Science.gov

Sample records for laser-induced dynamic gratings

  1. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  2. Laser-induced thermal dynamic gratings in three-layer structures: active and nonactive substrates

    NASA Astrophysics Data System (ADS)

    Ivakin, E. V.; Makarova, Ludmila; Rubanov, Alexander S.; Filippov, Valery N.

    1998-11-01

    Time evolution of the intensity of light diffracted by phase grating which is induced by thermal dynamic grating (TDG) in liquid film between glass or quartz substrates is studied theoretically and experimentally. Due to heat exchange at the film boundaries the thermal gratings are also formed in substrates. The diffraction intensity of substrates can be less or comparable to that of film (non-active and active substrates, respectively). The experimental results are in a good agreement with the theoretical calculations carried out for the case when the film thickness is less the TDG period. It is shown the essential influence of the film thickness and the active-substrates contribution on the evolution of the intensity of diffracted light.

  3. Laser-induced transient grating setup with continuously tunable period

    SciTech Connect

    Vega-Flick, A.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Khanolkar, A.; Abi Ghanem, M.; Boechler, N.; Alvarado-Gil, J. J.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  4. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect

    Pennington, D.M.

    1992-04-01

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  5. Femtosecond laser-induced periodic structure adjustments based on electron dynamics control: from subwavelength ripples to double-grating structures.

    PubMed

    Shi, Xuesong; Jiang, Lan; Li, Xin; Wang, Sumei; Yuan, Yanping; Lu, Yongfeng

    2013-10-01

    This study proposes a method for adjusting subwavelength ripple periods and the corresponding double-grating structures formed on fused silica by designing femtosecond laser pulse trains based on localized transient electron density control. Four near-constant period ranges of 190-490 nm of ripples perpendicular to the polarization are obtained by designing pulse trains to excite and modulate the surface plasmon waves. In the period range of 350-490 nm, the double-grating structure is fabricated in one step, which is probably attributable to the grating-assisted enhanced energy deposition and subsequent thermal effects.

  6. Laser induced damage in multilayer dielectric gratings due to ultrashort laser pulses

    SciTech Connect

    Shore, B.W.; Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    1995-05-26

    Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses. When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser, their susceptibility to laser induced damage constitutes a limitation on the peak intensities that can be reached. To obtain robust gratings, it is necessary to understand the causes of short-pulse damage, and to recognize the range of design options for high efficiency gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the inevitable light absorption that accompanies conductivity, we have developed designs for high efficiency reflection gratings that use only transparent dielectric materials. These combine the reflectivity of a multilayer dielectric stack with a diffraction grating. We report here our present understanding of short-pulse laser induced damage, as it applies to dielectric gratings.

  7. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    NASA Astrophysics Data System (ADS)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  8. Development of Laser-induced Grating Spectroscopy for Underwater Temperature Measurement in Shock Wave Focusing Regions

    NASA Technical Reports Server (NTRS)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2003-01-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues.

  9. Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements

    SciTech Connect

    Weisberg, Arel; Craparo, Joseph; De Saro, Robert; Pawluczyk, Romuald

    2010-05-01

    We evaluate a new transmission grating spectrometer for standoff laser-induced breakdown spectroscopy (LIBS) measurements. LIBS spectra collected from standoff distances are often weak, with smaller peaks blending into the background and noise. Scattered light inside the spectrometer can also contribute to poor signal-to-background and signal-to-noise ratios for smaller emission peaks. Further, collecting standoff spectra can be difficult because most spectrometers are designed for laboratory environments and not for measurements in the field. To address these issues, a custom-designed small, lightweight transmission grating spectrometer with no moving parts was built that is well suited for standoff LIBS field measurements. The performance of the spectrometer was quantified through 10 m standoff LIBS measurements collected from aluminum alloy samples and measurements from spectra of a Hg-Ar lamp. The measurements were compared to those collected using a Czerny-Turner reflective grating spectrometer that covered a similar spectral range and used the same ICCD camera. Measurements using the transmission grating spectrometer had a 363% improved signal-to-noise ratio when measured using the 669 nm aluminum emission peak.

  10. Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air

    NASA Astrophysics Data System (ADS)

    Kong, Fanyu; Jin, Yunxia; Huang, Haopeng; Zhang, Hong; Liu, Shijie; He, Hongbo

    2015-10-01

    In this study, laser damage tests of multilayer dielectric gratings (MDGs) are performed in vacuum (5×10-4 Pa) and in air at a wavelength of 1053 nm with pulse widths of 0.56 ps ~9.7 ps. The laser-induced damage threshold (LIDT) of MDGs in vacuum/air ranges from 2.1/2.2 J/cm2 to 4.4/4.8 J/cm2 for laser beams of normal incidence. The LIDT of MDGs follows a τ0.26 scaling in the pulse width regime considered. The typical damage morphologies in the two environments caused by the near threshold pulse were observed using a scanning electron microscope (SEM); the results indicate that the damage features of MDGs in vacuum are the same as those in air. The testing results reveal that a clean vacuum environment neither changes the laser damage mechanism nor lowers the LIDT of MDGs.

  11. Dynamical behavior of laser-induced nanoparticles during remote processing

    NASA Astrophysics Data System (ADS)

    Scholz, Tobias; Dickmann, Klaus; Ostendorf, Andreas

    2014-02-01

    Laser remote processing is used in a wide field of industrial applications. Among other things, it is characterized by flexible beam guidance in combination with high processing velocities. But in most cases process gas support in the interaction zone is omitted. Consequently, interaction mechanism between the vapor plume and the incident laser radiation can dynamically affect the process stability. Referring to remote welding with high brilliant laser sources having a wavelength around 1 μm, the interaction between the incident laser radiation and formed particles plays an important role. The presented work shows results of the investigation of the laser-induced particle formation during the laser welding of stainless steel with a 2 kW fiber laser under remote conditions. It is therefore concentrated on the dynamical behavior of the laser-induced particle formation and the dependence of the particle formation on the laser beam power. TEM images of formed particles were analyzed. In addition, the radiation of a LED was directed through the vapor plume. On the one hand, the dynamic of the attenuation was considered. On the other hand, the Rayleigh approximation was used in order to evaluate the detected signals.

  12. Generation of inhomogeneous bulk plane acoustic modes by laser-induced thermoelastic grating near mechanically free surface

    SciTech Connect

    Gusev, Vitalyi

    2010-06-15

    The detailed theoretical description of how picosecond plane shear acoustic transients can be excited by ultrafast lasers in isotropic media is presented. The processes leading to excitation of inhomogeneous plane bulk compression/dilatation (c/d) and shear acoustic modes by transient laser interference pattern at a mechanically free surface of an elastically isotropic medium are analyzed. Both pure modes are dispersive. The modes can be evanescent or propagating. The mechanical displacement vector in both propagating modes is oriented obliquely to the mode propagation direction. Consequently the c/d mode is not purely longitudinal and shear mode is not purely transversal. Each of the propagating modes has a plane wave front parallel to the surface and the amplitude harmonically modulated along the surface. Inhomogeneous shear acoustic mode cannot be generated in isotropic medium by thermal expansion and is excited by mode conversion of laser-generated inhomogeneous c/d acoustic mode incident on the surface. The spectral transformation function of the laser radiation conversion into shear modes has one of its maxima at a frequency corresponding to transmission from laser-induced generation of propagating to laser-induced generation of evanescent c/d modes. At this particular frequency the shear waves are due to their Cherenkov emission by bulk longitudinal acoustic waves skimming along the laser-irradiated surface, which are generated by laser-induced gratings synchronously. There exists an interval of frequencies where only shear acoustic modes are launched in the material by laser-induced grating, while c/d modes generated by thermoelastic optoacoustic conversion are evanescent. Propagating picosecond plane shear acoustic fronts excited by interference pattern of fs-ps laser pulses can be applied for the determination of the shear rigidity by optoacoustic echoes diagnostics of thin films and coatings. Theoretical predictions are correlated with available results

  13. Trigonometric pulse envelopes for laser-induced quantum dynamics

    NASA Astrophysics Data System (ADS)

    Barth, I.; Lasser, C.

    2009-12-01

    We relate powers of trigonometric functions to Gaussians by proving that properly truncated cosn functions converge to a Gaussian as n tends to infinity. For an application, we analyse the laser-induced population transfer |X1Σ+rang → |A1Πxrang in a two-level model system of aluminium monochloride (AlCl) with fixed nuclei. We apply linearly x-polarized ultraviolet laser pulses with a trigonometric envelope function, whose square has full width at half-maximum of 2.5 fs and 5.0 fs. Studying population dynamics and optimized laser parameters, we find that the optimal field amplitude for trigonometric pulses with n = 20 and n = 1000 has a relative difference of 1%, which is below experimental resolution.

  14. Dynamic response of shear thickening fluid under laser induced shock

    SciTech Connect

    Wu, Xianqian Yin, Qiuyun; Huang, Chenguang; Zhong, Fachun

    2015-02-16

    The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.

  15. Temporal development of optically etched gratings: a new method of investigating laser-induced damage.

    PubMed

    Cutter, M A; Key, P Y; Little, V I

    1974-06-01

    An optical etching technique for producing small diffraction gratings, in which a thin metallic film set at an angle to the axis of a ruby laser cavity acted as a Q-switch in the operation of that laser, was previously reported. Here we report a comprehensive investigation of the formation of such etched gratings by the effect of laser light on a thin film external to the laser cavity. A time resolved investigation has been made of the development of such gratings in a number of metallic films, and the effect of film thickness, incident laser intensity, and angular orientation of the film has been studied. PMID:20126205

  16. Behavior of femtosecond laser-induced eccentric fiber Bragg gratings at very high temperatures.

    PubMed

    Chikh-Bled, Hicham; Chah, Karima; González-Vila, Álvaro; Lasri, Boumediène; Caucheteur, Christophe

    2016-09-01

    In this work, eccentric Bragg gratings are photoinscribed in telecommunication-grade optical fibers. They are localized close to the core-cladding interface, yielding strong cladding mode resonance couplings and high photoinduced birefringence. Their transmitted amplitude spectrum is measured with polarized light while they are exposed to temperature changes up to 900°C. Despite the gratings' overall good thermal stability that confirms their robustness for high-temperature refractometry, we report an interesting polarization effect depending on both the cladding mode resonance family and mode order. While the core mode birefringence decreases with growing temperatures, certain cladding mode resonances show an increase in wavelength splitting between their orthogonally polarized components. This differential behavior is of high interest in developing high-resolution, multiparametric sensing platforms. PMID:27607969

  17. Laser-induced effects in carbon suspensions and diffraction by volume gratings in liquids

    NASA Astrophysics Data System (ADS)

    Chen, Huxiong

    1997-12-01

    Two projects are covered in this thesis. The first project is an investigation of acoustic and chemical effects generated by high power laser pulses in carbon suspensions. Carbon particles absorb energy from the laser pulses and are heated to a few thousand degrees C. The high temperatures initiate reactions between carbon and the surrounding water generating permanent gases. Hydrogen, carbon monoxide, carbon dioxide, and several hydrocarbons have been identified as product gases. With respect to sound wave generation the change in volume of the material owing to thermal and chemical expansion is discussed. A thermodynamic theory governing the generation of the photoacoustic waves from these two mechanism is developed. A comparison between photoacoustic effects caused mainly by the chemical mechanism and those generated by the thermal mechanism is given. The chemical mechanism gives an acoustic signal 2,000 times greater in magnitude than would be generated by purely thermal mechanism (normalized to absorption coefficient). Structural changes of the carbon particle are reported. The originally solid particles first become large hollow particles and then disappear according to electron microscopy. The second project deals with diffraction by volume gratings. A rigorous theory governing non-attentuated planar volume gratings developed by Gaylord and Moharam is utilized. A generalized theory incorporating attentuation along the depth for planar volume gratings with TE incident probe beams is developed. Experiments have been carried out to investigate the diffraction of volume gratings generated by two coherent nanosecond laser pulses in methanol. The magnitude of the change in index of refraction is extracted. Criteria for delineation of different diffraction regimes are discussed. Approximate solutions to the first order coupled-wave equations are given substantiating the criteria.

  18. Reconstruction of laser-induced cavitation bubble dynamics based on a Fresnel propagation approach.

    PubMed

    Devia-Cruz, Luis Felipe; Camacho-López, Santiago; Cortés, Víctor Ruiz; Ramos-Muñiz, Victoria; Pérez-Gutiérrez, Francisco G; Aguilar, Guillermo

    2015-12-10

    A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7)   fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble. PMID:26836867

  19. Mid-Infrared Pumped Laser-Induced Thermal Grating Spectroscopy for Detection of Acetylene in the Visible Spectral Range.

    PubMed

    Sahlberg, Anna-Lena; Kiefer, Johannes; Aldén, Marcus; Li, Zhongshan

    2016-06-01

    We present mid-infrared laser-induced thermal grating spectroscopy (IR-LITGS) using excitation radiation around 3 µm generated by a simple broadband optical parametric oscillator (OPO). Acetylene as a typical small hydrocarbon molecule is used as an example target species. A mid-infrared broadband OPO pumped by the fundamental output of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was used to generate the pump beams, with pulse energies of 6-10 mJ depending on the wavelength. The line width of the OPO idler beam was ∼5 cm(-1), which is large enough to cover up to six adjacent acetylene lines. The probe beam was the radiation of a 532 nm cw solid state laser with 190 mW output power. Signals were generated in atmospheric pressure gas flows of N2, air, CO2 and Ar with small admixtures of C2H2 A detection limit of less than 300 ppm was found for a point measurement of C2H2 diluted in N2 As expected, the oscillation frequency of the IR-LITGS signal was found to have a large dependency on the buffer gas, which allows determination of the speed of sound. Moreover, the results reveal a very strong collisional energy exchange between C2H2 and CO2 compared to the other gases. This manifests as significant local heating. In summary, the MIR-LITGS technique enables spectroscopy of fundamental vibrational transitions in the infrared via detection in the visible spectral range. PMID:27091904

  20. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP).

  1. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP). PMID:27150764

  2. Probing Molecular Dynamics by Laser-Induced Backscattering Holography.

    PubMed

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H_{2} and D_{2} molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H_{2} and D_{2} with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules. PMID:27081975

  3. Probing Molecular Dynamics by Laser-Induced Backscattering Holography

    NASA Astrophysics Data System (ADS)

    Haertelt, Marko; Bian, Xue-Bin; Spanner, Michael; Staudte, André; Corkum, Paul B.

    2016-04-01

    We use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H2 and D2 molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H2 and D2 with subangstrom spatial and subcycle temporal resolution. In addition, we show that attosecond electron dynamics can be resolved. These results open a new avenue for ultrafast studies of molecular dynamics in small molecules.

  4. Laser-Induced Spatiotemporal Dynamics of Magnetic Films.

    PubMed

    Shen, Ka; Bauer, Gerrit E W

    2015-11-01

    We present a theory for the coherent magnetization dynamics induced by a focused ultrafast laser beam in magnetic films, taking into account nonthermal (inverse Faraday effect) and thermal (heating) actuation. The dynamic conversion between spin waves and phonons is induced by the magnetoelastic coupling that allows efficient propagation of angular momentum. The anisotropy of the magnetoelastic coupling renders characteristic angle dependences of the magnetization propagation that are strikingly different for thermal and nonthermal actuation.

  5. Laser-Induced Spatiotemporal Dynamics of Magnetic Films.

    PubMed

    Shen, Ka; Bauer, Gerrit E W

    2015-11-01

    We present a theory for the coherent magnetization dynamics induced by a focused ultrafast laser beam in magnetic films, taking into account nonthermal (inverse Faraday effect) and thermal (heating) actuation. The dynamic conversion between spin waves and phonons is induced by the magnetoelastic coupling that allows efficient propagation of angular momentum. The anisotropy of the magnetoelastic coupling renders characteristic angle dependences of the magnetization propagation that are strikingly different for thermal and nonthermal actuation. PMID:26588408

  6. Dynamics of laser induced metal nanoparticle and pattern formation

    SciTech Connect

    Peláez, R. J. Kuhn, T.; Rodríguez, C. E.; Afonso, C. N.

    2015-02-09

    Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20 ns pulse duration and 193 nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ≤10 ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ≤80 ns) for more than 1 μs. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heat release in discontinuous films upon laser irradiation.

  7. Dynamics of femtosecond laser-induced melting of silver

    SciTech Connect

    Chan Wailun; Averback, Robert S.; Cahill, David G.; Lagoutchev, Alexei

    2008-12-01

    We use optical third-harmonic generation to measure the melting dynamics of silver following femtosecond laser excitation. The dynamics reveals an unusual two-step process that is associated with the extreme electronic temperatures and very short time and length scales. In the first, which lasts a few picoseconds, the electron and phonon systems begin to equilibrate, and a thin surface layer undergoes melting. Heat conduction during this period is strongly suppressed by electron scattering from d-band excitations. In the second stage, the surface region remains above the melting temperature for a surprisingly long time, 20-30 ps, with the melt front propagating into the bulk at a velocity of {approx_equal}350 m s{sup -1}. In this stage, the electron and phonon systems again fall out of equilibrium and conduction of heat away from the surface region is now limited by the weak electron-phonon (e-p) coupling. From our model calculation, we propose that the melt depths in noble metals irradiated by femtosecond lasers are limited to thicknesses on the order of two to three times of the optical-absorption depth of the light.

  8. Micro Dynamics of Pulsed Laser Induced Bubbles in Dusty Plasma Liquids

    SciTech Connect

    Teng, L.-W.; Tsai, C.-Y.; Tseng, Y.-P.; I Lin

    2008-09-07

    We experimentally study the micro dynamics of the laser induced plasma bubble in a dusty plasma liquid formed by negatively charged dust particles suspended in a low pressure rf Ar glow discharge. The plume from the ablation of the suspended dust particles pushes away dust particle and generates a dust-free plasma bubble. It then travels downward. The spatio-temporal evolution of the dust density fluctuation surrounding the bubble is monitored by directly tracking dust motion through optical video microscopy. The micro dynamics of the bubble associated dust acoustic type solitary oscillation in the wake field is investigated and discussed.

  9. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  10. A comparative study of laser-induced demagnetization dynamics in Fe, Co, and Ni

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Maithreyi; Gentry, Christian; Zusin, Dmitriy; Grychtol, Patrik; Knut, Ronny; Shaw, Justin; Nembach, Hans; Mathias, Stefan; Aeschlimann, Martin; Oppeneer, Peter; Schneider, Claus; Kapteyn, Henry; Murnane, Margaret

    Even twenty years after the discovery of ultrafast demagnetization of ferromagnetic materials induced by a femtosecond laser pulse there is still an ongoing debate about the mechanisms that drive the process. Surprisingly, a comprehensive study that compares demagnetization dynamics in different materials on equal footing is lacking. Yet, the scientific community would greatly benefit from such study. We fill this gap by performing a systematic comparison of ultrafast demagnetization behavior in Iron, Cobalt and Nickel, the simplest itinerant ferromagnets, under a wide range of pump fluences. In this experiment, we utilize a tabletop broadband extreme ultraviolet source to probe magnetization dynamics at the M2,3 absorption edges of these three elements using the transverse magneto-optical Kerr effect. The obtained data can be used to inform theory and, thereby, assist in resolving the remaining questions about the micro- and macroscopic mechanisms behind ultrafast laser-induced magnetization dynamics in materials.

  11. Probing laser induced metal vaporization by gas dynamics and liquid pool transport phenomena

    SciTech Connect

    DebRoy, T.; Basu, S.; Mundra, K. )

    1991-08-01

    During laser beam welding of many important engineering alloys, an appreciable amount of alloying element vaporization takes place from the weld pool surface. As a consequence, the composition of the solidified weld pool is often significantly different from that of the alloy being welded. Currently there is no comprehensive theoretical model to predict, from first principles, laser induced metal vaporization rates and the resulting weld pool composition changes. The weld pool heat transfer and fluid flow phenomena have been coupled with the velocity distribution functions of the gas molecules at various locations above the weld pool to determine the rates of the laser induced element vaporization for pure metals. The procedure allows for calculations of the condensation flux based on the equations of conservation of mass, momentum and energy in both the vapor and the liquid phases. Computed values of the rates of vaporization of pure metals were found to be in good agreement with the corresponding experimentally determined values. The synthesis of the principles of gas dynamics and weld pool transport phenomena can serve as a basis for weld metal composition control.

  12. Laser-Induced Fluorescence Photogrammetry for Dynamic Characterization of Transparent and Aluminized Membrane Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2003-01-01

    Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.

  13. Effects of liquid properties on the dynamics of under-liquid laser-induced shock process

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao Thi Phuong; Tanabe, Rie; Ito, Yoshiro

    2016-09-01

    We compared the shock processes induced when focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy resin blocks immersed in glycerol, water, liquid paraffin, and silicone oils. A custom-designed time-resolved photoelasticity imaging technique was applied to observe the strength of stress wave induced inside the solid target and the propagation of shock waves in the liquid with time resolution of nanoseconds. We demonstrated that the shock impedance of the liquid caused a noticeable effect on the strength of laser-induced stress wave: Ablation in the liquid with a higher shock impedance resulted in a stronger stress. By using glycerol instead of water as the confining medium, the pulse energy required to induce a certain level of stress was reduced by about 20 %. The dynamical behaviors of the main shock wave and the reflected wave in inverted V-shape in each liquid are also discussed in details.

  14. Molecular dynamics simulations of laser induced surface melting in orthorhombic Al13Co4

    NASA Astrophysics Data System (ADS)

    Sonntag, S.; Roth, J.; Trebin, H.-R.

    2010-10-01

    Laser induced surface melting of the aluminum-cobalt alloy Al13Co4 is investigated. For the simulations of the lattice ions we use molecular dynamics, while for the time evolution of the electron temperature a generalized heat-conduction equation is solved. Energy transfer between the sub-systems is allowed by an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well-known two-temperature model [Anisimov et al. in JETP Lett. 39(2), 1974]. The alloy shows large structural affinity to decagonal quasicrystals, which have an in-plane five-fold symmetry,while in perpendicular direction the planes are stacked periodically. As a consequence we observe slight anisotropic melting behavior.

  15. Investigating the dynamics of laser induced sparks in atmospheric helium using Rayleigh and Thomson scattering

    SciTech Connect

    Nedanovska, E.; Nersisyan, G.; Lewis, C. L. S.; Riley, D.; Graham, W. G.; Morgan, T. J.; Hüwel, L.; Murakami, T.

    2015-01-07

    We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 10{sup 17 }cm{sup −3} to 9 × 10{sup 13 }cm{sup −3}, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t{sup 0.4} consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He{sub 2}{sup +} molecular ion play an important role.

  16. Investigating the dynamics of laser induced sparks in atmospheric helium using Rayleigh and Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nedanovska, E.; Nersisyan, G.; Morgan, T. J.; Hüwel, L.; Murakami, T.; Lewis, C. L. S.; Riley, D.; Graham, W. G.

    2015-01-01

    We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm-3 to 9 × 1013 cm-3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ˜ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2+ molecular ion play an important role.

  17. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics

    NASA Astrophysics Data System (ADS)

    Huisman, T. J.; Mikhaylovskiy, R. V.; Tsukamoto, A.; Rasing, Th.; Kimel, A. V.

    2015-09-01

    Simultaneous detection of terahertz (THz) emission and transient magneto-optical response is employed to study ultrafast laser-induced magnetization dynamics in three different types of amorphous metallic alloys: Co, GdFeCo, and NdFeCo. A satisfactory agreement between the dynamics revealed with the help of these two techniques is obtained for Co and GdFeCo. For NdFeCo the THz emission indicates faster dynamics than the magneto-optical response. This observation indicates that in addition to spin dynamics of Fe, ultrafast laser excitation of NdFeCo triggers faster magnetization dynamics of Nd originating from its orbital momentum.

  18. Laser-Induced Forward Transfer Using Triazene Polymer Dynamic Releaser Layer

    SciTech Connect

    Stewart, James Shaw; Lippert, Thomas; Wokaun, Alexander; Nagel, Matthias; Nueesch, Frank

    2010-10-08

    This article presents a short review of the use of triazene polymer as a dynamic release layer (DRL) for laser-induced forward transfer (LIFT), before looking at the latest research in more detail. The field of triazene polymer ablation only started around 20 years ago and has grown rapidly into a number of different application areas. Most promisingly, triazene ablation has been refined as a method for propulsion, bringing the benefits of LIFT to the deposition of sensitive transfer materials. The key to understanding LIFT with a triazene DRL is to understand the more fundamental nature of triazene polymer ablation in both frontside and backside orientations. This article focuses on the most recent experimental results on LIFT with a triazene DRL: the effect of picosecond pulse lengths compared with nanosecond pulse lengths; the effect of reduced air pressure; and the improvements in transfer in terms of range of transfer materials, and transfer across a gap. The results all help improve fundamental understanding of triazene-based LIFT, and the transfer of functioning OLEDs demonstrates the capability of the technique.

  19. Ion dynamics in a DC magnetron microdischarge measured with laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Gascon, Nicolas; Lucca Fabris, Andrea; Ito, Tsuyohito; Cappelli, Mark

    2015-11-01

    We present evidence of coherent rotating azimuthal wave structures in a planar DC magnetron microdischarge operated with argon and xenon. The dominant stable mode structure varies with discharge voltage, and high frame rate camera imaging of plasma emission reveals propagating azimuthal waves in the negative E-> × B-> direction. This negative drift direction is attributed to a local field reversal arising from strong density gradients that drive excess ions towards the anode. Observed mode transitions are shown to be consistent with models of gradient drift-wave dispersion in such a field reversal when the fluid representation includes ambipolar diffusion parallel to the magnetic field direction. Time-averaged and time-resolved laser-induced fluorescence measurements interrogate xenon ion dynamics under the action of the field reversal. Time resolution is obtained by synchronizing with the coherent azimuthal wave frequency at fixed mode number. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. C.Y. acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  20. Subcycle dynamics of laser-induced ionization and tailored laser filaments

    NASA Astrophysics Data System (ADS)

    Zhokhov, Petr

    Powerful laser pulses with duration of few optical cycles and less open up new venues of nonlinear optics and yield novel applications for quantum optics, electronics and solid-state physics. In the present Ph.D. research we study, by means of supercomputer simulations, new approaches to powerful ultrashort pulse self-transformation in laser-induced filaments and filament-like regimes. We have found new regimes in which unprecedentedly short powerful light pulses in optical domain can be generated in helium via shock wave formation at the optimum pulse compression point. We have found general scaling laws that extend nonlinear pulse self-transformation regimes to arbitrarily high powers. We also study photoionization dynamics in solids at ultrashort timescales and develop a simple closed-form quantum-mechanical model of ultrafast photoionization and optical properties of photoionized solids, applicable for pulses of arbitrary shape and duration, in a wide range of field intensities, and in a wide range frequencies of field and of nonlinear response. Our model provides single self-consistent framework for nonlinear optics of absorbing semiconductors and transparent dielectrics in high intensity fields. Using our ultrafast photoionization framework we refine criteria of ultrafast light-induced damage in the transparent material. Our simulations of ultrashort pulse propagation through photoionized solid using finite-difference time domain code predict complex charge field dynamics in the bulk of the solid, not described by semiclassical model of optical properties of solid-state plasma. We found non-monotonous dependence of solid-state plasma density in the wake of the pulse on depth inside the solid due to high-harmonic generation, phase matching and absorption. Physical effects captured by our model show potential of ultrafast photoionization for future solid-state optoelectronics and information processing as it allows precise control of charge dynamics inside

  1. Dynamics of quantized vortices in Bose-Einstein condensates with laser-induced spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi

    2015-12-01

    We study vortex dynamics in trapped two-component Bose-Einstein condensates with a laser-induced spin-orbit coupling using the numerical analysis of the Gross-Pitaevskii equation. The spin-orbit coupling leads to three distinct ground-state phases, which depend on some experimentally controllable parameters. When a vortex is put in one or both of the two-component condensates, the vortex dynamics exhibits very different behaviors in each phase, which can be observed in experiments. These dynamical behaviors can be understood by clarifying the stable vortex structure realized in each phase.

