Science.gov

Sample records for laser-driven proton acceleration

  1. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  2. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  3. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  4. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  5. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  6. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  7. Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy.

    PubMed

    Khaghani, Dimitri; Lobet, Mathieu; Borm, Björn; Burr, Loïc; Gärtner, Felix; Gremillet, Laurent; Movsesyan, Liana; Rosmej, Olga; Toimil-Molares, Maria Eugenia; Wagner, Florian; Neumayer, Paul

    2017-09-12

    The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pulses of intensities ~10(17-18) W/cm(2). In comparison with standard planar targets, we witness strongly enhanced hot-electron production and proton acceleration both in terms of maximum energies and particle numbers. Supporting our experimental results, two-dimensional particle-in-cell simulations show an increase in laser energy conversion into hot electrons, leading to stronger acceleration fields. This opens a window of opportunity for further improvements of laser-driven ion acceleration systems.

  8. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C.; Buffechoux, S.; Albertazzi, B.; Capelli, D.; Antici, P.; Levy, A.; Fuchs, J.; Lecherbourg, L.; Marjoribanks, R. S.

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  9. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  10. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  11. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  12. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

    DOE PAGES

    Obst, Lieselotte; Gode, Sebastian; Rehwald, Martin; ...

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (Ø 5 μm) and planar (20 μm × 2 μm). In bothmore » cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. As a result, this is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.« less

  13. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    PubMed

    Obst, Lieselotte; Göde, Sebastian; Rehwald, Martin; Brack, Florian-Emanuel; Branco, João; Bock, Stefan; Bussmann, Michael; Cowan, Thomas E; Curry, Chandra B; Fiuza, Frederico; Gauthier, Maxence; Gebhardt, René; Helbig, Uwe; Huebl, Axel; Hübner, Uwe; Irman, Arie; Kazak, Lev; Kim, Jongjin B; Kluge, Thomas; Kraft, Stephan; Loeser, Markus; Metzkes, Josefine; Mishra, Rohini; Rödel, Christian; Schlenvoigt, Hans-Peter; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Ziegler, Tim; Schramm, Ulrich; Glenzer, Siegfried H; Zeil, Karl

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 10(9) particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.

  14. Mechanism and Control of High-Intensity-Laser-Driven Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Lin, T.; Flippo, K.; Rever, M.; Maksimchuk, A.; Umstadter, D.

    2004-12-01

    We discuss the optimization and control of laser-driven proton beams. Specifically, we report on the dependence of high-intensity laser accelerated proton beams on the material properties of various thin-film targets. Evidence of star-like filaments and beam hollowing (predicted from the electrothermal instability theory) is observed on Radiochromic Film (RCF) and CR-39 nuclear track detectors. The proton beam spatial profile is found to depend on initial target conductivity and target thickness. For resistive target materials, these structured profiles are explained by the inhibition of current, due to the lack of a return current. The conductors, however, can support large propagating currents due to the substantial cold return current which is composed of free charge carriers in the conduction band to neutralize the plasma from the interaction. The empirical plot shows relationship between the maximum proton energy and the target thickness also supports the return current and target normal sheath acceleration (TNSA) theory. We have also observed filamentary structures in the proton beam like those expected from the Weibel instability in the electron beam. Along with the ion acceleration, a clear electron beam is detected by the RCF along the tangent to the target, which is also the surface direction of target plate.

  15. Lasers As Particle Accelerators In Medicine: From Laser-Driven Protons To Imaging With Thomson Sources

    SciTech Connect

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Yakimenko, V.; Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Shkolnikov, P.; Williams, O.; Rosenzweig, J.; Oliva, P.; Carpinelli, M.; Golosio, B.; Delogu, P.; Stefanini, A.; Endrizzi, M.

    2011-06-01

    We report our recent progress using a high-power, picosecond CO{sub 2} laser for Thomson scattering and ion acceleration experiments. These experiments capitalize on certain advantages of long-wavelength CO{sub 2} lasers, such as their high number of photons per energy unit and beneficial wavelength- scaling of the electrons' ponderomotive energy and critical plasma frequency. High X-ray fluxes produced in the interactions of the counter-propagating laser- and electron-beams for obtaining single-shot, high-contrast images of biological objects. The laser, focused on a hydrogen jet, generated a monoenergetic proton beam via the radiation-pressure mechanism. The energy of protons produced by this method scales linearly with the laser's intensity. We present a plan for scaling the process into the range of 100-MeV proton energy via upgrading the CO{sub 2} laser. This development will enable an advance to the laser-driven proton cancer therapy.

  16. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  17. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  19. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  20. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  1. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  2. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  3. Vlasov modelling of laser-driven collisionless shock acceleration of protons

    SciTech Connect

    Svedung Wettervik, B.; DuBois, T. C.; Fülöp, T.

    2016-05-15

    Ion acceleration due to the interaction between a short high-intensity laser pulse and a moderately overdense plasma target is studied using Eulerian Vlasov–Maxwell simulations. The effects of variations in the plasma density profile and laser pulse parameters are investigated, and the interplay of collisionless shock and target normal sheath acceleration is analyzed. It is shown that the use of a layered-target with a combination of light and heavy ions, on the front and rear side, respectively, yields a strong quasi-static sheath-field on the rear side of the heavy-ion part of the target. This sheath-field increases the energy of the shock-accelerated ions while preserving their mono-energeticity.

  4. Ultrafast laser-driven proton sources and dynamic proton imaging

    SciTech Connect

    Nickles, Peter V.; Schnuerer, Matthias; Sokollik, Thomas; Ter-Avetisyan, Sargis; Sandner, Wolfgang; Amin, Munib; Toncian, Toma; Willi, Oswald; Andreev, Alexander

    2008-07-15

    Ion bursts, accelerated by an ultrafast (40 fs) laser-assisted target normal sheath acceleration mechanism, can be adjusted so as to deliver a nearly pure proton beam. Such laser-driven proton bursts have predominantly a low transverse emittance and a broad kinetic spectrum suitable for continuous probing of the temporal evolution of spatially extended electric fields that arise after laser irradiation of thin foils. Fields with a strength of up to 10{sup 10} V/m were measured with a new streaklike proton deflectometry setup. The data show the temporal and spatial evolution of electric fields that are due to target charge-up and ion-front expansion following intense laser-target interaction at intensities of 10{sup 17}-10{sup 18} W/cm{sup 2}. Measurement of the field evolution is important to gain further insight into lateral electron-transport processes and the influence of field dynamics on ion beam properties.

  5. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  6. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  7. Photonic laser-driven accelerator for GALAXIE

    SciTech Connect

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B.

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  8. Staged Laser driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Sokollik, Thomas; Shiraishi, Satomi; Gonsalves, Anthony; Nakamura, Kei; van Tilborg, Jeroen; Shaw, Brian; Esarey, Eric; Schroeder, Carl; Benedetti, Carlo; Toth, Csaba; Leemans, Wim

    2012-10-01

    Laser plasma accelerators have made tremendous progress over the last decade. Currently electron energies around 1 GeV [W. Leemans et al., Nature Physics 2, 696 (2006)] and above can be achieved. In the acceleration process, laser energy is transferred, via generation of a plasma wakefield by the laser pulse, to the electrons. The acceleration of electrons stops, when the laser energy is depleted. To increase the electron energy in current LPA schemes, laser systems with more pulse energy are needed, thus current laser plasma accelerators are limited by laser technology. Today, several projects are using or planning to use PW class laser systems to achieve electron energies up to 10 GeV [W. P. Leemans et al., AAC proceedings (2012)]. These laser systems represent the latest development in laser technology and are able to deliver the highest achievable laser intensities today. To overcome the electron energy limitation a staged acceleration concept is necessary. In this scheme multiple acceleration stages are placed in series, each driven by a separate laser pulse. Now the final electron energy is limited by the number of stages only. In a concept study a 1TeV electron-positron collider based on staged acceleration was envisioned in reference [W. P. Leemans and E. Esarey, Physics Today, 62, 44 (2009)]. We will present the latest results on a staged laser plasma experiment in which two stages and two laser pulses are used.

  9. Picosecond metrology of laser-driven proton bursts

    PubMed Central

    Dromey, B.; Coughlan, M.; Senje, L.; Taylor, M.; Kuschel, S.; Villagomez-Bernabe, B.; Stefanuik, R.; Nersisyan, G.; Stella, L.; Kohanoff, J.; Borghesi, M.; Currell, F.; Riley, D.; Jung, D.; Wahlström, C.-G.; Lewis, C.L.S.; Zepf, M.

    2016-01-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter. PMID:26861592

  10. Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator

    SciTech Connect

    Murakami, M.; Tanaka, M.

    2013-04-22

    An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

  11. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  13. Bidimensional Particle-In-Cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser

    SciTech Connect

    Scisciò, M.; Palumbo, L.; D'Humières, E.; Fourmaux, S.; Kieffer, J. C.; Antici, P.

    2014-12-15

    In this paper, we report on bi-dimensional Particle-In-Cell simulations performed in order to reproduce the laser-driven proton acceleration obtained when a commercial 200 TW Ti:Sa Laser hits a solid target. The laser-to prepulse contrast was enhanced using plasma mirrors yielding to a main-to-prepulse contrast of ∼10{sup 12}. We varied the pulse duration from 30 fs to 500 fs and the target thickness from 30 nm to several tens of μm. The on-target laser energy was up to 1.8 J leading to an intensity in excess of 10{sup 20 }W cm{sup −2}. A comparison between numerical and existing experimental data [S. Fourmaux et al., Phys. Plasmas 20, 013110 (2013)] is performed, showing a good agreement between experimental results and simulations which confirms that for ultra-thin targets there is an optimum expansion regime. This regime depends on the target thickness and on the laser intensity: if the target is too expanded, the laser travels through the target without being able to deposit its energy within the target. If the target is not sufficiently expanded, the laser energy is reflected by the target. It is important to note that maximum proton energies are reached at longer pulse durations (in the 100 fs regime) than what is currently the best compression pulse length for this type of lasers (typically 20–30 fs). This duration, around 50–100 fs, can be considered a minimum energy transfer time between hot electrons to ions during the considered acceleration process.

  14. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  15. Particle acceleration in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2016-10-01

    Particle acceleration induced by magnetic reconnection is a promising candidate for producing the nonthermal emissions associated with explosive astrophysical phenomena. We have used two- and three-dimensional particle-in-cell simulations to explore the possibility of studying particle acceleration from reconnection in laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies up to two orders of magnitude larger than the initial thermal energy. The nonthermal electrons gain energy primarily by the reconnection electric field near the X-points, and particle injection into the reconnection layer and escape from the finite system establishes a distribution of energies resembling a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for suprathermal electron acceleration in terms of experimentally tunable parameters. Finally, we investigate future experiments with a more energetic laser drive and larger system size. We discuss the influence of plasmoids on the particle acceleration, and the use of proton radiography to probe plasmoids. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  16. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  17. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  18. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-18

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  19. Intrinsic normalized emittance growth in laser-driven electron accelerators

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A. R.; Serafini, L.; Antici, P.

    2013-01-01

    Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m) generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  20. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  1. Bacterial cells enhance laser driven ion acceleration.

    PubMed

    Dalui, Malay; Kundu, M; Trivikram, T Madhu; Rajeev, R; Ray, Krishanu; Krishnamurthy, M

    2014-08-08

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications.

  2. Laser-driven proton scaling laws and new paths towards energy increase

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C. A.; Kaluza, M.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Schreiber, J.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-01-01

    The past few years have seen remarkable progress in the development of laser-based particle accelerators. The ability to produce ultrabright beams of multi-megaelectronvolt protons routinely has many potential uses from engineering to medicine, but for this potential to be realized substantial improvements in the performances of these devices must be made. Here we show that in the laser-driven accelerator that has been demonstrated experimentally to produce the highest energy protons, scaling laws derived from fluid models and supported by numerical simulations can be used to accurately describe the acceleration of proton beams for a large range of laser and target parameters. This enables us to evaluate the laser parameters needed to produce high-energy and high-quality proton beams of interest for radiography of dense objects or proton therapy of deep-seated tumours.

  3. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  4. Laser-driven Ion Acceleration using Nanodiamonds

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  5. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  6. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  7. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    SciTech Connect

    Kar, S. Ahmed, H.; Nersisyan, G.; Hanton, F.; Naughton, K.; Lewis, C. L. S.; Borghesi, M.; Brauckmann, S.; Giesecke, A. L.; Willi, O.

    2016-05-15

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  8. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  9. Studying astrophysical particle acceleration with laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2016-10-01

    The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion

  10. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  11. Pulsed radiobiology with laser-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  12. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  13. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  14. Reaching high flux in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Mackenroth, Felix; Gonoskov, Arkady; Marklund, Mattias

    2017-08-01

    Since the first experimental observation of laser-driven ion acceleration, optimizing the ion beams' characteristics aiming at levels enabling various key applications has been the primary challenge driving technological and theoretical studies. However, most of the proposed acceleration mechanisms and strategies identified as promising, are focused on providing ever higher ion energies. On the other hand, the ions' energy is only one of several parameters characterizing the beams' aptness for any desired application. For example, the usefulness of laser-based ion sources for medical applications such as the renowned hadron therapy, and potentially many more, can also crucially depend on the number of accelerated ions or their flux at a required level of ion energies. In this work, as an example of an up to now widely disregarded beam characteristic, we use theoretical models and numerical simulations to systematically examine and compare the existing proposals for laser-based ion acceleration in their ability to provide high ion fluxes at varying ion energy levels.

  15. Particle acceleration in laser-driven magnetic reconnection

    DOE PAGES

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-03

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order ofmore » magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. Finally, these results open the way for novel experimental studies of particle acceleration induced by reconnection.« less

  16. Particle acceleration in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-01

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order of magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. These results open the way for novel experimental studies of particle acceleration induced by reconnection.

  17. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  18. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  19. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  20. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-07-08

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  1. Laser-driven generation of ultraintense proton beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.; Kubkowska, M.; Parys, P.; Rosiński, M.; Wołowski, J.; Szydłowski, A.; Antici, P.; Fuchs, J.; Mancic, A.

    2010-10-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 μm wavelength and intensity up to 2×1019 Wcm-2 irradiated a thin (0.6-2 μm) plastic (PS) or Au/PS (plastic covered by 0.2 μm Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity ∼1018 Wcm-2 and current density ∼1012 Acm-2 at the source can be produced when the laser intensity-wavelength squared product I Lλ2 is ∼1019 Wcm-2 μm2 and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I Lλ2≥slant 5×1019 Wcm-2 μm2 and λ≤slant 0.53 μm, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 1020 Wcm-2.

  2. Proton Radiography of a Laser-Driven Implosion

    SciTech Connect

    Mackinnon, A. J.; Patel, P. K.; Hatchett, S. P.; Hey, D.; Hicks, D. G.; Key, M. H.; Phillips, T. W.; Snavely, R. A.; Town, R. P. J.; Borghesi, M.; Kar, S.; Romagnani, L.; Clarke, R. C.; Freeman, R. R.; Habara, H.; Lancaster, K.; Neely, D.; Norreys, P. A.; Notley, M. M.; King, J. A.

    2006-07-28

    Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 {mu}m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 {mu}m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3{+-}1 g/cm{sup 3} core with diameter 85{+-}10 {mu}m. Scaling simulations show that protons >50 MeV are required to diagnose asymmetry in ignition scale conditions.

  3. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  4. Effect of resistivity gradient on laser-driven electron transport and ion acceleration

    SciTech Connect

    Zhuo, H. B.; Yang, X. H.; Ma, Y. Y.; Li, X. H.; Zhou, C. T.; Yu, M. Y.

    2013-09-15

    The effect of resistivity gradient on laser-driven electron transport and ion acceleration is investigated using collisional particle-in-cell simulation. The study is motivated by recent proton acceleration experiments [Gizzi et al., Phys. Rev. ST Accel. Beams 14, 011301 (2011)], which showed significant effect of the resistivity gradient in layered targets on the proton angular spread. This effect is reproduced in the present simulations. It is found that resistivity-gradient generation of magnetic fields and inhibition of electron transport is significantly enhanced when the feedback interaction between the magnetic field and the fast-electron current is included. Filamentation of the laser-generated hot electron jets inside the target, considered as the origin of the nonuniform proton patterns observed in the experiments, is clearly suppressed by the resistive magnetic field. As a result, the electrostatic sheath field at the target back surface acquires a relatively smooth profile, which contributes to the superior quality of the proton beams accelerated off layered targets in the experiments.

  5. Laser-driven ion accelerators for tumor therapy revisited

    NASA Astrophysics Data System (ADS)

    Linz, Ute; Alonso, Jose

    2016-12-01

    Ten years ago, the authors of this report published a first paper on the technical challenges that laser accelerators need to overcome before they could be applied to tumor therapy. Among the major issues were the maximum energy of the accelerated ions and their intensity, control and reproducibility of the laser-pulse output, quality assurance and patient safety. These issues remain today. While theoretical progress has been made for designing transport systems, for tailoring the plumes of laser-generated protons, and for suitable dose delivery, today's best lasers are far from reaching performance levels, in both proton energy and intensity to seriously consider clinical ion beam therapy (IBT) application. This report details these points and substantiates that laser-based IBT is neither superior to IBT with conventional particle accelerators nor ready to replace it.

  6. Laser-driven quasimonoenergetic proton burst from water spray target

    SciTech Connect

    Ramakrishna, B.; Murakami, M.; Borghesi, M.; Ter-Avetisyan, S.; Ehrentraut, L.; Schnuerer, M.; Steinke, S.; Nickles, P. V.; Psikal, J.; Tikhonchuk, V.

    2010-08-15

    A narrow band proton bursts at energies of 1.6{+-}0.08 MeV were observed when a water spray consisting of (150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5x10{sup 19} W/cm{sup 2}. The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an 'iso-Coulomb-potential' during the droplet explosion such that protons are accelerated to a peak energy with a narrow energy spread. The model explains this crucial point, which differs critically from usual Coulomb explosion or ion sheath acceleration mechanisms.

  7. Prospects For and Progress Towards Laser-Driven Particle Therapy Accelerators

    SciTech Connect

    Cowan, T. E.; Schramm, U.; Burris-Mog, T.; Fiedler, F.; Kraft, S. D.; Zeil, K.; Bussmann, M.; Gaillard, S.; Herrmannsdoerfer, T.; Kluge, T.; Schmidt, B.; Sobiella, M.; Sauerbrey, R.; Baumann, M.; Enghardt, W.; Pawelke, J.; Flippo, K.; Harres, K.; Nuernberg, F.; Roth, M.

    2010-11-04

    Recent advances in laser-ion acceleration have motivated research towards laser-driven compact accelerators for medical therapy. Realizing laser-ion acceleration for medical therapy will require adapting the medical requirements to the foreseeable laser constraints, as well as advances in laser-acceleration physics, beam manipulation and delivery, real-time dosimetry, treatment planning and translational research into a clinical setting.

  8. An online, energy-resolving beam profile detector for laser-driven proton beams

    SciTech Connect

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U.; Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P.; Karsch, L.

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  9. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study

    SciTech Connect

    Hofmann, K; Wilkens, J; Masood, U; Pawelke, J

    2014-06-01

    Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number of laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.

  10. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  11. Laser-driven shock acceleration of monoenergetic ion beams.

    PubMed

    Fiuza, F; Stockem, A; Boella, E; Fonseca, R A; Silva, L O; Haberberger, D; Tochitsky, S; Gong, C; Mori, W B; Joshi, C

    2012-11-21

    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate ~200 MeV proton beams with state-of-the-art 100 TW class laser systems.

  12. Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, F.; Bolton, P. R.; Murakami, M.; Nomura, T.; Kawanishi, S.; Kondo, K.

    2011-01-01

    Human cancer cells are irradiated by laser-driven quasimonoenergetic protons. Laser pulse intensities at the 5×1019 W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels of up to 8 Gy, for which the single bunch dose rate is 1×107 Gy/s and the effective dose rate is 0.2 Gy/s for 1 Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20±0.11 using protons with a linear energy transfer of 17.1 keV/μm.

