of the equation of motion of the first wall structural elements and the associated stresses and displacements is presented. It is found that segmentation of the first wall into smaller plates minimizes the resulting stresses and, in turn, prolongs the fatigue life time of the first wall.

  2. Hybrid Kinetic-Fluid Electromagnetic Simulations of Imploding High Energy Density Plasmas for IFE

    NASA Astrophysics Data System (ADS)

    Welch, Dale; Rose, Dave; Thoma, Carsten; Genoni, Thomas; Bruner, Nichelle; Clark, Robert; Stygar, William; Leeper, Ramon

    2011-10-01

    A new simulation technique is being developed to study high current and moderate density-radius product (ρR) z-pinch plasmas relevant to Inertial Fusion Energy (IFE). Fully kinetic, collisional, and electromagnetic simulations of the time evolution of up to 40-MA current (deuterium and DT) z-pinches, but with relatively low ρR, have yielded new insights into the mechanisms of neutron production. At fusion relevant conditions (ρR > 0.01 gm/cm2) , however, this technique requires a prohibitively large number of cells and particles. A new hybrid implicit technique has been developed that accurately describes high-density and magnetized imploding plasmas. The technique adapts a recently published algorithm, that enables accurate descriptions of highly magnetized particle orbits, to high density plasmas and also makes use of an improved kinetic particle remap technique. We will discuss the new technique, stable range of operation, and application to an IFE relevant z-pinch design at 60 MA. Work supported by Sandia National Laboratories.

  3. P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.

    2014-12-01

    H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p

  4. Flux effects on defect production and damage accumulation in cu and fe exposed to IFE-like conditions

    SciTech Connect

    Alonso, E A; Caturla, M; Diaz de la Rubia, T; Perlado, J M; Stoller, R E

    1999-08-26

    Radiation damage production and accumulation in solids can be divided into two stages. In the production stage, the impinging particle gradually gives off its kinetic energy to lattice atoms in the form of energetic recoils. These deposit their energy by generating secondary and higher order recoils that result in a displacement collision cascade. The outcome of this stage, of the time scale of a few to 100 picoseconds, is a population of point or clustered defects known as the primary state of damage. In the second stage, which can extend over seconds, defects that survive recombination within their nascent cascade migrate over long distances, interacting with the microstructure. These freely migrating defects (FMD) are responsible for the changes in the macroscopic properties of metals under irradiation, such as void swelling, embrittlement, radiation enhanced diffusion, etc. Such changes in mechanical properties are most often detrimental and severely limit the flexibility in materials choice and operating temperature when designing a fusion power plant. Under most conditions, such as those that would be present in a magnetic fusion energy plant, or when bombarding with fission or spallation neutrons, irradiation takes place at a certain dose rate and temperature, but in a continuous manner. However, in an Inertial Fusion Energy (IFE) reactor, or when using a pulsed neutron source such as that recently proposed by Perkins [1], the irradiation flux is pulsed and the interplay between temperature, flux and pulse frequency controls the kinetics of damage accumulation. For sufficiently low pulse frequency, and at elevated temperature where the defects migrate fast, it may be expected that annealing between pulses may result in a significantly decreased rate of damage accumulation compared to that seen under steady state conditions. On the other hand, very high neutron fluxes in the pulse itself may severely limit recombination therefore leading to extremely fast

  5. High-Precision Measurements of the Equation of State of Hydrocarbons at 1-10 Mbar Using Laser-Driven Shock Waves

    SciTech Connect

    Barrios, M.A.; Hicks, D.G.; Boehly, T.R.; Fratanduono, D.E.; Eggert, J.H.; Celliers, P.M.; Collins, G.W.; Meyerhofer, D.D.

    2010-04-14

    The equation of state (EOS) of polystyrene and polypropylene were measured using laser-driven shock waves with pressures from 1 to 10 Mbar. Precision data resulting from the use of alpha-quartz as an impedance-matching (IM) standard tightly constrains the EOS of these hydrocarbons, even with the inclusion of systematic errors inherent to IM. The temperature at these high pressures was measured, which, combined with kinematic measurements, provide a complete shock EOS. Both hydrocarbons were observed to reach similar compressions and temperatures as a function of pressure. The materials were observed to transition from transparent insulators to reflecting conductors at pressures of 1 to 2 Mbar.