  2. Observation of Laser Induced Magnetization Dynamics in Co/Pd Multilayers with Coherent X-ray Scattering

    SciTech Connect

    Wu, Benny

    2012-04-05

    We report on time-resolved coherent x-ray scattering experiments of laser induced magnetization dynamics in Co/Pd multilayers with a high repetition rate optical pump x-ray probe setup. Starting from a multi-domain ground state, the magnetization is uniformly reduced after excitation by an intense 50 fs laser pulse. Using the normalized time correlation, we study the magnetization recovery on a picosecond timescale. The dynamic scattering intensity is separated into an elastic portion at length scales above 65 nm which retains memory of the initial domain magnetization, and a fluctuating portion at smaller length scales corresponding to domain boundary motion during recovery.

  3. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  4. Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses

    SciTech Connect

    Barash, Danny; Orel, Ann E.; Baer, Roi

    2000-01-01

    An adiabatic-Floquet formalism is used to study the suppression of ionization in short laser pulses. In the high-frequency limit the adiabatic equations involve only the pulse envelope where transitions are purely ramp effects. For a short-ranged potential having a single-bound state we show that ionization suppression is caused by the appearance of a laser-induced resonance state, which is coupled by the pulse ramp to the ground state and acts to trap ionizing flux. (c) 1999 The American Physical Society.

  5. Dynamic ultramicroscopy of laser-induced flows in colloidal solutions of plasmon-resonance particles

    SciTech Connect

    Fedosov, I V; Tuchin, V V; Nefedov, I S; Khlebtsov, B N

    2008-06-30

    A method is proposed for visualisation of the velocity fields of colloidal plasmon-resonance nanoparticles moving in a laser beam. The method uses the particle image velocimetry for processing ultramicroscopic images. Particles in a thick layer of colloidal solution are illuminated by a slit laser ultramicroscopic source with a large numerical aperture providing a high contrast of particle images and visualisation of the transverse velocity distribution in laser-induced flows with a high spatial resolution. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  6. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-02-01

    The electric discharge spark dissociation of gas CH3I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I+, CH3, CH2, CH, H, and I2 are identified as the dissociation products. The emission band of 505 nm I2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I2∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I2∗ molecule results from the bimolecular collision of the highly excited iodine atom I∗(4P) and CH3I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH3I.

  7. Dynamics of Spatially and Temporally Resolved Laser Induced Al-plasma

    SciTech Connect

    Imam, H.; Harith, M. A.; E-El Gamal, Yosr; Abdellatif, G.; Palleschi, V.

    2007-02-14

    In the present study the temporal and spatial evolution of the plasma produced by interaction of Q-switched Nd:YAG laser pulses at 532 nm with pure aluminum target are investigated via optical emission spectroscopy (OES) in vacuum (10-5 torr). Comparison of the spectra taken at different distances from the target surface facilitates discussing fundamental concepts of the Laser Induced Plasma (LIP). Such measurements have been exploited to understand the main processes involved and must be taken into account for the analysis of this kind of plasma. The LIP mean expansion velocity has been determined by measuring the ionic emission temporal profiles usually referred to as the Time of Flight (TOF) profiles. The temporal behavior of the spectral emission has been explained and interpreted in view of the three body recombination processes. Problems concerning the existence of and departure from the local thermodynamic equilibrium (LTE) in the LIP are studied carefully as observed in the performed experiment.

  8. Open-system quantum dynamics for laser-induced DIET and DIMET

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter

    1997-11-01

    A time-dependent open-system density matrix approach to the UV/visible-laser-induced, "hot-electron"-mediated photodesorption of small neutral molecules from metal substrates is reviewed, and a few new applications are added. Both the single excitation-de-excitation (DIET, desorption induced by electronic transitions) and multiple excitation-de-excitation (DIMET, desorption induced by multiple electronic transitions) limits are considered. The theoretical framework is presented and applied to DIET of NO from Pt(111) and NH 3 from Cu(111), as well as to DIMET of NO from Pt(111). Special emphasis is given (i) to the estimate of excited state lifetimes, (ii) to the translational and vibrational energy content of the desorbates, (iii) to the scaling of photodesorption yields and other properties with laser fluence in the DIMET case, and (iv) to the possibility of controlling photochemistry at surfaces despite strong electronic relaxation.

  9. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    NASA Astrophysics Data System (ADS)

    Goeckner, M. J.; Malik, Shamim M.; Conrad, J. R.; Breun, R. A.

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N+2 [the P12 component of the X 2Σ+g(ν=0)→B 2Σ+u(ν=0) band] in a N2 plasma. The strength of the laser-induced fluorescence was used as a measure of the temporally and spatially varying ion density. The expanding sheath was produced by applying a -5 kV pulse to a polished planar electrode in the plasma source ion implantation device [J. R. Conrad et al., J. Vac. Sci. Technol. A 8, 3146 (1990)]. The laser beam was aligned normal to the surface and was reflected off the center of the electrode. The LIF diagnostic used here is nonperturbing whereas previous researchers have used Langmuir probes, which perturb the plasma, to make their measurements. As such, the data reported here represent a benchmark measurement of pulsed sheaths and allow a better comparison between experimental measurements and theoretical predictions. It has been found that the sheath edge moves approximately 16 times faster than the ion-acoustic velocity during the early part of the pulse, t<1 μs, and then slows to approximately the ion-acoustic velocity after 6 μs. In addition to the LIF measurements, a biased probe was used far from the cathode to determine the sheath edge location. Good agreement is found when the LIF and probe data are compared. The LIF data also are compared to the predictions of a simulation that is based on a time-varying two-fluid model of the sheath [G. A. Emmert and M. A. Henry, J. Appl. Phys. 71, 113 (1992)]. While the predictions of the model show moderate agreement with the data, substantial discrepancies are observed. These discrepancies are attributed to a number of physical phenomena that are not included in the present model.

  10. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  11. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  12. A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, James; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2012-09-01

    A simple 1-D model has been developed for the velocity of flyers in vacuum generated by laser-induced forward transfer (LIFT) with a dynamic release layer (DRL). It is an extension of a laser ablation model for metal flyer plates based on the Gurney model of explosive output for driving metal fragments. The model has been extended to the bilayer system of a DRL overlain with a transfer layer. The suitability of the model has been checked with experimental velocity data obtained from shadowgraphy. The experiments used bilayer samples of triazene polymer/aluminium, ablated from the backside through the substrate at reduced pressure (5 × 10-2 mbar). The results suggest that the Gurney energy approach provides the basis of a viable, physically relevant, algebraic model for LIFT, but other loss mechanisms still need be incorporated, particularly thermal loss into the fused silica substrate.

  13. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.; Gurevich, Evgeny L.; Mocek, Tomáš

    2016-06-01

    Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  14. High-resolution imaging of ejection dynamics in laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Pohl, R.; Visser, C. W.; Römer, G. R. B. E.; Sun, C.; Huis in't Veld, A. J.; Lohse, D.

    2014-03-01

    Laser-induced Forward Transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials. As the ejection mechanism of picosecond LIFT has not been visualized in detail, the governing physics are not fully understood yet. Therefore, this article presents an experimental imaging study on the ejection process of gold-based LIFT. The LIFT experiments were performed using a 6.7 picosecond Yb:YAG laser source equipped with a SHG. The beam was focused onto a 200 nm thick gold donor layer. The high magnification images were obtained using bright field illumination by a 6 ns pulsed Nd:YAG laser source and a 50× long-distance microscope objective that was combined with a 200 mm tube lens. For laser fluence levels up to two times the donor-transfer-threshold, the ejection of a single droplet was observed. The typical droplet radius was estimated to be less than 3 μm. A transition of ejection features towards higher fluence, indicates a second fluence-regime in the ejection process. For higher laser fluence, the formation of an elongated gold jet was observed. This jet fragments into multiple relatively small droplets, resulting in a spray of particles on the receiving substrate.

  15. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  16. Laser-induced dissociation dynamics of triatomic molecule in electronic excited states: A full-dimensional quantum mechanics study.

    PubMed

    Sun, Zhaopeng; Yang, Chuanlu; Zheng, Yujun

    2015-12-14

    We present a detailed theoretical approach to investigate the laser-induced dissociation dynamics of a triatomic molecule on its electronic excited state in full dimensional case. In this method, the time evolution of the time-dependent system is propagated via combined the split operator method and the expansion of Chebyshev polynomials (or short-time Chebyshev propagation) and the system wave functions are expanded in terms of molecular rotational bases. As an example of the application of this formalism, the dissociation dynamics of H3(+)→H2(+)+H induced by ultrashort UV laser pulses are investigated on new Born-Oppenheimer potential energy surfaces. Our numerical results show that the signals of dissociation products will be easier to observe as the increasing of field strength. Driving by a 266 nm laser beam, the calculated central value of kinetic-energy-release is 2.04 eV which shows excellent agreement with the experimental estimation of 2.1 eV. When the H3(+) ion is rotationally excited, the spatial distribution of product fragments will become well converged.

  17. Laser-induced dissociation dynamics of triatomic molecule in electronic excited states: A full-dimensional quantum mechanics study.

    PubMed

    Sun, Zhaopeng; Yang, Chuanlu; Zheng, Yujun

    2015-12-14

    We present a detailed theoretical approach to investigate the laser-induced dissociation dynamics of a triatomic molecule on its electronic excited state in full dimensional case. In this method, the time evolution of the time-dependent system is propagated via combined the split operator method and the expansion of Chebyshev polynomials (or short-time Chebyshev propagation) and the system wave functions are expanded in terms of molecular rotational bases. As an example of the application of this formalism, the dissociation dynamics of H3(+)→H2(+)+H induced by ultrashort UV laser pulses are investigated on new Born-Oppenheimer potential energy surfaces. Our numerical results show that the signals of dissociation products will be easier to observe as the increasing of field strength. Driving by a 266 nm laser beam, the calculated central value of kinetic-energy-release is 2.04 eV which shows excellent agreement with the experimental estimation of 2.1 eV. When the H3(+) ion is rotationally excited, the spatial distribution of product fragments will become well converged. PMID:26671377

  18. Dynamic fiber Bragg grating sensing method

    NASA Astrophysics Data System (ADS)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  19. Femtosecond laser-induced pre-damage dynamics in Al2O3/SiO2 mirror

    NASA Astrophysics Data System (ADS)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-07-01

    UV femtosecond laser pulse was used to excite the ultrafast carrier dynamics inside the Al2O3/SiO2 high reflective mirror. Spectral shift between two different laser induced free electron absorption bands was observed. The former one centered at 406 nm undergo a fast decay of ~2.6 ps and a longer one of ~15 ps. Accompanied by the fast decay of the first absorption band, a new absorption band centered at 396 nm grew around ~2.8 ps after the laser excitation. The probable explanation the observed spectral shift of the free electron absorption band is that, the free carrier in the Al3O2 conductive band was trapped into some kind of defect state, which has an absorption peak at 396 nm, at a time scale of ~2.8 ps. Since the defect state has much longer lifetime than the initial generated free carriers in thee conductive band, probably under the condition of ultrafast high-frequency pulsed UV laser exposure, the incubation effect will decrease the laser damage threshold of the subsequent laser pulses.

  20. All-optical signal processing using dynamic Brillouin gratings

    PubMed Central

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  1. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms.

    PubMed

    Zhou, Jun; Correa, Alfredo A; Li, Junjie; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-01

    We report a systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region, followed by the formation of hemispherical clouds of electrons on both sides of the film, which escape into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  2. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    DOE PAGES

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We alsomore » developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.« less

  3. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  4. Doppler Spectrometry for Ultrafast Temporal Mapping of Density Dynamics in Laser-Induced Plasmas

    SciTech Connect

    Mondal, S.; Lad, Amit D.; Ahmed, Saima; Narayanan, V.; Pasley, J.; Rajeev, P. P.; Robinson, A. P. L.; Kumar, G. Ravindra

    2010-09-03

    We present high resolution measurements of the ultrafast temporal dynamics of the critical surface in moderately overdense, hot plasma by using two-color, pump-probe Doppler spectrometry. Our measurements clearly capture the initial inward motion of the plasma inside the critical surface of the pump laser which is followed by outward expansion. The measured instantaneous velocity and acceleration profiles are very well reproduced by a hybrid simulation that uses a 1D electromagnetic particle-in-cell simulation for the initial evolution and a hydrodynamics simulation for the later times. The combination of high temporal resolution and dynamic range in our measurements clearly provides quantitative unraveling of the dynamics in this important region, enabling this as a powerful technique to obtain ultrafast snapshots of plasma density and temperature profiles for providing benchmarks for simulations.

  5. Trends in Ln(III) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser Induced Flourescence Studies

    SciTech Connect

    Kuta, Jadwiga; Wander, Matthew C F.; Wang, Zheming; Jiang, Siduo; Wall, Nathalie; Clark, Aurora E.

    2011-11-08

    Molecular dynamics simulations were performed to examine trends in trivalent lanthanide [Ln(III)] sorption to quartz surface SiOH0 and SiO- sites across the 4f period. Complementary laser induced fluorescence studies examined Eu(III) sorption to quartz at varying ionic strength such that the surface sorbed species could be extrapolated at zero ionic strength, the conditions under which the simulations are performed. This allowed for direct comparison of the data, enabling a molecular understanding of the surface sorbed species and the role of the ion surface charge density upon the interfacial reactivity. Thus, this combined theoretical and experimental approach aids in the prediction of the fate of trivalent radioactive contaminants at temporary and permanent nuclear waste storage sites. Potential of mean force molecular dynamics, as well as simulations of pre-sorbed Ln(III) species agrees with the spectroscopic study of Eu(III) sorption, indicating that strongly bound inner-sphere complexes are formed upon sorption to an SiO- site. The coordination shell of the ion contains 6-7 waters of hydration and it is predicted that surface OH groups dissociate from the quartz and bind within the inner coordination shell of Eu(III). Molecular simulations predict less-strongly bound inner2 sphere species in early lanthanides and more strongly bound species in late lanthanides, following trends in the ionic radius of the 4f ions. The participation of surface dissociated OHgroups within the inner coordination shell of the Ln(III) ion is, however, consistent across the series studied. Sorption to a fully protonated quartz surface is not predicted to be favorable by any Ln(III), except perhaps Lu.

  6. Under-the-barrier dynamics in laser-induced relativistic tunneling.

    PubMed

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2013-04-12

    The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.

  7. Dynamics of a laser-induced relativistic electron beam inside a solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Sentoku, Y.; Yates, K.; Leblanc, P.; Wiewior, P.; Kindel, J.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R.

    2010-11-01

    Two-frame interferometry and shadowgraphy were used to investigate the dynamics of interaction of a powerful laser (UNR Leopard 2x10^18 W/cm^2, 0.5ps, 1057nm) with a glass target. The two-frame laser diagnostic reveals an ionization wave propagating inside the glass with half the speed of light. The interferometry delineates regions of ionization and excitation inside the glass target. A ``fountain effect'' of fast electrons inside the solid dielectric has been observed for the first time: a radially compact electron beam with sub-light speed fans out from the axis of the original beam, heading back to the target surface. Comparison with French (˜10^19W/cm^2) and UK (˜10^17W/cm^2) experiments implies a logarithmic dependence of the ionization depth with the laser intensity. Relativistic electron beam dynamics stemming from intense laser-glass interaction is a critical concern for the NIF ``fast ignition'' concept.

  8. Dynamics Of A Laser-Induced Plume Self-Similar Expansion

    SciTech Connect

    Bennaceur-Doumaz, D.; Djebli, M.

    2008-09-23

    The dynamics of a laser ablation plume during the first stage of its expansion, just after the termination of the laser pulse is modeled. First, we suppose the laser fluence range low enough to consider a neutral vapor. The expansion of the evaporated material is described by one-component fluid and one-dimensional Euler equations. The vapor is assumed to follow an ideal gas flow. For high energetic ions, the charge separation can be neglected and the hydrodynamics equations can be solved using self-similar formulation. The obtained ordinary differential equations are solved numerically. Secondly, the effect of ionization is investigated when the evaporated gas temperature is sufficiently high. In this case, Saha equation is included in the formulation of the model. We find a self-similar solution for a finite value of the similarity variable which depends on the laser ablation parameters.

  9. Rapid Laser Induced Crystallization of Amorphous NiTi Films Observed by Nanosecond Dynamic Transmission Electron Microscopy (DTEM)

    SciTech Connect

    LaGrange, T; Campbell, G H; Browning, N D; Reed, B W; Grummon, D S

    2010-03-01

    The crystallization processes of the as-deposited, amorphous NiTi thin films have been studied in detail using techniques such as differential scanning calorimetry and, in-situ TEM. The kinetic data have been analyzed in terms of Johnson-Mehl-Avrami-Kolomogrov (JMAK) semi-empirical formula. The kinetic parameters determined from this analysis have been useful in defining process control parameters for tailoring microstructural features and shape memory properties. Due to the commercial push to shrink thin film-based devices, unique processing techniques have been developed using laser-based annealing to spatially control the microstructure evolution down to sub-micron levels. Nanosecond, pulse laser annealing is particularly attractive since it limits the amount of peripheral heating and unwanted microstructural changes to underlying or surrounding material. However, crystallization under pulsed laser irradiation can differ significantly from conventional thermal annealing, e.g., slow heating in a furnace. This is especially true for amorphous NiTi materials and relevant for shape memory thin film based microelectromechanical systems (MEMS) applications. There is little to no data on the crystallization kinetics of NiTi under pulsed laser irradiation, primarily due to the high crystallization rates intrinsic to high temperature annealing and the spatial and temporal resolution limits of standard techniques. However, with the high time and spatial resolution capabilities of the dynamic transmission electron microscope (DTEM) constructed at Lawrence Livermore National Laboratory, the rapid nucleation events occurring from pulsed laser irradiation can be directly observed and nucleation rates can be quantified. This paper briefly explains the DTEM approach and how it used to investigate the pulsed laser induced crystallization processes in NiTi and to determine kinetic parameters.

  10. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina

  11. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    PubMed

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.

  12. X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.

    PubMed

    Abbey, Brian; Dilanian, Ruben A; Darmanin, Connie; Ryan, Rebecca A; Putkunz, Corey T; Martin, Andrew V; Wood, David; Streltsov, Victor; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M

    2016-09-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  13. Dynamics of laser-induced radial birefringence in silver-doped glasses.

    PubMed

    Ahangary, Ali Akbar; Bouchard, Frédéric; Santamato, Enrico; Karimi, Ebrahim; Khalesifard, Hamid Reza

    2015-09-01

    Silver ion-exchanged glass exhibits nonlinear optical properties upon interacting with intense light beams. The thermal effect due to the nanoparticles' light-absorption induces radial stress, and consequently, a radial birefringence on the glass surface. The induced birefringence possesses a topological charge of 1 in the transverse plane of the glass, i.e., cylindrical symmetry. Therefore, when the glass is illuminated with a circularly polarized light beam, a portion of the incoming beam flips its polarization handedness, since the plate is birefringent, and gains an orbital angular momentum of ±2 in units of the Planck constant. This is referred to as optical spin-to-orbital angular momentum conversion, and can be understood by means of the Pancharatnam-Berry phase. Here, we design a pump-probe setup to study and observe the dynamics of optical angular momentum coupling in real time. We show that this effect can be permanent or reversible, depending on the power and interaction time of the pump beam. In particular, an intrinsic power-dependent birefringence hysteresis is observed on the sample after interaction with and the relaxation of the irradiated point. PMID:26368712

  14. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses.

    PubMed

    Hoang Man, Viet; Van-Oanh, Nguyen-Thi; Derreumaux, Philippe; Li, Mai Suan; Roland, Christopher; Sagui, Celeste; Nguyen, Phuong H

    2016-04-28

    Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.

  15. Dynamic gate algorithm for multimode fiber Bragg grating sensor systems.

    PubMed

    Ganziy, D; Jespersen, O; Woyessa, G; Rose, B; Bang, O

    2015-06-20

    We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg gratings. PMID:26193010

  16. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Yang, Y. H.; Li, J. M.; Yang, M. W.; Tang, J.; Liang, T.

    2012-10-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained.

  17. Gelator-doped liquid-crystal phase grating with multistable and dynamic modes

    SciTech Connect

    Lin, Hui-Chi Yang, Meng-Ru; Tsai, Sheng-Feng; Yan, Shih-Chiang

    2014-01-06

    We demonstrate a gelator-doped nematic liquid-crystal (LC) phase grating, which can be operated in both the multistable mode and the dynamic mode. Thermoreversible association and dissociation of the gelator molecules can vary and fix the multistable diffraction efficiencies of the gratings. A voltage (V) can also be applied to modulate dynamically the diffraction efficiencies of the grating, which behaves as a conventional LC grating. Experimental results show that the variations of the diffraction efficiencies in the multistable and dynamic modes are similar. The maximum diffraction efficiency is approximately 30% at V = 2 V.

  18. Transient grating study of the intermolecular dynamics of liquid nitrobenzene

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Lin; Song, Yun-Fei; Yu, Guo-Yang; Yang, Yan-Qiang

    2016-10-01

    Femtosecond time-resolved transient grating (TG) technique is used to study the intermolecular dynamics in liquid phase. Non-resonant excitation of the sample by two crossing laser pulses results in a transient Kerr grating, and the molecular motion of liquid can be detected by monitoring the diffraction of a third time-delayed probe pulse. In liquid nitrobenzene (NB), three intermolecular processes are observed with lifetimes of 37.9±1.4 ps, 3.28±0.11 ps, and 0.44±0.03 ps, respectively. These relaxations are assigned to molecular orientational diffusion, dipole/induced dipole interaction, and libration in liquid cage, respectively. Such a result is slightly different from that obtained from OKE experiment in which the lifetime of the intermediate process is measured to be 1.9 ps. The effects of electric field on matter are different in TG and optical Kerr effect (OKE) experiments, which should be responsible for the difference between the results of these two types of experiments. The present work demonstrates that TG technique is a useful alternative in the study of intermolecular dynamics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304058 and 11404307) and NSAF (Grant No. U1330106).

  19. Supercooled water relaxation dynamics probed with heterodyne transient grating experiments

    NASA Astrophysics Data System (ADS)

    Taschin, Andrea; Bartolini, Paolo; Eramo, Roberto; Torre, Renato

    2006-09-01

    We report results from a heterodyne-detected transient grating experiment on liquid and supercooled water in a wide temperature range, from -17.5to90°C . The measured signal covers an extremely large time window with an excellent signal-to-noise ratio that enables the investigation in a single experiment of the sound speed and attenuation, thermal diffusivity, and temperature dependence of the dielectric constant. The experimental data clearly show the effect of the density and the temperature fluctuations on the water dielectric function. In order to describe the experimental results, we introduce a comprehensive hydrodynamic model taking into account the coupled density and temperature variables and their relevance in the definition of the spontaneous and forced dielectric variations. We use this model to describe the measured signal in transient grating experiments, including the heating and the electrostrictive sources produced by the laser excitation. The fitting procedure enables the safe extraction of several dynamic proprieties of liquid and supercooled water: the sound velocity and its damping, the thermal diffusivity, and the ratio between the dielectric thermodynamic derivatives. The measured parameters are compared to the literature data and discussed in the complex scenario of water physics.

  20. Gain recovery dynamics in semiconductor optical amplifiers with distributed feedback grating under assist light injection

    NASA Astrophysics Data System (ADS)

    Qin, Cui; Zhao, Jing; Yu, Huilong; Zhang, Jian

    2016-07-01

    The gain recovery dynamic characteristics of the semiconductor optical amplifier (SOA) with distributed feedback (DFB) grating are theoretically investigated. The interaction of the grating structure and the assist light is used to accelerate the gain recovery process in the SOA. The effects of the assist light that is injected into the SOA with DFB structure on the gain recovery dynamics, the steady-state carrier density, and field intensity distributions are analyzed, respectively. Results show that the recovery time in the DFB SOA is successfully reduced by injecting relatively high power assist light, whose wavelength is set at the gain region. Finally, under assist light injection, the effects of DFB grating on the gain recovery process are also discussed. It is shown that the gain recovery in the SOA with DFB grating is faster than that in the SOA without DFB grating. In addition, the coupling factor in the DFB grating structure can be optimized to shorten the gain recovery time.

  1. Nanoparticle removal using laser induced plasma (LIP) technique and study of detachment modes based on molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Peri, M. D. Murthy

    Nanoparticle contamination is a major problem in many industries. In the semiconductor industry, as the device (integrated circuit) size shrinks with each technological node (DRAM half-pitch), the feature size that has to be fabricated shrinks. Consequently, the minimum tolerable particle defect size also reduces to sub-100 nm level. In order to attain the stringent small size features, Extreme Ultraviolet Lithography (EUVL) technique is being explored in the semiconductor industry. As the EUVL masks are reflective and pellicle free, the cleaning techniques employed to remove the native particle defects must be more effective for the removal of the sub-100 nm particles without any substrate damage. The effectiveness of Laser Induced Plasma (LIP) technique, considered as a next generation cleaning method, for removal of 30 nm PSL particles from silicon substrate was previously demonstrated by our group. In the current study, the removal of 100 nm PSL particles from photomask and 300 nm PSL particles from 500 nm patterns was investigated. It was observed that the patterns were damaged which could be attributed to the radiation heating of the plasma, and this necessitated pressure amplification techniques to amplify the transient pressure and minimize the risk of damage. As a potential solution, shocktubes were designed and transient pressure measurements were carried out in air medium. Also, plasma was generated in water, in order to take advantage of the density of the medium, to generate stronger shocks and consequently higher pressure. The performance of the shocktubes was characterized based on their pressure amplification factor. The shocktubes resulted in a pressure amplification factor of 11 in air. The particle removal experiments with shocktubes on 150 nm patterns were performed and no damage to the patterns was observed. However, there were particle adders due to the ablation of the shocktube material. Molecular Dynamics (MD) simulations were initiated and

  2. Dynamics of a femtosecond/picosecond laser-induced aluminum plasma out of thermodynamic equilibrium in a nitrogen background gas

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Bultel, Arnaud; Annaloro, Julien; Chambrelan, Cédric; Edouard, Guillaume; Grisolia, Christian

    2015-01-01

    Beyond the experimental studies, the assessment of the ability of ultra-short (femto or picosecond) laser pulses to provide correct estimates of the elemental composition of unknown samples using laser-induced breakdown spectroscopy requires the modeling of a typical situation. The present article deals with this modeling for aluminum in nitrogen. A spherical layer model is developed. The central aluminum plasma is produced by the ultra-short pulse. This plasma is described using our collisional-radiative model CoRaM-Al in an upgraded version involving 250 levels. Its expansion and relaxation take place in nitrogen, where the formation and the propagation of a shock wave are taken into account. In this shocked nitrogen layer, the equilibrium conditions are assumed. Mass, momentum and energy conservation equations written under an Eulerian form are used to correctly model the global dynamics. Energy losses are due to radiative recombination, thermal Bremsstrahlung and spontaneous emission. These elementary processes are implemented. The only input parameters are the pulse energy E0, the ablated mass M of the sample and the pressure p0 of the surrounding gas. The equilibrium composition involving N2, N, N2+, N+ and free electrons of the shocked nitrogen layer is calculated from the thermodynamic database of our collisional-radiative model CoRaM-N2. The conditions E0 = 10 mJ and M ≃ 10- 10 kg corresponding to a 532 nm laser pulse are chosen. The model assumes the initial equilibrium of the aluminum plasma produced by the laser pulse absorbed by the sample. Then, owing to the significant overpressure with respect to the background gas (p0 is assumed atmospheric), the surrounding gas starts to be compressed while the propagation of a shock wave takes place. The shock layer maximum pressure is obtained at approximately 20 ns. At this characteristic time, the nitrogen pressure is around 400 times the atmospheric pressure. A shock velocity of 7 km s- 1 is predicted. The

  3. Dynamics of phase-conjugated signals produced by a light-shift grating

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Cruse, E.; Lange, W.