  13. A treatment planning study to assess the feasibility of laser-driven proton therapy using a compact gantry design

    SciTech Connect

    Hofmann, Kerstin M. Wilkens, Jan J.; Masood, Umar; Pawelke, Joerg

    2015-09-15

    Purpose: Laser-driven proton acceleration is suggested as a cost- and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and to determine limitations to comply with. Methods: Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. Results: The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10{sup 8} and 8.3 × 10{sup 9} to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even

  14. A treatment planning study to assess the feasibility of laser-driven proton therapy using a compact gantry design.

    PubMed

    Hofmann, Kerstin M; Masood, Umar; Pawelke, Joerg; Wilkens, Jan J

    2015-09-01

    Laser-driven proton acceleration is suggested as a cost- and space-efficient alternative for future radiation therapy centers, although the properties of these beams are fairly different compared to conventionally accelerated proton beams. The laser-driven proton beam is extremely pulsed containing a very high proton number within ultrashort bunches at low bunch repetition rates of few Hz and the energy spectrum of the protons per bunch is very broad. Moreover, these laser accelerated bunches are subject to shot-to-shot fluctuations. Therefore, the aim of this study was to investigate the feasibility of a compact gantry design for laser-driven proton therapy and to determine limitations to comply with. Based on a published gantry beam line design which can filter parabolic spectra from an exponentially decaying broad initial spectrum, a treatment planning study was performed on real patient data sets. All potential parabolic spectra were fed into a treatment planning system and numerous spot scanning proton plans were calculated. To investigate limitations in the fluence per bunch, the proton number of the initial spectrum and the beam width at patient entrance were varied. A scenario where only integer shots are delivered as well as an intensity modulation from shot to shot was studied. The resulting plans were evaluated depending on their dosimetric quality and in terms of required treatment time. In addition, the influence of random shot-to-shot fluctuations on the plan quality was analyzed. The study showed that clinically relevant dose distributions can be produced with the system under investigation even with integer shots. For small target volumes receiving high doses per fraction, the initial proton number per bunch must remain between 1.4 × 10(8) and 8.3 × 10(9) to achieve acceptable delivery times as well as plan qualities. For larger target volumes and standard doses per fraction, the initial proton number is even more restricted to stay between 1.4

  15. Creation and characterization of free-standing cryogenic targets for laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Tebartz, Alexandra; Bedacht, Stefan; Hesse, Markus; Astbury, Sam; Clarke, Rob; Ortner, Alex; Schaumann, Gabriel; Wagner, Florian; Neely, David; Roth, Markus

    2017-09-01

    A technique for the creation of free-standing cryogenic targets for laser-driven ion acceleration is presented, which allows us to create solid state targets consisting of initially gaseous materials. In particular, the use of deuterium and the methods for its preparation as a target material for laser-driven ion acceleration are discussed. Moving in the phase diagram through the liquid phase leads to the substance covering an aperture on a cooled copper frame where it is solidified through further cooling. An account of characterization techniques for target thickness is given, with a focus on deducing thickness values from distance values delivered by chromatic confocal sensors.

  16. Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    SciTech Connect

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-15

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  17. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  18. Numerical Simulation of Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ohnishi, N.; Ogino, Y.; Sawada, K.; Ohtani, T.; Mori, K.; Sasoh, A.

    2006-05-02

    To achieve a higher thrust performance in the laser-driven in-tube accelerator operation, numerical analysises have been carried out. The computational code covers from the generation of the blast wave to its interactions with the projectile and the acceleration wall. The thrust history and the momentum coupling coefficient evaluated from the numerical simulation depend on the fill pressure and the projectile shape. The confinement effect can be clearly found using the projectile attached with a shroud.

  19. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  20. Laser driven MeV proton beam focussing by auto-charged electrostatic lens configuration

    NASA Astrophysics Data System (ADS)

    Kar, S.; Markey, K.; Simpson, P. T.; Bellei, C.; Green, J. S.; Nagel, S. R.; Kneip, S.; Carroll, D. C.; Dromey, B.; Willingale, L.; Clark, E. L.; McKenna, P.; Najmudin, Z.; Krushelnick, K.; Norreys, P.; Clarke, R. J.; Neely, D.; Borghesi, M.; Schiavi, A.; Zepf, M.

    2008-06-01

    Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 109 V/m) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.

  1. Laser-driven multicharged heavy ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of <10 J laser energy, 36 fs pulse width, and the contrast level of ~1010 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  2. Advances in laser driven accelerator R&D

    SciTech Connect

    Leemans, Wim

    2004-08-23

    Current activities (last few years) at different laboratories, towards the development of a laser wakefield accelerator (LWFA) are reviewed, followed by a more in depth discussion of results obtained at the L'OASIS laboratory of LBNL. Recent results on laser guiding of relativistically intense beams in preformed plasma channels are discussed. The observation of mono-energetic beams in the 100 MeV energy range, produced by a channel guided LWFA at LBNL, is described and compared to results obtained in the unguided case at LOA, RAL and LBNL. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator has a very beneficial impact on the electron energy distribution. Progress on laser triggered injection is reviewed. Results are presented on measurements of bunch duration and emittance of the accelerated electron beams, that indicate the possibility of generating femtosecond duration electron bunches. Future challenges and plans towards the development of a 1 GeV LWFA module are discussed.

  3. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  4. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  5. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano; De Nicola, Sergio

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  6. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Ohtani, Toshiro; Sasoh, Akihiro; Choi, Jeong-Yeol

    2004-03-30

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  7. External injection into a laser-driven plasma accelerator with sub-femtosecond timing jitter

    NASA Astrophysics Data System (ADS)

    Ferran Pousa, A.; Assmann, R.; Brinkmann, R.; Martinez de la Ossa, A.

    2017-07-01

    The use of external injection in plasma acceleration is attractive due to the high control over the electron beam parameters, which can be tailored to meet the plasma requirements and therefore preserve its quality during acceleration. However, using this technique requires an extremely fine synchronization between the driver and witness beams. In this paper, we present a new scheme for external injection in a laser-driven plasma accelerator that would allow, for the first time, sub-femtosecond timing jitter between laser pulse and electron beam.

  8. Development of Laser-Driven Proton and Electron Sources Using APRI 100-TW Ti:Sapphire Laser System

    SciTech Connect

    Choi, I. W.; Hafz, N.; Jeong, T. M.; Kim, H. T.; Kim, C. M.; Yu, T. J.; Sung, J. H.; Hong, K.-H.; Lee, S. K.; Noh, Y.-C.; Ko, D.-K.; Lee, J.; Orimo, S.; Yogo, A.; Sagisaka, A.; Ogura, K.; Mori, M.; Li, Z.; Ma, J.; Pirozhkov, A. S.

    2008-06-24

    At the Advanced Photonics Research Institute (APRI) in Korea, we have a Ti:sapphire laser system which delivers laser pulses of 100-TW peak power and 32-fs pulse duration at the repetition rate of 10 Hz. This laser facility is being used to develop compact laser-driven proton and electron sources. Energetic protons are produced by irradiating the laser pulse on a thin foil target made of copper and polyimide via the target normal sheath acceleration. Proton beam with maximum energy of up to 4 MeV was generated from a polyimide target, and showed high energy conversion efficiency from laser to proton energy. Generation of high-energy electron beams by the laser wakefield acceleration was performed by focusing the laser pulses onto a 4 mm-long He-gas jet. Quasi-monoenergetic electron beam with peak energy of 45 MeV and maximum energy of 130 MeV was produced. The quality and characteristics of electron beams are strongly dependent on the laser-plasma interaction length which depends on focal length of the focusing optics.

  9. Free-electron lasers driven by laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Isono, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Laser-plasma accelerators (LPAs) have the potential to drive compact free-electron lasers (FELs). Even with LPA energy spreads typically at the percent level, the e-beam brightness can be excellent, due to the low normalized emittance (<0.5 µm) and high peak current (multi-kA) resulting from the ultra-short e-beam duration (few fs). It is critical, however, that in order to mitigate the effect of percent-level energy spread, one has to actively manipulate the phase-space distribution of the e-beam. We provide an overview of the methods proposed by the various LPA FEL research groups. At the BELLA Center at LBNL, we are pursuing the use of a chicane for longitudinal e-beam decompression (therefore greatly reducing the slice energy spread), in combination with short-scale-length e-beam transportation with an active plasma lens and a strong-focusing 4-m-long undulator. We present ELEGANT & GENESIS simulations on the transport and FEL gain, showing strong enhancement in output power over the incoherent background, and present estimates of the 3D gain length for deviations from the expected e-beam properties (varying e-beam lengths and emittances). To highlight the role of collective effects, we also present ELEGANT & GENESIS simulation results.

  10. Particle trapping and beam transport issues in laser driven accelerators

    NASA Astrophysics Data System (ADS)

    Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

    2000-10-01

    The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

  11. Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Xia, G.; Smith, J. D. A.; Welsch, C. P.

    2017-07-01

    The acceleration of a beam of electrons has been observed in a dielectric laser-driven accelerator with a gradient of 300 MV/m. It opens the way to building a particle accelerator "on a chip" much more cheaply than a conventional one. This paper investigates numerically an efficient dielectric laser-driven accelerating structure, based on dual-gratings with a Bragg reflector. The design of the structure boosts the accelerating field in the channel, thereby increasing the accelerating gradient by more than 70% compared to bare dual-gratings, from analytical calculations. This is supported by two-dimensional (2D) particle-in-cell simulations, where a 50 MeV electron bunch is loaded into an optimized 100-period structure to interact with a 100 fs pulsed laser having a peak field of 2 GV/m. It demonstrates a loaded accelerating gradient of 1.48 ± 0.10 GV/m, which is (85 ± 26)% higher than that of bare dual-gratings. In addition, studies of the diffraction effect show that the optimized structure should be fabricated with a vertical size of J/ wx ≥ 0.20 in order to generate an acceptable accelerating performance.

  12. Beam quality study for a grating-based dielectric laser-driven accelerator

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2017-02-01

    Dielectric laser-driven accelerators (DLAs) based on grating structures are considered to be one of the most promising technologies to reduce the size and cost of future particle accelerators. They offer high accelerating gradients of up to several GV/m in combination with mature lithographic techniques for structure fabrication. This paper numerically investigates the beam quality for acceleration of electrons in a realistic dual-grating DLA. In our simulations, we use beam parameters of the future Compact Linear Accelerator for Research and Applications facility to load an electron bunch into an optimized 100-period dual-grating structure where it interacts with a realistic laser pulse. The emittance, energy spread, and loaded accelerating gradient for modulated electrons are then analyzed in detail. Results from simulations show that an accelerating gradient of up to 1.13 ± 0.15 GV/m with an extremely small emittance growth, 3.6%, can be expected.

  13. Numerical Study of a Multi-stage Dielectric Laser-driven Accelerator

    NASA Astrophysics Data System (ADS)

    Wei, Yelong; Xia, Guoxing; Smith, Jonathan. D. A.; Hanahoe, Kieran; Mete, Oznur; Jamison, Steve P.; Welsch, Carsten P.

    In order to overcome the limits of commonly used radiofrequency accelerators, it is highly desirable to reduce the unit cost and increase the maximum achievable accelerating gradient. Dielectric laser-driven accelerators (DLAs) based on grating structures have received considerable attention due to maximum acceleration gradients of several GV/m and mature lithographic techniques for structure fabrication. This paper explores different spatial harmonics excited by an incident laser pulse and their interaction with the electron beam from the non-relativistic (25 keV) to the highly relativistic regime in double-grating silica structures. The achievable acceleration gradient for different spatial harmonics and the optimal compromise between maximum acceleration gradient and simplicity of structure fabrication are discussed. Finally, the suitability of a multi-stage DLA which would enable the acceleration of electrons from 25 keV to relativistic energies is discussed.

  14. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  15. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  16. A 10 GeV laser driven accelerator: the BELLA project

    NASA Astrophysics Data System (ADS)

    Leemans, W. P.; Albert, O.; Esarey, E.; Geddes, C. G. R.; Gonsalves, A.; Matlis, N. H.; Nakamura, K.; Panasenko, D.; Plateau, G. R.; Schroeder, C. B.; Toth, Cs.; Bruhwiler, D. L.; Cary, J. R.; Bakeman, M.; Cormier-Michel, E.; Cowan, T.; Hooker, S. M.

    2007-11-01

    GeV class beams have been generated from a laser driven accelerator ootnotetextW.P. Leemans et al., Nature Physics 2, 696-699 (2006); K. Nakamura et al., Phys. Plasmas 14, 056708 (2007). The experiments used a cm-scale capillary discharge produced plasma channel to guide and control the process of acceleration, similar to the use of laser produced channels ootnotetextC.G.R. Geddes et al., Nature 431, 538-541 (2004), and 40 TW laser pulses. Lower plasma density and cm-scale channel length resulted in up to 1 GeV beams, in good agreement with simulations. This forms the basis for the next milestone experiment: a 10 GeV laser driven accelerator. As part of the BELLA project at LBNL, scaling of these experiments to the 10 GeV level is now underway. We will discuss experimental plans for the implementation of a 1 m scale channel guided laser wakefield accelerator and a petawatt class laser system.

  17. Intense laser-driven energetic proton beams from solid density targets.

    PubMed

    Zhou, C T; He, X T

    2007-08-15

    The effects of target density on proton acceleration driven by an intense sub-ps laser pulse are investigated using two-dimensional hybrid particle-in-cell simulations. Results show that at higher density the target-normal-sheath acceleration (TNSA) is more effective than shock acceleration for protons from a plastic target. Furthermore a lower-density target is favorable to higher energy of the TNSA protons. Moreover, the longitudinal electric fields at the target surfaces may reveal typical inhomogeneous structures for a long acceleration time. The conversion efficiency of laser energy into particle (electron, proton, and C(+) ion) energy is found to increase with decreasing target density.

  18. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  19. Density-transition based electron injector for laser driven wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Schmid, K.; Buck, A.; Sears, C. M. S.; Mikhailova, J. M.; Tautz, R.; Herrmann, D.; Geissler, M.; Krausz, F.; Veisz, L.

    2010-09-01

    We demonstrate a laser wakefield accelerator with a novel electron injection scheme resulting in enhanced stability, reproducibility, and ease of use. In order to inject electrons into the accelerating phase of the plasma wave, a sharp downward density transition is employed. Prior to ionization by the laser pulse this transition is formed by a shock front induced by a knife edge inserted into a supersonic gas jet. With laser pulses of 8 fs duration and with only 65 mJ energy on target, the accelerator produces a monoenergetic electron beam with tunable energy between 15 and 25 MeV and on average 3.3 pC charge per electron bunch. The shock-front injector is a simple and powerful new tool to enhance the reproducibility of laser-driven electron accelerators, is easily adapted to different laser parameters, and should therefore allow scaling to the energy range of several hundred MeV.

  20. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-30

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  1. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  2. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  3. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    SciTech Connect

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J. -L.; Maynard, G.; Cros, B.

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  4. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    SciTech Connect

    Wootton, K. P.; Wu, Z.; Cowan, B. M.; Hanuka, A.; Makasyuk, I. V.; Peralta, E. A.; Soong, K.; Byer, R. L.; England, R. J.

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  5. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  6. First results on cell irradiation with laser-driven protons on the TARANIS system

    SciTech Connect

    Kar, S.; Doria, D.; Kakolee, K. F.; Prasad, R.; Litt, S.; Ahmed, H.; Nersisyan, G.; Lewis, C.; Zepf, M.; Borghesi, M.; Schettino, G.; Prise, K. M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K. J.

    2013-07-26

    The ultra short duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen’s University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live, cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  7. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  8. New methods for high current fast ion beam production by laser-driven acceleration.

    PubMed

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  9. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  10. Towards a novel laser-driven method of exotic nuclei extraction−acceleration for fundamental physics and technology

    SciTech Connect

    Nishiuchi, M. Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V. Kondo, K.; and others

    2016-04-15

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction–acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  11. Parameter study of a laser-driven dielectric accelerator for radiobiology research

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Otsuki, Shohei; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Aimidula, Aimiding

    2014-12-01

    A parameter study for a transmission grating type laser-driven dielectric accelerator (TG-LDA) was performed. The optimum pulse laser width was concluded to be 2 ps from the restrictions on the optical damage threshold intensity and the nonlinear optical effects such as the self-phase modulation and self-focus. An irradiation intensity of 5× {{10}11} W c{{m}-2} (2 GV m-1) was suitable for a silica TG-LDA with a pulse width range from 1 ps to 10 ps. The higher order harmonics of the axial electric field distribution was capable of accelerating electrons provided that the electron speed approximately satisfies the conditions of v/c=1/2,1/3, or 1/4. The electrons at the initial energy of 20 kV are accelerated by an acceleration field strength of 20 MV m-1, and the electrons were accelerated by higher fields as the speed increased. For relativistic energy electrons,the acceleration gradient was 600 MV {{m}-1}.

  12. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-03-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  13. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator.

    PubMed

    Gopal, A; Herzer, S; Schmidt, A; Singh, P; Reinhard, A; Ziegler, W; Brömmel, D; Karmakar, A; Gibbon, P; Dillner, U; May, T; Meyer, H-G; Paulus, G G

    2013-08-16

    We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

  14. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  15. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    NASA Astrophysics Data System (ADS)

    Fakhari, Moein; Fallahi, Arya; Kärtner, Franz X.

    2017-04-01

    We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  16. Optimisation of laser driven proton beams by an innovative target scheme

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Doria, D.; Giesecke, A. L.; Gwynne, D.; Lewis, C. L. S.; Macchi, A.; Nersisyan, G.; Naughton, K.; Willi, O.; Borghesi, M.

    2017-06-01

    Proton beams driven by the target normal sheath acceleration mechanism exhibit large divergence and a broad energy distribution with low particle number at high energy. Such undesirable characteristics of the beam can be controlled and optimised by employing a recently developed helical coil technique, which exploits the transient self-charging of solid targets irradiated by intense laser pulses. Highly chromatic focusing of the broadband proton beams was achieved by employing this technique at the TARANIS laser system, where the selected energy slice was tuned by varying the pitch of the coil. A quasi-collimated, narrow energy band proton beam of ~ 107 particles at 10 MeV was achieved, through a combination of focussing, energy selection and in-situ post-acceleration. This technique may provide a platform for a generation of compact, all-optical ion accelerators.

  17. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons.

    PubMed

    Toncian, Toma; Borghesi, Marco; Fuchs, Julien; d'Humières, Emmanuel; Antici, Patrizio; Audebert, Patrick; Brambrink, Erik; Cecchetti, Carlo Alberto; Pipahl, Ariane; Romagnani, Lorenzo; Willi, Oswald

    2006-04-21

    We present a technique for simultaneous focusing and energy selection of high-current, mega-electron volt proton beams with the use of radial, transient electric fields (10(7) to 10(10) volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.

  18. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  19. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  20. Laser-driven ultraintense proton beams for high energy-density physics

    NASA Astrophysics Data System (ADS)

    Jablonski, Slawomir; Badziak, Jan; Parys, Piotr; Rosinski, Marcin; Wolowski, Jerzy; Szydlowski, Adam; Antici, P.; Fuchs, J.; Mancic, A.

    2008-04-01

    The results of studies of high-intensity proton beam generation from thin (1 -- 3μm) solid targets irradiated by 0.35-ps laser pulse of energy up to 15J and intensity up to 2x10^19 W/cm^2 are reported. It is shown that the proton beams of multi-TW power and intensity above 10^18 W/cm^2 at the source can be produced when the laser-target interaction conditions approach the Skin-Layer Ponderomotive Acceleration requirements. The laser-protons energy conversion efficiency and proton beam parameters remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 -- 0.2μm Au front layer) results in two-fold higher conversion efficiency and proton beam intensity than in the case of a plastic target. The values of proton beam intensities attained in our experiment are the highest among the ones measured so far.

  1. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  2. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.