  6. High-precision measurements of the equation of state of hydrocarbons at 1-10 Mbar using laser-driven shock waves

    SciTech Connect

    Barrios, M. A.; Meyerhofer, D. D.; Hicks, D. G.; Eggert, J. H.; Celliers, P. M.; Collins, G. W.; Boehly, T. R.; Fratanduono, D. E.

    2010-05-15

    The equation of state (EOS) of polystyrene and polypropylene were measured using laser-driven shock waves with pressures from 1 to 10 Mbar. Precision data resulting from the use of alpha-quartz as an impedance-matching (IM) standard tightly constrains the EOS of these hydrocarbons, even with the inclusion of systematic errors inherent to IM. The temperature at these high pressures was measured, which, combined with kinematic measurements, provide a complete shock EOS. Both hydrocarbons were observed to reach similar compressions and temperatures as a function of pressure. The materials were observed to transition from transparent insulators to reflecting conductors at pressures of 1 to 2 Mbar.

  7. Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Boehly, T. R.; Hicks, D. G.; Fratanduono, D. E.; Eggert, J. H.; Collins, G. W.; Meyerhofer, D. D.

    2012-05-01

    A large uncertainty in the design of ignition capsules for use in the National Ignition Campaign (NIC) is the ablator equation of state. In this article, we report equation-of-state measurements for two candidate NIC ablator materials, glow-discharge polymer (GDP), and germanium-doped GDP. These materials were driven to pressures of 1 to 12 Mbar using laser-driven shock waves. Hugoniot measurements were obtained using the impedance matching technique with an α-quartz standard. This article presents the first kinematic measurements in the high-pressure fluid regime for these materials, which show to be in close agreement with Livermore equation-of-state model predictions.

  8. Inertial Fusion Energy's Role in Developing the Market for High Power Laser Diodes

    SciTech Connect

    Ladran, A L; Ault, E R; Beach, R J; Campbell, J H; Erlandson, A C; Felker, A J; Freitas, B L; Meier, W R; Telford, S; Ebbers, C A; Caird, J A; Barty, C J

    2007-11-29

    Production-cost models for high-power laser-diodes indicate systems of 10GW peak power coupled with facilitization of semi-conductor manufacturing capacity could yield costs below $0.02/Watt. This is sufficient to make IFE competitive with other nuclear power technologies.

  9. A Study of the Relationship between Previous Exposure to Education and Practice-Teaching Performance at the University of Ife.

    ERIC Educational Resources Information Center

    Olatunji, S. A.

    1976-01-01

    A study to identify relationships between the amount of exposure students have to education (as a discipline) and their student teaching performances is reported. Students attending the University of Ife from 1973-1976 were studied. A positive relationship was discovered, but other factors need to be researched further. (MLW)

  10. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  11. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  12. FY00 LDRD Final Report High Power IFE Driver Component Development 00-SI-009

    SciTech Connect

    Bibeau, C; Schaffers, K; Tassano, J; Waide, P; Bayramian, A

    2001-02-26

    We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for target physics research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 {micro}m wavelength. Currently, this review concentrates on the critical development and production of Yb:S-FAP crystals. After solving many defect issues that can be present in the crystals, reproducibility is the final issue that needs to be resolved. We have enlisted the help of national experts and have strongly integrated two capable commercial crystal growth companies (Litton-Airton/Synoptics and Scientific Materials) into the effort, and have solicited the advice of Robert Morris (retired from Allied Signal), a recognized international expert in high temperature oxide growth.

  13. Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal.

    PubMed

    Peeters, Harry Huiz; Gutknecht, Norbert

    2014-08-01

    The purpose of the study was to test the hypothesis that air entrapment occurs in the apical third of a root canal during irrigation. A second objective was to test the null hypothesis that there is no difference between laser-driven irrigation (an erbium, chromium:yttrium-scandium-gallium-garnet laser) and passive ultrasonic irrigation in removing an airlock from the apical third. One hundred twenty extracted human teeth with single narrow root canals were randomised into two experimental groups (n = 40) and two control groups (n = 20). The specimens were shaped using hand instruments up to a size 30/0.02 file. The teeth were irrigated with a mixture of saline, radiopaque contrast and ink in solution. In the passive ultrasonic irrigation group, the irrigant was activated with an ultrasonic device for 60 s. In the laser group, the irrigant was activated with a laser for 60 s. It was concluded that if the insertion of irrigation needle is shorter than the working length, air entrapment may develop in the apical third, but the use of laser-driven irrigation is completely effective in removing it. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  14. Role of laser-driven electron multi-scattering in resonance-enhanced below-threshold harmonic generation of He atoms

    NASA Astrophysics Data System (ADS)

    Li, Peng-Cheng; Chu, Shih-I.