    1995-02-01

    The dynamic behavior of degenerate four-wave mixing is investigated for a recently reported grating mechanism based on the light-shift. It is shown that the time dependence of the phase-conjugated signal is determined by the interplay of thermal diffusion and the spatial variation of the light-shift grating.

  4. Amplitude of the dynamic phase gratings in saturable Er-doped fibers

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Plata Sánchez, M.

    2011-03-01

    Dynamic population gratings recorded via local saturation of optical absorption/gain in rare-earth (Er, Yb) doped fibers demonstrate contributions of the amplitude and phase components. Quantitative comparison of the experimentally observed amplitude grating efficiency with that evaluated from spatially uniform saturation of the fiber optical absorption usually shows a significant discrepancy. The grating amplitude proves to be significantly weaker than its theoretical evaluation. The first results on quantitative comparison of the recorded phase grating amplitudes with spatially uniform photo-induced refractive index change in Er-doped fibers at three essentially different wavelengths (1485, 1526, and 1568 nm) are reported. As for the amplitude grating component, the experimentally observed phase grating amplitude is inferior to its theoretical evaluation; this discrepancy is spectrally dependent and is also significantly reduced in the short-wavelength region 1480-1490 nm on the Er3+ ion absorption.

  5. Direct methods for dynamic monitoring of secretions from single cells by capillary electrophoresis and microscopy with laser-induced native fluorescence detection

    SciTech Connect

    Tong, W.

    1997-10-08

    Microscale separation and detection methods for real-time monitoring of dynamic cellular processes (e.g., secretion) by capillary electrophoresis (CE) and microscopic imaging were developed. Ultraviolet laser-induced native fluorescence (LINF) provides simple, sensitive and direct detection of neurotransmitters and proteins without any derivatization. An on-column CE-LINF protocol for quantification of the release from single cell was demonstrated. Quantitative measurements of both the amount of insulin released from and the amount remaining in the cell ({beta}TC3) were achieved simultaneously. Secretion of catecholamines (norepinephrine (NE) and epinephrine (E)) from individual bovine adrenal chromaffin cells was determined using the on-column CE-LINF. Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved by LINF imaging microscopy with high temporal and spatial resolution. The secretion of serotonin from individual leech Retzius neurons was directly characterized by LINF microscopy with high spatial resolution.

  6. Relationship between the results of laser-induced breakdown spectroscopy and dynamical mechanical analysis in composite solid propellants during their aging.

    PubMed

    Farhadian, Amir Hossein; Tehrani, Masoud Kavosh; Keshavarz, Mohammad Hossein; Karimi, Mehran; Reza Darbani, Seyyed Mohammad

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to analyze thermal aging in AP/HTPB composite solid propellants, where AP and HTPB are ammonium perchlorate and hydroxyl-terminated polybutadiene, respectively. The method of accelerated aging was used to obtain samples of different ages. Dynamical mechanical analysis results have been provided in order to validate the LIBS results. Many methods have been used for the accurate investigation of spectra. First, molecular bands, such as CN, C2, and AlO, were compared in different samples so that their intensity ratios could be considered. In order to discriminate more accurately between different sample spectra, principle component analysis (PCA) was used as a suitable chemometric method. All these results represent changes in the chemical structure due to increasing time and temperature. PMID:27411188

  7. Relationship between the results of laser-induced breakdown spectroscopy and dynamical mechanical analysis in composite solid propellants during their aging.

    PubMed

    Farhadian, Amir Hossein; Tehrani, Masoud Kavosh; Keshavarz, Mohammad Hossein; Karimi, Mehran; Reza Darbani, Seyyed Mohammad

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to analyze thermal aging in AP/HTPB composite solid propellants, where AP and HTPB are ammonium perchlorate and hydroxyl-terminated polybutadiene, respectively. The method of accelerated aging was used to obtain samples of different ages. Dynamical mechanical analysis results have been provided in order to validate the LIBS results. Many methods have been used for the accurate investigation of spectra. First, molecular bands, such as CN, C2, and AlO, were compared in different samples so that their intensity ratios could be considered. In order to discriminate more accurately between different sample spectra, principle component analysis (PCA) was used as a suitable chemometric method. All these results represent changes in the chemical structure due to increasing time and temperature.

  8. Lens-free heterodyne transient grating method for dynamics measurement of photoexcited species in liquid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Katayama, K.; Sawada, T.

    2003-08-01

    A recently developed lens-free heterodyne transient grating method was applied for the measurement of ultrafast photoexcited dynamics of several kinds of dye molecules in aqueous solutions. The principle of the lens-free heterodyne transient grating method was clarified in detail, especially for thick samples, such as liquid and semi-transparent solid samples. The ultrafast dynamics of malachite green and methyl orange molecules in aqueous solutions was successfully monitored, and the obtained time constants agreed with those in other reports.

  9. Dynamic Landslide Deformation Monitoring with Fiber Bragg Grating Sensors

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Gischig, V.; Button, E.; Loew, S.

    2009-12-01

    Fiber optic (FO) strain sensors are a promising new technology for in-situ landslide monitoring. General performance advantages include high resolution, fast sampling rate, and insensitivity to electrical disturbances. Here we describe a new FO monitoring system based on long-gage fiber Bragg grating sensors installed at the Randa Rockslide Laboratory in southern Switzerland. We highlight the advantages and disadvantages of the system, describe relevant first results, and compare FO data to that from traditional instruments already installed on site. The Randa rock slope has been the subject of intensive research since its failure in 1991. Around 5 million cubic meters of rock remains unstable today, moving at rates up to 20 mm / year. Traditional in-situ monitoring techniques have been employed to understand the mechanics and driving forces of the currently unstable rock mass, however these investigations are limited by the resolution and low sampling rate of the sensors. The new FO monitoring system has micro-strain resolution and offers the capability to detect sub-micrometer scale deformations in both triggered-dynamic and continuous measurements. Two types of sensors have been installed: fully-embedded borehole sensors encased in grout at depths of 38, 40, and 68 m, and surface extensometers spanning active tension cracks. Dynamic measurements are triggered by sensor deformation and recorded at 100 Hz, while continuous measurements are logged every 5 minutes. Since installation in August 2008, the FO monitoring system has been operational 90% of the time. Time series deformation data show movement rates consistent with previous borehole extensometer surveys. Accelerated displacements following installation are likely related to long-term curing and dewatering of the grout. A number of interesting transients have been recorded, which in some cases were large enough to trigger rapid sampling. The combination of short- and long-term observation offers new

  10. Recent Results on the Study of Transverse Beam Dynamics Using the Laser-Induced-Fluorescence Diagnostic on the Paul Trap Simulator Experiment (PTSX)

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Gilson, Erik; Davidson, Ronald; Efthimion, Philip; Majeski, Richard

    2014-10-01

    The Paul Trap Simulator Experiment (PTSX) is a compact Paul trap that simulates the nonlinear transverse dynamics of an intense charged particle beam propagating through an equivalent kilometers-long magnetic alternating-gradient (AG) focusing system. The recently developed laser- induced-fluorescence (LIF) diagnostic allowed us to measure the time dependent, transverse phase space profiles of the charge bunch and better understand critical issues in charged particle beam dynamics including emittance growth, and halo particle formation. The LIF diagnostic system includes an excimer laser, a dye laser, a CCD camera system and a stable high-density barium ion source. The measurements of the radial density profiles of the barium ion source using the LIF diagnostic are calibrated and compared to measurements using a charge collector. The design of the new barium ion source and the LIF diagnostic system will be discussed. The initial results of the radial density profiles measured by the LIF diagnostic will be presented. This research is supported by the U.S. Department of Energy.

  11. Periodic Evolution of a Xe I Population in an Oscillatory Discharge: Comparison between Time-Synchronized Laser-Induced-Fluorescence Measurements and A Dynamic Collisional-Radiative Model

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Chris V.; Cappelli, Mark A.; Plasma Physics Laboratory Team

    2014-10-01

    We study the evolution of the Xe I 6 s '[ 1 / 2 ] 1 - 6 p '[ 3 / 2 ] 2 (834.68 nm air) transition lineshape in a plasma discharge oscillating at 60 Hz using time-synchronized laser induced fluorescence (LIF) measurements and a collisional-radiative model. Two different time-synchronized LIF techniques based on phase sensitive detection of the fluorescence signal are applied, yielding consistent results. The maximum observed peak fluorescence intensity occurs at low values of the discharge current, although the peak intensity drops to zero at zero discharge current. The peak intensity also decreases at the discharge current maximum. A dynamic collisional-radiative model of the weakly ionized xenon discharge is also implemented, based on a set of rate equations. The proper electron impact cross-sections and radiative decay rates are identified from the literature and used to compute accurate rate coefficients with the Boltzmann solver Bolsig+, including the time-varying electric field. The time evolution of the probed excited state density predicted by the model shows good agreement with the experimental measurements. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  12. On-chip optical mode conversion based on dynamic grating in photonic-phononic hybrid waveguide.

    PubMed

    Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang

    2015-01-01

    We present a scheme for reversible and tunable on-chip optical mode conversion based on dynamic grating in a hybrid photonic-phononic waveguide. The dynamic grating is built up through the acousto-optic effect and the theoretical model of the optical mode conversion is developed by considering the geometrical deformation and refractive index change. Three kinds of mode conversions are able to be realized using the same hybrid waveguide structure in a large bandwidth by only changing the launched acoustic frequency. The complete mode conversion can be achieved by choosing a proper acoustic power under a given waveguide length. PMID:25996236

  13. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  14. Non-invasive detection of laser-induced retinal injury through the vitreous using dynamic light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Naiman, Melissa; Bouhenni, Rachida; Dunmire, Jeffery; Liu, Ying; Rafiq, Qundeel; Edward, Deepak; Gothard, David

    2016-03-01

    Laser radiation entering the eye has the potential of damaging the retina. As an inflammatory response, the proteins can rush to the lesion site created by laser exposure. We explore the hypothesis if these proteins can be detected non-invasively. In this preliminary study, we developed a new brief-case size dynamic light scattering instrument to detect these proteins in-vivo in the rabbit vitreous. The results were validated with bio-chemical analysis.

  15. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance.

  16. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. PMID:25783780

  17. The Effect of an External Magnetic Field on the Plume Expansion Dynamics of Laser-Induced Aluminum Plasma

    NASA Astrophysics Data System (ADS)

    Atif, Hussain; Li, Qi; Hao, Zuoqiang; Gao, Xun; Lin, Jingquan

    2015-08-01

    In this work, we investigated the plasma morphology induced by a Nd:YAG laser with the aim of improving the understanding of the formation and dynamics of the plasma in two cases, with and without a magnetic field. Single laser pulse production of a plasma in the absence and presence of a magnetic field was performed with an aluminum target in air. A fast photography technique was employed to obtain information about the expansion dynamics and confinement of the aluminum plasma in each case. The generation of the laser plasma was allowed to expand at two locations with different magnetic field strengths, which correspond to the strength 0.58 T in the center of two magnetic poles and 0.83 T at a distance of 4 mm from the upper pole (N). The plume showed lateral confinement at longer delays when the target was placed at the center of the two poles. When the target was placed at a distance of 4 mm from the upper pole it was observed that the plume was divided into two lobes at the initial stage and traveled towards the center of the magnetic field with further elapse of time. supported by National Natural Science Foundation of China (No. 61178022), the Research Foundation for Doctoral Program of Higher Education of China (Nos. 20112216120006, 20122216120009 and 20122216110007) and also the Project of 14KP007

  18. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification.

    PubMed

    Zhou, Yu Sheng; Zhu, Guang; Niu, Simiao; Liu, Ying; Bai, Peng; Jing, Qingsheng; Wang, Zhong Lin

    2014-03-19

    A one-dimensional displacement and speed sensing technology that consists of a pair of micro-grating structures and utilizes the coupling between the triboelectric effect and electrostatic induction is demonstrated. Its distinct advantages, including being self-powered, high resolution, large dynamic range, and long detecting distance, show extensive potential applications in automation, manufacturing, process control, and portable devices.

  19. Electronic dynamics of charge resonance enhanced ionization probed by laser-induced alignment in C2H2

    NASA Astrophysics Data System (ADS)

    Cornaggia, C.

    2016-10-01

    Although charge resonance enhanced ionization (CREI) be an ubiquitous effect in molecules in strong laser fields, the associated electron emission remains difficult to deal with. The main reason relies on the fact that CREI is part of an overall multielectron ionization, where the initial steps of single and dissociative ionization of neutral species dominate the electron spectrum. Using the rescattered electrons, we show that it is possible to address the electron signal from CREI without any contribution from other electron signals. The electrons from CREI are preferentially emitted when the molecular axis is parallel to the laser electric field as expected from its electronic dynamics. Acetylene is chosen for demonstration purpose because single ionization, which is not related to CREI, is more pronounced when the C2H2 molecular axis is perpendicular to the laser electric field.

  20. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    SciTech Connect

    Jia, X.; Jia, T. Q. Peng, N. N.; Feng, D. H.; Zhang, S. A.; Sun, Z. R.

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. The results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.

  1. Dynamics recording of holographic gratings in a photochromic crystal of calcium fluoride

    NASA Astrophysics Data System (ADS)

    Borisov, Vladimir N.; Barausova, Ekaterina V.; Veniaminov, Andrey V.; Andervaks, Alexandr E.; Shcheulin, Alexandr S.; Ryskin, Alexandr I.

    2016-08-01

    Dynamics of diffraction efficiency was monitored during recording a holographic grating in additively coloured CaF2 photochromic crystal at 180-200°C. Reciprocity failure revealed in the study was attributed to diffusion playing the crucial role in grating formation: recording at larger laser power goes faster but requires more energy. The efficiency of a recorded hologram is found to depend on the temperature; maximum diffraction is measured at the temperature far below that of recording, supposedly because of dramatic distortions suffered by the crystal along with exposure.

  2. Time dynamics of self-pumped reflection gratings in a photorefractive polymer

    NASA Astrophysics Data System (ADS)

    Banerjee, P. P.; Buller, S. H.; Liebig, C. M.; Basun, S. A.; Cook, G.; Evans, D. R.; Blanche, P.-A.; Thomas, J.; Christenson, C. W.; Peyghambarian, N.

    2012-01-01

    The time dynamics of self-pumped reflection gratings in a commonly used photorefractive polymer PDCST:PVK:ECZ-BBP:C60 with no additional electron sources or traps is investigated. While holes are normally the mobile charges and responsible for grating formation, our experimental observations, analyzed using multi-exponential fitting curves, show evidence of electrons in addition to holes as charge carriers, particularly above an applied field of 40 V/μm. The dependence of effective carrier mobilities on the applied electric field, deduced from experimental results, show stronger field dependence of electron mobility at high electric fields. At an applied field of 70 V/μm, electron and hole mobilities become approximately equal, and the contribution of electrons on grating formation becomes significant.

  3. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Rong, Lu; Chang, Shifeng

    2015-03-01

    A super-resolution imaging method using dynamic grating based on liquid-crystal spatial light modulator (SLM) is developed to improve the resolution of a digital holographic system. The one-dimensional amplitude cosine grating is loaded on the SLM, which is placed between the object and hologram plane in order to collect more high-frequency components towards CCD plane. The point spread function of the system is given to confirm the separation condition of reconstructed images for multiple diffraction orders. The simulation and experiments are carried out for a standard resolution test target as a sample, which confirms that the imaging resolution is improved from 55.7 μm to 31.3 μm compared with traditional lensless Fourier transform digital holography. The unique advantage of the proposed method is that the period of the grating can be programmably adjusted according to the separation condition.

  4. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  5. Asymmetrisation of the profile of a thin dynamic holographic grating in a TV-locked optical feedback loop

    SciTech Connect

    Venediktov, Vladimir Yu; Ivanova, Natalya L; Freigang, N N; Laskin, V A

    2009-10-31

    A system for recording a dynamic holographic grating in an optically addressed liquid-crystal spatial light modulator is studied. The system provides the asymmetrisation of the grating profile by using a TV-locked optical feedback loop (nonlinear or adaptive interferometer). (laser applications and other topics in quantum electronics)

  6. Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples.

    PubMed

    Ou, Zhigui; Huang, Min; Zhao, Fuli

    2014-07-14

    We demonstrate that the colorizing effect of angle dependence can be efficiently and conveniently achieved on the rippled surface of pure copper processed by the femtosecond laser with an out-of-focus method, which greatly improves the machining speed. Such a laser-induced colorization can occur in a wide range of laser fluence, which determines the coverage and morphological characteristics of laser-induced ripples and thus can finely tune the colorizing effect. By inspecting the colors and corresponding spectra of treated areas at different angles, the relationship between the diffracted light central wavelength and the laser-induced near-subwavelength grating is analyzed quantitatively based on the fundamental grating equation with the experimental grating parameters. The spectrum analysis indicates that for the laser fluence increasing in a suitable range, the more clarity and regularity of formed ripples should bring out a more prominent grating effect, which becomes further matching of the grating equation in a larger inspecting angle for the elimination of the influence of the diffused reflection light. In short, the study confirms that the colorizing phenomenon mainly ascribes to the grating diffraction effect of the laser-induced periodic surface ripples, which would help to enable the flexible control of the colorizing effect induced by laser processing on pure copper.

  7. Single grating x-ray imaging for dynamic biological systems

    NASA Astrophysics Data System (ADS)

    Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.

    2012-07-01

    Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.

  8. The pecularities of formation of dynamic gratings in metal vapors at the optical pumping of atomic hyperfine sublevels

    SciTech Connect

    Nazarov, V.N.

    1994-07-01

    The properties of the resonant dynamic gratings produced in atomic cesium vapors by low-power beams of a semiconductor laser are studied. It is shown, both experimentally and theoretically, that the efficiency of laser-beam diffraction on dynamic gratings in a three-level atomic medium can be appreciably increased owing to the compensation of medium bleaching by the increase in initial atomic concentration. The spatial frequency response of an atomic medium during optical pumping is shown to be substantially non-uniform and to have a strong rise in the range of low spatial frequencies of the gratings. 22 refs., 4 figs.

  9. Fully distributed chirped FBG sensor and application in laser-induced interstitial thermotherapy

    NASA Astrophysics Data System (ADS)

    Li, Chenglin; Chen, Na; Chen, Zhenyi; Wang, Tingyun

    2009-11-01

    In the laser induced interstitial thermotherapy (LITT), real-timely detecting the temperature distribution of the cured tissue is a bottleneck. In this paper, a fully distributed chirped Fiber Bragg grating (FBG) sensor, which is of small size, immune from electromagnetic interference (EMI) and high sensitivity, is proposed to solve this problem. An experiment simulation of LITT is set up, and only one chirped FBG is used to detect the dynamic spectral variation with different laser power. Meanwhile, a high-efficiency spectra inversion algorithm named MSAE of FBG is utilized to demodulate the system and obtain the temperature distribution. The spatial resolution is 0.25mm and the running time of demodulation is tens of seconds, which can help doctors control the laser parameters such as the laser power and the treatment time to guarantee the security of the therapy.

  10. Dynamics of Jacobi's elliptic spatial waves in a nonlinear optical grating

    SciTech Connect

    Alatas, Husin

    2011-04-15

    This paper presents the results of our study on the dynamics of Jacobi's elliptic spatial waves in a nonlinear optical grating based on a generalized coupled-mode model. We discuss the characteristics of their amplitudes, widths, and spatial periods as well as their bifurcation in the associated phase plane. Our study on the dynamical propagation of perturbed profiles reveal that these waves can suffer breathing and broadening due to the diffraction effect. A remarkable split-off phenomenon of a spatial wave with wide stripes into several narrow and shallow oblique stripes is observed, as well as their passing and bouncing collisions.

  11. Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    da Silva, Jean Carlos Cardozo; Martelli, Cicero; Kalinowski, Hypolito José; Penner, Elisabeth; Canning, John; Groothoff, Nathaniel

    2007-01-01

    We analyzed the action of fire, causing degradation in a concrete cantilever beam using dynamic testing. The structure was fitted with two fibre Bragg gratings (FBG) sensors. One of them measured vibration and the other measured the temperature inside of the cantilever beam, while the beam was exposed to fire. A high-temperature probe based on a simple packaging system, which isolates the sensing FBG from any mechanical action, was developed. A low-cost fibre Bragg grating interrogation system, including easy assembly and maintenance, was used for the measurements. The temperature in the cantilever beam increased until 150 °C and a reduction in the strength of concrete was observed through modal analysis. Results reveal a considerable reduction in strength occurs even with exposures to moderate temperatures (less than 90 °C).

  12. Vibrational Dynamics around the Conical Intersection Resulting from the tilde{A} → tilde{X} Laser Induced Fluorescence of the Methoxy (CH_3O) Radical

    NASA Astrophysics Data System (ADS)

    Nagesh, Jayashree; Sibert, Edwin L. Sibert, III

    2011-06-01

    The results of a theoretical calculation of the spectra associated with the laser induced fluorescence tilde{A}^2A_1→ tilde{X}^2E of both the methoxy molecule and CH_2DO are presented and discussed. The form of the vibronic dipole moment is determined by symmetry and the corresponding dipole expansion coefficients are calculated using ab initio methods. The calculated spectra include states up to 3000 Cm-1 above the zero point energy. We describe how the various features of the spectrum are related to coordinate dependent terms in the dipole expansion as well as the spin-orbit couplings, Jahn-Teller couplings, and vibrational anharmonicities.

  13. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  14. Compact fiber Bragg grating dynamic strain sensor cum broadband thermometer for thermally unstable ambience

    NASA Astrophysics Data System (ADS)

    Sreekumar, K.; Asokan, S.

    2010-01-01

    An instrument for simultaneous measurement of dynamic strain and temperature in a thermally unstable ambience has been proposed, based on fiber Bragg grating technology. The instrument can function as a compact and stand-alone broadband thermometer and a dynamic strain gauge. It employs a source wavelength tracking procedure for linear dependence of the output on the measurand, offering high dynamic range. Two schemes have been demonstrated with their relative merits. As a thermometer, the present instrumental configuration can offer a linear response in excess of 500 °C that can be easily extended by adding a suitable grating and source without any alteration in the procedure. Temperature sensitivity is about 0.06 °C for a bandwidth of 1 Hz. For the current grating, the upper limit of strain measurement is about 150 µɛ with a sensitivity of about 80 nɛ Hz-1/2. The major source of uncertainty associated with dynamic strain measurement is the laser source intensity noise, which is of broad spectral band. A low noise source device or the use of optical power regulators can offer improved performance. The total harmonic distortion is less than 0.5% up to about 50 µɛ,1.2% at 100 µɛ and about 2.3% at 150 µɛ. Calibrated results of temperature and strain measurement with the instrument have been presented. Traces of ultrasound signals recorded by the system at 200 kHz, in an ambience of 100-200 °C temperature fluctuation, have been included. Also, the vibration spectrum and engine temperature of a running internal combustion engine has been recorded as a realistic application of the system.

  15. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    PubMed

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed. PMID:27139682

  16. High spatial resolution, dynamic, and distributed fiber optic strain sensing based on phasorial Brillouin dynamic gratings reflectometry

    NASA Astrophysics Data System (ADS)

    Bergman, A.; Langer, T.; Tur, M.

    2016-05-01

    We present a novel fiber-optic sensing technique based on the distributed measurement of Brillouin-induced phase-shift in the reflection from Brillouin dynamic gratings in polarization-maintaining fibers. Subject to signal to noise considerations, the strain sensitivity of the phase-shift in the reflection of a pulsed probe, orthogonally polarized to the gratings-generating pumps, is independent of the pulse width, suggesting the potential to achieve higher spatial resolutions than those offered by slope-assisted, phasorial Brillouin sensing techniques in standard single-mode fibers. We report the measurement of 500Hz strain vibrations (at a sampling rate of 1MHz) with a spatial resolution of 20cm.

  17. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    NASA Astrophysics Data System (ADS)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  18. Demodulation of fiber bragg grating sensors based on dynamic tuning of a multimode laser diode.

    PubMed

    Ferreira, L A; Diatzikis, E V; Santos, J L; Farahi, F

    1999-08-01

    Dither demodulation of fiber Bragg grating sensors illuminated with multimode light from laser diodes is theoretically and experimentally investigated. Quasi-static temperature and strain sensitivities of 0.09 degrees C/ radical Hz and 0.6 microepsilon/ radical Hz are obtained. We show that it is possible to measure small ac signals that lie outside the feedback loop bandwidth by using a synchronous detection referenced to twice the dither frequency. In this situation, dynamic strain sensitivity of 3.3 n(epsilon)/ radical Hz is achieved. PMID:18323963

  19. Dynamic gratings recording in liquid crystal light valve with semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shcherbin, Konstantin; Gvozdovskyy, Igor; Evans, Dean R.

    2016-03-01

    Liquid crystal light valve with GaAs substrate operating in the transmission mode in the infrared is studied. The nonlinear phase shift of the transmitted light wave is measured as a function of applied voltage. The dynamic grating recording is achieved. A fourfold amplification of the weak signal beam is reached. The gain is increased by means of proper tilting of the cell that increases an effective pretilt of the liquid crystal molecules. The amplitude of the refractive index modulation and nonlinear coupling constant are estimated from the experimental results.

  20. Photochromism of spirooxazine-doped polymers studied by monitoring dynamics of holographic gratings

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zheng, Meiling; Fu, Shencheng; Shi, Feng; Wang, Xiuli; Zhan, Naiyan

    2015-03-01

    As an organic photochromic material, spirooxazine attracted widespread attention because of its high fatigue resistance and thermal stability. In this paper, the photochromism of spirooxazine was studied by monitoring the dynamics of holographic gratings in spirooxazine-doped polymer films. A theoretical description for the transformation of spirooxazine and merocyanine molecules was carried out, which agrees well with the experimental results. The photochromism of spirooxazine-doped different matrixes were studied, the photochromic rate and fatigue resistance of spirooxazine-doped SiO2 films were found to be better than spirooxazine-doped PMMA films.

  1. Laser Induced Fluorescence Spectroscopy of Cobalt Monoboride

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Ng, Y. W.; Cheung, A. S.-C.