  3. Nano and micro structured targets to modulate the spatial profile of laser driven proton beams

    NASA Astrophysics Data System (ADS)

    Giuffrida, L.; Svensson, K.; Psikal, J.; Margarone, D.; Lutoslawski, P.; Scuderi, V.; Milluzzo, G.; Kaufman, J.; Wiste, T.; Dalui, M.; Ekerfelt, H.; Gallardo Gonzalez, I.; Lundh, O.; Persson, A.; Picciotto, A.; Crivellari, M.; Bagolini, A.; Bellutti, P.; Magnusson, J.; Gonoskov, A.; Klimsa, L.; Kopecek, J.; Lastovicka, T.; Cirrone, G. A. P.; Wahlström, C.-G.; Korn, G.

    2017-03-01

    Nano and micro structured thin (μ m-scale) foils were designed, fabricated and irradiated with the high intensity laser system operating at LLC (Lund Laser Centre, Sweden) in order to systematically study and improve the main proton beam parameters. Nano-spheres deposited on the front (laser irradiated) surface of a flat Mylar foil enabled a small enhancement of the maximum energy and number of the accelerated protons. Nano-spheres on the rear side allowed to modify the proton beam spatial profile. In particular, with nanospheres deposited on the rear of the target, the proton beam spatial homogeneity was clearly enhanced. Silicon nitride thin foils having micro grating structures (with different step dimensions) on the rear surface were also used as targets to influence the divergence of the proton beam and drastically change its shape through a sort of stretching effect. The target fabrication process used for the different target types is described, and representative experimental results are shown and discussed along with supporting 3D particle-in-cell simulations.

  4. Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code

    NASA Astrophysics Data System (ADS)

    Domański, J.; Badziak, J.; Jabloński, S.

    2016-04-01

    Laser-driven generation of high-energy ion beams has recently attracted considerable interest due to a variety of potential applications including proton radiography, ICF fast ignition, nuclear physics or hadron therapy. The ion beam parameters depend on both laser pulse and target parameters, and in order to produce the ion beam of properties required for a particular application the laser and target parameters must be carefully selected, and the mechanism of the ion beam generation should be well understood and controlled. Convenient and commonly used tools for studies of the ion acceleration process are particle-in-cell (PIC) codes. Using two-dimensional PIC simulations, the properties of a proton beam generated from a thin erbium hydride (ErH3) target irradiated by a 25fs laser pulse of linear or circular polarization and of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It has been found that using erbium hydride targets instead of hydrocarbon ones creates an opportunity to generate more compact proton beams of higher mean energy, intensity and of better collimation. This is especially true for the linear polarization of the laser beam, for which the mean proton energy, the amount of high energy protons and the intensity of the proton beam generated from the hydride target is by an order of magnitude higher than for the hydrocarbon target. For the circular polarization, the proton beam parameters are lower than those for the linear one, and the effect of target composition on the acceleration process is weaker.

  5. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  6. Proof-Of-Principle Experiment for Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-03-01

    We recently achieved the first experimental observation of laser-driven particle acceleration of relativistic electrons from a single Gaussian near-infrared laser beam in a semi-infinite vacuum. This article presents an in-depth account of key aspects of the experiment. An analysis of the transverse and longitudinal forces acting on the electron beam is included. A comparison of the observed data to the acceleration viewed as an inverse transition radiation process is presented. This is followed by a detailed description of the components of the experiment and a discussion of future measurements.

  7. Laser-driven shock acceleration of ion beams from spherical mass-limited targets.

    PubMed

    Henig, A; Kiefer, D; Geissler, M; Rykovanov, S G; Ramis, R; Hörlein, R; Osterhoff, J; Major, Zs; Veisz, L; Karsch, S; Krausz, F; Habs, D; Schreiber, J

    2009-03-06

    We report on experimental studies of ion acceleration from spherical targets of diameter 15 microm irradiated by ultraintense (1x10(20) W/cm2) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from acceleration in a converging shock launched by the laser, which is confirmed by 3-dimensional particle-in-cell simulations. The temporal evolution of the shock-front curvature shows excellent agreement with a two-dimensional radiation pressure model.

  8. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  9. Physics of laser-driven relativistic plasmas energetic X-rays, proton beams and relativistic electron transport in Petawatt laser experiments

    NASA Astrophysics Data System (ADS)

    Snavely, Richard Adolph

    2003-10-01

    experiments required the development of new laser-plasma diagnostics. Radio-chromic film detectors were developed for the first time for use in high-energy plasma diagnosis. Development of a large array of thermo-luminescent x-ray detectors is also covered. Novel techniques of nuclear activation are employed for the first time in laser plasma studies and are used to identify the unique features of laser-driven proton beams.

  10. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 10{sup 9} Gy/s

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Ahmed, H.; Lewis, C. L.; Nersisyan, G.; Prasad, R.; Zepf, M.; Borghesi, M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Kirkby, K. J.; Merchant, M. J.; Kavanagh, J.; Prise, K. M.; Schettino, G.

    2012-03-15

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  11. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  12. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets.

    PubMed

    Zou, D B; Pukhov, A; Yi, L Q; Zhou, H B; Yu, T P; Yin, Y; Shao, F Q

    2017-02-20

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~10(20) W/cm(2) modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these "superponderomotive" energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  13. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  14. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    PubMed Central

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-01-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247

  15. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Arefiev, Alexey; Fiksel, Gennady

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characteristics of laser-driven proton beams would be critical for a number of applications. The work was supported by U.S. Department of Energy - National Nuclear Security Administration Cooperative Agreement No. DE-NA0002008. HPC resources were provided by the Texas Advanced Computing Center at The University of Texas.

  16. Proton beam shaped by "particle lens" formed by laser-driven hot electrons

    NASA Astrophysics Data System (ADS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Zhang, L. G.; Huang, S.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.; Xu, Z. Z.

    2016-05-01

    Two-dimensional tailoring of a proton beam is realized by a "particle lens" in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a "fountain-like" pattern when these hot electrons diffuse after propagating a distance.

  17. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    SciTech Connect

    Zhai, S. H.; Shen, B. F. E-mail: wwpvin@hotmail.com Wang, W. P. E-mail: wwpvin@hotmail.com Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q. E-mail: wwpvin@hotmail.com Zhang, B. H.

    2016-05-23

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  18. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  19. Femtosecond laser driven high-flux highly collimated MeV-proton beam

    SciTech Connect

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Esirkepov, T. Zh.; Bulanov, S. V.; Choi, Il Woo; Yu, Tae Jun; Shung, Jae Hee; Jeong, Tae Moon; Ko, Do-Kyeong; Lee, Jongmin; Kim, Hyung Taek; Hong, Kyung-Ham

    2008-06-24

    Highlly collimated energetic protons whose energies are up to 4 MeV are generated by an intense femtosecond Titanium Sappheire laser pulse interacting with a 7.5, 12.5, and 25 {mu}m-thick Polyimide tape target and 5 {mu}m-thick copper target. We find no clear difference on the proton spectra from 7.5, 12.5, and 25 {mu}m Polyimide tape target. The highest conversion efficiency from laser energy into protons of {approx}3% is observed with a 7.5 {mu}m thick Polyimide target. The quality of the proton beam is good enough to obtain a clear projection image of a mesh having 10 {mu}m line and space structure, installed into the passage of the beam. We obtain clear vertical lines on the proton intensity profiles from the copper target, which are considered to be transferred from the surface of the copper target. From it, we can restrict the size of the proton emitting region to be {approx}20 {mu}m.

  20. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    NASA Astrophysics Data System (ADS)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  1. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  2. Towards controlled flyer acceleration by a laser-driven mini flyer

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Fedotov, Vitalij; Baek, Wonkye; Yoh, Jack J.

    2014-06-01

    A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

  3. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  4. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    SciTech Connect

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  5. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments providemore » significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  6. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    SciTech Connect

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ∼1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ∼3 × 10{sup 16 }W/cm{sup 2}. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ∼40–50 T magnetic fields at the center of the coil ∼3–4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  7. Laser-driven plasma jets propagating in an ambient gas studied with optical and proton diagnostics

    SciTech Connect

    Gregory, C. D.; Loupias, B.; Koenig, M.; Waugh, J.; Woolsey, N. C.; Dono, S.; Kuramitsu, Y.; Sakawa, Y.; Bouquet, S.; Falize, E.; Michaut, C.; Nazarov, W.; Pikuz, S. A. Jr.

    2010-05-15

    The results of an experiment to propagate laser-generated plasma jets into an ambient medium are presented. The jets are generated via laser irradiation of a foam-filled cone target, the results and characterization of which have been reported previously [Loupias et al., Phys. Rev. Lett. 99, 265001 (2007)] for propagation in vacuum. The introduction of an ambient medium of argon at varying density is seen to result in the formation of a shock wave, and the shock front displays perturbations that appear to grow with time. The system is diagnosed with the aid of proton radiography, imaging the perturbed structure in the dense parts of the shock with high resolution.

  8. A pulsed-power electron accelerator using laser-driven photoconductive switches

    SciTech Connect

    Bamber, C.; Donaldson, W.R.; Lincke, E.; Melissinos, A.C. )

    1992-07-01

    The operation of a radical transmission line (RTC) based electron accelerator has been demonstrated. Electrons have been accelerated up to an energy of 11 KeV in a gap of 0.25 mm. This represents on average accelerating gradient of 44 MeV/m. Typical electron yields of 100 lc of charge per lunch were generated photoelectrically from the gold cathode surface.

  9. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  10. Two-color-laser-driven direct electron acceleration in infinite vacuum.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2011-03-15

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed.

  11. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  12. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  13. Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    SciTech Connect

    Zheng, F. L.; Wu, H. C.; Wu, S. Z.; Zhou, C. T.; Cai, H. B.; He, X. T.; Yu, M. Y.; Tajima, T.; Yan, X. Q.

    2013-01-15

    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2 Degree-Sign divergence can be produced by a circularly polarized laser pulse at an intensity of about 10{sup 22} W/cm{sup 2}.

  14. Unlimited energy gain in the laser-driven radiation pressure dominant acceleration of ions

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Echkina, E. Yu.; Inovenkov, I. N.; Pegoraro, F.; Korn, G.

    2010-06-15

    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced by a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of the remaining ions. In the relativistic limit, the ions become phase locked with respect to the electromagnetic wave resulting in an unlimited ion energy gain. This effect and the use of optimal laser pulse shape provide a new approach for greatly enhancing the energy of laser accelerated ions.

  15. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    NASA Astrophysics Data System (ADS)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  16. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    PubMed

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-07

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  17. Trapped electron acceleration by a laser-driven relativistic plasma wave

    NASA Astrophysics Data System (ADS)

    Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1994-04-01

    THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.

  18. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  19. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  20. Proposed Few-optical Cycle Laser-driven ParticleAccelerator Structure

    SciTech Connect

    Plettner, T.; Lu, P.; Byer, R.L.; /Stanford U., Ginzton Lab.

    2006-10-06

    We describe a transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles, however to preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. Finally, it shows potential for an unloaded gradient of 10 GeV/m with 10 fsec laser pulses and the possibility to accelerate 10{sup 6} electrons per bunch at an efficiency of 8%. The fabrication procedure and a proposed near term experiment with this accelerator structure are presented.

  1. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    SciTech Connect

    Romain, J.P.; Auroux, E.

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  2. GeV electron beams from cm-scale laser driven plasma based accelerators.

    NASA Astrophysics Data System (ADS)

    Leemans, Wim

    2006-10-01

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV/m) requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators (LWFA) produce electric fields of order 10-100 GV/m enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale [1-3]. In this talk, results will be presented on the first demonstration of the generation of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-50 TW were guided by a hydrogen filled capillary discharge waveguide [4]. Production of high-quality electron beams with 1 GeV energy by channelling a ˜40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide was observed [5]. Results will be discussed on the dependence of the electron beam characteristics on capillary properties, plasma density and laser parameters. [1] S.P.D. Mangles et al., Nature 431, 535-538 (2004). [2] C.G.R. Geddes et al., Nature 431, 538-541 (2004). [3] J. Faure et al., Nature 431, 541-544 (2004). [4] D.J. Spence and S.M. Hooker, Phys. Rev. E 63, 015401 (2001).[5] W.P. Leemans et al., submitted for publication.

  3. Energy exchange via multi-species streaming in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; Capdessus, R.; McKenna, P.

    2017-01-01

    Due to the complex electron dynamics and multiple ion acceleration mechanisms that can take place in the interaction of an ultra-intense laser pulse with a thin foil, it is possible for multiple charged particle populations to overlap in space with varying momentum distributions. In certain scenarios this can drive streaming instabilities such as the relativistic Buneman instability and the ion-ion acoustic instability. The potential for such instabilities to occur are demonstrated using particle-in-cell simulations. It is shown that if a population of ions can be accelerated such that it can propagate through other slowly expanding ion populations, energy exchange can occur via the ion-ion acoustic instability.

  4. Laser-driven electron acceleration in a plasma channel with an additional electric field

    SciTech Connect

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  5. Density bunching effects in a laser-driven, near-critical density plasma for ion acceleration

    NASA Astrophysics Data System (ADS)

    Ettlinger, Oliver; Sahai, Aakash; Hicks, George; Ditter, Emma-Jane; Dover, Nicholas; Chen, Yu-Hsin; Helle, Michael; Gordon, Daniel; Ting, Antonio; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus; Najmudin, Zulfikar

    2016-10-01

    We present work investigating the interaction of relativistic laser pulses with near-critical density gas targets exhibiting pre-plasma scale lengths of several laser wavelengths. Analytical and computational modelling suggest that the interaction dynamics in a low-Z plasma is a direct result of induced density bunching up to the critical surface. In fact, these bunches can themselves become overcritical and experience significant radiation pressure, accelerating ions to higher energies compared to an ``idealised'' plasma slab target. This work will be used to help explain the observation of ion energies exceeding those predicted by radiation pressure driven hole-boring in recent experiments using the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory.

  6. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  7. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  8. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  9. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  10. Projection imaging with directional electron and proton beams emitted from an ultrashort intense laser-driven thin foil target

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Choi, I. W.; Daido, H.; Nakamura, T.; Pirozhkov, A. S.; Yogo, A.; Ogura, K.; Sagisaka, A.; Orimo, S.; Daito, I.; Bulanov, S. V.; Sung, J. H.; Lee, S. K.; Yu, T. J.; Jeong, T. M.; Kim, I. J.; Kim, C. M.; Kang, S. W.; Pae, K. H.; Oishi, Y.; Lee, J.

    2015-02-01

    Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser, are recorded on an imaging plate for the electron imaging and on a CR-39 nuclear track detector for the proton imaging. The directional electron beam means the portion of the electron beam which is emitted along the same direction (i.e., target normal direction) as the proton beam. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of ~20 µm and ~10 µm diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration. The experimental and simulation results reveal various possible applications of the simultaneous, synchronized electron and proton sources to radiography and pump-probe measurements with temporal resolution of ~ps and spatial resolution of a few tens of µm.

  11. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  12. Temporal profile of betatron radiation from laser-driven electron accelerators

    NASA Astrophysics Data System (ADS)

    Horný, Vojtěch; Nejdl, Jaroslav; Kozlová, Michaela; Krůs, Miroslav; Boháček, Karel; Petržílka, Václav; Klimo, Ondřej

    2017-06-01

    The temporal profile of X-ray betatron radiation was theoretically studied for the parameters available with current laser systems. Characteristics of the betatron radiation were investigated for three different configurations of laser wakefield acceleration: typical self-injection regime and optical injection regime with perpendicularly crossed injection and drive beams, both achievable with 100 TW class laser, and ionization injection regime with a sub-10 TW laser system that was experimentally verified. Constructed spectrograms demonstrate that X-ray pulse durations are in the order of few tens of femtoseconds and the optical injection case reveals the possibility of generating X-ray pulses as short as 2.6 fs. The X-ray pulse duration depends mainly on the length of the trapped electron bunch as the emitted photons copropagate with the bunch with nearly the same velocity. These spectrograms were calculated using a novel simplified method based on the theory of Liénard-Wiechert potentials. It takes advantage of the fact that the electron oscillates transversally in the accelerating plasma wave in the wiggler regime and, thus, emits radiation almost exclusively in the turning points of its sine-like trajectory. Therefore, there are only few very narrow time intervals, which contribute significantly to the emission of radiation, while the rest can be neglected. These narrow time intervals are determined from the electron trajectories calculated using particle-in-cell simulations and the power spectrum at given point in far field is computed for each electron using the Fourier transform. Spectrograms of the emitted radiation are constructed by summing contributions of individual particles, since the incoherent nature of the electron bunch is assumed.

  13. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2016-10-19

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  14. Accelerator Science: Proton vs. Electron

    SciTech Connect

    Lincoln, Don

    2016-10-11

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  15. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  16. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  17. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-er; Yan, Xueqing

    2017-07-01

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  18. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  19. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    SciTech Connect

    Zhang, W. L.; Qiao, B. Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-07-15

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I{sub 0} = 3 × 10{sup 20 }W/cm{sup 2} and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  20. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-03-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  1. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    PubMed

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  2. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    PubMed Central

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  3. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  4. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  5. The production of patient dose level 99mTc medical radioisotope using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Clarke, R.; Dorkings, S.; Neely, D.; Musgrave, I.

    2013-05-01

    The medical isotope 99mTc (technetium) is used in over 30 million nuclear medical procedures annually, accounting for over 80% of the worldwide medical isotope usage. Its supply is critical to the medical community and a worldwide shortage is expected within the next few decades as current fission reactors used for its generation reach their end of life. The cost of build and operation of replacement reactors is high and as such, alternative production mechanisms are of high interest. Laser-accelerated proton beams have been widely discussed as being able to produce Positron Emission Tomography (PET) isotopes once laser architecture evolved to high repetition rates and energies. Recent experimental results performed on the Vulcan Laser Facility in the production of 99mTc through 100Mo (p,2n) 99mTc demonstrate the ability to produce this critical isotope at the scales required for patient doses using diode pumped laser architecture currently under construction. The production technique, laser and target requirements are discussed alongside a timeline and cost for a prototype production facility.

  6. Radiobiology with laser-accelerated quasi-monoenergetic proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Bolton, P. R.; Murakami, M.; Kawanishi, S.; Kondo, K.

    2011-05-01

    Human cancer cells are irradiated by laser-driven quasi-monoenergetic protons. Laser pulse intensities at the 5×1019-W/cm2 level provide the source and acceleration field for protons that are subsequently transported by four energy-selective dipole magnets. The transport line delivers 2.25 MeV protons with an energy spread of 0.66 MeV and a bunch duration of 20 ns. The survival fraction of in-vitro cells from a human salivary gland tumor is measured with a colony formation assay following proton irradiation at dose levels up to 8 Gy, for which the single bunch does rate is 1 × 107 Gy/s and the effective dose rate is 0.2 Gy/s for 1-Hz repetition of irradiation. Relative biological effectiveness at the 10% survival fraction is measured to be 1.20 +/- 0.11 using protons with a linear energy transfer of 17.1 +/- 2.8 keV/μm.

  7. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  8. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  9. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  10. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  11. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  12. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Bolton, P. R.

    2009-05-04

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of {gamma}-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  13. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  14. Physical Processes of the Interaction Between Laser-Generated Plasma and Blast Wave Appearing in Laser-Driven In-Tube Accelerator Configuration

    SciTech Connect

    Sasoh, Akihiro; Mori, Koichi; Ohtani, Toshiro; Ohnishi, Naofumi; Ogino, Yosuke; Sawada, Keisuke

    2006-05-02

    Flow visualizations of the interaction between a laser-pulse-generated plasma and a shock wave driven by it have been experimentally conducted. The configuration of the experimental set-up corresponds to the laser-driven, in-tube accelerator. Primary-mode deformation of the plasma is governed by Richtmyer-Meshkov instability which is produced by the vector product between the pressure and density gradients, which in turn correspond to a reflected shock wave and to the plasma, respectively. Higher-mode contact surface deformations are supposedly originated in Rayleigh-Taylor instability in the shrinkage phase of the plasma, and is enhanced due to the passage of the reflected shock wave.

  15. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  16. Laser-driven injector of electrons for IOTA

    NASA Astrophysics Data System (ADS)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  17. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    SciTech Connect

    Byer, Robert L.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  18. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  19. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  20. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  1. [Proton therapy and particle accelerators].