    2014-05-01

    We perform an ab initio study of the resonance-enhanced harmonic generation of He atoms below the ionization threshold by solving the time-dependent Schr ∖''odinger equation and Maxwell's equation simultaneously. An accurate angular-momentum-dependent model potential is constructed for the description of the He atoms low-lying and Rydberg states. We find that the process of laser-driven electron multi-scattering can play a crucial role in resonance-enhanced below-threshold harmonic generation. This result is confirmed by simulations with an extended semiclassical model and time-frequency analysis of macroscopic harmonic spectra by means of the synchrosqueezed transform based on short time Fourier transform. Our results emphasize that the laser-driven electron multi-scattering must be taken into account to fully understand the quantum path contribution related to resonance-enhanced below-threshold harmonic spectra. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  15. Recent Contributions to the Use of Polyimide in the Fabrication of ICF and IFE Targets

    SciTech Connect

    Powell, Forbes R

    2004-03-15

    This paper discusses some recent contributions to the use of polyimide in the fabrication of targets for Inertial Confinement Fusion (ICF) and Inertial Fusion Energy (IFE). Polyimide has many desirable properties, including much higher strength and the ability to withstand much higher temperatures than similar polymer films. Recent research efforts have focused on the use of polyimide in a number of applications including gasbag targets, hohlraum windows, spherical target capsules, anti-convection baffles and various shaped membranes such as target capsule supports and cylindrical z-pinch targets where polyimide's advantages contribute to superior target performance. Also covered are the fabrication of thick-wall target capsules and the potential production of thin-wall spherical capsules by a fully automated process.

  16. Anthropometric Indices Associated with Variation in Cardiovascular Parameters among Primary School Pupils in Ile-Ife.

    PubMed

    Abiodun, Adedeji G; Egwu, Michael O; Adedoyin, Rufus A

    2011-01-01

    Purpose. This study investigated the anthropometric indices associated with variations in cardiovascular parameters among primary school pupils in Ile-Ife. Method. One thousand and twenty-six pupils (age range 6-14 years, mean age 10.12 years) from ten schools were recruited with parents' informed consent. Anthropometric (Height (Ht), Weight (Wt), Abdominal Circumference (AC)) and cardiovascular (Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), Heart Rate (HR)) parameters were measured using standard instruments and procedures. Blood pressure (BP) was measured after ten minutes of quiet sitting. Body Mass Index (BMI), Rate Pressure Product (RPP) and Pulse Pressure (PP) were estimated. Results. Age, Ht, Wt, BMI, and AC correlated significantly (P < .01) with BP and PP. AC and BMI were predictors of BP, HR, RPP, and PP. Conclusion. Significant correlations exist between age, Ht, Wt, BMI, AC, and BP with weight being a more viable predictor of SBP and age a more viable predictor of DBP.

  17. Total laparoscopic hysterectomy: A case report from ILE-IFE, Nigeria.

    PubMed

    Badejoko, Olusegun O; Ajenifuja, Kayode O; Oluborode, Babawale O; Adeyemi, Adebanjo B

    2012-10-01

    Total laparoscopic hysterectomy (TLH) is an advanced gynecological laparoscopic procedure that is widely performed in the developed world. However, its feasibility in resource-poor settings is hampered by obvious lack of equipments and/or skilled personnel. Indeed, TLH has never been reported from any Nigerian hospital. We present a 50-year-old multipara scheduled for hysterectomy on account of pre-malignant disease of the cervix, who had TLH with bilateral salpingo-oophorectomy in the Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, southwestern Nigeria and was discharged home on the first post-operative day. She was seen in the gynecology clinic a week later in stable condition and she was highly pleased with the outcome of her surgery. This case is presented to highlight the attainability of operative gynecological laparoscopy, including advanced procedures like TLH in a resource-constrained setting, through the employment of adequate local adaptation and clever improvisation.

  18. Management of primary dysmenorrhea by school adolescents in ILE-IFE, Nigeria.

    PubMed

    Ogunfowokan, Adesola A; Babatunde, Oluwayemisi A

    2010-04-01

    Dysmenorrhea is a problem that girls and women face and often manage themselves with or without support from health professionals. A cross-sectional, descriptive study was conducted among adolescents with dysmenorrhea (N = 150) in Ile-Ife, Nigeria. The aims of the study were to determine their knowledge of menstruation and primary dysmenorrhea, assess the severity of pain they experienced during an episode of primary dysmenorrhea, and determine the management strategies they adopted. A pre-tested semi-structured questionnaire was used to collect data. Findings revealed the adolescents had a knowledge deficit regarding menstruation and dysmenorrhea, 58% of respondents reported pain between face 4 and face 10 on the Faces Pain Scale and the majority used inappropriate methods to manage primary dysmenorrhea. School nurses are able to assist adolescents and their mothers in proper management of primary dysmenorrhea.