    2011-06-01

    Laser induced fluorescence spectrum of cobalt monoboride (CoB) in the visible region between 465 and 560 nm has been observed. CoB molecule was produced by the reaction of laser ablated cobalt atom and diborane (B_2H_6) seeded in argon. Over twenty five vibronic bands have been recorded, and both Co10B and Co11B isotopic species have been observed and analyzed. Preliminary analysis of the rotational lines showed that the observed vibronic bands belong to two categories namely: the Ω' = 2 - Ω'' = 2 and the Ω' = 3 - Ω'' = 3 transitions, which indicated the ground state of CoB is consistent with an assignment of a ^3Δ_i state predicted from ab initio calculations. Unresolved hyperfine structure arising from the Co nucleus (I = 7/2) causes a broadening of spectral lines. This work represents the first experimental investigation of the spectrum of the CoB molecule. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  2. A fundamental understanding of the dependence of the laser-induced breakdown spectroscopy (LIBS) signal strength on the complex focusing dynamics of femtosecond laser pulses on either side of the focus.

    PubMed

    Zuhlke, Craig A; Bruce, John; Anderson, Troy P; Alexander, Dennis R; Parigger, Christian G

    2014-01-01

    We correlate the focusing dynamics of 50 femtosecond (fs) laser radiation as it interacts with a silicon sample to laser-induced breakdown spectroscopy (LIBS) signal strength. Presented are concentric ring-shaped variations in the electric field in the prefocus region due to lens aberrations and nonsymmetry between the prefocus and post-focus beam profile as a result of continuum generation, occurring around the focus. Experimental results show different signal trends for both atmospheric and vacuum conditions, attributed to the existence of a continuum for the former. Lens aberrations effects on the LIBS signal strength are investigated using a plano-convex spherical lens and an aspherized achromatic lens. High-resolution scanning electron micrographs of the silicon surface after ablation, along with theoretical simulations, reveal the electric field patterns near the focus. The research results contribute to fundamental understanding of the basic physics of ultrashort, femtosecond laser radiation interacting with materials. PMID:25226256

  3. Experimental investigation of a fiber Bragg grating integrated optical limiting amplifier with high dynamic range

    NASA Astrophysics Data System (ADS)

    Liaw, Shien Kuei; Chi, Sien

    1998-07-01

    By inserting a bidirectional erbium-doped fiber amplifier (EDFA) in between an optical circulator and a fiber Bragg grating (FBG), we realize an FBG-integrated optical limiting amplifier (OLA) with high dynamic range. The dual-pass OLA has a wide dynamic range of over 40 dB and a saturation signal output power of about 13.0 dBm. The performance of dual-pass OLA has no obvious degradation due to back reflection of the amplified signal. A negligible power penalty of about 0.3 dB is observed when compared with other conventional configurations. The FBG-integrated OLA configuration has potential application in wavelength division multiplexing systems where high saturated power is needed for multichannel transmission.

  4. The photodissociation and reaction dynamics of vibrationally excited molecules

    SciTech Connect

    Crim, F.F.

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  5. Noise in adaptive interferometric fiber sensor based on population dynamic grating in erbium-doped fiber.

    PubMed

    Stepanov, Serguei; Sánchez, Marcos Plata; Hernández, Eliseo Hernández

    2016-09-10

    Experimental investigations of the main noise sources that limit the sensitivity of the adaptive interferometric all-fiber sensors operating in the communication wavelength region are reported. Adaptive properties (i.e., the autostabilization of an optimal operation point of the interferometer) are enabled by the dynamic population grating recorded in a segment of the erbium-doped fiber (EDF) at milliwatt-scale cw power in the 1480-1560 nm spectral range. The utilized symmetric Sagnac configuration with low light internal reflections ensures reduced sensitivity of the sensor to phase noise of the laser, while intensity noise is reduced to an insignificant level by the balanced detection scheme. It is shown that the fluorescence from the erbium ions, excited by the counterpropagating waves recording the grating, increases the noise level from the fundamental shot noise approximately by a factor of 2-3 only. It is also shown that conventional communication distributed feedback (DFB) semiconductor lasers with megahertz linewidth are not suitable for high-sensitivity applications of such sensors. Because of inevitable backreflections from the output terminal devices (photodiodes, insulators, circulator), the above-mentioned fundamental noise level is increased by 2 orders of magnitude due to high phase noise of the DFB laser. PMID:27661369

  6. Noise in adaptive interferometric fiber sensor based on population dynamic grating in erbium-doped fiber.

    PubMed

    Stepanov, Serguei; Sánchez, Marcos Plata; Hernández, Eliseo Hernández

    2016-09-10

    Experimental investigations of the main noise sources that limit the sensitivity of the adaptive interferometric all-fiber sensors operating in the communication wavelength region are reported. Adaptive properties (i.e., the autostabilization of an optimal operation point of the interferometer) are enabled by the dynamic population grating recorded in a segment of the erbium-doped fiber (EDF) at milliwatt-scale cw power in the 1480-1560 nm spectral range. The utilized symmetric Sagnac configuration with low light internal reflections ensures reduced sensitivity of the sensor to phase noise of the laser, while intensity noise is reduced to an insignificant level by the balanced detection scheme. It is shown that the fluorescence from the erbium ions, excited by the counterpropagating waves recording the grating, increases the noise level from the fundamental shot noise approximately by a factor of 2-3 only. It is also shown that conventional communication distributed feedback (DFB) semiconductor lasers with megahertz linewidth are not suitable for high-sensitivity applications of such sensors. Because of inevitable backreflections from the output terminal devices (photodiodes, insulators, circulator), the above-mentioned fundamental noise level is increased by 2 orders of magnitude due to high phase noise of the DFB laser.

  7. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    PubMed

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-01-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties. PMID:27487941

  8. Characterization of temperature-dependent birefringence in polarization maintaining fibers based on Brillouin dynamic gratings

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hyun; Song, Kwang Yong

    2015-07-01

    Temperature dependence of birefringence in various types of polarization-maintaining fibers (PMF's) is rigorously investigated by the spectral analysis of Brillouin dynamic grating (BDG). PANDA, Bowtie, and PM photonic crystal fibers are tested in the temperature range of -30 to 150 ºC, where nonlinear temperature dependence is quantified for each fiber to an accuracy of ±7.6 × 10-8. It is observed that the amount of deviation from the linearity varies according to the structural parameters of the PMF's and the existence of acrylate jacket. Experimental confirmation of the validity of the BDG-based birefringence measurement is also presented in comparison to the periodic lateral force method.

  9. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers.

    PubMed

    Kim, Yong Hyun; Kwon, Hong; Kim, Jeongjun; Song, Kwang Yong

    2016-09-19

    High-sensitivity distributed measurement of hydrostatic pressure is experimentally demonstrated by optical time-domain analysis of Brillouin dynamic grating (BDG) in polarization maintaining fibers (PMF's). The spectral shift of the BDG in four different types of PMF's are investigated under hydrostatic pressure variation from 14.5 psi (1 bar) to 884.7 psi (61 bar) with less than 2 m spatial resolution. The pressure sensitivity of BDG frequency is measured to be ‒1.69, + 0.65, + 0.78, and + 0.85 MHz/psi for a PM photonic crystal fiber (PM-PCF), two Bow-tie fibers, and a PANDA fiber, respectively, which is about 65 to 169 times larger than that of Brillouin frequency-based pressure sensing. PMID:27661881

  10. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

    PubMed Central

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-01-01

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties. PMID:27487941

  11. High spatial resolution, low-noise Brillouin dynamic gratings reflectometry based on digital pulse compression.

    PubMed

    Bergman, A; Langer, T; Tur, M

    2016-08-01

    Digital pulse compression was used to enhance the performance of optical time-domain reflectometry, employing Brillouin dynamic gratings (BDGs) in polarization-maintaining fibers. The fundamental and unique issues in BDG field-reflection are addressed, and rules for proper selection of the coding and detection techniques are formulated. While coding in BDG applications generally requires coherent processing of the reflection, conditions are established for use of direct detection. A 256-bit Golay complementary unipolar probe code is used to demonstrate an eightfold signal-to-noise ratio enhancement in the measurement of the Brillouin gain spectrum (BGS), with a spatial resolution of 2 cm and a full-BGS acquisition rate of 133⅓ kHz, resulting in an equivalent reduction in the estimation error of small Brillouin frequency shifts. PMID:27472639

  12. Molecular dynamics in azobenzene liquid crystal polymer films studied by transient grating technique

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Fujii, Tomomi; Kuwahara, Shota; Takado, Kiyohide; Ikeda, Tomiki

    2014-10-01

    We studied the effect of the ratio between the monomer and cross-linker molecules in the azobenene included liquid crystal polymer films by using the heterodyne transient grating (HD-TG) technique, which is one of the time-resolved measurement techniques. Depending on the ratio, the magnitude of the refractive index change, its anisotropy, and the lifetime of the cis isomer of azobenzene, generated by a UV pulse irradiation. By increasing the cross-linker ratio, the refractive index change and its anisotropy was reduced, indicating less ability for the motion, while slower lifetime was observed by increasing the monomer ratio, indicating that the film is difficult to return the original shape by a visiblelight irradiation. The obtained dynamics was consistent with the functionality of the films.

  13. Dynamic assessment of women pelvic floor function by using a fiber Bragg grating sensor system

    NASA Astrophysics Data System (ADS)

    Ferreira, Luis A.; Araújo, Francisco M.; Mascarenhas, Teresa; Natal Jorge, Renato M.; Fernandes, António A.

    2006-02-01

    We present a novel sensing system consisting of an intravaginal probe and an optoelectronic measurement unit, which allows an easy, comfortable and quantitative dynamic evaluation of women pelvic floor muscle strength. The sensing probe is based on a silicone cylinder that transduces radial muscle pressure into axial load applied to a fiber Bragg grating strain sensor. The performance of a first sensor probe prototype with temperature referentiation and of the autonomous, portable optoelectronic measurement unit with data logging capabilities and graphical user interface is disclosed. The presented results refer to an ongoing collaboration work between researchers from the Medical, Optoelectronics and Mechanical areas, directed to the development of equipment that can assist in medical practice and help in the research of primary mechanisms responsible for several pelvic floor disorders, in particular urogenital prolapses.

  14. Laser Induced Blue Luminescence Phenomenon

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyong; Duan, Yanmin; Zhang, Ge; Zhang, Yaoju; Yang, Fugui

    2011-09-01

    Laser induced strange blue luminescence in several Raman crystals has been investigated. The blue luminescence at about 473 nm has the characteristic of no orientation and only produced in the crystal where the fundament laser oscillated. The experimental results show that the blue luminescence must result from the fundamental laser around 1.0 µm rather than Stokes-shifting. The spectrum detected is similar for different crystals. This blue luminescence is obviously strange and inconsistent with traditional luminescence theories, which maybe a brand-new luminescence theory.

  15. Dynamics of N-OH bond dissociation in cyclopentanone and cyclohexanone oxime at 193 nm: laser-induced fluorescence detection of nascent OH (v'', J'').

    PubMed

    Kawade, Monali N; Saha, Ankur; Upadhyaya, Hari P; Kumar, Awadhesh; Naik, Prakash D

    2010-12-01

    Cyclohexanone oxime (CHO) and cyclopentanone oxime (CPO) in the vapor phase undergo N-OH bond scission upon excitation at 193 nm to produce OH, which was detected state selectively employing laser-induced fluorescence. The measured energy distribution between fragments for both oximes suggests that in CHO the OH produced is mostly vibrationally cold, with moderate rotational excitation, whereas in CPO the OH fragment is also formed in v'' = 1 (~2%). The rotational population of OH (v'' = 0, J'') from CHO is characterized by a rotational temperature of 1440 ± 80 K, whereas the rotational populations of OH (v'' = 0, J'') and OH (v'' = 1, J'') from CPO are characterized by temperatures of 1360 ± 90 K and 930 ± 170 K, respectively. A high fraction of the available energy is partitioned to the relative translation of the fragments with f(T) values of 0.25 and 0.22 for CHO and CPO, respectively. In the case of CHO, the Λ-doublet states of the nascent OH radical are populated almost equally in lower rotational quantum levels N'', with a preference for Π(+) (A') states for higher N''. However, there is no preference for either of the two spin orbit states Π(3/2) and Π(1/2) of OH. The nascent OH product in CPO is equally distributed in both Λ-doublet states of Π(+) (A') and Π(-) (A'') for all N'', but has a preference for the Π(3/2) spin orbit state. Experimental work in combination with theoretical calculations suggests that both CHO and CPO molecules at 193 nm are excited to the S(2) state, which undergoes nonradiative relaxation to the T(2) state. Subsequently, molecules undergo the N-OH bond dissociation from the T(2) state with an exit barrier to produce OH (v'', J'').

  16. Laser-Induced Spallation of Microsphere Monolayers.

    PubMed

    Hiraiwa, Morgan; Stossel, Melicent; Khanolkar, Amey; Wang, Junlan; Boechler, Nicholas

    2016-08-01

    The detachment of a semiordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained using an adhesive contact model together with interferometric measurements of the out-of-plane microsphere contact resonance, and with estimated work of adhesion values for the polystyrene-aluminum interface. Scanning electron microscope images of detached monolayer regions reveal a unique morphology, namely, partially detached monolayer flakes composed of single hexagonal close packed crystalline domains. This work contributes to the fields of microsphere adhesion and contact dynamics, and demonstrates a unique monolayer delamination morphology. PMID:27409715

  17. Laser-induced breakdown spectroscopy in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Yuan, Ting-Bi; Hou, Zong-Yu; Zhou, Wei-Dong; Lu, Ji-Dong; Ding, Hong-Bin; Zeng, Xiao-Yan

    2014-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been regarded as a future superstar for chemical analysis for years due to its unique features such as little or no sample preparation, remote sensing, and fast and multi-element analysis. Chinese LIBS community is one of the most dynamically developing communities in the World. The aim of the work is to inspect what have been done in China for LIBS development and, based on the understanding of the overall status, to identify the challenges and opportunities for the future development. In this paper, the scientific contributions from Chinese LIBS community are reviewed for the following four aspects: fundamentals, instrumentation, data processing and modeling, and applications; and the driving force of LIBS development in China is analyzed, the critical issues for successful LIBS application are discussed, and in our opinion, the potential direction to improve the technology and to realize large scale commercialization in China is proposed.

  18. Dynamic fiber Bragg grating strain sensor using a wavelength-locked tunable fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    The interrogation systems based on fiber-optic sensors are very attractive for the practical applications in structural health monitoring owing to a number of advantages of optical fiber elements over their electronic counterparts. Among the fiber-optic sensors, the fiber Bragg gratings (FBGs) have their own unique features to be widely used for detection of acoustic emission. We have developed a dynamic strain sensing system by using a tunable single longitudinal mode Erbium-doped fiber ring laser to be locked to the middle-reflection wavelength of the FBG as the demodulation technique. A proportional-integral-derivative device continuously controls the laser wavelength that is kept at the FBG middle-reflection wavelength, thus stabilizing the operating point against quasi-static perturbation, while the high frequency dynamic strain shifts the FBG reflection profile. The reflected power varies in proportion to the applied strain which can be derived directly from AC photocurrent of the reflected signal. We have designed and assembled a fourchannel demodulator system for simultaneous high frequency dynamic strain sensing.

  19. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  20. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    SciTech Connect

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G. D.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  1. Transient Grating Spectroscopy in Magnetic Thin Films: Simultaneous Detection of Elastic and Magnetic Dynamics.

    PubMed

    Janušonis, J; Jansma, T; Chang, C L; Liu, Q; Gatilova, A; Lomonosov, A M; Shalagatskyi, V; Pezeril, T; Temnov, V V; Tobey, R I

    2016-01-01

    Surface magnetoelastic waves are coupled elastic and magnetic excitations that propagate along the surface of a magnetic material. Ultrafast optical techniques allow for a non-contact excitation and detection scheme while providing the ability to measure both elastic and magnetic components individually. Here we describe a simple setup suitable for excitation and time resolved measurements of high frequency magnetoelastic waves, which is based on the transient grating technique. The elastic dynamics are measured by diffracting a probe laser pulse from the long-wavelength spatially periodic structural deformation. Simultaneously, a magnetooptical measurement, either Faraday or Kerr effect, is sensitive to the out-of-plane magnetization component. The correspondence in the response of the two channels probes the resonant interaction between the two degrees of freedom and reveals their intimate coupling. Unraveling the observed dynamics requires a detailed understanding of the spatio-temporal evolution of temperature, magnetization and thermo-elastic strain in the ferromagnet. Numerical solution of thermal diffusion in two dimensions provides the basis on which to understand the sensitivity in the magnetooptic detection. PMID:27377262

  2. Transient Grating Spectroscopy in Magnetic Thin Films: Simultaneous Detection of Elastic and Magnetic Dynamics

    PubMed Central

    Janušonis, J.; Jansma, T.; Chang, C. L.; Liu, Q.; Gatilova, A.; Lomonosov, A. M.; Shalagatskyi, V.; Pezeril, T.; Temnov, V. V.; Tobey, R. I.

    2016-01-01

    Surface magnetoelastic waves are coupled elastic and magnetic excitations that propagate along the surface of a magnetic material. Ultrafast optical techniques allow for a non-contact excitation and detection scheme while providing the ability to measure both elastic and magnetic components individually. Here we describe a simple setup suitable for excitation and time resolved measurements of high frequency magnetoelastic waves, which is based on the transient grating technique. The elastic dynamics are measured by diffracting a probe laser pulse from the long-wavelength spatially periodic structural deformation. Simultaneously, a magnetooptical measurement, either Faraday or Kerr effect, is sensitive to the out-of-plane magnetization component. The correspondence in the response of the two channels probes the resonant interaction between the two degrees of freedom and reveals their intimate coupling. Unraveling the observed dynamics requires a detailed understanding of the spatio-temporal evolution of temperature, magnetization and thermo-elastic strain in the ferromagnet. Numerical solution of thermal diffusion in two dimensions provides the basis on which to understand the sensitivity in the magnetooptic detection. PMID:27377262

  3. Interrogation of a wavelength tunable fiber Bragg grating sensor based ring laser for dynamic strain monitoring

    NASA Astrophysics Data System (ADS)

    Balogun, Oluwaseyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2010-03-01

    Fiber Bragg gratings (FBGs) are wavelength selective optical reflectors with excellent strain sensitivity and small sensing footprint, which makes them suitable as diagnostic sensors for structural health monitoring applications. In this work, we explore the narrowband wavelength selectivity of FBGs for optical feedback in a tunable fiber ring laser. The fiber ring laser consists of an erbium doped fiber laser that is pumped with a Raman laser (980 nm) to produce population inversion and amplified spontaneous emission (ASE) in the C-band. The ASE light is used to illuminate a FBG sensor connected to the ring, and the reflected light from the sensor is fed back into the laser cavity to produce stimulated emission at the instantaneous center wavelength of the sensor. As the wavelength of the sensor shifts due mechanical or thermal strains, the wavelength of the optical output from the ring laser shifts accordingly. By combining the ring laser with a dynamic spectral demodulator for optical readout, the instantaneous wavelength of the ring laser is tracked with high temporal resolution. The fiber ring laser system offers several potential advantages in the diagnostic sensing of mechanical strains for SHM applications including, fully integrated laser and sensor system, high source power levels at the sensor wavelength, narrow spectral line-width, coherent spectral demodulation, and low system costs. In this work, we present experimental results that detail the feasibility of dynamic spectral tuning of the fiber ring laser at frequencies up to hundreds of kilohertz using a single FBG sensing element. Using multiple sensing elements, the fiber ring laser system would allow for active monitoring of dynamic strains in a multi-point sensor array configuration, which is particularly suitable for the localization of high frequency mechanical strains produced by impact loading and cracking events in structures.

  4. Fiber Bragg grating dynamic demodulation based on non-equilibrium interferometry

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Jing, Zhenguo; Peng, Wei; Zhang, Xinpu; Liu, Yun; Xing, Chuanqi; Li, Hong; Yao, Wenjuan

    2011-12-01

    Non-equilibrium interferometric Fiber Bragg Grating (FBG) sensor is suitable for the accurate measurements of high-frequency dynamic stress, vibration, etc because of its high sensitivity and high frequency response compared to other types of FBG sensors. In this paper, a Phase Generation Carrier (PGC) demodulation technique of non-equilibrium interferometric FBG sensor that based on ARCTAN algorithm by using an arctangent algorithm with a simple method, has been investigated ,which can avoid the high-frequency noise increases, the error accumulation, the integrator signal jump of the integrator and other inherent weaknesses in the system. ARCTAN has a better response characteristic of the mutant signals, especially for low-frequency large-signal that can be demodulated with a greater range. The experimental result demonstrate that implementing measured resolution can up to 10nɛ/√Hz@500Hz in vibration strain, a signal sampling rate to 100 KHz and a frequency response range up to 1 KHz. This method can improve the performance of the system greatly which has potential significance for practical sensor application.

  5. Interaction between jets during laser-induced forward transfer

    SciTech Connect

    Patrascioiu, A.; Florian, C.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.; Hennig, G.; Delaporte, P.

    2014-07-07

    Simultaneous two-beam laser-induced forward transfer (LIFT) was carried out for various inter-beam separations, analyzing both the resulting printing outcomes and the corresponding liquid transfer dynamics. In a first experiment, droplets of an aqueous solution were printed onto a substrate at different inter-beam distances, which proved that a significant departure from the single-beam LIFT dynamics takes places at specific separations. In the second experiment, time-resolved imaging analysis revealed the existence of significant jet-jet interactions at those separations; such interactions proceed through a dynamics that results in remarkable jet deflection for which a possible onset mechanism is proposed.

  6. Dynamic index modulation mechanism in polarization-maintained fiber Bragg gratings induced by transverse acoustic waves.

    PubMed

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jianhui; Liu, Xiaoming

    2009-08-20

    A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization-dependent narrowband acousto-optic tunable filters.

  7. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  8. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  9. Long-lived laser-induced microwave plasma guides in the atmosphere: Self-consistent plasma-dynamic analysis and numerical simulations

    SciTech Connect

    Shneider, M. N.; Miles, R. B.; Zheltikov, A. M.

    2010-08-15

    A detailed model of plasma dynamics, which self-consistently integrates plasma-kinetic, Navier-Stokes, electron heat conduction, and electron-vibration energy transfer equations, is used to quantify the limitations on the lifetime of microwave plasma waveguides induced in the atmosphere through filamentation with high-intensity ultrashort laser pulses further sustained by long laser pulses. We demonstrate that a near-infrared or midinfrared laser pulse can tailor plasma decay in the wake of a filament, efficiently suppressing, through electron temperature increase, the attachment of electrons to neutral species and dissociative recombination, thus substantially increasing the plasma-guide lifetime and facilitating long-distance transmission of microwaves.

  10. Two-dimensional Temperature Measurement in Laser-induced Breakdown (LIB) using Planar Laser-induced Fluorescence (PLIF)

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Parigger, Christian; Plemmons, David H.; Lewis, J. W. L.

    1996-05-01

    Two-dimensional temperature maps of the spatial profile of NH have been obtained following laser-induced breakdown of NH_3. A focused Nd:YAG laser of nominally 30 mJ and 6 ns pulsewidth was used to obtain laser breakdown of atmospheric pressure, flowing gaseous NH_3. The recombination NH A-X far-ultraviolet spectra was studied over the temporal region of 1 - 100 μs following breakdown. Spontaneous emission and planar laser-induced fluorescence (PLIF) spectra were observed using a two dimensional image-intensifier filter combination. The PLIF excitation spetra were achieved using an excimer-pumped dye laser, and temperature were obtained using Boltzmann plots. The results show the spatial profiles of the remnant plasma kernel and the effect of gas-dynamic expansion.

  11. Expansion flow and cluster distributions originating from ultrafast-laser-induced fragmentation of thin metal films: A molecular-dynamics study

    SciTech Connect

    Upadhyay, Arun K.; Urbassek, Herbert M.

    2006-01-15

    Using molecular-dynamics simulation, we study the fragmentation patterns of ultrathin metal films as a function of the initial energization. The energization is assumed to occur instantaneously. Above the threshold for fragmentation, a homogeneous expansion of the exploding film is observed, in which a mixture of clusters of all sizes is found. The internal temperature of the clusters is constant, independent of space, time, and cluster size. The cluster size distribution can be characterized for small energizations as a biexponential distribution, but is better represented for larger energizations by a power law in cluster size m,{proportional_to}m{sup -{alpha}}, with an exponent {alpha} congruent with 2.8-3.1.

  12. Anions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  13. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  14. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    PubMed

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PMID:25226262

  15. Laser-induced gas-surface interactions

    NASA Astrophysics Data System (ADS)

    Chuang, T. J.

    Chemical reactions in homogeneous systems activated by laser radiation have been extensively investigated for more than a decade. The applications of lasers to promote gas-surface interactions have just been realized in recent years. The purpose of this paper is to examine the fundamental processes involved in laser-induced gas-surface chemical interactions. Specifically, the photon-enhanced adsorption, adsorbate-adsorbate and adsorbate-solid reactions, product formation and desorption processes are discussed in detail. The dynamic processes involved in photoexcitation of the electronic and vibrational states, the energy transfer and relaxation in competition with chemical interactions are considered. These include both single and multiple photon adsorption, and fundamental and overtone transitions in the excitation process, and inter- and intra-molecular energy transfer, and coupling with phonons, electron-hole pairs and surface plasmons in the energy relaxation process. Many current experimental and theoretical studies on the subject are reviewed and discussed with the goal of clarifying the relative importance of the surface interaction steps and relating the resulting concepts to the experimentally observed phenomena. Among the many gas-solid systems that have been investigated, there has been more extensive use of CO adsorbed on metals, and SF 6 and XeF 2 interactions with silicon as examples to illustrate the many facets of the electronically and vibrationally activated surface processes. Results on IR laser stimulated desorption of C 5H 5N and C 5D 5N molecules from various solid surfaces are also presented. It is clearly shown that rapid intermolecular energy exchange and molecule to surface energy transfer can have important effects on photodesorption cross sections and isotope selectivities. It is concluded that utilization of lasers in gas-surface studies not only can provide fundamental insight into the mechanism and dynamics involved in heterogeneous

  16. High-sensitivity distributed transverse load sensor with an elliptical-core fiber based on Brillouin dynamic gratings.

    PubMed

    Dong, Yongkang; Teng, Lei; Tong, Peilin; Jiang, Taofei; Zhang, Hongying; Zhu, Tao; Chen, Liang; Bao, Xiaoyi; Lu, Zhiwei

    2015-11-01

    A high-sensitivity distributed transverse load sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the transverse-load-induced birefringence change through exciting and probing a BDG in an elliptical-core polarization-maintaining fiber. A distributed measurement of transverse load is demonstrated experimentally using a 10 m sensing fiber, which features high sensitivity to a transverse load with a measurement accuracy as high as 0.8×10(-3)  N/mm at a 20 cm spatial resolution. PMID:26512504

  17. Dynamics of laser-induced electroconvection pulses.

    PubMed

    Giebink, N C; Johnson, E R; Saucedo, S R; Miles, E W; Vardanyan, K K; Spiegel, D R; Allen, C C

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  18. Dynamics of laser-induced electroconvection pulses

    NASA Astrophysics Data System (ADS)

    Giebink, N. C.; Johnson, E. R.; Saucedo, S. R.; Miles, E. W.; Vardanyan, K. K.; Spiegel, D. R.; Allen, C. C.