    PubMed

    Fukumoto, Sadayoshi

    2012-01-01

    Since the high energy accelerator plan was changed from a 40 GeV direct machine to a 12GeV cascade one, a 500 MeV rapid cycling booster synchrotron was installed between the injector linac and the 12 GeV main ring at KEK, National Lab. for High Energy Physics. The booster beams were used not only for injection to the main ring but also for medical use. Their energy was reduced to 250 MeV by a graphite block for clinical trial of cancer therapy. In 1970's, pi(-) or heavy ions were supposed to be promising. Although advantage of protons with Bragg Peak was pointed out earlier, they seemed effective only for eye melanoma at that time. In early 1980's, it was shown that they were effective for deep-seated tumor by Tsukuba University with KEK beams. The first dedicated facility was built at Loma Linda University Medical Center. Its synchrotron was made by Fermi National Accelerator Lab. Since a non-resonant accelerating rf cavity was installed, operation of the synchrotron became much easier. Later, innovation of the cyclotron was achieved. Its weight was reduced from 1,000 ton to 200 ton. Some of the cyclotrons are equipped with superconducting coils.

  2. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  3. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  4. Quasi-monoenergetic electron beams from a few-terawatt laser driven plasma acceleration using a nitrogen gas jet

    NASA Astrophysics Data System (ADS)

    Rao, B. S.; Moorti, A.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2017-06-01

    An experimental investigation on the laser plasma acceleration of electrons has been carried out using 3 TW, 45 fs duration titanium sapphire laser pulse interaction with a nitrogen gas jet at an intensity of 2 × 1018 W cm-2. We have observed the stable generation of a well collimated electron beam with divergence and pointing variation ˜10 mrad from nitrogen gas jet plasma at an optimum plasma density around 3 × 1019 cm-3. The energy spectrum of the electron beam was quasi-monoenergetic with an average peak energy and a charge around 25 MeV and 30 pC respectively. The results will be useful for better understanding and control of ionization injection and the laser wakefield acceleration (LWFA) of electrons in high-Z gases and also towards the development of practical LWFA for various applications including injectors for high energy accelerators.

  5. Laser-driven plasma wakefield electron acceleration and coherent femtosecond pulse generation in X-ray and gamma ranges

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Lotov, K. V.; Gubin, K. V.; Pestryakov, E. V.; Bagayev, S. N.; Logachev, P. V.

    2017-01-01

    The laser wakefield acceleration (LWFA) of electrons in capillaries and gas jets followed by inverse Compton scattering of high intensity femtosecond laser pulses is discussed. The drive and scattered pulses will be produced by the two-channel multi-terawatt laser system developed in ILP SB RAS.

  6. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    PubMed Central

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  7. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    NASA Astrophysics Data System (ADS)

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-08-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential.

  8. Low-charge, hard x-ray free electron laser driven with an X-band injector and accelerator

    NASA Astrophysics Data System (ADS)

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao

    2012-03-01

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam’s longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  9. The effect of high-Z dopant on laser-driven acceleration of a thin plastic target

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Kasperczuk, A.; Parys, P.; Pisarczyk, T.; Rosiński, M.; Ryć, L.; Wołowski, J.; Suchańska, R.; Krása, J.; Krousky, E.; Láska, L.; Mašek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Ullschmied, J.; Dhareshwar, L. J.; Földes, I. B.; Suta, T.; Borrielli, A.; Mezzasalma, A.; Torrisi, L.; Pisarczyk, P.

    2008-05-01

    Acceleration of a thin (10 or 20μm) plastic foil by 120J, 0.438μm, 0.3ns laser pulse of intensity up to 1015W/cm2 has been investigated. It is shown that the introducing a high-Z dopant to the foil causes an increase in the ablating plasma density, velocity, and collimation which, in turn, results in a remarkably higher kinetic energy and energy fluence of the flyer foil.

  10. Polarized proton acceleration program at the AGS

    SciTech Connect

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10/sup 11/ approx. 10/sup 12/ per pulse. The first polarized proton acceleration at the AGS is expected in 1983.

  11. Kinetic effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Siminos, Evangelos; Svedung Wettervik, Benjamin; Grech, Mickael; Fülöp, Tünde

    2016-10-01

    We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread. This work was supported by the Knut and Alice Wallenberg Foundation (pliona project) and the European Research Council (ERC-2014-CoG Grant 647121).

  12. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  13. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    SciTech Connect

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; Bargen, N. von; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H-T; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H-B; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; Wagner, A. de Zubiaurre; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  14. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  15. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  16. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  17. Radioactivity produced by a repetitive laser-driven proton beam using a shot-to-shot proton spectral measurement and a direct activation method

    SciTech Connect

    Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, Alexander; Mori, Michiaki; Kiriyama, Hiromitsu; Kanazawa, Shuhei; Kondo, Shuji; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu; Sasao, Hajime; Wakai, Daisuke; Sasao, Fumitaka; Okada, Hajime; Kimura, Toyoaki; and others

    2012-07-11

    A proton beam driven by a repetitive high-intensity-laser is utilized to induce a {sup 7}Li(p,n) {sup 7}Be nuclear reaction. The total activity of {sup 7}Be are evaluated by two different methods. The activity obtained measuring the decay gamma-rays after 1912 shots at 1 Hz is 1.7 {+-} 0.2 Bq. This is in good agreement with 1.6 {+-} 0.2 Bq evaluated from the proton energy distribution measured using a time-offlight detector and the nuclear reaction cross-sections. We conclude that the production of activity can be monitored in real time using the time-of-flight-detector placed inside a diverging proton beam coupled with a high-speed signal processing system.

  18. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  19. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    SciTech Connect

    Xiao, K. D.; Huang, T. W.; Zhou, C. T.; Qiao, B.; Wu, S. Z.; Ruan, S. C.; He, X. T.

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.

  20. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  1. Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Kraft, S. D.; Sauerbrey, R.; Schmidt, B.; Zier, M.; Schramm, U.

    2014-08-01

    This paper reports on a systematic investigation of the ultrashort pulse laser driven acceleration of protons from thin targets of finite size, so-called reduced mass targets (RMTs). Reproducible series of targets, manufactured with lithographic techniques, and varying in size, thickness, and mounting geometry, were irradiated with ultrashort (30 fs) laser pulses of intensities of about 8 × 1020 W cm-2. A robust maximum energy enhancement of almost a factor of two was found when comparing gold RMTs to reference irradiations of plain gold foils of the same thickness. Furthermore, a change of the thickness of these targets has less influence on the measured maximum proton energy when compared to standard foils, which, based on detailed particle-in-cell simulations, can be explained by the influence of the RMT geometry on the electron sheath. The performance gain was, however, restricted to lateral target sizes of greater than 50 µm, which can be attributed to edge and mounting structure influences.

  2. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  3. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  4. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  5. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  6. Neutrino mixing in accelerated proton decays

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Dharam Vir; Labun, Lance; Torrieri, Giorgio

    2016-07-01

    We discuss the inverse β-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process p→ n ℓ+ ν_{ℓ} is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of p→ n conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of ℓ and ν_{ℓ} due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

  7. Polarized Proton Acceleration in AGS and RHIC

    SciTech Connect

    Roser, Thomas

    2008-02-06

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  8. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  9. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils.

    PubMed

    McKenna, P; Ledingham, K W D; Yang, J M; Robson, L; McCanny, T; Shimizu, S; Clarke, R J; Neely, D; Spohr, K; Chapman, R; Singhal, R P; Krushelnick, K; Wei, M S; Norreys, P A

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ( approximately 2 x 10(20) W cm(-2) ) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope (57 )Co (271 days) via a heavy ion induced reaction is demonstrated.

  10. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  11. Rf cavity primer for cyclic proton accelerators

    SciTech Connect

    Griffin, J.E.

    1988-04-01

    The purpose of this note is to describe the electrical and mechanical properites of particle accelerator rf cavities in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion will be limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common pratice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  12. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  13. Proton acceleration from magnetized overdense plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-01-01

    Proton acceleration by an ultraintense short pulse circularly polarized laser from an overdense three dimensional (3D) particle-in-cell (PIC) 3D-PIC simulations. The axial magnetic field modifies the dielectric constant of the plasma, which causes a difference in the behaviour of ponderomotive force in case of left and right circularly polarized laser pulse. When the laser is right circularly polarized, the ponderomotive force gets enhanced due to cyclotron effects generating high energetic electrons, which, on reaching the target rear side accelerates the protons via target normal sheath acceleration process. On the other hand, in case of left circular polarization, the effects get reversed causing a suppression of the ponderomotive force at a short distance and lead towards a rise in the radiation pressure, which results in the effective formation of laser piston. Thus, the axial magnetic field enhances the effect of radiation pressure in case of left circularly polarized laser resulting in the generation of high energetic protons at the target front side. The transverse motion of protons get reduced as they gyrate around the axial magnetic field which increases the beam collimation to some extent. The optimum thickness of the overdense plasma target is found to be increased in the presence of an axial magnetic field.

  14. RESPONSE OF DOSEMETERS IN FIELDS GENERATED BY LASER-ACCELERATED PROTONS.

    PubMed

    Olšovcová, V; Versaci, R; Ambrožová, I; Zelenka, Z; Kaufman, J; Margarone, D; Kim, I J; Jeong, T M

    2016-09-01

    In laser-driven acceleration, ultra-short and intense laser pulses are focussed on targets to generate beams of ionising radiation. One of the most important issues to be addressed is personal monitoring. While traditional dosemeters were designed primarily for measurements in continuous fields, dosemeters for laser laboratories must be capable of working in pulsed fields of pulse length below 1 ps, in a single-shot regime up to the repetition rate of 1 kHz. Responses of conventional dosemeters (films, polyallyldiglycol carbonate, electronic personal dosemeter) to proton bunches of up to 30 MeV energy produced by South Korean PW laser system at the Advanced Photonics Research Institute, Gwangju Institute of Science and Technology were studied, both by means of Monte Carlo simulations and experimentally. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. DESIGN CRITERIA OF A PROTON FFAG ACCELERATOR.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    There are two major issues that are to be confronted in the design of a Fixed-Field Alternating-Gradient (FFAG) accelerator, namely: (1) the stability of motion over the large momentum range needed for the beam acceleration, and (2) the compactness of the trajectories over the same momentum range to limit the dimensions of the magnets. There are a numbers of rules that need to be followed to resolve these issues. In particular, the magnet arrangement in the accelerator lattice and the distribution of the bending and focusing fields are to be set properly in accordance with these rules. In this report they describe four of these rules that ought to be applied for the optimum design of a FFAG accelerator, especially in the case of proton beams.

  16. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  17. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  18. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  19. Weibel instability mediated collisionless shocks using intense laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team

    2016-10-01

    The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.

  20. All-laser-driven Thomson X-ray sources

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald P.

    2015-10-01

    We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications - in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

  1. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  2. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  3. Ultra-High Intensity Proton Accelerators and their Applications

    SciTech Connect

    Weng, W. T.

    1997-12-31

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses.

  4. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  5. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  6. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  7. Accelerator Configuration for Polarized Proton-Antiproton Physics at FAIR

    SciTech Connect

    Lehrach, Andreas

    2007-06-13

    The HESR at FAIR is being designed to accelerate and store unpolarized antiprotons in the momentum range from 1.5 to 15 Ge V/c. Different scenarios are proposed to accelerate polarized proton and antiproton beams and finally store and collide them. In this paper required modifications and extensions of the accelerator layout are discussed and luminosity estimates presented.

  8. Beam dynamics simulation of a double pass proton linear accelerator

    NASA Astrophysics Data System (ADS)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  9. Possible parameters of proton acceleration using backward traveling wave harmonic

    NASA Astrophysics Data System (ADS)

    Paramonov, V. V.

    2016-12-01

    Analysis shows that, when accelerating protons of intermediate energy range using the field of backward harmonic of the traveling wave, a range of practically accessible parameters of accelerating structure exists, where it is possible to provide simultaneously the stability of longitudinal and transverse particle motion and high rates of acceleration. The focusing effect is provided by the field of slow fundamental harmonic. The calculated characteristics of accelerating structure and the assessment of parameters of the proton linac are obtained in a range of 15-230 MeV.

  10. Multi-GeV electron beam and high brightness betatron x-ray generation in recent Texas Petawatt laser-driven plasma accelerator experiments

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Zhang, Xi; Henderson, Watson; Chang, Yen-Yu; Korzekwa, Rick; Tsai, H.-E.; Quevedo, Hernan; Dyer, Gilliss; Gaul, Erhard; Martinez, Mikael; Bernstein, Aaron; Spinks, Michael; Gordan, Joseph; Donovan, Michael; Khudik, Vladimir; Shvets, Gennady; Ditmire, Todd; Downer, Michael

    2014-10-01

    Compact laser-plasma accelerators (LPAs) driven by petawatt (PW) lasers have produced highly collimated, quasi-monoenergetic multi-GeV electron bunches with ~100 pC charge, which are promising sources of ultrafast x-rays. Here we report three recent advances in PW-LPA performance brought about by optimizing the focal volume of the Texas PW laser with a deformable mirror. First, we accelerated electrons up to 3 GeV with hundreds of pC over 1 GeV and <0.5 mrad divergence. Second, we significantly improved shot-to-shot reproducibility (90% shots >1 GeV, 10% >2 GeV). Third, by introducing a double-peaked laser focus, creating a ``double bubble'' that subsequently merged, we significantly increased electron charge (0.5 nC) above 1 GeV, while producing brighter (1022photon/mm2/rad/0.1%), harder (up to 30 keV) betatron x-rays, characterized by a multi-metal filter pack and phase-contrast imaging. We observe evidence of dimuon production by irradiating a high-Z target with this high-charge, GeV electron beam.

  11. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  12. Status Of The Dielectric Wall Accelerator For Proton Therapy

    NASA Astrophysics Data System (ADS)

    Caporaso, George J.; Chen, Yu-Jiuan; Watson, James A.; Blackfield, Don T.; Nelson, Scott D.; Poole, Brian R.; Stanley, Joel R.; Sullivan, James S.

    2011-06-01

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  13. POLARIZED PROTON ACCELERATION AT THE BROOKHAVEN AGS - AN UPDATE.

    SciTech Connect

    HUANG,H.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE-WANG,J.; BROWN,K.A.; GLENN,W.; LUCCIO,A.U.; MACKAY,W.W.; MONTAG,C.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; ZELENSKI,A.; ZENO,K.; CADMAN,B.; SPINKA,H.; UNDERWOOD,D.; RANJBAR,V.

    2002-06-02

    The RHIC spin design goal assumes 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, polarized protons have been accelerated at the AGS for years to increase the polarization transmission efficiency. Several novel techniques have been applied in the AGS to overcome the intrinsic and imperfection resonances. The present level of accelerator performance is discussed. Progress on understanding the beam polarization behavior is presented. The outlook and future plan are also discussed.

  14. Scaling Studies of Laser Proton Acceleration by Radiation Pressure Sail

    NASA Astrophysics Data System (ADS)

    Liu, T. C.; Dudinkova, G.; Liu, Chuan S.; Shao, X.; Sagdeev, R. Z.

    2010-02-01

    We present scaling studies of proton acceleration by short pulse, intense lasers in the region of radiation pressure acceleration of ultra thin foil. By defining the monoenergetic proton as having energy spread less than 10 percent in 2D PIC simulation, we studied the proton mono-energy profile as a function of the laser power and peak intensity, thin foil thickness and target density ratio to critical density. We found that the energy of monoenergetic proton scales linearly with the square root of laser power after fixing the target density ratio to critical density. The Rayleigh-Taylor (R-T) instability plays significant role in increasing the energy spread of accelerated protons. But, there are parameter regimes for instability remediation or suppression. Parameters of interest are for lasers in sub-Peta Watt range and producing quasi energetic protons to 250 Mev and carbon ion to 1 Gev. The simulation results are able to provide experimentalists with suggestion for optimal scaling for laser acceleration of thin foils for instability avoidance and optimal ion acceleration. Possible medical applications of the technology in proton cancer therapy is also discussed. )

  15. Radiotherapy using a laser proton accelerator

    SciTech Connect

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-24

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities.

  16. Proton acceleration with a table-top TW laser

    NASA Astrophysics Data System (ADS)

    Seimetz, M.; Bellido, P.; Lera, R.; Ruiz-de la Cruz, A.; Mur, P.; Sánchez, I.; Galán, M.; Sánchez, F.; Roso, L.; Benlloch, J. M.

    2016-11-01

    We report on the recent demonstration of proton acceleration from a purpose-made Ti:Sapphire laser system. In the first successful series of autumn 2015, running at 2 TW peak power and 100 Hz diode pump rate, protons up to 0.7 MeV have been spectrally characterised. Subsequently, at increased laser pulse energy and improved contrast, we have obtained maximum particle energies around 1.7 MeV. These results, achieved in single-shot mode with a variety of thin foil targets, are an important step towards our aim of a stable, compact proton accelerator with high rate capacity.

  17. Laser proton accelerator with improved repeatability at Peking University

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Geng, Y.; Liao, Q.; Zhu, J.; Wang, P.; Wu, M.; Li, C.; Xu, X.; Li, R.; Lu, H.; Zhao, Y.; Ma, W.; Lin, C.; Yan, X.

    2017-07-01

    The repeatability of laser proton accelerator is mainly limited by laser plasma interaction, laser target coupling and laser parameter variation. In our recent experiments performed on the Compact Laser Plasma Accelerator at Peking University, gain of proton beams with improved repeatability is demonstrated. In order to control the laser plasma interaction in pre-plasma, cross polarized-wave generation technique is employed to provide a laser pulse with an ultrahigh contrast of 10-10 A semi-automatic laser and target alignment system with a sensitivity of few microns is employed. The repetition rate of the laser pro-ton accelerator is at the level of 0.1 Hz which is beneficial to decrease laser parameter variation. The shot-to-shot variation of proton energies is about 9% for a level of confidence of 0.95.

  18. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  19. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam

  20. Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek

    2016-10-01

    Collisionless shocks - supersonic plasma flows in which the interaction length scale is much shorter than the collisional mean free path - are common phenomena in space and astrophysical systems, including the solar wind, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei. These systems have been studied for decades, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present experiments that demonstrate the formation of collisionless shocks utilizing the Phoenix laser laboratory and the LArge Plasma Device (LAPD) at UCLA. We also show recent observations of magnetized collisionless shocks on the Omega EP laser facility that extend the LAPD results to higher laser energy, background magnetic field, and ambient plasma density, and that may be relevant to recent experiments on strongly driven magnetic reconnection. Lastly, we discuss a new experimental regime for shocks with results from high-repetition (1 Hz), volumetric laser-driven measurements on the LAPD. These large parameter scales allow us to probe the formation physics of collisionless shocks over several Alfvénic Mach numbers (MA), from shock precursors (magnetosonic solitons with MA < 1) to subcritical (MA < 3) and supercritical (MA > 3) shocks. The results show that collisionless shocks can be generated using a laser-driven magnetic piston, and agree well with both 2D and 3D hybrid and PIC simulations. Additionally, using radiation-hydrodynamic modeling and measurements from multiple diagnostics, the different shock regimes are characterized with dimensionless formation parameters, allowing us to place disparate experiments in a common and predictive framework.

  1. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    SciTech Connect

    Albertazzi, B.; D'Humières, E.; Lancia, L.; Antici, P.; Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J.; Böcker, J.; Swantusch, M.; Willi, O.; Bonlie, J.; Cauble, B.; Shepherd, R.; Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T.; Chen, S. N.; Sentoku, Y.; and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  2. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  3. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  4. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  5. Dynamics of Laser Driven, Ablatively Accelerated Targets

    DTIC Science & Technology

    1981-05-08

    Tenierature Hydrodynamic Phenomena," V.I. II. pg. 676. Academic Press NY (1966) 21. R. Resnick , and 1). lHalliday, "Physics." Vol. I. pg. 178, J. Wiley...Attn: Prof. Gan Fu-xi GI. Barifi Prof. Yu Wen-yan Istituto Fisica Application Prof. Xu Zhi-2han Universita di Paria Prof. Deng Xi-ming Pavia 27100 Italy

  6. Fermilab's Proton Accelerator Complex : World Record Performance and Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  7. Improvement Plans of Fermilab’s Proton Accelerator Complex

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-09-01

    The flagship of Fermilab’s long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab’s Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  8. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    SciTech Connect

    Nelson, S; Poole, B; Caporaso, G

    2007-06-15

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam.