  19. Male involvement in family planning decision making in Ile-Ife, Osun State, Nigeria.

    PubMed

    Ijadunola, Macellina Y; Abiona, Titilayo C; Ijadunola, Kayode T; Afolabi, Olusegun T; Esimai, Olapeju A; OlaOlorun, Funmilola M

    2010-12-01

    This study assessed men's awareness, attitude, and practice of modern contraceptive methods, determined the level of spousal communication, and investigated the correlates of men's opinion in family planning decision making in Ile-Ife, Nigeria. Quantitative methodology was employed in this cross-sectional descriptive design using a structured household questionnaire to collect information from 402 male study participants. A multistage sampling procedure was employed. Eighty-nine percent of men approved of the use of family planning while only about 11 percent disapproved of it. Eighty percent of men had ever used contraception while 56 percent of them were current users. Spousal communication about family planning and other family reproductive goals was quite poor. The socio-demographic correlates of men's opinions included religion, marriage type, educational attainment, and occupation (p < 0.05). The study concluded that male involvement in family planning decision making was poor and their patronage of family planning services was low.

  20. Chronic Airflow Obstruction in a Black African Population: Results of BOLD Study, Ile-Ife, Nigeria.

    PubMed

    Obaseki, Daniel O; Erhabor, Gregory E; Gnatiuc, Louisa; Adewole, Olufemi O; Buist, Sonia A; Burney, Peter G

    2016-01-01

    Global estimates suggest that Chronic Obstructive Pulmonary Disease (COPD) is emerging as a leading cause of death in developing countries but there are few spirometry-based general population data on its prevalence and risk factors in sub-Saharan Africa. We used the Burden of Obstructive Lung Disease (BOLD) protocol to select a representative sample of adults aged 40 years and above in Ile-Ife, Nigeria. All the participants underwent spirometry and provided information on smoking history, biomass and occupational exposures as well as diagnosed respiratory diseases and symptoms. Chronic Airflow Obstruction (CAO) was defined as the ratio of post-bronchodilator (BD) one second Forced Expiratory Volume (FEV1) to Forced Vital Capacity (FVC) below the lower limit of normal (LLN) of the population distribution for FEV1/FVC. The overall prevalence of obstruction (post-BD FEV1/FVC < LLN) was 7.7% (2.7% above LLN) using Global Lung Function Initiative (GLI) equations. It was associated with few respiratory symptoms; 0.3% reported a previous doctor-diagnosed chronic bronchitis, emphysema or COPD. Independent predictors included a lack of education (OR 2.5, 95% CI: 1.0, 6.4) and a diagnosis of either TB (OR 23.4, 95% CI: 2.0, 278.6) or asthma (OR 35.4, 95%CI: 4.9, 255.8). There was no association with the use of firewood or coal for cooking or heating. The vast majority of this population (89%) are never smokers. We conclude that the prevalence of CAO is low in Ile-Ife, Nigeria and unrelated to biomass exposure. The key independent predictors are poor education, and previous diagnosis of tuberculosis or asthma.

  1. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    SciTech Connect

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles close-in to the target

  2. P-ρ-T measurements of H{sub 2}O up to 260 GPa under laser-driven shock loading

    SciTech Connect

    Kimura, T.; Ozaki, N.; Kodama, R.; Sano, T.; Sakawa, Y.; Okuchi, T.; Sano, T.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Shimizu, K.

    2015-04-28

    Pressure, density, and temperature data for H{sub 2}O were obtained up to 260 GPa by using laser-driven shock compression technique. The shock compression technique combined with the diamond anvil cell was used to assess the equation of state models for the P-ρ-T conditions for both the principal Hugoniot and the off-Hugoniot states. The contrast between the models allowed for a clear assessment of the equation of state models. Our P-ρ-T data totally agree with those of the model based on quantum molecular dynamics calculations. These facts indicate that this model is adopted as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range.