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/° C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10 20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left () side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches ˜0.3 . We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  19. Laser-induced caesium-137 decay

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Simakin, A. V.; Shafeev, G. A.

    2014-08-01

    Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus 137mBa, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal.

  20. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  1. Laser-induced caesium-137 decay

    SciTech Connect

    Barmina, E V; Simakin, A V; Shafeev, G A

    2014-08-31

    Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)

  2. On two optomechanical effects of laser-induced electrostriction in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Gojani, Ardian B.; Bejtullahu, Rasim; Obayashi, Shigeru

    2014-09-01

    This paper presents electrostriction from the phenomenological perspective, and gives details on two mechanical effects arising from laser-matter interaction. Electrostriction is the tendency of materials to compress in the presence of a varying electric field. In this paper, the investigated materials are polar and nonpolar dielectric liquids. It is stressed that the dominant factor is the time evolution of the laser pulse, which causes tensile stresses and acoustic waves. The study is supported by experimental realization of electrostriction, which can be detected only at favorable conditions (observed in water, but not in castor oil). This study will shed light in developing measurement techniques (e.g., laser-induced grating spectroscopy) and in explaining the onset of cavities and laser-induced liquid breakdown.

  3. Laser-Induced Underwater Plasma And Its Spectroscopic Applications

    SciTech Connect

    Lazic, Violeta

    2008-09-23

    Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

  4. Laser-induced micro-jetting from armored droplets

    NASA Astrophysics Data System (ADS)

    Marston, J. O.; Thoroddsen, S. T.

    2015-07-01

    We present findings from an experimental study of laser-induced cavitation within a liquid drop coated with a granular material, commonly referred to as "armored droplets" or "liquid marbles." The cavitation event follows the formation of plasma after a nanosecond laser pulse. Using ultra-high-speed imaging up to 320,610 fps, we investigate the extremely rapid dynamics following the cavitation, which manifests itself in the form of a plethora of micro-jets emanating simultaneously from the spaces between particles on the surface of the drop. These fine jets break up into droplets with a relatively narrow diameter range, on the order of 10 μm.

  5. Efficiency dynamics of diffraction gratings recorded in liquid crystalline composite materials by a UV interference pattern

    NASA Astrophysics Data System (ADS)

    Caputo, R.; Sukhov, A. V.; Tabiryan, N. V.; Umeton, C.

    1999-07-01

    We have carried out an experimental and theoretical study of the efficiency of diffraction gratings recorded in samples of polymer dispersed liquid crystal pre-syrups by an interference pattern of curing UV light. The theoretical model takes into account the diffusion of excited monomers during the UV curing and the circumstance that the diffusion coefficient is strongly affected by the polymerisation process. The theoretical curves perfectly fit the experimental results and confirm the validity of our model.

  6. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    SciTech Connect

    BULLOCK, A B

    1999-05-26

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom

  7. Laser-induced back-ablation of aluminum thin films using picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bullock, Anthony Burlingame

    Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time- delayed, two-color subpicoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission. Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence (θdivergence < 5°) shows the ablated plume temperature to be very low at long time delays (T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 μm films show these plumes to be of high neutral atom density (nn of order 10

  8. Laser-induced shockwave lithotripsy of gallstones.

    PubMed

    Ell, C; Wondrazek, F; Frank, F; Hochberger, J; Lux, G; Demling, L

    1986-05-01

    With the aid of a Q-switched Nd:YAG laser with energy transmission via a flexible glass fiber, it proves possible under laboratory conditions, to destroy gallstones reliably and reproducibly. Lithotripsy is effected mechanically via a laser-induced local shockwave.

  9. All-fiber probe for laser-induced thermotherapy with integrated temperature measurement capabilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, W.; Yu, H.; Gassino, R.; Braglia, A.; Olivero, M.; Perrone, Guido; Vallan, A.

    2015-03-01

    The paper presents our recent results towards the development of a miniaturized all-fiber probe for laser induced thermal ablation of tumor cells, which combines the optimal delivery of a near-infrared high power ablating beam, a low power visible aiming beam and fast Bragg grating (FBG) temperature sensors. Specific combiner and probe end-cap based on dual cladding fibers have been developed to allow the simultaneous handling of the laser beams and of the signal that feeds the temperature sensor. Moreover, a very fast FBG interrogation system has been implemented to track abrupt temperature variations during medical treatment.

  10. (Study of flow properties of wet solids using laser induced photo chemical anemometry)

    SciTech Connect

    Falco, B.

    1992-04-09

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves the use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  11. Laser-induced THz magnetization precession for a tetragonal Heusler-like nearly compensated ferrimagnet

    NASA Astrophysics Data System (ADS)

    Mizukami, S.; Sugihara, A.; Iihama, S.; Sasaki, Y.; Suzuki, K. Z.; Miyazaki, T.

    2016-01-01

    Laser-induced magnetization precessional dynamics was investigated in epitaxial films of Mn3Ge, which is a tetragonal Heusler-like nearly compensated ferrimagnet. The ferromagnetic resonance (FMR) mode was observed, the precession frequency for which exceeded 0.5 THz and originated from the large magnetic anisotropy field of approximately 200 kOe for this ferrimagnet. The effective damping constant was approximately 0.03. The corresponding effective Landau-Lifshitz constant is approximately 60 Mrad/s and is comparable with those of the similar Mn-Ga materials. The physical mechanisms for the Gilbert damping and for the laser-induced excitation of the FMR mode were also discussed in terms of the spin-orbit-induced damping and the laser-induced ultrafast modulation of the magnetic anisotropy, respectively.

  12. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  13. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  14. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  15. Dynamic strain measurement system with fiber Bragg gratings and noise mitigation techniques

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Olivero, M.; Perrone, G.

    2009-06-01

    A low-cost fiber Bragg grating (FBG) vibrometer specifically suited for structural monitoring and aimed at the detection of low-amplitude vibrations is presented. The optical system exploits an intensity modulation principle of operation, while signal processing techniques are used to complement the transducer to improve the performances: a recursive least-squares adaptive filter improves the noise power mitigation by 14 dB, and an efficient spectral estimator permits operating spectral analysis even under high noise conditions. With these methods, a strain sensitivity of 5.6 nɛ has been achieved in the ±60 µɛ range. Experimental assessment tests carried out in typical structural monitoring contexts have demonstrated that the developed sensor is well suited to measure mechanical perturbations of different structures.

  16. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization.

    PubMed

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M; Gordon, Reuven; Choi, Byoung C

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm(2) due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  17. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    PubMed Central

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  18. Time-resolved digital holographic microscopy of laser-induced forward transfer process

    PubMed Central

    Ma, H.; Venugopalan, V.

    2014-01-01

    We develop a method for time-resolved digital holographic microscopy to obtain time-resolved 3-D deformation measurements of laser induced forward transfer (LIFT) processes. We demonstrate nanometer axial resolution and nanosecond temporal resolution of our method which is suitable for measuring dynamic morphological changes in LIFT target materials. Such measurements provide insight into the early dynamics of the LIFT process and a means to examine the effect of laser and material parameters on LIFT process dynamics. PMID:24748724

  19. Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Zhou, Zhi; Ou, Jinping

    2012-06-01

    Suspenders, as the main bearing components in an arch bridge, can only manage to serve for about tens of years, or even a few years due to the influences of corrosion and fatigue load. This paper proposes a method of testing the suspender dynamic behavior with optical fiber Bragg grating sensors embedded in the glass fiber reinforced polymer (GFRP-OFBGS). Firstly, layout method of FRP-OFBGS among the suspender and protection technology are studied, and the self-monitoring smart suspender is developed. Secondly, stretching experiments were carried out on the smart suspender. The test experimental results demonstrated that the whole procedure of the stretching test can be perfectly monitored. Finally, the self-monitoring smart suspender successfully was applied in Ebian Bridge to monitor the strain history of suspenders under traffic load, and traffic effect to suspenders with various lengths and to different steel strands of a single suspender. Based on the monitoring data, the arch bridge suspenders fatigue damage dynamic evaluation methods and calculation results were given. The field monitoring results demonstrated that, the self-monitoring smart suspender mentioned in this paper is capable of monitoring suspender dynamic response and possible fatigue damages.

  20. Diffraction by dual-period gratings.

    PubMed

    Skigin, Diana C; Depine, Ricardo A

    2007-03-20

    The dynamical characteristics of dual-period perfectly conducting gratings are explored. Gratings with several grooves (reflection) or slits (transmission) within each period are considered. A scalar approach is proposed to derive the general characteristics of the diffracted response. It was found that compound gratings can be designed to cancel as well as to intensify a given diffraction order. These preliminary estimations for finite gratings are validated by numerical examples for infinitely periodic reflection and transmission gratings with finite thickness, performed using an extension of the rigorous modal method to compound gratings, for both polarization cases.

  1. Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry.

    PubMed

    Kim, Hak-Rin; Jang, Eunje; Kim, Jiyoon; Joo, Kyung-Il; Lee, Sin-Doo

    2012-12-20

    We present a dynamic polarization grating based on a dye-doped liquid crystal cell that is controllable by a single pump beam in a binary homeotropic-planar configuration produced through selective rubbing. Upon single pump beam irradiation, the azo dyes in the liquid-crystal (LC) layer diffuse and adsorb onto the planar LC-anchoring surface due to trans-cis photo-isomerization. It is found that the dynamic polarization grating effect results mainly from the photo-induced easy axis reorientation by the amount of dye molecules adsorbed on the planar LC-alignment surface in a single-beam control scheme. The initial LC-anchoring conditions and the dynamic behavior of the dye adsorption strongly influence the repetitive writing-erasing processes by the single pump beam. PMID:23262590

  2. Modeling of Laser-Induced Metal Combustion

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  3. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  4. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  5. Laser-induced desorption from sapphire surfaces

    SciTech Connect

    Hamza, A.V.; Schildbach, M.A.

    1992-03-01

    Laser-induced desorption of energetic ({approximately}7eV) aluminum ions was observed from clean and water-covered sapphire (1102) surfaces using time-of-flight mass spectrometry with laser wavelengths of 1064, 355, and 266 nm. In sharp contrast, O{sup +} (H{sup +} and OH{sup +}) ions were observed in electron-induced desorption measurements with 300 eV electrons from the bare (water- covered) (1102) surface. Sapphire surfaces were characterized with low energy electron diffraction, reflection electron energy loss spectroscopy, and Auger electron spectroscopy. 8 refs.

  6. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  7. Microfabrication of polystyrene microbead arrays by laser induced forward transfer

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, Alexandra; Dinca, Valentina; Paraico, Iurie; Moldovan, Antoniu; Shaw-Stewart, James; Schneider, Christof W.; Kovacs, Eugenia; Lippert, Thomas; Dinescu, Maria

    2010-08-01

    In this study we describe a simple method to fabricate microarrays of polystyrene microbeads (PS-μbeads) on Thermanox coverslip surfaces using laser induced forward transfer (LIFT). A triazene polymer layer which acts as a dynamic release layer and propels the closely packed microspheres on the receiving substrate was used for this approach. The deposited features were characterized by optical microscopy, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. Ultrasonication was used to test the adherence of the transferred beads. In addition, the laser ejection of the PS-μbead pixels was investigated by time resolved shadowgraphy. It was found that stable PS-μbeads micropatterns without any specific immobilization process could be realized by LIFT. These results highlight the increasing role of LIFT in the development of biomaterials, drug delivery, and tissue engineering.

  8. Application of the method of laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Fateeva, Natalia L.; Matvienko, Gennadii G.

    2004-02-01

    Great attention is now paid to ecology of the environment, in whic plants are of great importance. However the present methods of biophysical analysis of plant states are very labor-intensive and require a lot of time. The structure of protein-pigment complexes is known to break in different dissolvents that results in the shift of maxima of chlorophyll absorption and fluorescence bands. That is why development of methods for remote diagnostics of plants is of great scientific and practical interest. They would make it possible to determine species and state of plants rather quickly and accurately. We have developed a setup and methods for optical diagnostics of the physiological state of plants to investigate the dynamics of the fastest part of fluorescence of plants in vivo. The method of laser-induced fluorescence makes it possible to observe the level of vegetative development of living plants, as well as their state under the impact of some stress factors.

  9. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    PubMed

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  10. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    PubMed

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events. PMID:26072789

  11. The photodissociation and reaction dynamics of vibrationally excited molecules. Technical progress report, 1993--1994

    SciTech Connect

    Not Available

    1994-04-01

    Combined vibrational overtone excitation and laser induced fluorescence detection was used to study dissociation dynamics of hydroxylamine (NH{sub 2}OH), laser induced grating experiments on water were analyzed, discovering the important role that electrostriction and thermal relaxation play, and a new apparatus for preparing vibrationally excited molecules with simulated Raman excitation was completed and the first measurements made. Role of vibrational excitation in photodissociation dynamics was studied using a vibrational state preparation technique, such as vibrational overtone excitation or stimulated Raman excitation, to create molecules with particular nuclear motions and then excite that molecule to a dissociative electronic state. Because the vibrational excitation alters the dissociation dynamics in the excited state, both by providing access to different portions of the excited state surface and by altering the motion of the system on the surface, it is usually refered to as vibrationally mediated photodissociation.

  12. Laser induced fluorescence of dental caries

    NASA Technical Reports Server (NTRS)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  13. Laser-Induced Incandescence: Detection Issues

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    Experimental LII (laser-induced incandescence) measurements were performed in a laminar gasjet flame to test the sensitivity of different LII signal collection strategies to particle size. To prevent introducing a particle size dependent bias in the LII signal, signal integration beginning with the excitation laser pulse is necessary . Signal integration times extending to 25 or 100 nsec after the laser pulse do not produce significant differences in radial profiles of the LII signal due to particle size effects with longer signal integration times revealing a decreased sensitivity to smaller primary particles. Long wavelength detection reduces the sensitivity of the LII signal to primary particle size. Excitation of LII using 1064 nm light is recommended to avoid creating photochemical interferences thus allowing LII signal collection to occur during the excitation pulse without spectral interferences.

  14. Laser-induced autofluorescence of caries

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Hibst, Raimund; Flemming, Gabriela; Schneckenburger, Herbert

    1993-07-01

    The laser induced autofluorescence from carious regions of human teeth was studied using a krypton ion laser at 407 nm as an excitation source, a fiberoptical detection system combined with a polychromator and an optical multichannel analyzer. In addition, time-resolved and time-gated fluorescence measurements in the nanosecond range were carried out. It was found that carious regions contain different fluorophores which emit in the red spectral range. The emission spectra with maxima around 590 nm, 625 nm and 635 nm are typical for metalloporphyrins, copro- and protoporphyrin. During excitation the fluorescence was bleached. Non-carious regions showed a broad fluorescence band with a maximum in the short-wavelength spectral region with shorter fluorescence decay times than the carious regions. Therefore, caries can be detected by spectral analysis of the autofluorescence as well as by determination of the fluorescence decay times or by time-gated imaging.

  15. Laser-induced fluorescence imaging of bacteria

    NASA Astrophysics Data System (ADS)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  16. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  17. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection.

    PubMed

    Hybl, John D; Tysk, Shane M; Berry, Shaun R; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  18. The fluence threshold of femtosecond laser blackening of metals: The effect of laser-induced ripples

    NASA Astrophysics Data System (ADS)

    Ou, Zhigui; Huang, Min; Zhao, Fuli

    2016-05-01

    With the primary controlling factor of the laser fluence, we have investigated femtosecond laser blackening of stainless steel, brass, and aluminum in visible light range. In general, low reflectance about 5% can be achieved in appropriate ranges of laser fluences for all the treated metal surfaces. Significantly, towards stainless steel and brass a fluence threshold of blackening emerges unusually: a dramatic reflectance decline occurs in a specific, narrow fluence range. In contrast, towards aluminum the reflectance declines steadily over a wide fluence range instead of the threshold-like behavior from steel and brass. The morphological characteristics and corresponding reflectance spectra of the treated surfaces indicates that the blackening threshold of stainless steel and brass corresponds to the fluence threshold of laser-induced subwavelength ripples. Such periodic ripples growing rapidly near ablation threshold absorb visible light efficiently through grating coupling and cavity trapping promoted by surface plasmon polaritons. Whereas, for aluminum, with fluence increasing the looming ripples are greatly suppressed by re-deposited nanoparticle aggregates that present intrinsic colors other than black, and until the formation of large scale "ravines" provided with strong light-trapping, sufficient blackening is achieved. In short, there are different fluence dependencies for femtosecond laser blackening of metals, and the specific blackening fluence threshold for certain metals in the visible range originates in the definite fluence threshold of femtosecond laser-induced ripples.

  19. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon.

    PubMed

    Vorobyev, A Y; Guo, Chunlei

    2011-09-12

    Following direct femtosecond laser pulse irradiation, we produce a unique grating structure over a large area superimposed by finer nanostructures on a silicon wafer. We study, for the first time, the antireflection effect of this femtosecond laser-induced periodic surface structures (FLIPSSs) in the wavelength range of 250 - 2500 nm. Our study shows that the FLIPSSs suppress both the total hemispherical and specular polarized reflectance of silicon surface significantly over the entire studied wavelength range. The total polarized reflectance of the processed surface is reduced by a factor of about 3.5 in the visible and 7 in the UV compared to an untreated sample. The antireflection effect of the FLIPSS surface is broadband and the suppression stays to the longest wavelength (2500 nm) studied here although the antireflection effect in the infrared is weaker than in the visible. Our FLIPSS structures are free of chemical contamination, highly durable, and easily controllable in size.

  20. Ultraviolet Laser-induced ignition of RDX single crystal.

    PubMed

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm(2). The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  1. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  2. In Search of Multi-Peaked Reflective Spectrum with Optic Fiber Bragg Grating Sensor for Dynamic Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2006-01-01

    In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.

  3. Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules

    SciTech Connect

    Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh -Thu; Lu, Ruifeng; Lin, C. D.

    2015-10-27

    Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. Lastly, with picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement.

  4. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-01

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  5. Volume of a laser-induced microjet

    NASA Astrophysics Data System (ADS)

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  6. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  7. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  8. Laser Induced Fluorescence of the Iodine Ion

    NASA Astrophysics Data System (ADS)

    Hargus, William

    2014-10-01

    Iodine (I2) has been considered as a potential electrostatic spacecraft thruster propellant for approximately 2 decades, but has only recently been demonstrated. Energy conversion efficiency appears to be on par with xenon without thruster modification. Intriguingly, performance appears to exceed xenon at high acceleration potentials. As part of a continuing program for the development of non-intrusive plasma diagnostics for advanced plasma spacecraft propulsion, we have identified the I II 5d5D4 o state as metastable, and therefore containing a reservoir of excited state ions suitable for laser probing. The 5d5D4 o - 6p5P3 transition at 695.878 nm is convenient for diode laser excitation with the 5s5S2 o - 6p5P3 transition at 516.12 nm as an ideal candidate for non-resonant fluorescence collection. We have constructed a Penning type iodine microwave discharge lamp optimized for I II production for table-top measurements. This work demonstrates I II laser-induced fluorescence in a representative iodine discharge and will validate our previous theoretical work based on the limited available historical I II spectral data.

  9. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  10. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  11. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  12. PIC-DSMC analysis on interaction of a laser induced discharge and shock wave

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2015-09-01

    Laser induced discharge and the shock wave have attracted great interest for use in the electrical engineering. When the high intensity laser (10 GW >) is focused in the atmosphere, the breakdown occurs and the discharge wave propagates toward to the laser irradiation. The shock wave is generated around the discharge wave, which is called as the laser supported detonation wave. After breakdown occurred, the initial electron of the avalanche ionization is produced by the photoionization due to the plasma radiation. It is well recognized that the radiation of the laser plasma affects the propagation mechanism of the laser induced discharge wave after the initiation of the breakdown. However, it is difficult to observe the interaction between the plasma radiation and the electron avalanche in the ionization-wave front in experimentally except in the high intensity laser. In the numerical calculation of the laser-induced discharge, the fluid dynamics based on the Navier-Stokes equation have been widely used. However, it is difficult to investigate the avalanche ionization at the wave front using the fluid dynamics simulation. To investigate the interaction of the ionization-wave front and the shock wave, it is appropriate to utilize the PIC-DSMC method. The present study showed the propagation of the ionization front of the discharge wave and the shock wave using the particle simulation. This work was supported by Kato Foundation for Promotion of Science and Japan Power Academy.

  13. Improved Imaging With Laser-Induced Eddy Currents

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J.

    1993-01-01

    System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.

  14. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  15. Signal-to-noise ratio evaluation with draw tower fibre Bragg gratings (DTGs) for dynamic strain sensing at elevated temperatures and corrosive environment

    NASA Astrophysics Data System (ADS)

    De Pauw, B.; Lamberti, A.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Berghmans, F.

    2014-05-01

    Measuring strain at the surface of a structure can help to estimate the dynamical properties of the structure under test. Such a structure can be a fuel assembly of a nuclear reactor consisting of fuel pins. In this paper we demonstrate a method to integrate draw tower gratings (DTGs) in a fuel pin and we subject this pin to conditions close to those encountered in a heavy liquid metal (HLM) reactor. More specifically, we report on the performance of DTGs used as a strain sensor when immersed in HLM during thermal cycles (up to 300_C) for up to 700 hours.

  16. Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sunku; Nageswara Rao, E.; Manoj Kumar, G.; Tewari, Surya P.; Venugopal Rao, S.

    2013-09-01

    Femtosecond laser induced breakdown spectroscopic (LIBS) studies were performed on three high energy materials namely 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT). LIBS spectral features were obtained for these samples in three different atmospheres i.e. air, nitrogen, and argon. Different molecular to elemental ratios in these three atmospheres were investigated in detail. CN/C and CN/N ratios were observed to be prominent in nitrogen and air atmospheres. We attempt to elucidate the role of several reactions involving CN molecular formation in connection with discrepancies obtained in the measured ratios. The complete temporal dynamics of atomic C (247.82 nm) and CN (388.20 nm) molecular species in three different atmospheres are elaborated. The decay rates of C peak were found to be longest (96 ns-121 ns) in argon atmosphere for all the samples. The decay rates of CN peak (388.2 nm) were longer (161 ns-364 ns) in nitrogen compared to air and argon atmospheres. We also attempt to explicate the decay mechanisms with respect to the molecular species formation dynamics in different atmospheres.

  17. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  18. Laser-induced-plasma-assisted ablation for glass microfabrication

    NASA Astrophysics Data System (ADS)

    Hong, Minghui; Sugioka, Koji; Wu, Ding J.; Wong, L. L.; Lu, Yongfeng; Midorikawa, Katsumi; Chong, Tow Chong

    2001-10-01

    Glass is a hard transparent material with many applications in Photonics and advanced display industries. It is a high challenge to achieve crack-free glass microfabrication due to its special material characteristics. Laser-induced-plasma- assisted ablation is applied in this study to get the high quality glass microfabrication. In this processing, the laser beam goes through the glass substrate first and then irradiates on a solid target behind. For laser fluence above ablation threshold for the target, the generated plasma flies forward at a high speed. At a small target-to-substrate distance, there are strong interactions among laser light, target plasma and glass materials at the rear side of the substrate. Light absorption characteristic at the glass substrate is modified since the plasma may soften and dope into the glass in the interaction area. To have a better understanding of this processing, signal diagnostics are carried out to study the dynamic interaction. It is found that glass microfabrication is closely related to laser fluence, target-to-substrate distance, laser spot size and laser beam scanning speed. With proper control of the processing parameters, glass surface marking patterning and cutting can be achieved. With different materials as the targets, color marking of glass substrate can be obtained.

  19. Laser-induced breakdown plasma-based sensors

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.

    2010-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is dependent on the interaction between the initiating Laser sequence, the sampled material and the intermediate plasma states. Pulse shaping and timing have been empirically demonstrated to have significant impact on the signal available for active/passive detection and identification. The transient nature of empirical LIBS work makes data collection for optimization an expensive process. Guidance from effective computer simulation represents an alternative. This computational method for CBRNE sensing applications models the Laser, material and plasma interaction for the purpose of performance prediction and enhancement. This paper emphasizes the aspects of light, plasma, and material interaction relevant to portable sensor development for LIBS. The modeling structure emphasizes energy balances and empirical fit descriptions with limited detailed-balance and finite element approaches where required. Dusty plasma from partially decomposed material sample interaction with pulse dynamics is considered. This heuristic is used to reduce run times and computer loads. Computer simulations and some data for validation are presented. A new University of Memphis HPC/super-computer (~15 TFLOPS) is used to enhance simulation. Results coordinated with related effort at Arkansas State University. Implications for ongoing empirical work are presented with special attention paid to the application of compressive sensing for signal processing, feature extraction, and classification.

  20. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  1. Addressing the Numerical Challenges Associated With Laser-Induced Melt Convection

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean Pierre; Anderson, Andy

    2015-11-01

    We present a new robust and efficient numerical framework for simulating multi-material flows with phase change. The work is motivated by laser-induced phase change applications, particularly the selective laser melting (SLM) process in additive manufacturing. Physics-based simulations of the laser melt dynamics requires a fully compressible framework, since incompressible flow solvers are inefficient for stiff systems, arising from laser-induced rapid phase change. In this study, the liquid and solid phases are both modeled with the compressible Navier-Stokes equations. The solid phase has an additional combined variable viscosity and drag force model to suppress the velocity in the solid. Our all-speed Navier-Stokes solver is based on a fully-implicit, high-order reconstructed Discontinuous Galerkin method. A Newton-Krylov based framework is used to solve the resulting set of non-linear equations, enabling robust simulations of the highly stiff compressible Navier-Stokes equations. We demonstrate the method's capabilities for phase change on several different melting and freezing configurations, including a three-dimensional laser-induced melt convection problem. Future model enhancements will incorporate material evaporation and rapid solidification.

  2. Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Ploschner, Martin; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-03-01

    Cell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process - the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of l00nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.

  3. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    SciTech Connect

    Lottes, Steven A.; Bojanowski, Cezary

    2015-09-01

    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  4. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    SciTech Connect

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  5. Laser-induced thermal acoustic velocimetry

    NASA Astrophysics Data System (ADS)

    Schlamp, Stefan

    2000-11-01

    Laser-Induced Thermal Acoustics (LITA) is a non- intrusive, remote, four-wave mixing laser diagnostic technique for measurements of the speed of sound and of the thermal diffusivity in gases. If the gas composition is known, then its temperature and density can be inferred. Beam misalignments and bulk fluid velocities can influence the time history and intensity of LITA signals. A closed-form analytic expression for LITA signals incorporating these effects is derived. The magnitude of beam misalignment and the flow velocity can be inferred from the signal shape using a least-squares fit of this model to the experimental data. High-speed velocimetry using homodyne detection is demonstrated with NO2-seeded air in a supersonic blow-down nozzle. The measured speed of sound deviates less than 2% from the theoretical value assuming isentropic quasi-1D flow. Boundary layer effects degrade the velocity measurements to errors of 20%. Heterodyne detection is used for low-speed velocimetry up to Mach number M = 0.1. The uncertainty of the velocity measurements was ~0.2 m/s. The sound speed measurements were repeatable to 0.5%. The agreement between theory and experiments is very good. A one-hidden-layer feed-forward neural network is trained using back-propagation learning and a steepest descent learning rule to extract the speed of sound and flow velocity from a heterodyne LITA signal. The effect of the network size on the performance is demonstrated. The accuracy is determined with a second set of LITA signals that were not used during the training phase. The accuracy is found to be better than that of a conventional frequency decomposition technique while being computationally as efficient. This data analysis method is robust with respect to noise, numerically stable, and fast enough for real-time data analysis. The accuracy and uncertainty of non-resonant LITA measurements is investigated. The error in measurements of the speed of sound and of the thermal diffusivity

  6. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  7. Interlaced spin grating for optical wave filtering

    NASA Astrophysics Data System (ADS)

    Linget, H.; Chanelière, T.; Le Gouët, J.-L.; Berger, P.; Morvan, L.; Louchet-Chauvet, A.