  9. HADRON ACCELERATORS: Electron proton instability in the CSNS ring

    NASA Astrophysics Data System (ADS)

    Wang, Na; Qin, Qing; Liu, Yu-Dong

    2009-06-01

    The electron proton (e-p) instability has been observed in many proton accelerators. It will induce transverse beam size blow-up, cause beam loss and restrict the machine performance. Much research work has been done on the causes, dynamics and cures of this instability. A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source (CSNS).

  10. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  11. Acceleration of Thermal Protons by Generic Phenomenological Mechanisms

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé; Kang, Byungwoo

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian & East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton-electron kinetic equation. We numerically solve the coupled Fokker-Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton-proton interactions.

  12. TAC Proton Accelerator Facility: The Status and Road Map

    SciTech Connect

    Algin, E.; Akkus, B.; Caliskan, A.; Yilmaz, M.; Sahin, L.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  13. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  14. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  15. DOSIMETRIC EVALUATION OF LASER-DRIVEN X-RAY AND NEUTRON SOURCES UTILIZING XG-III PS LASER WITH PEAK POWER OF 300 TERAWATT.

    PubMed

    Yang, Bo; Qiu, Rui; Jiao, Jinlong; Lu, Wei; Zhang, Zhimeng; Zhou, Weimin; Ma, Chi; Zhang, Hui; Li, Junli

    2017-04-13

    Current short-pulse high-intensity lasers can accelerate electrons and proton/ions to energies of giga-electron volts. For certain advanced applications, laser-accelerated electrons and protons are optimised for high-energy X-ray and neutron generation at the XG-III picosecond (ps) laser beamline. These energetic X-ray and neutron beams can significantly affect radiation safety at the facility; therefore, proper evaluation of the radiological hazards induced by laser-driven X-ray and neutron sources is required. This study presents a dosimetric evaluation of laser-driven X-ray and neutron sources at the XG-III ps laser beamline. The 'source terms' of the laser-accelerated electrons and protons are characterised utilising the particle-in-cell method and an analytical model, respectively. The Monte Carlo code FLUKA is used to calculate prompt and residual dose yields due to all radiation field components and the number of residual activated nuclei. Our results can provide a reference for radiation hazard analysis at short-pulse high-intensity laser facilities worldwide. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Polarized proton acceleration program at the AGS and RHIC

    SciTech Connect

    Lee, Y.Y.

    1995-06-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC.

  17. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  18. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  19. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts.

    PubMed

    Ukhorskiy, A Y; Sitnov, M I; Merkin, V G; Artemyev, A V

    2013-08-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz ), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz . We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it.

  20. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  1. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  2. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  3. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  4. Fermilab proton accelerator complex status and improvement plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-05-01

    Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a number of fixed target experiments. Routine operation with a world-record 700 kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as a result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power from 900-1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2 MW beam power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40 years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to > 2.4 MW after replacement of the existing 8 GeV Booster synchrotron. In this review, we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.

  5. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2016-10-01

    The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.

  6. Emittance measurements from the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Gillespie, G. H.; Hubbard, J.; Sanders, E.

    2005-12-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σij) that best fit measured beam parameters. These σij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a "trial and error" technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab™) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC.

  7. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n-1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n-1, respectively. The sharp decrease around 1 MeV n-1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  8. ACCELERATION OF THERMAL PROTONS BY GENERIC PHENOMENOLOGICAL MECHANISMS

    SciTech Connect

    Petrosian, Vahé; Kang, Byungwoo E-mail: redcrux8@stanford.edu

    2015-11-01

    We investigate heating and acceleration of protons from a thermal gas with a generic diffusion and acceleration model, and subject to Coulomb scattering and energy loss, as was done by Petrosian and East for electrons. As protons gain energy their loss to electrons becomes important. Thus, we need to solve the coupled proton–electron kinetic equation. We numerically solve the coupled Fokker–Planck equations and compute the time evolution of the spectra of both particles. We show that this can lead to a quasi-thermal component plus a high-energy nonthermal tail. We determine the evolution of the nonthermal tail and the quasi-thermal component. The results may be used to explore the possibility of inverse bremsstrahlung radiation as a source of hard X-ray emissions from hot sources such as solar flares, accretion disk coronas, and the intracluster medium of galaxy clusters. We find that the emergence of nonthermal protons is accompanied by excessive heating of the entire plasma, unless the turbulence needed for scattering and acceleration is steeper than Kolmogorov and the acceleration parameters, the duration of the acceleration, and/or the initial distributions are significantly fine-tuned. These results severely constrain the feasibility of the nonthermal inverse bremsstrahlung process producing hard X-ray emissions. However, the nonthermal tail may be the seed particles for further re-acceleration to relativistic energies, say by a shock. In the Appendix we present some tests of the integrity of the algorithm used and present a new formula for the energy loss rate due to inelastic proton–proton interactions.

  9. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-07

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  10. Shielding design for a laser-accelerated proton therapy system

    NASA Astrophysics Data System (ADS)

    Fan, J.; Luo, W.; Fourkal, E.; Lin, T.; Li, J.; Veltchev, I.; Ma, C.-M.

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 × 1021 W cm-2. Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements.

  11. Acceleration of polarized protons at Saturne: First results

    SciTech Connect

    Arvieu, J.

    1982-03-20

    The accelertor SATURNE is a synchrotron which accelerates particles up to P/Z = 3.8 GeV/c. Thus the maximum energy for protons T/sub p/ is about 3 GeV, and for deuterons T/sub d/ is about 2.3 GeV. It is equipped with a polarized ion source (HYPERION, the name of a satellite of the Saturne planet) of the ''atomic beam'' type producing either protons or deuterons with either vector or tensor polarization. A heavy-ion source (CREYBIS) for production of ions up to mass 40 is now being tested.

  12. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Martinis, C.; Giove, D.; Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R.; Rosso, E.; Szeless, B.; Vretenar, M.; Masullo, M. R.; Vaccaro, V.; Calabretta, L.; Rovelli, A.

    2012-07-01

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18±3.0)% of the transmitted protons fall in a ±2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  13. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  14. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  15. The scrounge-atron: a proton radiography demonstration accelerator

    SciTech Connect

    Alford, O J; Barnes, P D; Chargin, A K; Hartouni, E F; Hockman, J N; Moore, T L; Pico, R E; Ruggiero, A G

    1998-12-18

    The Scrounge-atron is a concept that could provide a demonstration accelerator for proton radiography. As discussed here, the Scrounge-atron would be capable of providing a 20 GeV beam of ten pulses, 10{sup 11} protons each, spaced 250 ns apart. This beam could be delivered once every minute to a single-axis radiographic station centered at the BEEF facility of the Nevada Test Site. These parameters would be sufficient to demonstrate, in five years, the capabilities of a proton-based Advanced Hydrotest Facility, and could return valuable information to the stockpile program, information that could not be obtained in any other way. The Scrounge-atron could be built in two to three years for $50-100 million. To meet this schedule and cost, the Scrounge-atron would rely heavily on the availability of components from the decommissioned Fermilab Main Ring.

  16. ELIMED: a new hadron therapy concept based on laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy

    2013-05-01

    Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up

  17. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  18. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  19. The computer simulation of laser proton acceleration for hadron therapy

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Baydin, Grigory

    2008-11-01

    The ions acceleration by intensive ultra-short laser pulses has interest in views of them possible applications for proton radiography, production of medical isotopes and hadron therapy. The 3D relativistic PIC-code LegoLPI is developed at RFNC-VNIITF for modeling of intensive laser interaction with plasma. The LegoLPI-code simulations were carried out to find the optimal conditions for generation of proton beams with parameters necessary for hadrons therapy. The performed simulations show that optimal for it may be two-layer foil of aluminum and polyethylene with thickness 100 nm and 50 nm accordingly. The maximum efficiency of laser energy transformation into 200 MeV protons is achieved on irradiating these foils by 30 fs laser pulse with intensity about 2.10^22 W/cm^2. The conclusion is made that lasers with peak power about 0.5-1PW and average power 0.5-1 kW are needed for generation of proton beams with parameters necessary for proton therapy.

  20. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  1. Magnetic Field Generation by the Nonlinear Rayleigh--Taylor Instability in Laser-Driven Planar Plastic Targets

    NASA Astrophysics Data System (ADS)

    Gao, L.; Igumenshchev, I. V.; Hu, S. X.; Stoeckl, C.; Froula, D. H.; Nilson, P. M.; Davies, J. R.; Betti, R.; Meyerhofer, D. D.; Haines, M. G.

    2012-10-01

    Magnetic field generation during the nonlinear phase of the Rayleigh--Taylor (RT) instability in an ablatively driven plasma using ultrafast laser-driven proton radiography has been measured. Thin plastic foils were irradiated with ˜4-kJ, 2.5-ns laser pulses focused to an intensity of ˜10^14 W/cm^2 on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the RT instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  2. Spectral and spatial characterisation of laser-driven positron beams

    SciTech Connect

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  3. Spectral and spatial characterisation of laser-driven positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2017-01-01

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  4. Spectral and spatial characterisation of laser-driven positron beams

    DOE PAGES

    Sarri, G.; Warwick, J.; Schumaker, W.; ...

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less

  5. First acceleration of a proton beam in a side coupled drift tube linac

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Picardi, L.; Ampollini, A.; Bazzano, G.; Marracino, F.; Nenzi, P.; Snels, C.; Surrenti, V.; Vadrucci, M.; Ambrosini, F.

    2015-07-01

    We report the first experiment aimed at the demonstration of low-energy protons acceleration by a high-efficiency S-band RF linear accelerator. The proton beam has been accelerated from 7 to 11.6 MeV by a 1 meter long SCDTL (Side Coupled Drift Tube Linac) module powered with 1.3 MW. The experiment has been done in the framework of the Italian TOP-IMPLART (Oncological Therapy with Protons-Intensity Modulated Proton Therapy Linear Accelerator for Radio-Therapy) project devoted to the realization of a proton therapy centre based on a proton linear accelerator for intensity modulated cancer treatments to be installed at IRE-IFO, the largest oncological hospital in Rome. It is the first proton therapy facility employing a full linear accelerator scheme based on high-frequency technology.

  6. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  7. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  8. Electron Weibel Instability Mediated Laser Driven Electromagnetic Collisionless Shock

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Mima, Kunioki; Cai, Hong-Bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X. T.

    2015-11-01

    As a fundamental nonlinear structure, collisionless shock is widely studied in astrophysics. Recently, the rapidly-developing laser technology provides a good test-bed to study such shock physics in laboratory. In addition, the laser driven shock ion acceleration is also interested due to its potential applications. We explore the effect of external parallel magnetic field on the collisionless shock formation and resultant particle acceleration by using the 2D3V PIC simulations. We show that unlike the electrostatic shock generated in the unmagnetized plasma, the shock generated in the weakly-magnetized laser-driven plasma is mostly electromagnetic (EM)-like with higher Mach number. The generation mechanism is due to the stronger transverse magnetic field self-generated at the nonlinear stage of the electron Weibel instability which drastically scatters particles and leads to higher energy dissipation. Simulation results also suggest more ions are reflected by this EM shock and results in larger energy transfer rate from the laser to ions, which is of advantage for applications such as neutron production and ion fast ignition.

  9. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  10. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  11. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  12. Laser-driven neutron production from bulk and pitcher-catcher targets

    NASA Astrophysics Data System (ADS)

    Maksimchuk, Anatoly; Willingale, L.; Matsuoka, T.; Thomas, A. G. R.; Krushelnick, K.; Petrov, G. M.; Davis, J.; Ovchinnikov, V. M.; Freeman, R. R.; Joglekar, A.; Murphy, C. D.; Woerkom, L. Van

    2010-11-01

    As an important step in the development of the highly directional compact neutron source from the reaction ^7Li(d,xn) [1] we have studied the laser-driven fusion neutron production d(d,n)^3He from bulk deuterated plastic targets and compared it to a pitcher-catcher target method using the same laser and detector arrangement. For laser intensities of up to I = 3.10^19 Wcm^2 it was found that the bulk targets produced a high yield (5.10^4 neutrons/steradian) beamed preferentially in the laser propagation direction. The inhibition of the deuteron acceleration by a proton rich contamination layer is likely to significantly reduce the pitcher-catcher neutron production. Two-dimensional particle-in-cell simulations were performed to model the deuteron beam acceleration, the results of which were coupled to a Monte Carlo code to calculate the expected neutron beam properties. Numerical analysis suggests the pitcher-catcher targets would become more efficient at higher laser intensities. This work was supported by DTRA and the NRL. [1] J. Davis et al., PPCF 52, 045015 (2010).

  13. Dosimetric effects of energy spectrum uncertainties in radiation therapy with laser-driven particle beams.

    PubMed

    Schell, S; Wilkens, J J

    2012-03-07

    Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.

  14. High power solid state rf amplifier for proton accelerator.

    PubMed

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  15. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  16. RF cavity design and qualification for proton accelerator

    SciTech Connect

    Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti; Singh, Kumud; Itteera, Janvin; Kumar, Prashant; Sinha, A.K.; Taly, Y.K.; Gupta, S.K.; Singh, P.

    2014-07-01

    Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulations are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)

  17. Technical assessment of the Loma Linda University proton therapy accelerator

    SciTech Connect

    Not Available

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ.

  18. Acceleration of petaelectronvolt protons in the Galactic Centre.

    PubMed

    2016-03-24

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 10(15) electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators--not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays--has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  19. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  20. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  1. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  2. Proton proton total cross-sections at VHE from accelerator data

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, J.; Sánchez-Hertz, A.; Alvarez-Madrigal, M.; Gallegos-Cruz, A.; Velasco, J.; Faus-Golfe, A.

    2005-06-01

    Up-to-date estimates of proton-proton total cross-sections, σtotpp, at very high energies in the literature were obtained from cosmic rays (>1017 eV) by approximations using the measured proton-air cross-section at these energies. As σtotpp are measured with present day high energy colliders up to nearly 2 TeV in the centre of mass (~1015 eV in the laboratory), several proven theoretical, empirical and semi-empirical parametrizations for interpolation at accelerator energies were used to extrapolate these measured values to get reasonable estimates of cross-sections at higher cosmic ray energies (~1017 eV). The cross-section estimates from these two methods disagree by a discrepancy beyond statistical error. Here we use a phenomenological model based on the 'multiple diffraction' approach to successfully describe data at accelerator energies. Using this model, we then estimate σtotpp at cosmic ray energies. The model free-parameters used in the fit depend on only two physical observables: the differential cross-section and the parameter ρ. The model estimates of σtotpp are then compared with total cross-section data. Using regression analysis, we determine confidence error bands, analysing the sensitivity of our predictions to the data used in the extrapolations. This work reduces the width of the confidence band around 'multiple diffraction' model fits of accelerator data. With the data at 546 GeV and 1.8 TeV, our extrapolations are compatible with only the Akeno cosmic ray data, predicting a slower rise with energy than do other cosmic ray results and other extrapolation methods. We discuss our results within the context of constraints expected from future accelerator and cosmic ray experimental results.

  3. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.

    PubMed

    Schell, S; Wilkens, J J

    2009-10-07

    Currently, energy spectra of laser accelerated proton beams are far from being monoenergetic. For their application in radiation therapy, energy selection systems using magnetic fields have been proposed to single out particles with the desired energy. These systems allow the choice of protons between a lowest and a highest energy. In this work, we present a slight modification that allows us to influence the relative number of particles per energy bin. In fact, the transmitted spectrum can be shaped in such a way that it corresponds to a full spread out Bragg peak delivered simultaneously. This change of the spectrum can be achieved by inserting suitably formed scattering material at the central plane of the energy selection system where the particles are separated in space depending on their energy. With the help of Monte Carlo simulations we analysed both simple wedge geometries and various stacks of lead slices. We found that these configurations can provide energy spectra that naturally produce spread out Bragg peaks within one laser shot. This increases the particle efficiency of the whole system and makes laser accelerated protons more suitable for radiation therapy.

  4. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  5. Two-stage acceleration of protons from relativistic laser-solid interaction

    SciTech Connect

    Liu Jinlu; Sheng, Z. M.; Zheng, J.; Wang, W. M.; Yu, M. Y.; Liu, C. S.; Zhang, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are accelerated and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.

  6. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  7. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  8. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production

    NASA Astrophysics Data System (ADS)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Joglekar, A. S.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Thomas, A. G. R.; Van Woerkom, L.; Krushelnick, K.

    2011-08-01

    Laser-driven d(d, n)-3He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1-3) × 1019 W cm-2, it was found that the bulk targets produced a high yield (5 × 104 neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stopping power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catcher neutron production.

  9. Classical chaos and harmonic generation in laser driven nanorings

    NASA Astrophysics Data System (ADS)

    Castiglia, Giuseppe; Corso, Pietro Paolo; Cricchio, Dario; De Giovannini, Umberto; Frusteri, Biagio; Fiordilino, Emilio

    2016-12-01

    A quantum ring driven by an intense laser field emits light in the form of high-harmonic radiation resulting from the strong acceleration experienced by the active electrons forced to move on a curved trajectory. The spectrum of the emitted light is rich and strongly dependent on the parameters of the problem. In order to investigate the physical origin of such variability, we focus on the seemingly simple problem of a laser-driven charge constrained to a ring from a classical standpoint. As it turns out, the dynamics of such a classical electron is governed by a nonlinear equation which results into a chaotic motion—by nature depending on the initial conditions in an unpredictable way. Our results indicate that the quantum harmonic spectra are reminiscent of the classical counterpart and suggest the existence of a line connecting the quantum and classical realms.

  10. Characterization of short-pulse laser driven neutron source

    NASA Astrophysics Data System (ADS)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  11. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy.

  12. Laser-triggered proton acceleration from hydrogenated low-density targets

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Obraztsova, E. A.; Chuvilin, A. L.; Obraztsova, E. D.; Bychenkov, V. Yu.

    2017-06-01

    Synchronized proton acceleration by ultraintense slow light (SASL) in low-density targets has been studied in application to fabricated carbon nanotube films. Proton acceleration from low-density plasma films irradiated by a linearly polarized femtosecond laser pulse of ultrarelativistic intensity was considered as result of both target surface natural contamination by hydrocarbons and artificial volumetric doping of low-density carbon nanotube films. The 3D particle-in-cell simulations confirm the SASL concept [A. V. Brantov et al., Synchronized Ion Acceleration by Ultraintense Slow Light, Phys. Rev. Lett. 116, 085004 (2016), 10.1103/PhysRevLett.116.085004] for proton acceleration by a femtosecond petawatt-class laser pulse from realistic low-density targets with a hydrogen impurity, quantify the characteristics of the accelerated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from contaminated ultrathin solid dense foils.

  13. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  14. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    PubMed

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  15. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons). This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes thismore » species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.« less

  16. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  17. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  18. Optimization of the combined proton acceleration regime with a target composition scheme

    NASA Astrophysics Data System (ADS)

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-01

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 1022 W cm-2, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  19. Optimization of the combined proton acceleration regime with a target composition scheme

    SciTech Connect

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-15

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  20. Investigation of the dynamic behavior of laser-driven flyers

    SciTech Connect

    Trott, W.M. )

    1994-07-10

    Various aspects of the dynamic behavior of laser-accelerated flyer plates (e.g., planarity, cohesion, thickness, etc.) have been examined using several high-speed optical techniques. Images of accelerating flyers have been obtained by means of fast-framing photography and with an electronic image converter streak camera operated in an image motion configuration. These data are compared to records of flyer velocity vs. time as a function of laser fluence as well as impact particle velocity measurements on lithium fluoride witness plates.'' Flyer materials examined include pure aluminum and a composite material containing a thin layer of aluminum oxide. Composite flyers exhibit superior performance due to better planarity and cohesion, increased thickness vs. displacement, and significantly higher velocity for a given driving energy. With proper tailoring of flyer properties and driving laser parameters, laser-driven acceleration of thin flyer plates offers a promising, laboratory-scale approach to quantitative studies requiring well-controlled, short-pulse shcok compression. [copyright]American Institute of Physics

  1. A system for monitoring the radiation effects of a proton linear accelerator

    NASA Astrophysics Data System (ADS)

    Skorkin, V. M.; Belyanski, K. L.; Skorkin, A. V.