  3. Electrical Properties of Polycrystalline Cadmium Sulfide Films Produced by Laser-Driven Physical Vapor Deposition for Cadmium Sulfide/cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Tsien, Li-Hua

    1992-01-01

    Electrical conductivity, carrier density, and mobilities have been measured for CdS films grown on glass substrates by laser-driven physical vapor deposition (LDPVD). This work was part of an overall effort to gain a better understanding of the processes that are important in determining the efficiency of CdTe-based thin film solar cells. Films were grown from several target materials including pure CdS, CdS doped with indium, and CdS mixed with cadmium chloride. Some films were also subjected to post-growth chemical and thermal treatments. Generally, grain boundary effects dominate the mobility between 80K and 350K. The data is interpreted using a model for polycrystalline and powdered semiconductors which was developed by Orton and Powell (J. S. Orton and M. J. Powell, Rep. Prog. Phys. 43, 81 (1980)) and is discussed using the concept of effective doping levels.

  4. Physical Processes of the Interaction Between Laser-Generated Plasma and Blast Wave Appearing in Laser-Driven In-Tube Accelerator Configuration

    SciTech Connect

    Sasoh, Akihiro; Mori, Koichi; Ohtani, Toshiro; Ohnishi, Naofumi; Ogino, Yosuke; Sawada, Keisuke

    2006-05-02

    Flow visualizations of the interaction between a laser-pulse-generated plasma and a shock wave driven by it have been experimentally conducted. The configuration of the experimental set-up corresponds to the laser-driven, in-tube accelerator. Primary-mode deformation of the plasma is governed by Richtmyer-Meshkov instability which is produced by the vector product between the pressure and density gradients, which in turn correspond to a reflected shock wave and to the plasma, respectively. Higher-mode contact surface deformations are supposedly originated in Rayleigh-Taylor instability in the shrinkage phase of the plasma, and is enhanced due to the passage of the reflected shock wave.

  5. Index of the relative importance of fuel efficiency (IFE) in the motor vehicle market. Final report Sep 79-Jan 81

    SciTech Connect

    Hallaq, J.H.; Schaeffer, K.H.; Westenberg, D.

    1981-10-01

    The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper surveys the currently available measures of consumer attitudes toward fuel efficiency, concludes that they do not adequately meet NHTSA's needs, and develops the Index of the Relative Importance of Fuel Efficiency (IFE) to fill this void.

  6. The Prevalence and Pattern of Superficial Fungal Infections among School Children in Ile-Ife, South-Western Nigeria

    PubMed Central

    Oke, Olaide Olutoyin; Onayemi, Olaniyi; Olasode, Olayinka Abimbola; Omisore, Akinlolu Gabriel; Oninla, Olumayowa Abimbola

    2014-01-01

    Fungal infections of the skin and nails are common global problems with attendant morbidity among affected individuals. Children are mostly affected due to predisposing factors such as overcrowding and low socioeconomic factors. The aim of this study was to determine the prevalence and the clinical patterns of superficial fungal infections among primary school children in Ile-Ife. A multistage sampling was conducted to select eight hundred pupils from ten primary schools in Ile-Ife. Data on epidemiological characteristics and clinical history was collected using a semistructured questionnaire and skin scrapings were done. The prevalence of superficial fungal infections among the 800 respondents was 35.0%. Male pupils constituted 51.0% of respondents while the females were 49.0%. The mean age for all the respondents was 9.42 ± 2.00. Tinea capitis was the commonest infection with a prevalence of 26.9% and tinea unguium, tinea corporis, and tinea faciei had a prevalence of 0.8%, 0.6%, and 0.5%, respectively. Tinea manuum had the least prevalence of 0.1%. Pityriasis versicolor had a prevalence of 4.4%. Microsporum audouinii was the leading organism isolated. The study shows that the prevalence of superficial fungal infection (SFI) among primary school children in Ile-Ife is high with tinea capitis as the commonest SFI. PMID:25574161

  7. The Prevalence and Pattern of Superficial Fungal Infections among School Children in Ile-Ife, South-Western Nigeria.

    PubMed

    Oke, Olaide Olutoyin; Onayemi, Olaniyi; Olasode, Olayinka Abimbola; Omisore, Akinlolu Gabriel; Oninla, Olumayowa Abimbola