    2015-02-01

    Interlaced spin grating is a scheme for the preparation of spectrospatial periodic absorption gratings in an inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an interlaced spin grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3 % in the small-angle and 11.6 % in the large-angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.

  8. Laser induced incandescence and laser induced breakdown spectroscopy based sensor development

    NASA Astrophysics Data System (ADS)

    Eseller, Kemal Efe

    In this doctoral dissertation, two laser-based sensors were evaluated for different applications. Laser Induced Incandescence (LII) is a technique which can provide non-intrusive quantitative measurement of soot and it provides a unique diagnostic tool to characterize engine performance. Since LII is linearly proportional to the soot volume fraction, it can provide in situ, real time measurement of soot volume fraction with high temporal and spatial resolution. LII has the capability to characterize soot formation during combustion. The soot volume fraction from both flames and a soot generator was investigated with LII. The effects of experimental parameters, such as laser fluence, gate delay, gate width and various laser beam focusing, on LII signal was studied. Laser Induced Breakdown Spectroscopy (LIBS), a diagnostic tool for in situ elemental analysis, has been evaluated for on-line, simultaneous, multi-species impurity monitoring in hydrogen. LIBS spectra with different impurity levels of nitrogen, argon, and oxygen were recorded and the intensity of the spectral lines of Ar, O, N, and H observed were used to form calibration plots for impurities in hydrogen measurements. An ungated detection method for LIBS has been developed and applied to equivalence ratio measurements of CH4/air and biofuel/air. LIBS has also been used to quantitatively analyze the composition of a slurry sample. The quenching effect of water in slurry samples causes low LIBS signal quality with poor sensitivity. Univariate and multivariate calibration was performed on LIBS spectra of dried slurry samples for elemental analysis of Mg, Si and Fe. Calibration results show that the dried slurry samples give good correlation between spectral intensity and elemental concentration.

  9. Holographic Gratings for Optical Processing

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nickolai

    2002-01-01

    Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.

  10. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGES

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  11. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  12. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  13. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  14. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  15. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  16. Pyroelectric and ferroelectric semiconductors: dynamic holographic grating recording, generation of self-focused electron beam, X-rays, and neutrons

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N. V.; Kukhtareva, T. V.; Land, P.; Wang, J. C.

    2007-09-01

    Optical and electrical effects in semiconductors and ferroelectric crystals will be modeled. Standard photorefractive equations are supplemented by the equation of state for the polarization density following Devonshire-Ginsburg-Landau (DGL) approach. We have derived equations for pyroelectric and photogalvanic contribution to the holographic grating recording in ferroelectric materials. We will consider double-functional holographic interferometer, based on holographic pyroelectric current and optical beam coupling. Crystal electrostatic accelerators, based on charging of ferroelectric crystals by pyroelectric and photogalvanic effects are discussed in relation to generation of self-focused electron beam, X-rays and neutrons.

  17. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  18. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Maes, N. C. J.; Lamberts, T.; Sweep, A. M.; van de Water, W.; Kunnen, R. P. J.; Clercx, H. J. H.; van Heijst, G. J. F.; Dam, N. J.

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (˜1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  19. Lanthanide-based laser-induced phosphorescence for spray diagnostics.

    PubMed

    van der Voort, D D; Maes, N C J; Lamberts, T; Sweep, A M; van de Water, W; Kunnen, R P J; Clercx, H J H; van Heijst, G J F; Dam, N J

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation. PMID:27036779

  20. Time-Dependent Theory of Laser-Induced Desorption of Small Molecules from Metals, and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Saalfrank, Peter

    1998-03-01

    As an alternative to ``ordinary'', i.e., thermally induced chemistry at the interface of a molecular gas and a solid substrate, surface photochemistry has gained importance in recent years. In this talk, we describe our efforts towards a quantum--dynamical theory of laser--induced elementary processes at adsorbate--covered metal surfaces. First, using time--dependent open--system reduced density matrix theory and nuclear wave packet methods, the indirect (``hot--electron mediated''), ultraviolet/visible--laser induced desorption of small molecules (nitric oxide or ammonia) from metal substrates (platinum or copper) will be addressed. We model both the single-- (DIET, ``desorption induced by electronic transitions'' -- use of continuous wave lasers) and multiple--excitation limits (DIMET, M=``multiple'' -- use of femtosecond lasers). Based on our simulations, the lifetimes of adsorbate electronic states will be estimated, experimental observations will be rationalized, and strategies for the active control of photochemical reactions at surfaces will be proposed. For the example system ammonia/copper, alternatives to the UV/visible--laser induced adsorbate photochemistry will be explored in which the adsorbate remains electronically unexcited. For instance, using laser pulses in the infrared, desorption can also be enforced by ``vibrational ladder climbing''. An analogous, modified strategy can be used to achieve isomerization of adsorbed species. Finally, as the reverse process to desorption, IR laser--induced adsorption will be considered.

  1. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The airborne laser-induced spectral emission bands obtained simultaneously from water Raman backscatter and the fluorescence of chlorophyll and other naturally occurring waterborne pigments are reported here for the first time. The importance of this type data lies not only in its single-shot multispectral character but also in the application of the Raman line for correction or calibration of the spatial variation of the laser penetration depth without the need for in situ water attenuation measurements. The entire laser-induced fluorescence and Raman scatter emissions resulting from each separate 532-nm 10-nsec laser pulse are collected and spectrally dispersed in a diffraction grating spectrometer having forty photomultiplier tube detectors. Results from field experiments conducted in the North Sea and the Chesapeake Bay/Potomac River are presented. Difficulties involving the multispectral resolution of the induced emissions are addressed, and feasible solutions are suggested together with new instrument configurations and future research directions.

  2. Quantitative characterization of a nonreacting, supersonic combustor flowfield using unified, laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1989-01-01

    A calibrated, nonintrusive optical technique, laser-induced iodine fluorescence (LIIF) was used to quantify the steady, compressible flowfield of a nonreacting, supersonic combustor. The combustor was configured with single and staged, transverse-air injection into a supersonic-air freestream behind a rearward-facing step. Pressure, temperature, two-velocity components, and injectant mole fraction were measured with high spatial resolution in the three-dimensional flowfields. These experimental results provide a benchmark set of data for validation of computational fluid dynamic (CFD) codes being developed to model supersonic combustor flowfields.

  3. A Wide Dynamics and Fast Scan Interrogating Method for a Fiber Bragg Grating Sensor Network Implemented Using Code Division Multiple Access

    PubMed Central

    Kim, Youngbok; Jeon, Sie-Wook; Kwon, Won-Bae; Park, Chang-Soo

    2012-01-01

    We propose and demonstrate a fiber Bragg grating (FBG) sensor network employing the code division multiple access (CDMA) technique to identify information from individual sensors. To detect information without considering time delays between sensors, a sliding correlation method is applied, in which two different signals with the same pseudo-random binary sequence (PRBS) pattern, but slightly different frequencies, are applied to the source and detector sides. Moreover, for time domain detection, a wavelength-to-time conversion technique using a wavelength dispersive medium is introduced. The experimental results show that the proposed sensor network has a wide strain dynamic range of 2,400 με and a low crosstalk of 950:1. PMID:22778619

  4. A wide dynamics and fast scan interrogating method for a fiber Bragg grating sensor network implemented using code division multiple access.

    PubMed

    Kim, Youngbok; Jeon, Sie-Wook; Kwon, Won-Bae; Park, Chang-Soo

    2012-01-01

    We propose and demonstrate a fiber Bragg grating (FBG) sensor network employing the code division multiple access (CDMA) technique to identify information from individual sensors. To detect information without considering time delays between sensors, a sliding correlation method is applied, in which two different signals with the same pseudo-random binary sequence (PRBS) pattern, but slightly different frequencies, are applied to the source and detector sides. Moreover, for time domain detection, a wavelength-to-time conversion technique using a wavelength dispersive medium is introduced. The experimental results show that the proposed sensor network has a wide strain dynamic range of 2,400 με and a low crosstalk of 950:1.

  5. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  6. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution. PMID:27628411

  7. Diffractive coherence in multilayer dielectric gratings

    SciTech Connect

    Shore, B.W.; Feit, M.D.; Perry, M.D.; Boyd, R.D.; Britten, J.A.; Li, Lifeng

    1995-05-26

    Successful operation of large-scale high-power lasers, such as those in use and planned at LLNL and elsewhere, require optical elements that can withstand extremely high fluences without suffering damage. Of particular concern are dielectric diffraction gratings used for beam sampling and pulse compression. Laser induced damage to bulk dielectric material originates with coupling of the electric field of the radiation to bound electrons, proceeding through a succession of mechanisms that couple the electron kinetic energy to lattice energy and ultimately to macroscopic structural changes (e.g. melting). The constructive interference that is responsible for the diffractive behavior of a grating or the reflective properties of a multilayer dielectric stack can enhance the electric field above values that would occur in unstructured homogeneous material. Much work has been done to model damage to bulk matter. The presence of nonuniform electric fields, resulting from diffractive coherence, has the potential to affect damage thresholds and requires more elaborate theory. We shall discuss aspects of work directed towards understanding the influence of dielectric structures upon damage, with particular emphasis on computations and interpretation of electric fields within dielectric gratings and multilayer dielectric stacks, noting particularly the interference effects that occur in these structures.

  8. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  9. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  10. The flip-over effect in self-similar laser-induced plasma expansion

    SciTech Connect

    Baxter, Nathan P.; Shabanov, Sergei V.

    2008-09-15

    We present a rigorous study of a dynamical model for a nonsymmetric expansion of laser-induced plasma plumes into the vacuum. The model is used in the laser film deposition technique and for remote chemical analysis in the so-called laser-induced breakdown spectroscopy. It defines a particular class of solutions of the hydrodynamics equations when the (plasma) mass density, pressure, and temperature as functions of position have level surfaces that are ellipsoids. The time evolution of ellipsoid semiaxes is determined by the dynamical model. In this model we investigate the flip-over effect: A pancakelike shape of the plasma plume turns into a cigarlike shape and vice versa in due course of its expansion. The effect has been observed in experiments as well as in numerical simulations. In many practical cases, axially symmetric plasma plumes with the adiabatic constant of (5/3) (ideal gas) are used. For this case we prove that the flip-over effect occurs exactly once in the above dynamical model. This rigorous result agrees with the earlier experimental and numerical evidence and, hence, validates a wide applicability of the model.

  11. The flip-over effect in self-similar laser-induced plasma expansion

    NASA Astrophysics Data System (ADS)

    Baxter, Nathan P.; Shabanov, Sergei V.

    2008-09-01

    We present a rigorous study of a dynamical model for a nonsymmetric expansion of laser-induced plasma plumes into the vacuum. The model is used in the laser film deposition technique and for remote chemical analysis in the so-called laser-induced breakdown spectroscopy. It defines a particular class of solutions of the hydrodynamics equations when the (plasma) mass density, pressure, and temperature as functions of position have level surfaces that are ellipsoids. The time evolution of ellipsoid semiaxes is determined by the dynamical model. In this model we investigate the flip-over effect: A pancakelike shape of the plasma plume turns into a cigarlike shape and vice versa in due course of its expansion. The effect has been observed in experiments as well as in numerical simulations. In many practical cases, axially symmetric plasma plumes with the adiabatic constant of 5/3 (ideal gas) are used. For this case we prove that the flip-over effect occurs exactly once in the above dynamical model. This rigorous result agrees with the earlier experimental and numerical evidence and, hence, validates a wide applicability of the model.

  12. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  13. Using Laser-Induced Incandescence To Measure Soot in Exhaust

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.; Sankar, Subramanian V.

    2005-01-01

    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable.

  14. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  15. Laser-induced copper deposition with weak reducing agents

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Fateev, S. A.; Logunov, L. S.; Tumkin, I. I.; Safonov, S. V.; Khairullina, E. M.

    2013-11-01

    The study showed that organic alcohols with 1,2,3,5,6 hydroxyl groups can be used as reducing agents for laser-induced copper deposition from solutions (LCLD).Multiatomic alcohols, sorbitol, xylitol, and glycerol, are shown to be effective reducing agents for performing LCLD at glass-ceramic surfaces. High-conductivity copper tracks with good topology were synthesized.

  16. Tracking the photodissociation dynamics of liquid nitromethane at 266 nm by femtosecond time-resolved broadband transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang

    2016-05-01

    Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.

  17. Modeling and prototyping of a fiber Bragg grating-based dynamic micro-coordinate measuring machine probe

    NASA Astrophysics Data System (ADS)

    Liu, Fangfang; Chen, Lijuan; Wang, Jingfan; Xia, Haojie; Li, Ruijun; Yu, Liandong; Fei, Yetai

    2016-02-01

    Higher-accuracy measurements of the 3D metrology of nano- and micro-structures are increasingly demanded. This paper details the prototyping of a novel 3D micro-scale coordinate measuring machine probe based on fiber Bragg grating sensors for true 3D measurements at micro- and nanometer scales. A new manufacturing technique for the high-precision cantilever used in the probe is also reported. Simulations are performed during the design and testing to help to test important aspects of the probe and to gain understanding about the influence of the probe geometrical parameters on the sensor sensitivity. The initial performance of the probe has been tested in both the vertical and horizontal directions, and the characterization results are promising. Further experimental results demonstrate that the probe is not affected by surface interaction forces.

  18. IKK2 Inhibition Attenuates Laser-Induced Choroidal Neovascularization

    PubMed Central

    Lu, Huayi; Lu, Qingxian; Gaddipati, Subhash; Kasetti, Ramesh Babu; Wang, Wei; Pasparakis, Manolis; Kaplan, Henry J.; Li, Qiutang

    2014-01-01

    Choroidal neovascularization (CNV) is aberrant angiogenesis associated with exudative age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Inflammation has been suggested as a risk factor for AMD. The IKK2/NF-κB pathway plays a key role in the inflammatory response through regulation of the transcription of cytokines, chemokines, growth factors and angiogenic factors. We investigated the functional role of IKK2 in development of the laser-induced CNV using either Ikk2 conditional knockout mice or an IKK2 inhibitor. The retinal neuronal tissue and RPE deletion of IKK2 was generated by breeding Ikk2−/flox mice with Nestin-Cre mice. Deletion of Ikk2 in the retina caused no obvious defect in retinal development or function, but resulted in a significant reduction in laser-induced CNV. In addition, intravitreal or retrobulbar injection of an IKK2 specific chemical inhibitor, TPCA-1, also showed similar inhibition of CNV. Furthermore, in vitro inhibition of IKK2 in ARPE-19 cells significantly reduced heat shock-induced expression of NFKBIA, IL1B, CCL2, VEGFA, PDGFA, HIF1A, and MMP-2, suggesting that IKK2 may regulate multiple molecular pathways involved in laser-induced CNV. The in vivo laser-induced expression of VEGFA, and HIF1A in RPE and choroidal tissue was also blocked by TPCA-1 treatment. Thus, IKK2/NF-κB signaling appears responsible for production of pro-inflammatory and pro-angiogenic factors in laser-induced CNV, suggesting that this intracellular pathway may serve as an important therapeutic target for aberrant angiogenesis in exudative AMD. PMID:24489934

  19. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    SciTech Connect

    Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M.; Strum, G.

    2012-08-15

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  20. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method.

    PubMed

    Hurvitz, G; Ehrlich, Y; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  1. Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering

    NASA Astrophysics Data System (ADS)

    Sokolowski-Tinten, Klaus; Barty, Anton; Boutet, Sebastien; Shymanovich, Uladzimir; Chapman, Henry; Bogan, Mike; Marchesini, Stefano; Hau-Riege, Stefan; Stojanovic, Nikola; Bonse, Jörn; Rosandi, Yudi; Urbassek, Herbert M.; Tobey, Ra'anan; Ehrke, Henri; Cavalleri, Andrea; Düsterer, Stefan; Redlin, Harald; Frank, Matthias; Bajt, Sasa; Schulz, Joachim; Seibert, Marvin; Hajdu, Janos; Treusch, Rolf; Bostedt, Christoph; Hoener, M.; Möller, T.

    2010-10-01

    The structural dynamics of short-pulse laser irradiated surfaces and nano-structures has been studied with nm spatial and ultrafast temporal resolution by means of single-shot coherent XUV-scattering techniques. The experiments allowed us to time-resolve the formation of laser-induced periodic surface structures, and to follow the expansion and disintegration of nano-objects during laser ablation.

  2. Dynamical studies of the mechanisms for optical nonlinearities of methyl-red dye doped blue phase liquid crystals.

    PubMed

    Chen, Chun-Wei; Lin, Tsung-Hsien; Khoo, Iam Choon

    2015-08-24

    Dynamical grating diffraction experiments and reflection/transmission polarization spectroscopy have been conducted on azo-dye doped Blue-Phase Liquid Crystal (BPLC) to investigate the mechanisms responsible for laser induced refractive index changes. The underlying mechanisms for the transient grating diffraction components are attributed to thermal indexing and lattice distortion, whereas the persistent component is due to lattice distortion/expansion caused by laser excited dye molecule isomerization. These mechanisms were distinguishable by their response dynamics and gave rise to the observed reflection spectra and photonic bandgap shift, polarization dependency and optical activity. Some preliminary studies have demonstrated the feasibility of using these mechanisms for coherent holographic and direct image writing operations. PMID:26368144

  3. Ultrafast Excitation of an Inner-Shell Electron by Laser-Induced Electron Recollision.

    PubMed

    Deng, Yunpei; Zeng, Zhinan; Jia, Zhengmao; Komm, Pavel; Zheng, Yinhui; Ge, Xiaochun; Li, Ruxin; Marcus, Gilad

    2016-02-19

    Extreme ultraviolet attosecond pulses, generated by a process known as laser-induced electron recollision, are a key ingredient for attosecond metrology, providing a tool to precisely initiate and probe subfemtosecond dynamics in atoms, molecules, and solids. However, extending attosecond metrology to scrutinize the dynamics of the inner-shell electrons is a challenge, that is because of the lower efficiency in generating the required soft x-ray (ℏω>300  eV) attosecond bursts. A way around this problem is to use the recolliding electron to directly initiate the desired inner-shell process, instead of using the currently low flux x-ray attosecond sources. Such an excitation process occurs in a subfemtosecond time scale, and may provide the necessary "pump" step in a pump-probe experiment. Here we used a few cycle infrared (λ_{0}≈1800  nm) source and observed direct evidence for inner-shell excitations through the laser-induced electron recollision process. It is the first step toward time-resolved core-hole studies in the keV energy range with subfemtosecond time resolution. PMID:26943536

  4. Ultrafast Excitation of an Inner-Shell Electron by Laser-Induced Electron Recollision

    NASA Astrophysics Data System (ADS)

    Deng, Yunpei; Zeng, Zhinan; Jia, Zhengmao; Komm, Pavel; Zheng, Yinhui; Ge, Xiaochun; Li, Ruxin; Marcus, Gilad

    2016-02-01

    Extreme ultraviolet attosecond pulses, generated by a process known as laser-induced electron recollision, are a key ingredient for attosecond metrology, providing a tool to precisely initiate and probe subfemtosecond dynamics in atoms, molecules, and solids. However, extending attosecond metrology to scrutinize the dynamics of the inner-shell electrons is a challenge, that is because of the lower efficiency in generating the required soft x-ray (ℏω >300 eV ) attosecond bursts. A way around this problem is to use the recolliding electron to directly initiate the desired inner-shell process, instead of using the currently low flux x-ray attosecond sources. Such an excitation process occurs in a subfemtosecond time scale, and may provide the necessary "pump" step in a pump-probe experiment. Here we used a few cycle infrared (λ0≈1800 nm ) source and observed direct evidence for inner-shell excitations through the laser-induced electron recollision process. It is the first step toward time-resolved core-hole studies in the keV energy range with subfemtosecond time resolution.

  5. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  6. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wnag, Ten-See (Technical Monitor)

    2001-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid., pressure-based computational aerothermodynamics, platform, several sub-nio"'dels describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (113) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  7. Fiber-bragg grating-loop ringdown method and apparatus

    DOEpatents

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  8. Femtosecond Laser-Induced Coulomb Explosion Imaging

    NASA Astrophysics Data System (ADS)

    Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph

    2016-07-01

    We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.

  9. Laser Induced Reverse Transfer with metal and hybrid material prepared with sol-gel process used on glass substrate

    NASA Astrophysics Data System (ADS)

    Flury, Manuel; Pédri, Claude

    2013-08-01

    This article presents a possible use of Laser Induced Reverse Transfer (LIRT) for metal deposition combined with hybrid material prepared using the sol-gel process. The goal was to obtain two dimensional metal gratings with inorganic-organic hybrid material protection on low cost glass substrates. The hybrid material using the sol-gel material is employed here to give better adhesion of metal deposited by LIRT on glass substrates, and also to possibly cover the metal structure. The hybrid material was an organically modified silicate glass based on methacryloxypropyltri-methoxysilane (MATPMS) and zirconium propoxide. The proposed process permits to prototype rapidly small diffractive structure in amplitude mode or to mark two dimensional complicated patterns without complex technologies employing a focalized and computer controlled Nd-YAG laser at 1064 nm. The different steps of the technology are also discussed.

  10. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  11. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  12. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors

    PubMed Central

    Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve

    2015-01-01

    The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e., it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified. PMID:26516854

  13. Dynamics of femtosecond laser induced voidlike structures in fused silica

    SciTech Connect

    Mermillod-Blondin, A.; Bonse, J.; Rosenfeld, A.; Hertel, I. V.; Meshcheryakov, Yu. P.; Bulgakova, N. M.; Audouard, E.; Stoian, R.

    2009-01-26

    Focused ultrafast laser irradiation of fused silica usually induces a spatially modulated refractive index variation in the bulk material. Strong energy concentration leads to the localized formation of a lower-density cavitylike depressed structure surrounded by compacted matter. We report on applying time-resolved phase contrast microscopy to investigate the timescale of the void formation. We indicate a temporal behavior consistent with shock wave generation and subsequent rarefaction.

  14. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system.

    PubMed

    Chuang, Kuo-Chih; Ma, Chien-Ching; Wang, Hwa-Chun

    2016-03-20

    Displacement and strain, two of the most important physical quantities in experimental solid mechanics, are seldomly measured simultaneously in a single experimental configuration. In order to provide and improve corresponding sensing techniques, an experimental setup system for simultaneous measurement of dynamic displacement and strain on a flexible cantilever beam using two fiber Bragg gratings (FBGs) in a single fiber is proposed. To realize high-speed multiplexing and demodulation, a configuration incorporating a coarse wavelength-division multiplexing (CWDM) technique and an FBG transmission filter is implemented. The cantilever beam is subjected to steel-ball impact from which the dynamic multipoint displacement/strain sensing performances of the CWDM and FBG filter-based sensing system are demonstrated. Experimental results in temporal and frequency domain are compared with those obtained by the finite element method (FEM) predictions based on identification of the impact-loading history. A noncontact Fotonic displacement sensor and a polyvinylidene-fluoride film (PVDF) strain sensor are also used for comparison. With transient and resonant frequency simulations conducted by the FEM, loading effects of the sensing system are examined. The results obtained in this study indicate that the proposed CWDM and FBG filter-based sensing system is capable of performing simultaneous multipoint displacement/strain measurements in a single fiber with large bandwidth, high sensitivity, and low intensity loss. PMID:27140584

  15. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system.

    PubMed

    Chuang, Kuo-Chih; Ma, Chien-Ching; Wang, Hwa-Chun

    2016-03-20

    Displacement and strain, two of the most important physical quantities in experimental solid mechanics, are seldomly measured simultaneously in a single experimental configuration. In order to provide and improve corresponding sensing techniques, an experimental setup system for simultaneous measurement of dynamic displacement and strain on a flexible cantilever beam using two fiber Bragg gratings (FBGs) in a single fiber is proposed. To realize high-speed multiplexing and demodulation, a configuration incorporating a coarse wavelength-division multiplexing (CWDM) technique and an FBG transmission filter is implemented. The cantilever beam is subjected to steel-ball impact from which the dynamic multipoint displacement/strain sensing performances of the CWDM and FBG filter-based sensing system are demonstrated. Experimental results in temporal and frequency domain are compared with those obtained by the finite element method (FEM) predictions based on identification of the impact-loading history. A noncontact Fotonic displacement sensor and a polyvinylidene-fluoride film (PVDF) strain sensor are also used for comparison. With transient and resonant frequency simulations conducted by the FEM, loading effects of the sensing system are examined. The results obtained in this study indicate that the proposed CWDM and FBG filter-based sensing system is capable of performing simultaneous multipoint displacement/strain measurements in a single fiber with large bandwidth, high sensitivity, and low intensity loss.

  16. [Study of flow properties of wet solids using laser induced photo chemical anemometry]. Quarterly technical progress report, July--September 1991

    SciTech Connect

    Falco, B.

    1992-04-09

    A new diagnostic measurement technique is being developed that will enable the investigation of the dynamics of flowing wet solids. The technique involves the use of Laser Induced Photochemical Anemometry (LIPA), enhanced to enable two photochemical species to be excited. It uses laser induced photochromic and photo luminescent molecules to separately tag the two phases for times long enough for them to distort the tagging. Recording the distortions of the tagging caused by the movement of each phase enables us to obtain local characterization of flow properties of both phases of the wet solids at many positions simultaneously across a pipe.

  17. Bioaerosol detection and classification using dual excitation wavelength laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Wästerby, Pär.; Gradmark, Per-Åke; Hedborg, Julia; Larsson, Anders; Landström, Lars

    2015-05-01

    We present results obtained by a detection system designed to measure laser-induced fluorescence from individual aerosol particles using dual excitation wavelengths. The aerosol is sampled from ambient air and via a 1 mm diameter nozzle, surrounded by a sheath air flow, confined into a particle beam. A continuous wave blue laser at 404 nm is focused on the aerosol beam and two photomultiplier tubes monitor the presence of individual particles by simultaneous measuring the scattered light and any induced fluorescence. When a particle is present in the detection volume, a laser pulse is triggered from an ultraviolet laser at 263 nm and the corresponding fluorescence spectrum is acquired with a spectrometer based on a diffraction grating and a 32 channel photomultiplier tube array with single-photon sensitivity. The spectrometer measures the fluorescence spectra in the wavelength region from 250 to 800 nm. In the present report, data were measured on different monodisperse reference aerosols, simulants of biological warfare agents, and different interference aerosol particles, e.g. pollen. In the analysis of the experimental data, i.e., the time-resolved scattered and fluorescence signals from 404 nm c.w. light excitation and the fluorescence spectra obtained by a pulsed 263 nm laser source, we use multivariate data analysis methods to classify each individual aerosol particle.

  18. [Simultaneous quantitative analysis of multielements in Al alloy samples by laser-induced breakdown spectroscopy].