    2016-12-01

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  2. A system for monitoring the radiation effects of a proton linear accelerator

    SciTech Connect

    Skorkin, V. M. Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  3. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    NASA Astrophysics Data System (ADS)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  4. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  5. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  6. Hospital-based proton linear accelerator for particle therapy and radioisotope production

    NASA Astrophysics Data System (ADS)

    Lennox, Arlene J.

    1991-05-01

    Taking advantage of recent advances in linear accelerator technology, it is possible for a hospital to use a 70 MeV proton linac for fast neutron therapy, boron neutron capture therapy, proton therapy for ocular melanomas, and production of radiopharmaceuticals. The linac can also inject protons into a synchrotron for proton therapy of deep-seated tumors. With 180 μA average current, a single linac can support all these applications. This paper presents a conceptual design for a medical proton linac, switchyard, treatment rooms, and isotope production rooms. Special requirements for each application are outlined and a layout for sharing beam among the applications is suggested.

  7. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  8. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  9. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  10. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Tayyab, M.; Bagchi, S.; Ramakrishna, B.; Mandal, T.; Upadhyay, A.; Ramis, R.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2014-08-01

    We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.

  11. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; d'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C. A.; Kaluza, M.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Schreiber, J.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-04-01

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of ˜200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  12. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    SciTech Connect

    Fuchs, J.; Antici, P.; D'Humieres, E.; Lefebvre, E.; Borghesi, M.; Cecchetti, C. A.; Brambrink, E.; Audebert, P.; Kaluza, M.; Schreiber, J.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Toncian, T.; Pepin, H.

    2006-04-07

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of {approx}200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  13. Accelerated prompt gamma estimation for clinical proton therapy simulations

    NASA Astrophysics Data System (ADS)

    Huisman, Brent F. B.; Létang, J. M.; Testa, É.; Sarrut, D.

    2016-11-01

    There is interest in the particle therapy community in using prompt gammas (PGs), a natural byproduct of particle treatment, for range verification and eventually dose control. However, PG production is a rare process and therefore estimation of PGs exiting a patient during a proton treatment plan executed by a Monte Carlo (MC) simulation converges slowly. Recently, different approaches to accelerating the estimation of PG yield have been presented. Sterpin et al (2015 Phys. Med. Biol. 60 4915-46) described a fast analytic method, which is still sensitive to heterogeneities. El Kanawati et al (2015 Phys. Med. Biol. 60 8067-86) described a variance reduction method (pgTLE) that accelerates the PG estimation by precomputing PG production probabilities as a function of energy and target materials, but has as a drawback that the proposed method is limited to analytical phantoms. We present a two-stage variance reduction method, named voxelized pgTLE (vpgTLE), that extends pgTLE to voxelized volumes. As a preliminary step, PG production probabilities are precomputed once and stored in a database. In stage 1, we simulate the interactions between the treatment plan and the patient CT with low statistic MC to obtain the spatial and spectral distribution of the PGs. As primary particles are propagated throughout the patient CT, the PG yields are computed in each voxel from the initial database, as a function of the current energy of the primary, the material in the voxel and the step length. The result is a voxelized image of PG yield, normalized to a single primary. The second stage uses this intermediate PG image as a source to generate and propagate the number of PGs throughout the rest of the scene geometry, e.g. into a detection device, corresponding to the number of primaries desired. We achieved a gain of around 103 for both a geometrical heterogeneous phantom and a complete patient CT treatment plan with respect to analog MC, at a convergence level of 2% relative

  14. Interferometry and high speed photography of laser-driven flyer plates

    SciTech Connect

    Paisley, D.L.; Montoya, N.I.; Stahl, D.B.; Garcia, I.A.

    1989-01-01

    Laser-driven thin (2-10-/mu/ thick) plates of aluminum and copper are accelerated to velocities /ge/5 km/s by a 1.06-/mu/ wavelength Nd:YAG 8-10 ns FWHM laser pulse at power densities 0.7-4.0 GW/cm/sup 2/. Accelerations /ge/10/sup 9/ km/s/sup 2/ have been achieved. The acceleration and velocity of these 0.4-1.0-mm-diameter plates are experimentally recorded by velocity interferometry (VISAR) and the planarity of impact by streak photography. 6 refs., 7 figs.

  15. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (∼100–1000 m)

  16. Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    2016-12-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.

  17. Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery

    SciTech Connect

    Loznikov, V. M. Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A.

    2013-10-15

    The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ∼20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained

  18. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    SciTech Connect

    Torrisi, L. Ceccio, G.; Cannavò, A.; Cutroneo, M.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  19. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  20. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Bieniosek, F. M.; Logan, B. G.; Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H.; McGuffey, C.; Beg, F. N.; Kim, J.; Alexander, N.; Aurand, B.; Brabetz, C.; Neumayer, P.; Roth, M.

    2013-08-15

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure (“lens”) consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a “passive environment,” i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt “PHELIX” laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the “Helmholtzzentrum für Schwerionenforschung–GSI” in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  1. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  2. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  3. Laser acceleration of protons with an optically shaped, near-critical hydrogen gas target

    NASA Astrophysics Data System (ADS)

    Chen, Yu-hsin; Helle, Michael; Ting, Antonio; Gordon, Daniel; Dover, Nicholas; Ettlinger, Oliver; Najmudin, Zulfikar; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus

    2017-03-01

    We report our recent experimental results on CO2 laser acceleration of protons, with a near-critical hydrogen gas target tailored by a Nd:YAG laser-produced blast wave. Monoenergetic protons with energies up to 2.5 MeV were observed.

  4. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  5. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  6. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  7. Fast scaling of energetic protons generated in the interaction of linearly polarized femtosecond petawatt laser pulses with ultrathin targets

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Choi, Il Woo; Lee, Chang-Lyoul; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Nam, Chang Hee

    2015-12-01

    Laser-driven proton/ion acceleration is a rapidly developing research field attractive for both fundamental physics and applications such as hadron therapy, radiography, inertial confinement fusion, and nuclear/particle physics. Laser-driven proton/ion beams, compared to those obtained in conventional accelerators, have outstanding features such as low emittance, small source size, ultra-short duration and huge acceleration gradient of ∼1 MeV μm-1. We report proton acceleration from ultrathin polymer targets irradiated with linearly polarized, 30-fs, 1-PW Ti:sapphire laser pulses. A maximum proton energy of 45 MeV with a broad and modulated profile was obtained when a 10-nm-thick target was irradiated at a laser intensity of 3.3 × 1020 W/cm2. The transition from slow (I1/2) to fast scaling (I) of maximum proton energy with respect to laser intensity I was observed and explained by the hybrid acceleration mechanism including target normal sheath acceleration and radiation pressure acceleration in the acceleration stage and Coulomb-explosion-assisted free expansion in the post acceleration stage.

  8. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-01

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  9. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    SciTech Connect

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-15

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  10. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H.

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  11. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  12. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  13. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    SciTech Connect

    Gauthier, M.; Lévy, A.; D'Humières, E.; Beaucourt, C.; Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V.; Glesser, M.; Albertazzi, B.; Chen, S. N.; Dervieux, V.; Fuchs, J.; Pépin, H.; Antici, P.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. We show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.

  14. Manipulation of laser-accelerated proton beam profiles by nanostructured and microstructured targets

    NASA Astrophysics Data System (ADS)

    Giuffrida, L.; Svensson, K.; Psikal, J.; Dalui, M.; Ekerfelt, H.; Gallardo Gonzalez, I.; Lundh, O.; Persson, A.; Lutoslawski, P.; Scuderi, V.; Kaufman, J.; Wiste, T.; Lastovicka, T.; Picciotto, A.; Bagolini, A.; Crivellari, M.; Bellutti, P.; Milluzzo, G.; Cirrone, G. A. P.; Magnusson, J.; Gonoskov, A.; Korn, G.; Wahlström, C.-G.; Margarone, D.

    2017-08-01

    Nanostructured and microstructured thin foils have been fabricated and used experimentally as targets to manipulate the spatial profile of proton bunches accelerated through the interaction with high intensity laser pulses (6 ×1019 W /cm2 ). Monolayers of polystyrene nanospheres were placed on the rear surfaces of thin plastic targets to improve the spatial homogeneity of the accelerated proton beams. Moreover, thin targets with grating structures of various configurations on their rear sides were used to modify the proton beam divergence. Experimental results are presented, discussed, and supported by 3D particle-in-cell numerical simulations.

  15. Enhanced proton acceleration by an ultrashort laser interaction with structured dynamic plasma targets.

    PubMed

    Zigler, A; Eisenman, S; Botton, M; Nahum, E; Schleifer, E; Baspaly, A; Pomerantz, I; Abicht, F; Branzel, J; Priebe, G; Steinke, S; Andreev, A; Schnuerer, M; Sandner, W; Gordon, D; Sprangle, P; Ledingham, K W D

    2013-05-24

    We experimentally demonstrate a notably enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets. Realized by special deposition of snow targets on sapphire substrates and using carefully planned prepulses, high proton yields emitted in a narrow solid angle with energy above 21 MeV were detected from a 5 TW laser. Our simulations predict that using the proposed scheme protons can be accelerated to energies above 150 MeV by 100 TW laser systems.

  16. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    SciTech Connect

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-11-04

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, {approx}1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  17. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    NASA Astrophysics Data System (ADS)

    Ting, A.; Gordon, D.; Helle, M.; Kaganovich, D.; Sprangle, P.; Hafizi, B.

    2010-11-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ˜1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called "bucket jumping" where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  18. Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks.

    PubMed

    Park, Jaehong; Caprioli, Damiano; Spitkovsky, Anatoly

    2015-02-27

    We study diffusive shock acceleration (DSA) of protons and electrons at nonrelativistic, high Mach number, quasiparallel, collisionless shocks by means of self-consistent 1D particle-in-cell simulations. For the first time, both species are found to develop power-law distributions with the universal spectral index -4 in momentum space, in agreement with the prediction of DSA. We find that scattering of both protons and electrons is mediated by right-handed circularly polarized waves excited by the current of energetic protons via nonresonant hybrid (Bell) instability. Protons are injected into DSA after a few gyrocycles of shock drift acceleration (SDA), while electrons are first preheated via SDA, then energized via a hybrid acceleration process that involves both SDA and Fermi-like acceleration mediated by Bell waves, before eventual injection into DSA. Using the simulations we can measure the electron-proton ratio in accelerated particles, which is of paramount importance for explaining the cosmic ray fluxes measured on Earth and the multiwavelength emission of astrophysical objects such as supernova remnants, radio supernovae, and galaxy clusters. We find the normalization of the electron power law is ≲10^{-2} of the protons for strong nonrelativistic shocks.

  19. Evanescent-wave proton postaccelerator driven by intense THz pulse

    NASA Astrophysics Data System (ADS)

    Pálfalvi, L.; Fülöp, J. A.; Tóth, Gy.; Hebling, J.

    2014-03-01

    Hadron therapy motivates research dealing with the production of particle beams with ˜100 MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV /nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanescent field of electromagnetic waves between a pair of dielectric crystals. Simple model calculations show that the energy of a proton bunch can be increased from 40 to 56 MeV in five stages and its initially broad energy distribution can be significantly narrowed down.

  20. Radiation protection of a proton beamline at ELI-Beamlines

    NASA Astrophysics Data System (ADS)

    Bechet, S.; Versaci, R.; Rollet, S.; Olsovcova, V.; Fajstavr, A.; Zakova, M.; Margarone, D.

    2016-12-01

    ELI-Beamlines (ELI stands for Extreme Light Infrastructure) is a new EU funded laser facility located near Prague, in Czech Republic. It will use laser-driven plasma sources to accelerate particles and host a dedicated proton beamline called ELIMAIA (ELI Multidisciplinary Applications of laser- Ion Acceleration) designed to reach energies up to 250 MeV. This beamline could be exploited to study possible future medical application of laser-driven beams. The first part of this paper introduces the beamline, the corresponding source terms and the complete set-up. The second part of the paper details the evaluation of the ambient dose equivalent and the activation study inside the experimental halls based on Monte-Carlo simulation. These calculations show that the ELIMAIA operation is safe as long as nobody is present in the hall when the beam is on.

  1. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers.

    PubMed

    Fourkal, E; Velchev, I; Ma, C-M

    2005-03-01

    The acceleration of light ions (protons) through the interaction of a high-power laser pulse with a double-layer target is theoretically studied by means of two-dimensional particle-in-cell simulations and a one-dimensional analytical model. It is shown that the maximum energy acquired by the accelerated light ions (protons) depends on the physical characteristics of a heavy-ion layer (electron-ion mass ratio and effective charge state of the ions). In our theoretical model, the hydrodynamic equations for both electron and heavy-ion species are solved and the test-particle approximation for the light ions (protons) is applied. The heavy-ion motion is found to modify the longitudinal electric field distribution, thus changing the acceleration conditions for the protons.

  2. Control of target-normal-sheath-accelerated protons from a guiding cone

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Yu, T. P.; Shao, F. Q.; Pukhov, A.

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  3. Optimizing proton therapy at the LBL medical accelerator. Final report

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  4. Optimizing proton therapy at the LBL medical accelerator

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  5. Pulsars as cosmic ray particle accelerators: Proton orbits

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    Proton orbits are calculated in the electromagnetic vacuum field of a magnetic point dipole rotating with its angular velocity omega perpendicular to its dipole moment mu by numerical integration of the Lorentz-Dirac equation. Trajectories are shown and discussed for various initial conditions. A critical surface is shown separating initial positions of protons which finally hit the pulsar in the polar region from those which finally recede to infinity.

  6. Laser-driven magnetized liner inertial fusion

    DOE PAGES

    Davies, J. R.; Barnak, D. H.; Betti, R.; ...

    2017-06-05

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modelingmore » is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

  7. Laser-driven magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Sefkow, A. B.; Peterson, K. J.; Sinars, D. B.; Weis, M. R.

    2017-06-01

    A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ˜10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ˜200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.

  8. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  9. Capture and Control of Laser-Accelerated Proton Beams: Experiment and Simulation

    SciTech Connect

    Nurnberg, F; Alber, I; Harres, K; Schollmeier, M; Roth, M; Barth, W; Eickhoff, H; Hofmann, I; Friedman, A; Grote, D; Logan, B G

    2009-05-13

    This paper summarizes the ongoing studies on the possibilities for transport and RF capture of laser-accelerated proton beams in conventional accelerator structures. First results on the capture of laser-accelerated proton beams are presented, supported by Trace3D, CST particle studio and Warp simulations. Based on these results, the development of the pulsed high-field solenoid is guided by our desire to optimize the output particle number for this highly divergent beam with an exponential energy spectrum. A future experimental test stand is proposed to do studies concerning the application as a new particle source.

  10. First test of a partial Siberian snake for acceleration of polarized protons

    NASA Astrophysics Data System (ADS)

    Caussyn, D. D.; Baiod, R.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Ellison, T. J. P.; Kaufman, W. A.; Krisch, A. D.; Lee, S. Y.; Minty, M. G.; Nurushev, T. S.; Ohmori, C.; Phelps, R. A.; Raczkowski, D. B.; Ratner, L. G.; Schwandt, P.; Stephenson, E. J.; Sperisen, F.; Przewoski, B. von; Wienands, U.; Wong, V. K.

    1995-09-01

    We recently studied the first acceleration of a spin-polarized proton beam through a depolarizing resonance using a partial Siberian snake. We accelerated polarized protons from 95 to 140 MeV with a constant 10% partial Siberian snake obtained using rampable solenoids. The 10% partial snake suppressed all observable depolarization during acceleration due to the Gγ=2 imperfection depolarizing resonance which occurred near 108 MeV. However, 20% and 30% partial Siberian snakes apparently moved an intrinsic depolarizing resonance, normally near 177 MeV, into our energy range; this caused some interesting, although not-yet-fully understood, depolarization.

  11. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang; Shi, Yi-Jin; Zhang, Shan

    2013-02-01

    A new laser-proton acceleration scheme consisting of two relativistic electron layers, a suprathermal electron layer and a thermal electron cloud is proposed for a0 ≳ 80σ0, where a0 is the normalized laser field and σ0 is the normalized plasma surface density. This is essentially different from target normal sheath acceleration and radiation pressure acceleration. The persistent opaqueness of the first relativistic electron layer for the incident circular-polarization laser pulse and electron recirculation are key points in forming the new acceleration scheme. A proton beam with a uniform energy distribution in the energy range 1-2 GeV and a monoenergetic proton beam with hundreds of MeV have been predicted for a0 = 39.5.

  12. Radiation Shielding at High-Energy Electron and Proton Accelerators

    SciTech Connect

    Rokni, Sayed H.; Cossairt, J.Donald; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  13. Ultra-bright laser-driven neutron source

    NASA Astrophysics Data System (ADS)

    Roth, M.; Favalli, A.; Bagnoud, V.; Bridgewater, J.; Deppert, O.; Devlin, M.; Falk, K.; Fernndez, J.; Gautier, D.; Guler, N.; Henzlova, D.; Hornung, J.; Iliev, M.; Ianakiev, K.; Kleinschmidt, A.; Koehler, K.; Palaniyappan, S.; Poth, P.; Schaumann, G.; Swinhoe, M.; Taddeucci, T.; Tebartz, A.; Wagner, Florian; Wurden, G.

    2015-11-01

    Short-pulse laser-driven neutron sources have become a topic of interest since their brightness and yield have recently increased by orders of magnitude. Using novel target designs, high contrast - high power lasers and compact converter/moderator setups, these neutron sources have finally reached intensities that make many interesting applications possible. We present the results of two experimental campaigns on the GSI PHELIX and the LANL Trident lasers from 2015. We have produced an unprecedented neutron flux, mapped the spatial distribution of the neutron production as well as its energy spectra and ultimately used the beam for first applications to show the prospect of these new compact sources. We also made measurements for the conversion of energetic neutrons into short epithermal and thermal neutron pulses in order to evaluate further applications in dense plasma research. The results address a large community as it paves the way to use short pulse lasers as a neutron source. This can open up neutron research to a broad academic community including material science, biology, medicine and high energy density physics to universities and therefore can complement large scale facilities like reactors or particle accelerators.

  14. Experimental investigation of picosecond dynamics following interactions between laser accelerated protons and water

    NASA Astrophysics Data System (ADS)

    Senje, L.; Coughlan, M.; Jung, D.; Taylor, M.; Nersisyan, G.; Riley, D.; Lewis, C. L. S.; Lundh, O.; Wahlström, C.-G.; Zepf, M.; Dromey, B.

    2017-03-01

    We report direct experimental measurements with picosecond time resolution of how high energy protons interact with water at extreme dose levels (kGy), delivered in a single pulse with the duration of less than 80 ps. The unique synchronisation possibilities of laser accelerated protons with an optical probe pulse were utilized to investigate the energy deposition of fast protons in water on a time scale down to only a few picoseconds. This was measured using absorbance changes in the water, induced by a population of solvated electrons created in the tracks of the high energy protons. Our results indicate that for sufficiently high doses delivered in short pulses, intertrack effects will affect the yield of solvated electrons. The experimental scheme allows for investigation of the ultrafast mechanisms occurring in proton water radiolysis, an area of physics especially important due to its relevance in biology and for proton therapy.

  15. Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets

    SciTech Connect

    Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Lockard, T.; Sentoku, Y.; Geissel, M.; Schollmeier, M.

    2011-05-15

    We present experimental results showing a laser-accelerated proton beam maximum energy cutoff of 67.5 MeV, with more than 5 x 10{sup 6} protons per MeV at that energy, using flat-top hollow microcone targets. This result was obtained with a modest laser energy of {approx}80 J, on the high-contrast Trident laser at Los Alamos National Laboratory. From 2D particle-in-cell simulations, we attribute the source of these enhanced proton energies to direct laser-light-pressure acceleration of electrons along the inner cone wall surface, where the laser light wave accelerates electrons just outside the surface critical density, in a potential well created by a shift of the electrostatic field maximum with respect to that of the magnetic field maximum. Simulations show that for an increasing acceleration length, the continuous loading of electrons into the accelerating phase of the laser field yields an increase in high-energy electrons.