    2014-01-01

    Fungal infections of the skin and nails are common global problems with attendant morbidity among affected individuals. Children are mostly affected due to predisposing factors such as overcrowding and low socioeconomic factors. The aim of this study was to determine the prevalence and the clinical patterns of superficial fungal infections among primary school children in Ile-Ife. A multistage sampling was conducted to select eight hundred pupils from ten primary schools in Ile-Ife. Data on epidemiological characteristics and clinical history was collected using a semistructured questionnaire and skin scrapings were done. The prevalence of superficial fungal infections among the 800 respondents was 35.0%. Male pupils constituted 51.0% of respondents while the females were 49.0%. The mean age for all the respondents was 9.42 ± 2.00. Tinea capitis was the commonest infection with a prevalence of 26.9% and tinea unguium, tinea corporis, and tinea faciei had a prevalence of 0.8%, 0.6%, and 0.5%, respectively. Tinea manuum had the least prevalence of 0.1%. Pityriasis versicolor had a prevalence of 4.4%. Microsporum audouinii was the leading organism isolated. The study shows that the prevalence of superficial fungal infection (SFI) among primary school children in Ile-Ife is high with tinea capitis as the commonest SFI.

  8. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA).

    PubMed

    van de Donk, Niels W C J; Otten, Henny G; El Haddad, Omar; Axel, Amy; Sasser, A Kate; Croockewit, Sandra; Jacobs, Joannes F M

    2016-06-01

    Daratumumab is a fully human anti-CD38 IgG1-κ monoclonal antibody (mAb) currently being evaluated in several Phase 2 and 3 clinical studies for the treatment of multiple myeloma (MM). In this clinical case study we demonstrate that daratumumab can be detected as an individual monoclonal band in serum immunofixation electrophoresis (IFE). M-protein follow-up by IFE is part of the International Myeloma Working Group (IMWG) criteria to assess treatment response. Therefore, it is crucial that the daratumumab band is not confused with the endogenous M-protein of the patient during IFE interpretation. Moreover, a significant number of IgG-κ M-proteins co-migrate with daratumumab. Co-migration introduces a bias in the M-protein quantification since pharmacokinetic studies show that daratumumab peak plasma concentrations reach up to 1 g/L. More importantly, co-migration can mask clearance of the M-protein by IFE which is necessary for classification of complete response by IMWG criteria (negative serum IFE). For optimal M-protein monitoring the laboratory specialist needs to be informed when patients receive daratumumab, and it is essential that the laboratory specialist is aware that a slow migrating band in the γ-region in those patients may be derived from the daratumumab. A daratumumab specific IFE reflex assay (DIRA) has been developed and can be utilized to abrogate interference. The here described mAb interference is not limited to daratumumab, and as therapeutic antibodies gain approval and enter into common clinical practice, laboratory specialists will need additional processes to characterize IFE interference and distinguish endogenous M-protein from therapeutic antibodies.

  9. 201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system.

    PubMed

    Kowalewski, Katie; Zembek, Jason; Envid, Victoria; Brown, David C

    2012-11-15

    We have generated 201 W of green (514.5 nm) average power from a frequency-doubled picosecond cryogenic Yb:YAG laser system driven by a 50 MHz, 12.4 ps mode-locked Yb fiber laser producing 430 W of average power at 1029 nm, using direct pulse amplification. The fundamental beam produced was near-diffraction-limited (M(2)<1.3). Second-harmonic-generation is achieved using a 20 mm long noncritically phase-matched Lithium triborate (LiB3O5) crystal; conversion efficiencies as high as 58% have been observed. At 100 W of 514.5 nm output power, the average M(2) value was 1.35. To the best of our knowledge, this is the highest average power picosecond green pulsed laser.

  10. Correlates of Self-Report of Rape Among Male School Adolescents in Ile-Ife, Nigeria.

    PubMed

    Ogunfowokan, Adesola A; Olagunju, Oluwayemisi E; Olajubu, Aanuoluwapo O; Faremi, Funmilola A; Oloyede, Ajoke S; Sharps, Phyllis W

    2016-02-01

    This study examined male adolescents' self-report of rape of adolescent girls and the socio-demographic variables that correlated with self-report of rape. Descriptive-correlational design was used and the study was conducted in five public senior secondary schools in Ile-Ife, Nigeria. Three hundred and thirty-eight male adolescents participated in the study. A structured questionnaire was used to collect data. Findings from the study revealed the mean age of the adolescent males to be 16 years, with the majority (73%) of them in the middle adolescent stage. Six percent of the adolescent males reported they had raped an adolescent girl in the past. Among the boys who reported rape, 55% reported they had raped their sexual partners, and 55% reported they had perpetrated gang rape. Smoking (p = .0001), alcohol consumption (p = .001), and birth order (p = .006) predicted self-report of rape. The coefficient of birth order showed that odds of self-report of rape by first-born male increases by 6 times compared with other children. Study findings also provided evidence that adolescent males are moving from lone rape to gang rape in intimate partner relationships. Male adolescents are important group to target in rape prevention programs. © The Author(s) 2014.