    PubMed

    Sun, Lan-Xiang; Yu, Hai-Bin

    2009-12-01

    The multielement components of some aluminium alloy samples were quantified by using laser-induced breakdown spectroscopy (LIBS). The Nd : YAG pulsed laser was used to produce plasma in ambient air. The spectral range of 200-980 nm was simultaneously obtained through a multichannel grating spectrometer and CCD detectors. The authors studied the influences of time delays, energy of the laser, and depth profile of elements in samples on spectral intensity, and optimized the experimental parameters based on the influence analysis. With the optimal experimental parameters, the authors made the calibration curves by four certified aluminum alloy samples for eight elements, Si, Fe, Cu, Mn, Mg, Zn, Sn, and Ni, and quantified the composition of an aluminum sample. The obtained maximum relative standard deviation (RSD) was 5.89%, and relative errors were--20.99%-15%. Experimental results show that LIBS is an effective technique for quantitative analysis of aluminum alloy samples, though the improved accuracy of the quantitative analysis is necessary.

  19. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  20. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  1. Analysis of organic vapors with laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nozari, Hadi; Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2015-09-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  2. Laser-induced macular holes demonstrate impaired choroidal perfusion

    NASA Astrophysics Data System (ADS)

    Brown, Jeremiah, Jr.; Allen, Ronald D.; Zwick, Harry; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    2003-06-01

    Choroidal perfusion was evaluated following the creation of a laser induced macular hole in a nonhuman primate model. Two Rhesus monkeys underwent macular exposures delivered by a Q-switched Nd:YAG laser. The lesions were evaluated with fluorescein angiography and indocyanine green (ICG) angiography . Each lesion produced vitreous hemorrhage and progressed to a full thickness macular hole. ICG angiography revealed no perfusion of the choriocapillaris beneath the lesion centers. Histopathologic evaluation showed replacement of the choriocapillaris with fibroblasts and connective tissue. Nd:YAG, laser-induced macular holes result in long term impairment of choroidal perfusion at the base of the hole due to choroidal scarring and obliteration of the choriocapillaris.

  3. Nanosecond-gated laser induced breakdown spectroscopy in hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Do, Hyungrok

    2015-09-01

    Nanosecond-gated laser induced breakdown spectroscopy have been carried out in four different hydrocarbon gas mixtures (CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) to investigate the effect of gas species on the laser induced breakdown kinetics and resulting the plasma emission. For this purpose, each mixture that consists of different species has the same atom composition. It is found that the temporal emission spectra and the decay rates of atomic line-intensities are almost identical for the breakdowns in the four different mixtures. This finding may indicate that the breakdown plasmas of these mixtures reach a similar thermodynamic and physiochemical state after its formation, resulting in a similar trend of quenching of excited species.

  4. Laser-induced fluorescence detection of dysplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Vo-Dinh, Tuan; Edwards, Donna H.; Buckley, Paul F., III; DeCosta, Joseph F.; Haggitt, Rodger C.

    1996-04-01

    A study was conducted to determine whether laser-induced fluorescence could detect high grade dysplasia in Barrett's esophagus. Four-hundred-ten nm laser light was used to induce autofluorescence of Barrett's mucosa in 36 patients during routine endoscopy. The spectra were analyzed using the Differential Normalized Fluorescence (DNF) Index technique to differentiate high grade dysplasia from either low grade or non-dysplastic mucosa. Each spectrum was classified as either premalignant or benign using two different DNF indices. Analyzing the fluorescence spectra from all patients using one DNF Index, 96% of non- dysplastic Barrett's samples classified as benign tissue. All low grade dysplasia samples classified as benign. Ninety percent of high grade dysplasia samples classified as premalignant. Twenty-eight percent of mixed low grade/focal high grade dysplasia samples classified as premalignant. In summary, high grade dysplasia in Barrett's esophagus patients can be detected by endoscopic laser-induced fluorescence spectroscopy using differential normalized fluorescence technique.

  5. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  6. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  7. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  8. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  9. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  10. Laser Induced Breakdown Spectroscopy:. AN Application on Multilayered Archeological Ceramics

    NASA Astrophysics Data System (ADS)

    Ponterio, R.; Trusso, S.; Vasi, C.; Aragona, S.; Mavilia, L.

    2004-10-01

    In this work we show an example of application of Laser Induced Breakdown Spectroscopy (LIBS) in combination with another laser-based technique: Raman micro-spectroscopy for the identification of pigments and glaze on pottery found archaeological excavations in Amendolea castle site (south of Italy in Calabrian peninsula); the objects belong to medieval period. The spectral data indicates the qualitative elemental composition of the examined materials and, in addition, give us useful information on the stratigraphy of the paint layers.

  11. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  12. Laser-induced breakdown spectroscopy for specimen analysis

    DOEpatents

    Kumar, Akshaya; Yu-Yueh, Fang; Burgess, Shane C.; Singh, Jagdish P.

    2006-08-15

    The present invention is directed to an apparatus, a system and a method for detecting the presence or absence of trace elements in a biological sample using Laser-Induced Breakdown Spectroscopy. The trace elements are used to develop a signature profile which is analyzed directly or compared with the known profile of a standard. In one aspect of the invention, the apparatus, system and method are used to detect malignant cancer cells in vivo.

  13. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  14. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors.

    PubMed

    Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve

    2015-01-01

    The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified. PMID:26516854

  15. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors.

    PubMed

    Lamberti, Alfredo; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Kaufmann, Markus; Vanlanduit, Steve

    2015-10-26

    The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG) sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection) and modal parameter estimation techniques (Peak-Picking), some of the modes were not successfully identified.

  16. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  17. Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures

    NASA Technical Reports Server (NTRS)

    Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.

    2004-01-01

    The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.

  18. Laser formation of Bragg gratings in polymer nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Khaydukov, K. V.; Sokolov, V. I.; Khaydukov, E. V.

    2016-01-01

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10-2 are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices.

  19. Femtosecond Heterodyne Transient Grating Detection of Conformational Dynamics in the S0 (11Ag-) State of Carotenoids After Nonradiative Decay of the S2 (11Bu+) State

    NASA Astrophysics Data System (ADS)

    Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Lafountain, Amy M.; Frank, Harry A.; Beck, Warren F.

    Transient grating spectroscopy was used to study the dynamics of nonradiative decay of the S1 (21Ag-) state in ß-carotene and peridinin after optical preparation of the S2) state. The kinetics of the recovery of the absorption and dispersion components of the third-order signal exhibit significantly different time constants. For β-carotene in benzonitrile, the absorption and dispersion recovery time constants are 11.6 and 10.2 ps. For peridinin in methanol, the time constants are 9.9 and 7.4 ps. These results indicate that the initial product of the decay of the S1 state is a conformationally displaced structure. The decay rate for the S1 state and the conformational relaxation rate are both slowed in peridinin as the polarity of the solvent decreases; in ethyl acetate, the conformational relaxation time constant is 45 ps, which rules out a dominant contribution from vibrational cooling. These results indicate that the S1 state develops intramolecular charge transfer character owing to distortions along torsional and out-of-plane coordinates, with a pyramidal structure favored as the most stable conformation. Recovery of the photoselected ground state conformation involves a reverse charge-transfer event followed by relaxation to a planar structure. Work supported by Photosynthetic Systems Program of the U.S. Department of Energy under Grant DE-SC0010847.

  20. Simulation and characterization of laser induced deformation processes

    NASA Astrophysics Data System (ADS)

    Fan, Yajun

    2006-04-01

    Laser induced deformation processes include laser forming (LF) and laser shock processing. LF is a recently developed and highly flexible thermal forming technique, and laser shock processing is an innovative mechanical process in which shock waves up to 10GPa are generated by a confined laser ablation process. The generated high pressure imparts beneficial residual stress into the surface layer of metal parts as well as shapes thin metal parts. In laser forming, it has been known that microstructural evolution has an important effect on the deformation process, and that the typical thermal cycles in laser forming are much steeper than those in other thermal mechanical processes like welding and hot rolling. In this study, microstructural evolution in laser forming has been investigated, and a thermal-microstructural-mechanical model is developed to predict microstructural changes (phase transformations and recrystallization) and their effects on flow behavior and deformation. Grain structure and phase transformation in heat affected zone (HAZ) is experimentally characterized, and measurement of bending curvature also helps to validate the proposed model. Based on the similar methodology, two different materials have been studied: AISI 1010 low carbon steel and Ti-6Al-4V alloy. In the case of Ti-6A1-4V alloy, the initial phase ratio of Ti-alpha and Ti-beta need to be measured by X-ray diffraction. In laser shock processing, under shock loading solid material behavior is fluidlike and shock-solid interactions play a key role in determining the induced residual stress distributions and the final deformed shape. In this work shock-solid interactions under high pressure and thus high strain rate in laser shock processing are studied and simulated based on conservation's law, equation of state and elastoplasticity of material. A series of carefully controlled experiments, including spatially resolved residual stress measurement by synchrotron X-ray diffraction and

  1. Experimental and Numerical Study of Laser-Induced Forward Transfer Printing of Liquids

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.

    Laser-induced forward transfer (LIFT) is an emerging high-resolution printing technique, which can deposit a wide range of fluid materials without a nozzle. In this process, a pulsed laser initiates the highly directed expulsion of fluid from a thin donor ink film onto a confined region of an acceptor substrate. Despite being validated as a versatile technique for printing devices, the fundamental mechanisms of the deposition process are still not fully understood. Further investigation of the laser-induced ejection dynamics is necessary in order to motivate new ways in which to optimize and control the printing process. Additionally, the LIFT configuration presents a unique laboratory in which to study novel regimes of fluid dynamics. This thesis presents an in-depth study of the LIFT printing process using a balance of experimental measurement and computational modeling. In the first part, time-resolved imaging is used to investigate the mechanisms responsible for the laser-induced ejection of ink. Fluid ejections driven by a rapidly expanding gas cavity within the ink film are observed and analyzed within the context of similar work on cavitation bubble formation, revealing that the unique geometry and size scale of LIFT invokes novel flow behavior. An alternative mechanism is also observed in which the fluid is ejected by the rapid formation of blister on a polymer layer adjacent to the ink film. The dynamics of the blister expansion and associated ink ejection are analyzed as a function of system properties and processing parameters. In the second part, a computational model of the blister-actuated ejection process is developed and used to study the novel regime of free-surface jetting from thin liquid films. The model is first validated against experimental results. It is then used to develop a fundamental understanding of the ejection process as well as conduct a detailed parametric study on the influence of system parameters on printing performance. These

  2. Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning

    SciTech Connect

    Jang, Deoksuk; Kim, Dongsik; Park, Jin-Goo

    2011-04-01

    In laser shock cleaning (LSC), the shock wave is generated by laser-induced breakdown of the ambient gas. The shock wave intensity has thus been a factor limiting the performance of the LSC process. In this work, a novel method of amplifying a laser-induced plasma-generated shock wave by the breakdown of a liquid column is proposed and analyzed. When the laser beam is focused on a microscale liquid column, a shock wave having a significantly amplified intensity compared to that generated by air breakdown alone can be generated in air. Therefore, substantially amplified cleaning force can be obtained. The dynamics of a shock wave induced by a Q-switched Nd:YAG laser was analyzed by laser flash shadowgraphy. The peak pressure of the laser-induced shock wave was approximately two times greater than that of air breakdown at the same laser fluence. The proposed method of shock wave generation is expected to be useful in various applications of laser shock processing, including surface cleaning.

  3. History of grating images

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    2001-06-01

    Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.

  4. Grating image technology

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    1995-07-01

    The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.

  5. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  6. Q-Switched Alexandrite Laser-induced Chrysiasis

    PubMed Central

    Victor Ross, E.

    2015-01-01

    Background: Chyriasis is an uncommon side effect that occurs in patients who are receiving prolonged treatment with either intravenous or intramuscular gold as a distinctive blue-gray pigmentation of light-exposed skin. Laser-induced chrysiasis is a rarely described phenomenon in individuals who have received systemic gold and are subsequently treated with a Q-switched laser. Purpose: To describe the characteristics of patients with laser-induced chrysiasis. Methods: The authors describe a 60-year-old woman who developed chrysiasis at Q-switched alexandrite laser treatment sites. They also reviewed the medical literature using PubMed, searching the terms chrysiasis, gold, and laser-induced. Patient reports and previous reviews of these subjects were critically assessed and the salient features are presented. Results: Including the authors’ patient, laser-induced chrysiasis has been described in five Caucasian arthritis patients (4 women and 1 man); most of the patients had received more than 8g of systemic gold therapy during a period of 3 to 13 years. Gold therapy was still occurring or had been discontinued as long as 26 years prior to laser treatment. All of the patients immediately developed blue macules at the Q-switched laser treatment site. Resolution of the dyschromia occurred in a 70-year-old woman after two treatment sessions with a long-pulsed ruby laser and the authors’ patient after a sequential series of laser sessions using a long-pulsed alexandrite laser, followed by a nonablative fractional laser and an ablative carbon dioxide laser. Conclusion: Laser-induced chrysiasis has been observed following treatment with Q-switched lasers in patients who are receiving or have previously been treated with systemic gold. It can occur decades after treatment with gold has been discontinued. Therefore, inquiry regarding a prior history of treatment with gold—particularly in older patients with arthritis—should be considered prior to treatment with a Q

  7. Remote sensing of phytoplankton using laser-induced fluorescence

    SciTech Connect

    Babichenko, S.; Poryvkina, L.; Arikese, V. ); Kaitala, S. ); Kuosa, H. )

    1993-06-01

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed.

  8. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  9. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  10. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  11. Laser induced fluorescence of biochemical for UV LIDAR application.

    PubMed

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.

  12. Laser-induced stress transients: aqueous pores of membranes

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J., Sr.; Taitelbaum, Jeremy; Doukas, Apostolos G.

    1996-05-01

    Lasers can be used to enhance the delivery of a number of molecules. The model that best fits our data is for the formation of aqueous pores. These pores are present for up to 80 seconds. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  13. Laser-induced breakdown in large transparent water droplets.

    PubMed

    Chang, R K; Eickmans, J H; Hsieh, W F; Wood, C F; Zhang, J Z; Zheng, J B

    1988-06-15

    Recent experiments on the laser-induced breakdown (LIB) of large transparent liquid droplets are reviewed. A physical model of LIB processes is presented with the aim of integrating the following recent results: (1) the internal and near-field distributions for large transparent spheres; (2) the location of LIB initiation based on spatially resolved plasma emission spectroscopic techniques; (3) spatially resolved but time-averaged density of the plasma plumes and temperature of the atomic species within the plasma; (4) the plasma front propagation velocities inside and outside the droplet; and (5) the fate of the remaining superheated droplet and the expelled material.

  14. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  15. Search for Laser-Induced Formation of Antihydrogen Atoms

    SciTech Connect

    Amoretti, M.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bowe, P. D.; Ejsing, A. M.; Hangst, J. S.; Madsen, N.; Canali, C.; Carraro, C.; Lagomarsino, V.; Manuzio, G.; Cesar, C. L.; Charlton, M.; Joergensen, L. V.; Mitchard, D.

    2006-11-24

    Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n=11 quantum state by the introduction of light from a CO{sub 2} continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration.

  16. Search for laser-induced formation of antihydrogen atoms.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Ejsing, A M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Lodi Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G C; Pruys, H; Regenfus, C; Rotondi, A; Telle, H H; Testera, G; Van der Werf, D P; Variola, A; Venturelli, L; Yamazaki, Y; Zurlo, N

    2006-11-24

    Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n = 11 quantum state by the introduction of light from a CO2 continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration.

  17. Laser-induced fluorescence spectroscopy of the secondary cataract

    NASA Astrophysics Data System (ADS)

    Maslov, N. A.; Larionov, P. M.; Rozhin, I. A.; Druzhinin, I. B.; Chernykh, V. V.

    2016-06-01

    Excitation-emission matrices of laser-induced fluorescence of lens capsule epithelium, the lens nucleus, and the lens capsule are investigated. A solid-state laser in combination with an optical parametric generator tunable in the range from 210 to 350 nm was used for excitation of fluorescence. The spectra of fluorescence of all three types of tissues exhibit typical features that are specific to them and drastically differ from one another. This effect can be used for intrasurgical control of presence of residual lens capsule epithelium cells in the capsular bag after surgical treatment of a cataract.

  18. Laser-induced backward transfer of nanoimprinted polymer elements

    NASA Astrophysics Data System (ADS)

    Feinaeugle, Matthias; Heath, Daniel J.; Mills, Benjamin; Grant-Jacob, James A.; Mashanovich, Goran Z.; Eason, Robert W.

    2016-04-01

    Femtosecond laser-induced backward transfer of transparent photopolymers is demonstrated in the solid state, assisted by a digital micromirror spatial light modulator for producing shaped deposits. Through use of an absorbing silicon carrier substrate, we have been able to successfully transfer solid-phase material, with lateral dimensions as small as ~6 µm. In addition, a carrier of silicon incorporating a photonic waveguide relief structure enables the transfer of imprinted deposits that have been accomplished with surface features exactly complementing those present on the substrate, with an observed minimum feature size of 140 nm.

  19. Laser induced fluorescence of biochemical for UV LIDAR application.

    PubMed

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm. PMID:24337816

  20. Laser induced breakdown spectroscopy in paintings and sculptures research

    NASA Astrophysics Data System (ADS)

    Sarzyński, A.; Skrzeczanowski, W.; Marczak, J.

    2007-07-01

    Application of Laser Induced Breakdown Spectroscopy (LIBS) for investigation of chemical constitution and stratigraphy of artworks, and metallic objects with multilayer structures is described in the paper. Physical phenomena accompanying LIBS investigations, especially temporal evolution and spectral lines broadening are described. Operational characteristics of experimental equipment are shown. Results obtained with use of two different echelle spectrometers are compared. Pigments used in oil paintings are analyzed and analysis results are presented. Experimental results of measurements of various objects like paintings, sculptures and artifacts are shown. Works on dating of investigated paintings are described.

  1. Laser-induced shock waves effects in materials

    SciTech Connect

    Dingus, R.S.; Shafer, B.P.

    1990-01-01

    A review of the effects of pressure pulses on materials is presented with an orientation toward laser-induced shock wave effects in biological tissue. The behavior is first discussed for small amplitudes, namely sound waves, since many important features in this region are also applicable at large amplitudes. The generation of pressure pulses by lasers is discussed along with amplitudes. The origin and characteristic properties of shock waves are discussed along with the different types of effects they can produce. The hydrodynamic code techniques required for shock wave calculations are discussed along with the necessary empirical data base and methods for generating that data base. 7 refs., 15 figs.

  2. High time resolution laser induced fluorescence in pulsed argon plasma

    SciTech Connect

    Biloiu, Ioana A.; Sun Xuan; Scime, Earl E.

    2006-10-15

    A submillisecond time resolution laser induced fluorescence (LIF) method for obtaining the temporal evolution of the ion velocity distribution function in pulsed argon plasma is presented. A basic LIF system that employs a continuous laser wave pumping and lock-in aided detection of the subsequent fluorescence radiation is modified by addition of a high frequency acousto-optic modulator to provide measurements of the ion flow velocity and ion temperature in a helicon generated pulsed argon plasma with temporal resolutions as high as 30 {mu}s.

  3. Laser-induced fluorescence measurement of combustion chemistry intermediates

    NASA Technical Reports Server (NTRS)

    Crosley, David R.

    1986-01-01

    Laser-induced fluorescence (LIF) can measure the trace (often free radical) species encountered as intermediates in combustion chemistry; OH, CS, NH, NS, and NCO are typical of the species detected in flames by LIF. Attention is given to illustrative experiments designed to accumulate a quantitative data base for LIF detection in low pressure flow systems and flames, as well as to flame measurements conducted with a view to the detection of new chemical intermediaries that may deepen insight into the chemistry of combustion.

  4. Progress in fieldable laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Miziolek, Andrzej W.

    2012-06-01

    In recent years there has been great progress in the Laser Induced Breakdown Spectroscopy (LIBS) technology field. Significant advances have been made both in fundamental and applied research as well as in data processing/chemometrics. Improvements in components, most notably lasers/optics and spectrometers are enabling the development of new devices that are suitable for field use. These new commercial devices recently released to the marketplace, as well as ones currently under development, are bringing the potential of LIBS for CBRNE threat analysis into real-world applications.

  5. Trace metal mapping by laser-induced breakdown spectroscopy

    SciTech Connect

    Kaiser, Jozef; Novotny, Dr. Karel; Hrdlicka, A; Malina, R; Hartl, M; Kizek, R; Adam, V

    2012-01-01

    Abstract: Laser-Induced Breakdown Spectroscopy (LIBS) is a sensitive optical technique capable of fast multi-elemental analysis of solid, gaseous and liquid samples. The potential applications of lasers for spectrochemical analysis were developed shortly after its invention; however the massive development of LIBS is connected with the availability of powerful pulsed laser sources. Since the late 80s of 20th century LIBS dominated the analytical atomic spectroscopy scene and its application are developed continuously. Here we review the utilization of LIBS for trace elements mapping in different matrices. The main emphasis is on trace metal mapping in biological samples.

  6. Systematic investigation of sustained laser-induced incandescence in carbon nanotubes

    SciTech Connect

    Lim, Zhi Han; Sow, Chorng-Haur; Lee, Andrielle; Zhu, Yanwu; Lim, Kassandra Yu Yan

    2010-03-15

    A focused laser beam irradiating on aligned carbon nanotubes (CNTs) in moderate vacuum results in bright and sustained laser-induced incandescence (LII) in CNTs. The incandescence corresponds to blackbody radiation from laser-heated CNTs at {approx}2400 K. Post-LII craters with well-defined ring boundaries in the CNT array were observed and examined with scanning electron microscopy and Raman spectroscopy. The enhanced purity of CNTs after LII as indicated by Raman spectroscopy studies was attributed to the removal of amorphous carbons on the as-grown CNTs during LII. A dynamic study of the crater formation further elucidates the nature of such craters. Through a systematic study of the effect of vacuum level and gaseous environment on LII, we discovered the process of thermal runaway during LII in CNTs. Thermal runaway is a threat to a sustained LII and can be prevented in nitrogen and argon environments. Oxygen was found to be responsible for thermal runaway reactions.

  7. Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C., Jr.

    1982-01-01

    Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.

  8. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    NASA Astrophysics Data System (ADS)

    Serkov, A. A.; Shcherbina, M. E.; Kuzmin, P. G.; Kirichenko, N. A.

    2015-05-01

    Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 1014 particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  9. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  10. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.

    PubMed

    Flores-Flores, E; Torres-Hurtado, S A; Páez, R; Ruiz, U; Beltrán-Pérez, G; Neale, S L; Ramirez-San-Juan, J C; Ramos-García, R

    2015-10-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655

  11. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis

    PubMed Central

    Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2015-01-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655

  12. Laser-Induced Kondo Effect in Ultracold Alkaline-Earth Fermions.

    PubMed

    Nakagawa, Masaya; Kawakami, Norio

    2015-10-16

    We demonstrate that laser excitations can coherently induce a novel Kondo effect in ultracold atoms in optical lattices. Using a model of alkaline-earth fermions with two orbitals, it is shown that the optically coupled two internal states are dynamically entangled to form the Kondo-singlet state, overcoming the heating effect due to the irradiation. Furthermore, a lack of SU(N) symmetry in the optical coupling provides a peculiar feature in the Kondo effect, which results in spin-selective renormalization of effective masses. We also discuss the effects of interorbital exchange interactions, and reveal that they induce novel crossover or reentrant behavior of the Kondo effect owing to control of the coupling anisotropy. The laser-induced Kondo effect is highly controllable by tuning the laser strength and the frequency, and thus offers a versatile platform to study the Kondo physics using ultracold atoms.

  13. Effect of damping on the laser induced ultrafast switching in rare earth-transition metal alloys

    SciTech Connect

    Oniciuc, Eugen; Stoleriu, Laurentiu; Cimpoesu, Dorin; Stancu, Alexandru

    2014-06-02

    In this paper, we present simulations of thermally induced magnetic switching in ferrimagnetic systems performed with a Landau-Lifshitz-Bloch (LLB) equation for damping constant in a wide range of values. We have systematically studied the GdFeCo ferrimagnet with various concentrations of Gd and compared for some values of parameters the LLB results with atomistic simulations. The agreement is remarkably good, which shows that the dynamics described by the ferrimagnetic LLB is a reasonable approximation of this complex physical phenomenon. As an important element, we show that the LLB is able to also describe the intermediate formation of a ferromagnetic state which seems to be essential to understand laser induced ultrafast switching. The study reveals the fundamental role of damping during the switching process.

  14. [Design and evaluation of a confocal laser-induced fluorescence detector].

    PubMed

    Yang, Bing-cheng; Guan, Ya-feng; Huang, Wei-dong; Che, Xun

    2002-07-01

    A portable laser-induced fluorescence detector, based on confocal configuration detection system has been developed. This is assembled from commercially available components. All the components of the detector are domestic, which makes it low cost. The routine alignment procedure is simplified by using a skillful and visual alignment system and requires minimal experience for operation. The module design makes it possible for high performance liquid chromatographic, capillary electrophoretic and microfluid chip applications. The performance of the detector, including the sensitivity, noise, linear range and detection limit, was evaluated by capillary electrophoresis and flow injection analytical technique using a red-absorbing cyanine derivative (Cy5) and Cy5 labeled tryptophan as test samples. The results show that the background signal is very low and the peak-to-peak noise level is 0.002 mV. The detection limit and the linear dynamic range are 3.7 nmol/L and 10(3), respectively.

  15. Simulated characterization of soot in the flame based on laser induced incandescence

    NASA Astrophysics Data System (ADS)

    Hou, Yanping; Chen, Jun; Yang, Huinan; Cai, Xiaoshu

    2014-12-01

    The unburned carbon particle, formed due to incomplete combustion of fossil fuel, biofuel, and biomass, raises great environmental and health problems. During the measurement of flames, a non-intrusive and in situ optical method is preferred rather than probe sampling method. Also the method with high spatial resolution and high temporal resolution is required for fast dynamic reactions such as combustion research. The technique based on laser-induced incandescence (LII) has been developed to characterize the soot particles. In this work, the simulation of LII signals have been did. In the simulation, different parameters have been applied and acquired corresponding results. The method provides theoretical results to analyze LII signals, and will eventually use in experimentation

  16. Grating Sagnac Fourier transform spectrometer and its applications

    NASA Astrophysics Data System (ADS)

    Ma, Huan

    The Active Hyperspectral Imaging (AHI) project at University of Hawaii uses the multi-color laser induced fluorescence to detect the low concentration molecules in the atmosphere. A high throughput, high spectral and time resolution receiver is required by this application. The stationary Fourier transform spectrometer (FTS) is one candidate for this purpose. Compared to the traditional FTS, the stationary FTS has the advantage of high time resolution. However, the spectral resolution of the stationary FTS has been relatively low in the past two decades. We have invented and developed a novel stationary FTS based on a modified Sagnac interferometer. The use of multiple diffraction gratings greatly improves the spectral resolution of the interferometer. A prototype of two-grating Sagnac ITS is built. The theoretical resolving power of the prototype is 0.957 x 106 at HeNe wavelength, which corresponds to the resolution of 495 MHz in frequency. The 700--1000 MHz (<0.03 cm-1) resolution is obtained at 633 nm experimentally for the prototype. This is in full agreement with the theory and numerical simulation. The free spectral range of the prototype is more than 0.5 THz (>16.68 cm-1). The time resolution of the grating Sagnac FTS is transform-limited. The pulsed laser experiment demonstrates the 2 ˜ 3 nsec time resolution for the prototype of the two-grating Sagnac FTS. The grating Sagnac FTS has wide tuning range. The same setup can cover the full visible spectral range by simply rotating the gratings. Although only visible spectrum is demonstrated, the grating Sagnac ITS can be used for UV and IR spectral measurement when different materials and detectors are used. The general theory on optimum N-grating Sagnac FTS is developed. The higher spectral resolution is possible when more gratings are used. A successful computer model is built up to help us design the system. The characteristic of high spectral resolution and high time resolution makes the grating Sagnac FTS

  17. Direct probing of chromatography columns by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    McGuffin, V. L.

    1992-12-01

    This report summarizes the progress and accomplishments of this research project from 1 Sep. 1989 to 28 Feb. 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe in supercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  18. Laser-induced nuclear magnetic resonance splitting in hydrocarbons.