  16. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  17. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  18. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  19. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    SciTech Connect

    Vogel, Sven C.

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  20. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  1. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  2. New approaches in clinical application of laser-driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, Katalin; Szabó, Rita Emilia; Polanek, Róbert; Szabó, Zoltán.; Brunner, Szilvia; Tőkés, Tünde

    2017-05-01

    The planned laser-driven ionizing beams (photon, very high energy electron, proton, carbon ion) at laser facilities have the unique property of ultra-high dose rate (>Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, carry the potential to develop novel laser-driven methods towards compact hospital-based clinical application. The enhanced flexibility in particle and energy selection, the high spatial and time resolution and extreme dose rate could be highly beneficial in radiotherapy. These approaches may increase significantly the therapeutic index over the currently available advanced radiation oncology methods. We highlight two nuclear reactionbased binary modalities and the planned radiobiology research. Boron Neutron Capture Therapy is an advanced cell targeted modality requiring 10B enriched boron carrier and appropriate neutron beam. The development of laser-based thermal and epithermal neutron source with as high as 1010 fluence rate could enhance the research activity in this promising field. Boron-Proton Fusion reaction is as well as a binary approach, where 11B containing compounds are accumulated into the cells, and the tumour selectively irradiated with protons. Due to additional high linear energy transfer alpha particle release of the BPFR and the maximum point of the Bragg-peak is increased, which result in significant biological effect enhancement. Research at ELI-ALPS on detection of biological effect differences of modified or different quality radiation will be presented using recently developed zebrafish embryo and rodent models.

  3. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  4. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  5. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  6. INJECTOR PARTICLE SIMULATION AND BEAM TRANSPORT IN A COMPACT LINEAR PROTON ACCELERATOR

    SciTech Connect

    Blackfield, D T; Chen, Y J; Harris, J; Nelson, S; Paul, A; Poole, B

    2007-06-18

    A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MW/m is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector must create a proton pulse up to several hundred picoseconds, which is then shaped and accelerated with energies up to 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to obtain the voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

  7. Mass Limited Target Effects on Proton Acceleration with Femtosecond Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, Calvin; Raymond, A.; McKelvey, A.; Willingale, L.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.

    2014-10-01

    Experiments at the HERCULES laser facility have been performed to measure the effect of reduced mass targets on proton acceleration through the use of foil, grid, and wire targets in femtosecond laser plasma interactions. The target thickness was held approximately constant at 12 . 5 μm, while the lateral extent of the target was varied. The electron current density was measured with an imaging Cu Kα crystal. Higher current densities were observed as the target mass was reduced which corresponded to an increase in the temperature of the accelerated proton beam. Additionally, a line focusing feature was observed in the spatial distribution of protons accelerated to from the wire target, believed to be a result of azimuthal magnetic fields generated by electron currents in the wire. Particle-in-cell and Vlasov-Fokker-Plank simulations were performed in order to investigate the focusing magnetic field as well as the complex sheath formation dynamics on the mesh target.

  8. Efficient laser-proton acceleration from an insulating foil with an attached small metal disk

    SciTech Connect

    Otani, Kazuto; Tokita, Shigeki; Nishoji, Toshihiko; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2011-10-17

    Efficient proton acceleration by the interaction of an intense femtosecond laser pulse with a solid foil has been demonstrated. An aluminum coating (thickness: 0.2 {mu}m) on a polyethylene (PE) foil was irradiated at 2 x 10{sup 18} W/cm{sup 2} intensity. The protons from the aluminum-disk (diameter: 150 {mu}m to 15 mm) foil were accelerated to much higher energy in comparison with conventional targets such as PE and aluminum-coated PE foils. The fast electron signal along the foil surface was significantly higher from the aluminum-coated PE foil. The laser-proton acceleration appeared to be affected to the size of surrounding conductive material.

  9. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  10. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    SciTech Connect

    Liu, Chuan S.; Shao Xi; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.; Eliasson, Bengt

    2011-01-04

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  11. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    NASA Astrophysics Data System (ADS)

    Liu, Chuan S.; Shao, Xi; Eliasson, Bengt; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  12. An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.

    2017-03-01

    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in

  13. Enhancement of proton energy by polarization switch in laser acceleration of multi-ion foils

    SciTech Connect

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2013-10-15

    We present a scheme to significantly increase the energy of quasi-monoenergetic protons accelerated by a laser beam without increasing the input power. This improvement is accomplished by first irradiating the foil several wave periods with circular polarization and then switching the laser to linear polarization. The polarization switch increases the electron temperature and thereby moves more electrons ahead of the proton layer, resulting in a space charge electric field pushing the protons forwards. The scaling of the proton energy evolution with respect to the switching time is studied, and an optimal switching time is obtained. The proton energy for the case with optimal switching time can reach about 80 MeV with an input laser power of 70 TW, an improvement of more than 30% compared to the case without polarization switch.

  14. Laser accelerated protons captured and transported by a pulse power solenoid

    NASA Astrophysics Data System (ADS)

    Burris-Mog, T.; Harres, K.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.

    2011-12-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  15. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  16. SOLAR INTERACTING PROTONS VERSUS INTERPLANETARY PROTONS IN THE CORE PLUS HALO MODEL OF DIFFUSIVE SHOCK ACCELERATION AND STOCHASTIC RE-ACCELERATION

    SciTech Connect

    Kocharov, L.; Laitinen, T.; Vainio, R.; Afanasiev, A.; Mursula, K.; Ryan, J. M.

    2015-06-10

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.

  17. Medical Implication of Quasi-monoenergetic Proton Generated from Laser Acceleration of Ultra-thin Multi-Ion Foil

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Chang; Shao, Xi; Su, Jao-Jang; Liu, Chuan-Sheng; He, Minqing; Eliasson, Bengt; Sagdeev, Roald

    2011-10-01

    Recent work by Liu et al. [2011] (presented in this conference) shows that high quality quasi-monoenergetic proton beams can be generated in laser acceleration of an ultra-thin multi-ion, i.e. carbon-proton, foil. The proton acceleration is due to the combination of radiation pressure and heavy-ion Coulomb repulsion. Using a normalized peak laser amplitude of a0 = 5 and a carbon-proton target with 10% protons, our PIC simulation shows that the resulting quasi-monoenergetic (energy spread < 10%) proton energy is ~ 70 MeV. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, simulations are carried out to model the interaction of protons with water and determine the radiation dosage deposition for particle beams produced from the PIC simulation of laser acceleration of multi-ion target. We used the SRIM code to calculate the depth and lateral dose distribution of protons energized by laser radiation pressure. The overall dosage deposition map from the proton beam is derived by superposing the radiation dosage contributed from each particle fed from the PIC simulation. Comparison between the dosage map produced from quasi-monoenergetic protons generated from laser acceleration of single ion and multi-ion targets is also presented.

  18. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator.

    PubMed

    Coutrakon, G; Miller, D; Kross, B J; Anderson, D F; DeLuca, P; Siebers, J

    1991-01-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10(10) and 10(11) protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-microns-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm2 and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10(10) photoelectrons per second. In a 1-ms time bin there will be approximately 10(7) photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10(4) Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10(3) protons can be observed suggesting a dynamic range in excess of 10(5) is available.

  19. A proton medical accelerator by the SBIR route: An example of technology transfer

    SciTech Connect

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig.

  20. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    NASA Astrophysics Data System (ADS)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  1. Proton Contribution to K-Shell Excitation at Diffusive Shock Acceleration Sites

    NASA Astrophysics Data System (ADS)

    Kamae, Tuneyoshi; Cohen-Tanugi, J.; Lee, S.; Ellison, D. C.; Gu, M. F.

    2008-03-01

    Evidence for proton acceleration has been sought in TeV gamma-ray spectra observed at particle acceleration sites in Galactic supernova remnants (SNRs) but definitive conclusion has not yet been reached. We show in this paper that a high proton flux impinging into a dense molecular cloud will accompany Fe K-shell line X-ray emission at an intensity possibly observable with high-resolution imaging X-ray spectrometers currently operational. Inner atomic levels can be ionized or excited by protons as well as by electrons. X-ray line fluorescences by electrons are always accompanied by the bremsstrahlung X-ray continuum. Accelerated protons, on the other hand, can contribute to X-ray lines but not to the continuum X-ray spectrum. Until now the contribution of protons (and nuclei) have been ignored in the line X-ray analysis. We present the K-shell line fluorescence cross-sections as functions of the incident electron and proton energies for the neutral, He-like, and H-like Fe atoms to facilitate future broadband analyses involving hard X-ray detectors, GLAST-Large Area Telescope, and TeV gamma-ray telescopes. Expected K-shell line spectra is shown for the proton and electron fluxes predicted by a non-linear diffusive shock acceleration model of a young SNR imbedded in a gaseous environment with density of 10/cm3. The proton contribution can be interpreted as an anomalously large line-to-continuum ratio or equivalently as a high metallic abundance. In this relation, we also present the line-to-continuum ratio using a precision bremsstrahlung cross-sections using the computer code PENELOPE. Existing measurements on Fe K-shell line intensity and line-to-continuum ratio (or absence thereof) set upperlimits to the proton flux at acceleration sites in high gas density environment. Atomic line fluorescence by protons will become an interesting research theme for the micro-calorimeter to be installed aboard the NeXT mission of JAXA and NASA.

  2. High-energy gamma-ray emission from solar flares: Constraining the accelerated proton spectrum

    NASA Technical Reports Server (NTRS)

    Alexander, David; Dunphy, Philip P.; Mackinnon, Alexander L.

    1994-01-01

    Using a multi-component model to describe the gamma-ray emission, we investigate the flares of December 16, 1988 and March 6, 1989 which exhibited unambiguous evidence of neutral pion decay. The observations are then combined with theoretical calculations of pion production to constrain the accelerated proton spectra. The detection of pi(sup 0) emission alone can indicate much about the energy distribution and spectral variation of the protons accelerated to pion producing energies. Here both the intensity and detailed spectral shape of the Doppler-broadened pi(sup 0) decay feature are used to determine the spectral form of the accelerated proton energy distribution. The Doppler width of this gamma-ray emission provides a unique diagnostic of the spectral shape at high energies, independent of any normalisation. To our knowledge, this is the first time that this diagnostic has been used to constrain the proton spectra. The form of the energetic proton distribution is found to be severely limited by the observed intensity and Doppler width of the pi(sup 0) decay emission, demonstrating effectively the diagnostic capabilities of the pi(sup 0) decay gamma-rays. The spectral index derived from the gamma-ray intensity is found to be much harder than that derived from the Doppler width. To reconcile this apparent discrepancy we investigate the effects of introducing a high-energy cut-off in the accelerated proton distribution. With cut-off energies of around 0.5-0.8 GeV and relatively hard spectra, the observed intensities and broadening can be reproduced with a single energetic proton distribution above the pion production threshold.

  3. Proton acceleration by 3D magnetic reconnection in solar flares

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Dalla, S.

    2007-05-01

    High energy charged particles are an important feature of solar activity such as flares, and indeed non thermal particles play a significant role in flare energy balance. Magnetic reconnection is the primary energy release mechanism in flares, and the strong DC electric fields associated with this reconnection may well be the origin of the high energy charged particles. Whilst particle acceleration has been widely studied for 2D configurations, little is known about 3D configurations. We investigate particle acceleration using a test particle approach, in the simplest 3D reconnection configuration, a 3D magnetic null point. Two modes of reconnection are possible: with a strong current filament along the "spine" field line connecting to the null, or with a sheet current at the "fan" plane of field lines emerging from the null. Using simple model fields, incorporating intiially only thee ideal reconnection region outside the current sheet (or filament), particle trajectories are investigated and the energy spectra and spatial distribution of accelerated particles are determined. We consider and compare fan and spine reconnection, and determine how the properties of the accelerated particles depend on the parameters of the reonnecting field. We also present preliminary results using more realistic, self consistent model fields.

  4. Enhanced TNSA acceleration with 0.1-1 PW lasers

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Klimo, O.; Kim, I. J.; Prokupek, J.; Limpouch, Jiri; Jeong, T. M.; Mocek, T.; Psikal, J.; Kim, H. T.; Proska, J.; Nam, K. H.; Choi, I. W.; Levato, T.; Stolcova, L.; Lee, S. K.; Krus, M.; Novotny, F.; Sung, J. H.; Kaufman, J.; Yu, T. J.; Korn, G.

    2013-05-01

    The enhancement of laser-driven proton acceleration mechanism in TNSA regime has been demonstrated through the use of advanced nanostructured thin foils. The presence of a monolayer of polystyrene nanospheres on the target frontside has drastically enhanced the absorption of the incident laser beam, leading to a consequent increase in the maximum proton beam energy and total laser conversion efficiency. The experimental measurements have been carried out at the 100 TW and 1 PW laser systems available at the APRI-GIST facility. Experimental results and comparison with particle-in-cell numerical simulations are presented and discussed.

  5. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  6. Electromagnetic Modeling of Cavities and Power Couplers for Sc = High-Current Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Krawczyk, Frank

    1998-04-01

    Newly proposed accelerator applications such as Accelerator Transmutation of Waste (ATW) or Accelerator Production of Tritium (APT) require high-current, high-power proton accelerators. The Los Alamos National Laboratory design of an APT facility, which can easily be adopted to other applications, proposes a linear accelerator with superconducting rf-cavities for particle acceleration. The required high power levels demand a careful design of the rf-components such as cavities and power couplers. Most of the computational work requires state-of-the-art modeling software that can give fields, rf-losses and beam-interaction quantities in 2D and 3D models. This contribution presents the modeling techniques and results of our work with the MAFIA electromagnetic simulator.

  7. Laser-driven plasma beat-wave propagation in a density-modulated plasma.

    PubMed

    Gupta, Devki Nandan; Nam, In Hyuk; Suk, Hyyong

    2011-11-01

    A laser-driven plasma beat wave, propagating through a plasma with a periodic density modulation, can generate two sideband plasma waves. One sideband moves with a smaller phase velocity than the pump plasma wave and the other propagates with a larger phase velocity. The plasma beat wave with a smaller phase velocity can accelerate modest-energy electrons to gain substantial energy and the electrons are further accelerated by the main plasma wave. The large phase velocity plasma wave can accelerate these electrons to higher energies. As a result, the electrons can attain high energies during the acceleration by the plasma waves in the presence of a periodic density modulation. The analytical results are compared with particle-in-cell simulations and are found to be in reasonable agreement.

  8. Inertial effects in laser-driven ablation

    SciTech Connect

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-07-15

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion.

  9. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  10. Photoisomerization acceleration in retinal protonated Schiff-base models.

    PubMed

    Sinicropi, Adalgisa; Migani, Annapaola; De Vico, Luca; Olivucci, Massimo

    2003-12-01

    The results of new and recently reported CASSCF/6-31G* photoisomerization path computations of a series of models of the 11-cis retinal chromophore of the visual pigment rhodopsin are discussed. The results indicate that, with respect to the chromophore in vacuo, certain structural, intramolecular and environmental factors are capable of speeding up the excited-state decay associated with the cis --> trans isomerization motion. Using suitable protonated Schiff-base models, it is shown that three structural factors can potentially speed up the isomerization: (i) reducing the length of the conjugated chain, (ii) twisting of the hydrocarbon end of the conjugated chain with respect to the protonated Schiff-base end and (iii) ring locking of the conjugated chain with an eight-membered ring. All these factors operate through increasing the slope of the excited-state energy surface and enhancing the coupling between stretching and torsional modes. We argue that the protein catalysis seen in rhodopsin may, at least partly, exploit the same principles.

  11. Structure and dynamics of plasma interfaces in laser-driven hohlraums

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Sio, H.; Frenje, J. A.; Séguin, F. H.; Birkel, A.; Petrasso, R. D.; Wilks, S. C.; Amendt, P. A.; Remington, B. A.; Masson-Laborde, P.-E.; Laffite, S.; Tassin, V.; Betti, R.; Sanster, T. C.; Fitzsimmons, P.; Farrell, M.

    2016-10-01

    Understanding the structure and dynamics of plasma interfaces in laser-driven hohlraums is important because of their potential effects on capsule implosion dynamics. To that end, a series of experiments was performed to explore critical aspects of the hohlraum environment, with particular emphasis on the role of self-generated spontaneous electric and magnetic fields at plasma interfaces, including the interface between fill-gas and Au-blowoff. The charged fusion products (3-MeV DD protons and 14.7-MeV D3He protons generated in shock-driven, D3He filled backlighter capsule) pass through the subject hohlraum and form images on CR-39 nuclear track detectors, providing critical information. Important physics topics, including ion diffusive mix and Rayleigh-Taylor instabilities, will be studied to illuminate ion kinetic dynamics and hydrodynamic instability at plasma interfaces in laser-driven hohlraums. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  12. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    NASA Astrophysics Data System (ADS)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  13. Physics with a high-intensity proton accelerator below 30 GeV

    SciTech Connect

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop.

  14. Proton Acceleration: New Developments in Energy Increase, Focusing and Energy Selection

    SciTech Connect

    D'Humieres, Emmanuel; Fuchs, Julien; Antici, Patrizio; Audebert, Patrick; Brambrink, Erik; Romagnani, Lorenzo; Borghesi, Marco; Cecchetti, Carlo Alberto; Kaluza, Malte; Schreiber, Joerg; Lefebvre, Erik; Malka, Victor; Manclossi, Mauro; Meyroneinc, Samuel; Mora, Patrick; Pepin, Henri; Pipahl, Ariane; Toncian, Toma; Willi, Oswald; Sentoku, Yasuhiko

    2006-11-27

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications. These sources have exceptional properties, i.e. high brightness and high spectral cut-oft high directionality and laminarity, short burst duration. These proton sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications. We have studied the variations of the proton acceleration characteristic time with target and laser parameters. We used these variations to correct one of the model recently developed to predict maximum energies of laser-accelerated protons for low energy, short duration laser pulses. We have also developed an ultra-fast laser-triggered micro-lens that allows tunable control of the beam divergence as well as energy selection, therefore solving two of the major problems that these proton beams were facing. We used PIC simulations to explain the focusing and energy selection mechanisms, and to study the symmetry of the expanding plasma inside the cylinder.

  15. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  16. Absorbed dose measurements at an 800 GeV proton accelerator; Comparison with Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Cossairt, J. D.; Butala, S. W.; Gerardi, M. A.

    1985-08-01

    Shielding design at high energy proton accelerators is often done using Monte Carlo computer simulations. This report compares such predictions with measurements made at proton energies up to 800 GeV. Agreement of the measurements with the calculations is quite good (within 20%) at small radial distances from the beam axis ( R < 0.5 m) while even for a thick soil shield (R ⋍ 5 m) the agreement is acceptable for radiation protection purposes (typically within a factor of two). The scaling with energy of these calculations is found to be in good agreement with a recently published analysis based on the Moyer shielding model. These results are an indication that present techniques of shielding calculations can be extended to those required for higher energy proton accelerators.

  17. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  18. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  19. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  20. Beam Transport in a Compact Dielectric Wall Accelerator for Proton Therapy

    SciTech Connect

    Chen, Y; Caporaso, G; Blackfield, D; Nelson, S D; Poole, B

    2011-03-16

    To attain the highest accelerating gradient in the compact dielectric wall (DWA) accelerator, the DWA will be operated in the 'virtual' traveling mode with potentially non-uniform and time-dependent axial accelerating field profiles, especially near the DWA entrance and exit, which makes beam transport challenging. We have established a baseline transport case without using any external lenses. Results of simulations using the 3-D, EM PIC code, LSP indicate that the DWA transport performance meets the medical specifications for proton treatment. Sensitivity of the transport performance to Blumlein block failure will be presented.

  1. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Luccio, A. U.; MacKay, W. W.; Ptitsyn, V.; Roser, T.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.; Lin, F.; Okamura, M.