  11. Maternal education, breastfeeding behaviours and lactational amenorrhoea: studies among two ethnic communities in Ile Ife, Nigeria.

    PubMed

    Davies-Adetugbo, A A; Ojofeitimi, E O

    1996-01-01

    Breastfeeding is an important child survival strategy. This report aims to describe the unique contributions of education, ethnicity, and other variables to breastfeeding outcomes. The study was conducted among two groups of lactating mothers in Ile Ife, southwestern Nigeria, using structured questionnaires focusing on their breastfeeding history and current practice. Breastfeeding initiation was delayed in both groups, and primary education is the most significant predictor of initiation of breastfeeding within 6 hours of delivery (OR = 3.92, p = 0.0117). Breastfeeding duration (SD) was 13.7 (4.3) months for the Yorubas and 17.5 (3.4) for the Hausas. Its only significant predictors are education (p < = 0.0001), with an average decrease in breastfeeding duration of 3.2 and 6.6 months with mother's education to the primary and post-primary levels respectively, compared with mothers with no education. In turn, breastfeeding duration is the most significant predictor of the duration of lactational amenorrhoea (p = 0.0000). Mothers with some formal education are also more likely to start feeding human milk substitutes at 2 weeks (OR = 3.83, p = 0.024). The most important variable determining breastfeeding in this study is education. The educated mother is more likely to be involved in economic activity away from the home. To protect breastfeeding in these communities, there is a need for programmes to support the breastfeeding mother who works.

  12. Thermomechanical design of the grazing incidence metal mirror of the prometheus-L IFE reactor

    SciTech Connect

    Ghoniem, N.M.; El-Azab, A.

    1994-12-31

    In Laser IFE reactors the reflectivity and absorptivity of the grazing metal mirror depend on the neutron dose received by the mirror surface. In addition to these irradiation effects, the surface deformation due to neutron irradiation-induced swelling and due to thermal loads change the focusing quality of the mirror. In the present work, a thorough review of the irradiation effects on the changes in mirror surface quality is presented. A mirror design methodology, which considers the deformation due to the loads associated with laser beam and the deformation due to neutron-irradiation induced swelling is discussed. The basic philosophy considered in the design is to separate the functions and choose the best possible materials to perform these specific functions. An aluminum thin layer, for the purpose of reflection of the laser beam, is deposited on a SiC substrate. The SiC substrate provides a rigid bulk, through which coolant is provided to remove the heat absorbed during laser pulses, and avoids the need for a thicker aluminum layer that undergoes more swelling than SiC. A concrete frame is designed to provide the ultimate resistance against thermally-induced deformation. Other features of the design will also be presented.

  13. Low cost, high yield IFE reactors: Revisiting Velikhov`s vaporizing blankets

    SciTech Connect

    Logan, B.G.

    1992-03-06

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ``Bang per Buck`` figure-of-merit {approx_gt} 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant.

  14. Child-rearing practices among nursing mothers in Ile-Ife, Nigeria.

    PubMed

    Odebiyi, A I

    1985-01-01

    This study attempts to highlight the relationship between the educational status of mothers in Ile-Ife and their child-rearing practices. It was observed that the educated mothers in good jobs spent less time at home with the children than the illiterates who have their children with them at the farms and in the market places. Thus, a higher proportion of the educated mothers admitted to using more bottle feeding than breast feeding, and forced hand-feeding which was practised by all the illiterate women interviewed. Only one educated woman still practices female circumcision. Of interest in the study is the fact that the children of the different categories of women are exposed to different types of health hazards; while the children of the educated suffer neglect and are deprived of the advantages of breast feeding, the children of the illiterate suffer from undue exposure to unhygienic conditions in the farms and market places and from the implications of forced hand-feeding and female circumcision.

  15. Simulations of Ion Coupling Experiments on NDCX-II relevant to IFE

    NASA Astrophysics Data System (ADS)

    Barnard, J. J.; More, R. M.; Terry, M.

    2012-10-01

    The Neutralized Drift Compression Experiment II (NDCX-II) is an induction accelerator for which the construction project was completed at Lawrence Berkeley National Laboratory in March, 2012, and is presently being commissioned. The baseline design for NDCX-II will accelerate ˜0.03 μC of singly charged lithium ions to 1.2 MeV (with possible upgrades up to 3.1 MeV), delivered in sub-ns pulses with sub-mm rms beam radii. The purpose of NDCX-II is to carry out beam and target interaction experiments relevant to IFE. We have carried out detailed hydrodynamic simulations of planar targets having several configurations. In this poster we will focus on experiments that maximize shock strength by traveling wave deposition (i.e. by varying ion beam energy in a velocity chirp) and/or by varying intensity profile, and we will also explore methods to optimize shock strengths in composite materials where shocks can be formed at material boundaries and at end-of-range. These results will be discussed in the context of heavy ion fusion direct drive targets.

  16. Investigation of Ionospheric Response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-06-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  17. Menstruation: knowledge, attitude and practices of students in Ile-Ife, Nigeria.

    PubMed

    Irinoye, O O; Ogungbemi, A; Ojo, A O

    2003-01-01

    This study investigated students' knowledge of, beliefs, attitude to and practices during menstruation. Data was collected from a sample of 200 students from Ile-Ife using the multi-stage sampling technique. Only 5% of respondents could correctly define menstruation. Materials used to manage menstruation include sanitary pad, pieces of cloths, toilet rolls, cotton wool, tampon and shoulder pad foam. Practices vary on menstruating and non-menstruating days with 11(39.3%) of the 28 practices classified as healthy, 6(21.43%) as potentially harmful and 11(39.3%) as uncertain. Three (21.43%) of the listed 14 beliefs and taboos are potentially health-promoting, 5(35.71%) are potentially not health-promoting while 6(42.86%) are potentially harmless. Menstruation is associated with restrictions in diet and social interaction with 8%, 20.5% and 5% seeing menstruation as abnormal, dirty and a disease respectively. Findings from this study would be helpful in planning educational programmes to correct misinformation and promote healthy practices among women during menstruation.

  18. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  19. High-pressure mineral phases of olivine (Mg2SiO4) formed by pre-compression followed by laser-driven hypervelocity shock impact

    NASA Astrophysics Data System (ADS)

    Turner, A. A.; Tschauner, O. D.; Zaug, J. M.; Stavrou, E.; Armstrong, M.

    2016-12-01

    Understanding high-pressure phase transitions of olivine is a growing sphere of interest for Geoscientists, as olivine is an abundant mineral in the upper mantle of the Earth as well as pre-shocked meteorites. Knowledge of extreme condition olivine chemistry will provide insight into the process of shock metamorphism, which alters the composition and texture of materials during bolide impact and under extreme terrestrial conditions. The intention of investigating olivine under high pressures is to determine under what conditions the silicate spinel Ringwoodite (γ-Mg2SiO4), a high-pressure phase of olivine, is synthesized in shock-metamorphosed meteorites and to explore the nature of olivine beyond the phase boundary of Ringwoodite. Queries posed for these experiments focus primarily on what possible phases form as the result of compressing olivine to pressures above the 40 GPa, the likelihood of those phases to be conserved upon shock release, and what retrograde transformation products could possibly be generated from olivine under such pressures. Two independent endmember specimens (forsterite) of single crystal olivine (Mg2SiO4) were coated with 2.5 µm of aluminum and pre-compressed to 25 and 35 GPa, respectively in a diamond anvil cell. Lithium fluoride served as the pressure-transmitting medium. The specimens were then exposed to a laser-driven hypervelocity shock impact (400 picosecond duration) in order to investigate what phases if any form under more extreme pressures and dynamic stress states. The addition of laser-driven hypervelocity shock added 18 GPa of pressure to the pre-compressed samples, for a total of 43 and 53 GPa, respectively. From the analysis of the x-ray diffraction (XRD) measurements, it was determined that the olivine underwent a reduction of silicon and oxidation of the aluminum coating. These are fascinating observations revealed from a combined static and shock compression experiment. This work was performed under the auspices of

  20. Annual Report to the Strategic Defense Initiative Organization on the Free-Electron Laser Driven by the NIST CW Microtron

    DTIC Science & Technology

    1986-05-05

    design of the injector for the method selected was completed. A study on the problem of mirror damage has been completed, and commercial suppliers of... mirrors that can withstand the high intracavity power of the FEL have been identified. The design of the room in which the FEL is located has been...Appendices ............ ............................. .25 A. Design Note 10 - Mirror Damage B. Design Note 11 - Wiggler Field Errors C. Design Note 12