    2007-06-13

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  2. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  3. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    NASA Astrophysics Data System (ADS)

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Ptitsyn, V.; Roser, T.; Takano, J.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.

    2007-06-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  4. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  5. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    SciTech Connect

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  6. Collimated proton acceleration in light sail regime with a tailored pinhole target

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2014-06-01

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  7. Collimated proton acceleration in light sail regime with a tailored pinhole target

    SciTech Connect

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  8. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  9. Overview of Laser-Plasma Acceleration Programs in Asia

    SciTech Connect

    Sheng, Z. M.; Zhang, J.

    2010-11-04

    With many high power laser systems ranging from a few TW to multi-100 TW installed in some laboratories in Asia, significant progress on laser-driven wakefield acceleration of electrons has been achieved. Generation of quasi-monoenergetic electron beams from tens of MeV to nearly GeV has been demonstrated. Several programs for ion/proton acceleration aiming at potential medical applications are running or planned based upon their significant theoretical and numerical findings. There are quite a few collaborations existing among Asian research groups.

  10. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  11. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  12. Generation of quasi-monoenergetic protons from a double-species target driven by the radiation pressure of an ultraintense laser pulse

    SciTech Connect

    Pae, Ki Hong; Kim, Chul Min; Nam, Chang Hee

    2016-03-15

    In laser-driven proton acceleration, generation of quasi-monoenergetic proton beams has been considered a crucial feature of the radiation pressure acceleration (RPA) scheme, but the required difficult physical conditions have hampered its experimental realization. As a method to generate quasi-monoenergetic protons under experimentally viable conditions, we investigated using double-species targets of controlled composition ratio in order to make protons bunched in the phase space in the RPA scheme. From a modified optimum condition and three-dimensional particle-in-cell simulations, we showed by varying the ion composition ratio of proton and carbon that quasi-monoenergetic protons could be generated from ultrathin plane targets irradiated with a circularly polarized Gaussian laser pulse. The proposed scheme should facilitate the experimental realization of ultrashort quasi-monoenergetic proton beams for unique applications in high field science.

  13. Warp simulations for capture and control of laser-accelerated proton beams

    SciTech Connect

    Nurnberg, F; Friedman, A; Grote, D P; Harres, K; Logan, B G; Schollmeier, M; Roth, M

    2009-10-22

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that was used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons out balances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Besides the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  14. From Particle Physics to Astroparticle Physics: Proton Decay and the Rise of Non-accelerator Physics

    NASA Astrophysics Data System (ADS)

    Meyer, Hinrich

    The search for proton decay was motivated by simple questions about the content of the observable universe. Why is matter so stable and why do we not see antimatter of primordial origin? The symmetry of the standard model of particle physics would have required that matter and antimatter annihilated in the early universe. In 1968, Sacharov showed that the matter-antimatter asymmetry could have formed in a state of thermal non-equilibrium of the universe, as given in big bang cosmology, together with the well-confirmed C and CP violations, and proton decay. The latter phenomenon could be only investigated in large none-accelerator experiments. The SU(5) extension of the standard model implied a proton lifetime of about 1029 years. With detectors consisting of 1 000 tons of matter and located deep under the Earth surface, such as the French-German Fréjus iron-calorimeter, in the mid 1980s one expected to detect several proton decays per year. Here, we report on the way leading from accelerator laboratories to underground physics, which paradoxically enough turned out to studying cosmic rays. There has not been any evidence for the instability of protons, and lifetime limits of more than 1034 years have been obtained. However, great progress in particle physics and in the physics of cosmic rays could be achieved with neutrinos.

  15. Proton acceleration by multi-terawatt interaction with a near-critical density hydrogen jet

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Feder, Linus; Hine, George; Salehi, Fatholah; Woodbury, Daniel; Su, J. J.; Papadopoulos, Dennis; Zigler, Arie; Milchberg, Howard

    2016-10-01

    We investigate the high intensity laser interaction with thin, near critical density plasmas as a means of efficient acceleration of MeV protons. A promising mechanism is magnetic vortex acceleration, where the ponderomotive force of a tightly focused laser pulse drives a relativistic electron current which generates a strong azimuthal magnetic field. The rapid expansion of this azimuthal magnetic field at the back side of the target can accelerate plasma ions to MeV scale energies. Compared to typical ion acceleration experiments utilizing a laser- thin solid foil interaction, magnetic vortex acceleration in near critical density plasma may be realized in a high density gas jet, making it attractive for applications requiring high repetition rates. We present preliminary experiments studying laser-plasma interaction and proton acceleration in a thin (< 200 μm) near-critical density hydrogen gas jet delivering electron densities 1020 -1021 cm-3 . This research was funded by the United States Department of Energy and the Defense Advanced Research Projects Agency (DARPA) under Contract Number W911-NF-15-C-0217, issued by the Army Research Office.

  16. Stochastic Re-Acceleration of Protons in the Downstream Region of a Coronal Shock

    NASA Astrophysics Data System (ADS)

    Afanasiev, A. N.; Kocharov, L. G.; Vainio, R. O.

    2011-12-01

    Recent SDO/AIA observations of CME in the low corona have finally confirmed the formation of coronal shock waves in the low corona. This supports the viability of shock acceleration as the mechanism for the genesis of large gradual SEP events. However, a careful analysis of observational data of the early phases of large SEP events indicates that it might be hard to understand some of the spectral characteristics at deca-MeV energies in detail relying on a model of diffusive shock acceleration alone. We have recently presented a test-particle model where coronal shock acceleration and stochastic re-acceleration in the shock downstream region can account for the hard spectral features in the deca-MeV range. The problem of a test-particle calculation in the case of stochastic acceleration is, however, that a time-stationary wave field acts as an infinite energy reservoir for the particles being accelerated by turbulence. To account for this problem, we employ our self-consistent wave-particle interaction simulation code to compute the evolution of the wave frequency and proton energy spectra in the downstream region of a coronal shock. Parameter space allowed by different types of turbulence generation models is explored and regions favorable to explaining the proton energy spectra in large gradual events are identified.

  17. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Laser driven hydrodynamic instability experiments. Revision 1

    SciTech Connect

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  19. Laser driven instabilities in inertial confinement fusion

    SciTech Connect

    Kruer, W.L.

    1990-06-04

    Parametric instabilities excited by an intense electromagnetic wave in a plasma is a fundamental topic relevant to many applications. These applications include laser fusion, heating of magnetically-confined plasmas, ionospheric modification, and even particle acceleration for high energy physics. In laser fusion, these instabilities have proven to play an essential role in the choice of laser wavelength. Characterization and control of the instabilities is an ongoing priority in laser plasma experiments. Recent progress and some important trends will be discussed. 8 figs.

  20. Nonlinear surface plasma wave induced target normal sheath acceleration of protons

    SciTech Connect

    Liu, C. S.; Tripathi, V. K. Shao, Xi; Liu, T. C.

    2015-02-15

    The mode structure of a large amplitude surface plasma wave (SPW) over a vacuum–plasma interface, including relativistic and ponderomotive nonlinearities, is deduced. It is shown that the SPW excited by a p-polarized laser on a rippled thin foil target can have larger amplitude than the transmitted laser amplitude and cause stronger target normal sheath acceleration of protons as reported in a recent experiment. Substantial enhancement in proton number also occurs due to the larger surface area covered by the SPW.

  1. Equation of State Measurements of Dense Plasmas Heated by Laser Accelerated MeV Protons

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Bernstein, Aaron; Cho, Byoung-Ick; Grigsby, Will; Dalton, Allen; Shepherd, Ronnie; Ping, Yuan; Chen, Hui; Widmann, Klaus; Ozterhoz, Jens; Ditmire, Todd

    2008-04-01

    Using a fast proton beam generated with an ultra intense laser we have generated and measured the equation of state of solid density plasma at temperatures near 20 eV, a regime in which there have been few previous experimental measurements. The laser accelerated a directional, short pulse of MeV protons, which isochorically heated a solid slab of aluminum. Using two simultaneous, temporally resolved measurements we observed the thermal emission and expansion of the heated foil with picosecond time resolution. With these data we were able to confirm, to within 10%, the SESAME equation-of-state table in this dense plasma region.

  2. Field-Guided Proton Acceleration at Reconnecting x-Points in Flares

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; McCLEMENTS, K. G.; Fletcher, L.; Thyagaraja, A.

    2003-06-01

    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to γ-ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.

  3. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  4. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  5. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams.

    PubMed

    Luo, W; Li, J; Fourkal, E; Fan, J; Xu, X; Chen, Z; Jin, L; Price, R; Ma, C-M

    2008-12-21

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying deltaE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has

  6. Evaluation of neutron dose equivalent from the Mevion S250 proton accelerator: measurements and calculations

    NASA Astrophysics Data System (ADS)

    Chen, Kuan Ling; Bloch, Charles D.; Hill, Patrick M.; Klein, Eric E.

    2013-12-01

    Neutron production is of concern for proton therapy, especially for passive scattering proton beam delivery methods. The levels of neutron dose equivalent vary significantly with system design and treatment parameters. The purpose of this study was to examine neutron dose equivalent per therapeutic dose (H/D) around the Mevion S250 proton therapy system, a novel design of proton therapy systems. The benchmark comparisons between measurement and simulation were found to be within a factor of 2 for most cases. The H/D values were evaluated as a function of various parameters. The results showed that, at a standard reference condition (10 × 10 cm2 field size, distance 1 m detector-to-isocenter lateral to the primary proton beam direction), the H/D values range from 0.72 to 3.37 mSv Gy-1 for all configurations studied. The H/D values generally (1) decreased as the neutron detectors moved away from the isocenter, (2) decreased with increasing aperture field sizes, (3) increased with increasing angle from the initial beam axis and (4) were independent of treatment nozzle position. The H/D trends were consistent with other existing passive scattering proton accelerators reported in the literature.

  7. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  8. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  9. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    SciTech Connect

    Brantov, A. V. Bychenkov, V. Yu.

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  10. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  11. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    NASA Astrophysics Data System (ADS)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  12. Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator.

    PubMed

    Pukhov, A; Kumar, N; Tückmantel, T; Upadhyay, A; Lotov, K; Muggli, P; Khudik, V; Siemon, C; Shvets, G

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  13. Protons acceleration in thin CH foils by ultra-intense femtosecond laser pulses

    SciTech Connect

    Kosarev, I. N.

    2015-03-15

    Interaction of femtosecond laser pulses with the intensities 10{sup 21}, 10{sup 22 }W/cm{sup 2} with CH plastic foils is studied in the framework of kinetic theory of laser plasma based on the construction of propagators (in classical limit) for electron and ion distribution functions in plasmas. The calculations have been performed for real densities and charges of plasma ions. Protons are accelerated both in the direction of laser pulse (up to 1 GeV) and in the opposite direction (more than 5 GeV). The mechanisms of forward acceleration are different for various intensities.

  14. Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator

    SciTech Connect

    Pukhov, A.; Kumar, N.; Tueckmantel, T.; Upadhyay, A.; Lotov, K.; Muggli, P.; Khudik, V.; Siemon, C.; Shvets, G.

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  15. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles.

  16. Mechanical engineering of a 75-keV proton injector for the Low Energy Demonstration Accelerator

    SciTech Connect

    Hansborough, L.D.; Hodgkins, D.J.; Meyer, E.A.; Schneider, J.D.; Sherman, J.D.; Stevens, R.R. Jr.; Zaugg, T.J.

    1997-10-01

    A dc injector capable of 75-keV, 110-mA proton beam operation is under development for the Low Energy Demonstration Accelerator (LEDA) project at Los Alamos. The injector uses a dc microwave proton source which has demonstrated 98% beam availability while operating at design parameters. A high-voltage isolation transformer is avoided by locating all ion source power supplies and controls at ground potential. The low-energy beam transport system (LEBT) uses two solenoid focusing and two steering magnets for beam matching and centroid control at the RFQ matchpoint. This paper will discuss proton source microwave window design, H{sub 2} gas flow control, vacuum considerations, LEBT design, and an iris for beam current control.

  17. Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.; Parys, P.; Rosiński, M.; Wołowski, J.; Szydłowski, A.; Antici, P.; Fuchs, J.; Mancic, A.

    2008-09-01

    The results of studies of high-intensity proton beam generation from thin (1-3 μm) solid targets irradiated by 0.35 ps laser pulse of energy up to 15 J and intensity up to 2×1019 W/cm2 are reported. It is shown that the proton beams of terawatt power and intensity around 1018 W/cm2 at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The proton beam parameters remarkably depend on the target structure and can be significantly increased with the use of a double-layer Au/PS target (plastic covered by 0.1-0.2 μm Au front layer).

  18. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  19. Isochoric heating of solids by laser-accelerated protons: Experimental characterization and self-consistent hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mancic, A.; Robiche, J.; Antici, P.; Audebert, P.; Blancard, C.; Combis, P.; Dorchies, F.; Faussurier, G.; Fourmaux, S.; Harmand, M.; Kodama, R.; Lancia, L.; Mazevet, S.; Nakatsutsumi, M.; Peyrusse, O.; Recoules, V.; Renaudin, P.; Shepherd, R.; Fuchs, J.

    2010-01-01

    A study of isochoric heating of Al foil by laser-accelerated proton beam is presented, coupling self-consistent hydrodynamic simulations (including proton stopping) with experimental measurements. The proton source that induces the heating has been characterized experimentally and the induced heating has been inferred through critical density expansion velocity measurement. The low-energy part of the proton spectrum that plays the dominant part in the heating process has been studied in detail. The experimental results are compared with the results of 1-dimensional hydrodynamic simulations that use as input the measured proton source and good agreement between the two is found using the SESAME EOS.

  20. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These resultsmore » contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  1. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m–1) and magnetic (~104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  2. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  3. New methods for high current fast ion beam production by laser-driven accelerationa)

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  4. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas.

    PubMed

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Sefkow, Adam B; Shah, Rahul C; Fernández, Juan C

    2015-12-11

    Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼10(12) V m(-1)) and magnetic (∼10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  5. Fast fingerprinting of arson accelerants by proton transfer reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whyte, Christopher; Wyche, Kevin P.; Kholia, Mitesh; Ellis, Andrew M.; Monks, Paul S.

    2007-06-01

    Current techniques for the forensic analysis of fire debris as a means to detect the presence of arson accelerants normally use off-line sampling with the collection of accelerant vapours on activated charcoal strips and further pre-chemistry prior to analysis. An alternative method for the direct detection of arson accelerants that requires no sample pre-treatment is described here. The analysis uses proton transfer reaction mass spectrometry (PTR-MS), incorporating a time-of-flight mass spectrometer for rapid multichannel compound detection. It is demonstrated that using PTR-MS volatile organic compound (VOC) fingerprints of a given fire accelerant can be collected by simple head space analysis of accelerant burned materials. Using a set of the four most common arson accelerants and four common household building materials, characteristic VOC fingerprints are shown to provide successful identification of the accelerant used to burn each material. There is the potential to develop this methodology for the rapid screening of large numbers of samples.

  6. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    SciTech Connect

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  7. How to produce a reactor neutron spectrum using a proton accelerator

    SciTech Connect

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-01-01

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  8. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    DOE PAGES

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less

  9. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  10. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  11. Conceptual design of a nonscaling fixed field alternating gradient accelerator for protons and carbon ions for charged particle therapy

    NASA Astrophysics Data System (ADS)

    Peach, K. J.; Aslaninejad, M.; Barlow, R. J.; Beard, C. D.; Bliss, N.; Cobb, J. H.; Easton, M. J.; Edgecock, T. R.; Fenning, R.; Gardner, I. S. K.; Hill, M. A.; Owen, H. L.; Johnstone, C. J.; Jones, B.; Jones, T.; Kelliher, D. J.; Khan, A.; Machida, S.; McIntosh, P. A.; Pattalwar, S.; Pasternak, J.; Pozimski, J.; Prior, C. R.; Rochford, J.; Rogers, C. T.; Seviour, R.; Sheehy, S. L.; Smith, S. L.; Strachan, J.; Tygier, S.; Vojnovic, B.; Wilson, P.; Witte, H.; Yokoi, T.

    2013-03-01

    The conceptual design for a nonscaling fixed field alternating gradient accelerator suitable for charged particle therapy (the use of protons and other light ions to treat some forms of cancer) is described.

  12. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-15

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  13. Proton and Helium Injection Into First Order Fermi Acceleration at Shocks: Hybrid Simulation and Analysis

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Malkov, Mikhail; Sagdeev, Roald; Liseykina, Tatjana; Hanusch, Adrian

    2016-10-01

    Elemental composition of galactic cosmic rays (CR) probably holds the key to their origin. Most likely, they are accelerated at collisionless shocks in supernova remnants, but the acceleration mechanism is not entirely understood. One complicated problem is ``injection'', a process whereby the shock selects a tiny fraction of particles to keep on crossing its front and gain more energy. Comparing the injection rates of particles with different mass to charge ratio is a powerful tool for studying this process. Recent advances in measurements of CR He/p ratio have provided particularly important new clues. We performed a series of hybrid simulations and analyzed a joint injection of protons and Helium, in conjunction with upstream waves they generate. The emphasis of this work is on the bootstrap aspects of injection manifested in particle confinement to the shock and, therefore, their continuing acceleration by the self-driven waves. The waves are initially generated by He and protons in separate spectral regions, and their interaction plays a crucial role in particle acceleration. The work is ongoing and new results will be reported along with their analysis and comparison with the latest data from the AMS-02 space-based spectrometer. Work supported Grant RFBR 16-01-00209, NASA ATP-program under Award NNX14AH36G, and by the US Department of Energy under Award No. DE-FG02-04ER54738.

  14. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.

  15. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  16. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    SciTech Connect

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-06-15

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches.

  17. Design of a non-scaling FFAG accelerator for proton therapy

    SciTech Connect

    Trbojevic, D.; Ruggiero, A.G.; Keil, E.; Neskovic, N.; Belgrade, Vinca; Sessler, A.

    2005-04-01

    In recent years there has been a revival of interest in Fixed Field Alternating Gradient (FFAG) accelerators. In Japan a number have been built, or are under construction. A new non-scaling approach to the FFAG reduces the required orbit offsets during acceleration and the size of the required aperture, while maintaining the advantage of the low cost magnets associated with fixed fields. An advantage of the non-scaling FFAG accelerator, with respect to synchrotrons, is the fixed field and hence the possibility of high current and high repetition rate for spot scanning. There are possible advantages of the nonscaling design with respect to fixed-field cyclotrons. The non-scaling FFAG allows strong focusing and hence smaller aperture requirements compared to scaling designs, thus leading to very low losses and better control over the beam. We present, here, a non-scaling FFAG designed to be used for proton therapy.

  18. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  19. Recent developments in laser-driven polarized sources

    NASA Astrophysics Data System (ADS)

    Young, L.; Coulter, K. P.; Holt, R. J.; Kinney, E. R.; Kowalczyk, R. S.; Potterveld, D. H.; Zghiche, A.

    1990-12-01

    Recent progress in the performance of laser-driven sources of polarized hydrogen and deuterium is described. The current status of the prototype source, I = 2.5 times 10(exp 17)s(exp -1), polarization = 0.29 (including atomic fraction), is comparable to classical Stern-Gerlach sources. A scheme to improve source performance by approximately an order of magnitude, using a combination of optical-pumping spin-exchange and RF transitions, is outlined.

  20. Laser-IORT: a laser-driven source of relativistic electrons suitable for Intra-Operative Radiation Therapy of tumors

    SciTech Connect

    Gamucci, A.; Giulietti, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, Ph.; Galy, J.; Giulietti, D.; Hamilton, D. J.; Sarri, G.

    2010-02-02

    In a recent experiment [1] a high efficiency regime of stable electron acceleration to kinetic energies ranging from 10 to 40 MeV has been achieved. The main parameters of the electron bunches are comparable with those of bunches provided by commercial Radio-Frequency based Linacs currently used in Hospitals for Intra-Operative Radiation Therapy (IORT). IORT is an emerging technique applied in operating theaters during the surgical treatment of tumors. Performances and structure of a potential laser-driven Hospital accelerator are compared in detail with the ones of several commercial devices. A number of possible advantages of the laser based technique are also discussed.