    PubMed

    Ikäläinen, Suvi; Lantto, Perttu; Manninen, Pekka; Vaara, Juha

    2008-09-28

    Irradiation of matter with circularly polarized light (CPL) shifts all nuclear magnetic resonance (NMR) lines. The phenomenon arises from the second-order interaction of the electron cloud with the optical field, combined with the orbital hyperfine interaction. The shift occurs in opposite directions for right and left CPL, and rapid switching between them will split the resonance lines into two. We present ab initio and density functional theory predictions of laser-induced NMR splittings for hydrocarbon systems with different sizes: ethene, benzene, coronene, fullerene, and circumcoronene. Due to the computationally challenging nature of the effect, traditional basis sets could not be used for the larger systems. A novel method for generating basis sets, mathematical completeness optimization, was employed. As expected, the magnitude of the spectral splitting increases with the laser beam frequency and polarizability of the system. Massive amplification of the effect is also observed close to the optical excitation energies. A much larger laser-induced splitting is found for the largest of the present molecules than for the previously investigated noble gas atoms or small molecules. The laser intensity required for experimental detection of the effect is discussed.

  19. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  20. Direct probing of chromatography columns by laser-induced fluorescence

    SciTech Connect

    McGuffin, V.L.

    1992-12-07

    This report summarizes the progress and accomplishments of this research project from September 1, 1989 to February 28, 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe insupercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  1. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  2. Laser induced damage in optical materials: 7th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1976-06-01

    The Seventh ERDA-ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado, on 29-31 July 1975. These Symposia are held as part of the activities in ASTM Subcommittee II on Lasers and Laser Materials, which is charged with the responsibilities of formulating standards and test procedures for laser materials, components, and devices. The Chairman of Subcommittee II is Haynes Lee, of Owens-Illinois, Inc. Co-chairmen for the Damage Symposia are Arthur Guenther of the Air Force Weapons Laboratory and Alexander J. Glass of Law-rence Livermore Laboratory. Over 150 attendees at the Symposium heard forty-five papers on topics relating fabrication procedures to laser induced damage in optical materials; on metal mirrors; in ir window materials; the multipulse, wavelength, and pulse length dependence of damage thresholds; damage in dielectric films and at exposed surfaces; as well as theoretical discussions on avalanche ionization and multiphoton processes of importance at shorter wavelengths. Of particular importance were the scaling relations developed from several parametric studies relating fundamental properties (refractive index, surface roughness etc.) to the damage threshold. This year many of the extrinsic influences tending to reduce a materials damage resistance were isolated such that measures of their egregious nature could be quantified. Much still needs to be accomplished to improve processing and fabrication procedures to allow a measurable approach to a materials intrinsic strength to be demonstrated.

  3. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  4. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  5. A model for traumatic brain injury using laser induced shockwaves

    NASA Astrophysics Data System (ADS)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  6. Laser-induced nucleation of carbon dioxide bubbles.

    PubMed

    Ward, Martin R; Jamieson, William J; Leckey, Claire A; Alexander, Andrew J

    2015-04-14

    A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm(-2)) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm(-2)) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm(-2)). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.

  7. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  8. [Identification of invoice based on laser-induced photoluminescence spectrum].

    PubMed

    Yang, Qin; Yang, Yong; Tian, Yong-hong

    2011-12-01

    The rapid identification of invoice authenticity was studied based on laser-induced photoluminescence spectrum. First, the spectral curves of eighty invoice samples were obtained by laser-induced photoluminescence detection system, and genetic algorithm (GA) was applied to fit and separate overlapped spectral region between 566 and 669 nm by three Gaussian peaks. Spectral feature parameters extracted by GA were employed as the inputs of BP neural networks, and then an identification model was built. One hundred and four data were converted to 13 Gaussian parameters, and for authentic and false invoices the coefficients of determination (R2) were 0.99789 and 0.99683 and the relative standard deviations (RSD) were 0.017052 and 0.022362, respectively. It was showed that Gaussian fitting algorithm could not only simplify the parameters of models, but also improve the explanation of analysis models. Through comparison analysis of the results, it was found that the model, whose thirteen feature parameters and two evaluated parameters were all applied as BP inputs, was the best, and the corrected identification rates of sixty calibration samples and twenty validation samples were both 100%. So the identification method studied in the present research played a good role in the classification and identification, and offered a new approach to the rapid identification of invoice authenticity. PMID:22295788

  9. Laser Induced Damage in Optical Materials: 6th ASTM Symposium.

    PubMed

    Glass, A J; Guenther, A H

    1975-03-01

    The Sixth ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado on 22-23 May 1974. Over 150 attendees at the Symposium heard thirty-one papers on topics relating to laser induced damage in crystalline and nonlinear optical materials, at dielectric surfaces, and in thin film coatings as well as discussions of damage problems in the ir region due both to cw and pulsed irradiation. In addition, several reports on the theoretical analysis of laser-materials interaction relative to the damage progress were given, along with tabulations of fundamental materials properties of importance in evaluation of optical material response to high-power laser radiation. Attention was given to high-power laser system design considerations that relate to improved system performance and reliability when various damage mechanisms are operable in such systems. A workshop on the machining of optics was held, and nine papers on various facets of the topic were presented dealing with machining procedures, surface characterization of machined elements, coating of machined components, and the polishing and damage resistance of polished, coated, and bare metal reflectors. PMID:20134954

  10. Bidirectional grating compressors

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Zhaoyang; Li, Shuai; Liu, Yanqi; Leng, Yuxin; Li, Ruxin

    2016-07-01

    A bidirectional grating compressor for chirped pulse amplifiers is presented. It compresses a laser beam simultaneously in two opposite directions. The pulse compressor is shown to promote chirped pulse amplifiers' output energy without grating damages. To verify the practicability, an experiment is carried out. In addition, a crosscorrelation instrument is designed and set up to test the time synchronization between these two femtosecond pulses.

  11. DYNAMICS OF X-RAY-EMITTING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT PUPPIS A REVEALED BY THE XMM-NEWTON REFLECTION GRATING SPECTROMETER

    SciTech Connect

    Katsuda, Satoru; Tamagawa, Toru; Ohira, Yutaka; Mori, Koji; Tsunemi, Hiroshi; Koyama, Katsuji; Uchida, Hiroyuki

    2013-05-10

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII He{alpha} forbidden and resonance, O VIII Ly{alpha}, O VIII Ly{beta}, and Ne IX He{alpha} resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called {Omega} filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 {+-} 140 {+-} 60 km s{sup -1} (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical {Omega} filament. Line broadening at 654 eV (corresponding to O VIII Ly{alpha}) is obtained to be {sigma} {approx}< 0.9 eV, indicating an oxygen temperature of {approx}< 30 keV. Analysis of XMM-Newton MOS spectra shows an electron temperature of {approx}0.8 keV and an ionization timescale of {approx}2 Multiplication-Sign 10{sup 10} cm{sup -3} s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is {approx}600-1200 km s{sup -1} and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 {+-} 70 {+-} 60 km s{sup -1}.

  12. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm-2, which is nearly as high as bulk fused silica with 31.5 J cm-2.

  13. High power laser antireflection subwavelength grating on fused silica by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Geng, Feng; Liu, Hongjie; Sun, Laixi; Yan, Lianghong; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo

    2016-07-01

    In this study we report on an efficient and simple method to fabricate an antireflection subwavelength grating on a fused silica substrate using two-step reactive ion etching with monolayer polystyrene colloidal crystals as masks. We show that the period and spacing of the obtained subwavelength grating were determined by the initial diameter of polystyrene microspheres and the oxygen ion etching duration. The height of pillar arrays can be adjusted by tuning the second-step fluorine ion etching duration. These parameters are proved to be useful in tailoring the antireflection properties of subwavelength grating using a finite-difference time-domain (FDTD) method and effective medium theory. The subwavelength grating exhibits excellent antireflection properties. The near-field distribution of the SWG which is directly patterned into the substrate material is performed by a 3D-FDTD method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure, which has the potential to promote the ability of anti-laser-induced damage. For 10 ns pulse duration and 1064 nm wavelength, we experimentally determined their laser induced damage threshold to 32 J cm‑2, which is nearly as high as bulk fused silica with 31.5 J cm‑2.

  14. Evaluation of laser-induced thin-layer removal by using shadowgraphy and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rabasović, M. S.; Šević, D.; Lukač, N.; Jezeršek, M.; Možina, J.; Gregorčič, P.

    2016-03-01

    Shadow photography and laser-induced breakdown spectroscopy (LIBS) are studied as methods for monitoring the selective removal of thin (i.e., under 100 μm) layers by laser ablation. We used a laser pulse of 5 ns and 16 mJ at 1064 nm to ablate an 18-μm-thin copper layer from the fiberglass substrate. On the basis of shadowgraphs of the laser-induced shock waves, we measured the optodynamic energy-conversion efficiency, defined as the ratio between the mechanical energy of the shock wave and the excitation-pulse energy. Our results show that this efficiency is significantly higher for the laser pulse-copper interaction than for the interaction between the excitation pulse and the substrate. LIBS was simultaneously employed in our experimental setup. The optical emission from the plasma plume was collected by using a spectrograph and recorded with a streak camera. We show that advancing of laser ablation through the copper layer and reaching of the substrate can be estimated by tracking the spectral region between 370 and 500 nm. Therefore, the presented results confirm that LIBS method enables an on-line monitoring needed for selective removal of thin layers by laser.

  15. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Wang, H.; Xie, Z. Q.; Gao, Y.; Ling, H.; Lu, Y. F.

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10{sup 6}(ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.

  16. Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroyuki; Hamada, Naoya; Wagatsuma, Kazuaki

    2009-09-01

    Laser induced breakdown spectrometry (LIBS) combined with laser induced fluorescence spectrometry (LIFS) has been applied for detection of trace-level phosphorus in steel. The plasma induced by irradiation of Nd:YAG laser pulse for ablation was illuminated by the 3rd harmonic of Ti:Sapphire laser tuned to one of the resonant lines for phosphorus in the wavelength region of 253-256 nm. An excitation line for phosphorus was selected to give the highest signal-to-noise ratio. Fluorescence signals, P213.62 and P214.91 nm, were observed with high selectivity at the contents as low as several tens µg g - 1 . Fluorescence intensities were in a good linear correlation with the contents. Fluorescence intensity ratio of a collisionally assisted line (213.62 nm) to a direct transition line (214.91 nm) was discussed in terms of the analytical conditions and experimental results were compared with a calculation based on rate equations. Since the fluorescence signal light in the wavelength range longer than 200 nm can be transmitted relatively easily, even through fiber optics of moderate length, LIBS/LIFS would be a versatile technique in on-site applications for the monitoring of phosphorus contents in steel.

  17. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence.

    PubMed

    Shen, X K; Wang, H; Xie, Z Q; Gao, Y; Ling, H; Lu, Y F

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10(6) (ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry. PMID:19412215

  18. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  19. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    PubMed

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  20. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    SciTech Connect

    Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  1. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  2. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  3. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  4. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    SciTech Connect

    Gallais, L. Douti, D.-B.; Commandré, M.; Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  5. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  6. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  7. Circular Dammann grating

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Jia, Jia; Liu, Liren

    2003-11-01

    A circular Dammann grating that can produce circular equal intensities at various orders in the far field is described. A set of parameters such as order, circular number, uniformity, and diffraction efficiency has been defined to describe the novel diffractive phase elements. Numerical solutions of binary-phase (0, π) circular Dammann gratings are given. The results of experiments with a four-order circular Dammann grating made by a lithographic technique are presented. This novel diffractive optical element should be highly interesting in a wide variety of practical applications.

  8. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  9. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

  10. Laser-induced thermal bubbles for microfluidic applications.

    PubMed

    Zhang, Kai; Jian, Aoqun; Zhang, Xuming; Wang, Yu; Li, Zhaohui; Tam, Hwa-Yaw

    2011-04-01

    We present a unique bubble generation technique in microfluidic chips using continuous-wave laser-induced heat and demonstrate its application by creating micro-valves and micro-pumps. In this work, efficient generation of thermal bubbles of controllable sizes has been achieved using different geometries of chromium pads immersed in various types of fluid. Effective blocking of microfluidic channels (cross-section 500 × 40 μm(2)) and direct pumping of fluid at a flow rate of 7.2-28.8 μl h(-1) with selectable direction have also been demonstrated. A particular advantage of this technique is that it allows the generation of bubbles at almost any location in the microchannel and thus enables microfluidic control at any point of interest. It can be readily integrated into lab-on-a-chip systems to improve functionality.

  11. Laser-induced microbubble poration of localized single cells.

    PubMed

    Fan, Qihui; Hu, Wenqi; Ohta, Aaron T

    2014-05-01

    Laser-induced microbubbles were used to porate the cell membranes of localized single NIH/3T3 fibroblasts. Microsecond laser pulses were focused on an optically absorbent substrate, creating a vapour microbubble that oscillated in size at the laser focal point in a fluidic chamber. The shear stress accompanying the bubble size oscillation was able to porate nearby cells. Cell poration was demonstrated with the delivery of FITC-dextran dye with various molecular weights. Under optimal poration conditions, the cell poration efficiency was up to 95.2 ± 4.8%, while maintaining 97.6 ± 2.4% cell viability. The poration system is able to target a single cell without disturbing surrounding cells. PMID:24632785

  12. Evaluating Photodynamic Therapy Efficacy Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fekry, O.; El-Batanouny, M. H.; El-Begawy, M. B.; Harith, M. A.

    2011-09-01

    Laser-induced breakdown spectroscopy (LIBS), is an excellent tool for trace elemental analysis, was exploited for a detecting concentrations of calcium and magnesium in malignant tissues before and after PDT. Calcium and magnesium concentrations are known tobe high in malignancy. Tissues were injected with methylene blue photosensitizer with concentrations 0.5%, 1% and 2%. Two different light sources were used with two different energy densities/each light sources. The results showed a decrease in tissue elements content after PDT application for both calcium and magnesium compared to before PDT application as shown in the tissue spectral lines' intensities which has been reflected in. Type of light source showed no effect on tissue elements content which showed slight differences among the different energy densities. It has been shown that LIBS technique can be adopted method to monitor tumor photodynamic therapy applications.

  13. Analysis of fresco by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  14. Laser-induced stress transients: applications for molecular delivery

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  15. Laser-induced modification of transparent crystals and glasses

    SciTech Connect

    Bulgakova, N M; Stoian, Razvan; Rosenfeld, A

    2010-12-29

    We analyse the processes taking place in transparent crystals and glasses irradiated by ultrashort laser pulses in the regimes typical of various applications in optoelectronics and photonics. We consider some phenomena, which have been previously described by the authors within the different model representations: charging of the dielectric surface due to electron photoemission resulting in a Coulomb explosion; crater shaping by using an adaptive control of the laser pulse shape; optimisation of the waveguide writing in materials strongly resistant to laser-induced compaction under ordinary irradiation conditions. The developed models and analysis of the processes relying on these models include the elements of the solid-state physics, plasma physics, thermodynamics, theory of elasticity and plasticity. Some important experimental observations which require explanations and adequate description are summarised. (photonics and nanotechnology)

  16. Laser induced fluorescence applied to turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1976-01-01

    The saturated fluorescence method makes use of the great simplifications which occur when under conditions of intense radiation the excitation process becomes saturated. A description is presented of the saturated fluorescence method, taking into account rate equations and saturation, radiative transfer, the two-level system, a multilevel system, and measurements under saturation conditions. The detectability limits of the method are investigated. Fluorescence trapping is found to place an upper limit on the number density of the fluorescing species that can be measured without signal loss. Turbulence places time and spatial constraints on the measurements, but otherwise poses no difficulties. Saturated laser induced fluorescence spectroscopy appears to be a most promising method for measuring species concentrations in flames.

  17. Laser-induced photo-thermal magnetic imaging

    NASA Astrophysics Data System (ADS)

    Thayer, David A.; Lin, Yuting; Luk, Alex; Gulsen, Gultekin

    2012-08-01

    Due to the strong scattering nature of biological tissue, optical imaging beyond the diffusion limit suffers from low spatial resolution. In this letter, we present an imaging technique, laser-induced photo-thermal magnetic imaging (PMI), which uses laser illumination to induce temperature increase in a medium and magnetic resonance imaging to map the spatially varying temperature, which is proportional to absorbed energy. This technique can provide high-resolution images of optical absorption and can potentially be used for small animal as well as breast cancer and lymph node imaging. First, we describe the theory of PMI, including the modeling of light propagation and heat transfer in tissue. We also present experimental data with corresponding predictions from theoretical models, which show excellent agreement.

  18. Containerless study of metal evaporation by laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, Robert A.; Nordine, Paul C.

    1987-01-01

    Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.

  19. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-01

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  20. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems. PMID:25017934

  1. Laser-induced breakdown spectroscopy for elemental analysis

    SciTech Connect

    Loree, T.R.

    1984-01-01

    Laser-Induced Breakdown Spectroscopy, or LIBS, is a laser-based form of atomic emission spectroscopy that can be used for the in-situ elemental analysis of coal gasifier product streams. At this point, LIBS has been deployed in three gasifier field tests, and C, H, O, N, Na, K, S, Cr, Cu, Fe, Mg, Pb, Se, Al, Ba, Ca, Cd, Li, and Mn were qualitatively detected in the various product streams. In laboratory experiments on quantitative detection, a detection limit of 4 ppB was demonstrated for sodium. The long-range goal of this program is add the trace elements As, B, Mo, Ni, V, and Zn to the detection list, and to develop the capability of quantitative detection in real time for the trace elements. 4 figures.

  2. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  3. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  4. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  5. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Riveiro, A.; Comesaña, R.; Pou, J.

    2009-03-01

    This work presents the results of laser-induced fragmentation of hydroxylapatite microparticles in water dissolution. Calcined fish bones in form of powder, which were previously milled to achieve microsized particles, were used as precursor material. Two different laser sources were employed to reduce the size of the suspended particles: a pulsed Nd:YAG laser and a Ytterbium doped fiber laser working in continuous wave mode. The morphology as well as the composition of the obtained particles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and conventional and high resolution transmission electron microscopy (TEM, HRTEM). The results show that nanometric particles of hydroxylapatite and β-tricalcium phosphate as small as 10 nm diameter can be obtained.

  6. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  7. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  8. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  9. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  10. Laser-induced damage thresholds of starched PMMA waveplates

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Mikšys, D.; Maciulevičius, M.; Sirutkaitis, V.; Šlekys, G.; Samoylov, A. V.

    2007-01-01

    Polymethyl methacrylate (PMMA) is a versatile polymeric material that is well suited for fabrication of many commercial optical components: lenses, fibers, windows, phase waveplates and others. Our focus is achromatic zero-order waveplates made of anisotropic PMMA which can be used to modify the state of polarization of electromagnetic radiation. Such waveplates have a broad range of application in devices where polarized radiation is used. For example, when tunable lasers are used or when spectropolarimetric measurements are performed, one needs an achromatic waveplate providing a specific retardation in a wide wavelength range. Herewith anisotropic properties of PMMA subjected to one-axis stretching are analyzed and the technology for manufacturing such achromatic and super-achromatic, one-axis-stretched PMMA waveplates is described. This technology excludes any mechanical processing of waveplate component surfaces. Technical characteristics of achromatic and super-achromatic waveplates manufactured of PMMA including results of laser-induced damage threshold (LIDT) measurements are discussed below.

  11. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  12. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  13. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-01

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient. PMID:27607654

  14. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy.

    PubMed

    Singh, Vivek K; Singh, Vinita; Rai, Awadhesh K; Thakur, Surya N; Rai, Pradeep K; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  15. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  16. Laser induced breakdown spectroscopy for the discrimination of Candida strains.

    PubMed

    Manzoor, S; Ugena, L; Tornero-Lopéz, J; Martín, H; Molina, M; Camacho, J J; Cáceres, J O

    2016-08-01

    The present study reports the evaluation of Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) for the discrimination of different strains of various species of Candida. This genus of yeast was selected due to its medical relevance as it is commonly found in cases of fungal infection in humans. Twenty one strains belonging to seven species of Candida were included in the study. Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) was employed as a complementary technique to provide information about elemental composition of Candida cells. The use of LIBS spectra in combination with optimized NN models provided reliable discrimination among the distinct Candida strains with a high spectral correlation index for the samples analyzed, without any false positive or false negative. Therefore, this study indicates that LIBS-NN based methodology has the potential to be used as fast fungal identification or even diagnostic method.

  17. Elemental analysis of urinary calculi by laser induced plasma spectroscopy.

    PubMed

    Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed

    2005-12-01

    Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.

  18. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

    SciTech Connect

    Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  19. Pulsed UV laser induced desorption of ions from aluminum

    NASA Astrophysics Data System (ADS)

    Taylor, David Paul; Helvajian, Henry

    2000-04-01

    A study of pulsed UV laser induced desorption (LID) has been performed on an Al(111) sample. The positive ion desorption was investigated at low laser fluence, in a regime in which the ion yield exhibits a highly non-linear dependence on the laser fluence. The peak of the kinetic energy distribution of the desorbed ions has been measured to be about 15 eV. This result is consistent with the conjecture that the ion departing the metal surface can acquire a kinetic energy kick from a process associated with plasmon annihilation. The Al + ion kinetic energy peak is asymmetric and about 3 eV full-width at half-maximum (FWHM). This experiment indicates that plasmon excitation can play a significant role in laser stimulated desorption induced by electronic transitions (DIET).

  20. OH Planar Laser-Induced Fluorescence from Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Wegge, Jason; Kang, Kyung-Tae

    1997-01-01

    Droplet combustion under microgravity conditions has been extensively studied, but laser diagnostics have just begun to be employed in microgravity droplet experiments. This is due in part to the level of difficulty associated with laser system size, power and economic availability. Hydroxyl radical (OH) is an important product of combustion, and laser-induced fluorescence (LIF) has proved to be an adequate and sensitive tool to measure OH. In this study, a frequency doubled Nd:YAG laser and a doubled dye laser, compact and reliable enough to perform OH PLIF experiments aboard a parabolic flight-path aircraft, has been developed and successfully demonstrated in a methanol droplet flame experiment. Application to microgravity conditions is planned aboard parabolic flight-path aircraft.

  1. Radioactive contamination screening with laser-induced fluorescence

    SciTech Connect

    Sheely, R.; Di Benedetto, J.

    1994-06-01

    The ability to induce, detect and discriminate fluorescence of uranium oxides makes available new capabilities for screening the surface of large complex facilities for uranium. This paper will present the results of field tests evaluate laser-induced fluorescence (LIF) as a contamination screening tool and report on the progress to produce a field portable instrument for uranium surveys on exposed surfaces. The principal effect is to illuminate the surface of an object or an area with a remotely-located light source, and to evaluate the re-radiated emission energy. A gated intensified CCD camera was used with ultraviolet (UV) laser excitation to discriminate the phosphorescent (persistent) green uranium emission from the prompt background fluorescence which results from excitation of plants, concrete, soils, and other background materials.

  2. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  3. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  4. Discriminating crude oil grades using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Hussein, A.; Marzouk, A.; Harith, M. A.

    2015-11-01

    The analysis of crude oil using laser-based analytical techniques such as laser-induced breakdown spectroscopy (LIBS) has become of great interest to various specialists in different fields such as geology, petro-chemistry and environmental science. In this work, a detailed study is presented wherein the implementation of an efficient and simple LIBS technique to identify the elemental constituents of crude oil and to distinguish between different grades of petroleum crude oil is discussed. Laser-induced plasma (LIP) technique has been used in this work for direct measurements of atomic, ionic and molecular species in dry crude oil samples with API gravities ranging between 18 and 36. The technique was implemented using the first harmonic of a pulsed Nd-YAG laser source. Atomic and molecular emission bands were observed, consisting of characteristic spectral lines of atoms and diatomic molecular bands, namely from C, H, Si, Na, Ca, Mg, AL, Fe, Ti, Mo, C2 and CN. The intensities of high-resolution spectral lines for some atoms and molecules of elements such as Ca, Na, Fe, Mo, C2 and CN were evaluated at different wavelengths along the obtained spectra. The molecular bands and the elemental spectral lines were used to assess the possibility of adopting the LIBS technique in differentiating between crude oil samples with different American Petroleum Institute (API) gravity values. The results indicate the presence of a distinct correlation between the API gravity values of the various oil samples and the spectral line intensities of the elements and some molecular radical constituents. In addition, the possibility of identifying the API gravity values of unknown oil samples is also indicated.

  5. Laser-induced fluorescence of the CH2CFO radical

    NASA Astrophysics Data System (ADS)

    Furubayashi, Masashi; Bridier, Isabelle; Inomata, Satoshi; Washida, Nobuaki; Yamashita, Koichi

    1997-04-01

    A new laser-induced fluorescence spectrum has been observed in the region of 307-335 nm. Since this spectrum is observed when reacting oxygen atoms with CH2CHF, or CH2CF2, or CH2CFCl and also by photolysis of CH3CFO, the fluorescing molecule is the CH2CFO (fluoroformyl methyl) radical. From an analysis of the laser-induced single vibronic level fluorescence, some of the vibrational frequencies can be assigned for the ground electronic state ν3=1724 cm-1 (C-O stretch), ν5=1211 cm-1 (C-F stretch), ν6=906 cm-1 (CH2 rock), ν7=847 cm-1 (C-C stretch), ν8=584 cm-1 (FCO bend), and ν9=416 cm-1 (CCO bend), for the excited state ν3=1790, ν5=1253, ν6=911, ν7=874, ν8=537, and ν9=421 cm-1. Ab initio calculations on the CH2CFO radical give a planar geometry with vibrational frequencies that are consistent with the observed fundamental frequencies. The vibrational frequencies show that the structure of the ground state is closer to fluoroformyl methyl (ṡCH2CFO) rather than a vinoxy-type (CH2=CFOṡ) radical. The collision-free radiative lifetimes of the excited state are 49-81 ns depending on excitation energy and vibrational modes. Strong predissociation is observed above v=1, especially in the ν3' mode.

  6. Laser-induced fluorescence of the CD2CFO radical

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Furubayashi, Masashi; Imamura, Takashi; Washida, Nobuaki; Yamaguchi, Makoto

    1999-10-01

    The laser-induced fluorescence spectrum of the B˜ 2A″→X˜2A″ transition of the CD2CFO radical has been observed in the region 316-335 nm. The radical was produced by 193 nm photolysis or by fluorine atom reaction with acetyl-d3 fluoride. The spectrum of CD2CFO was similar to that of CH2CFO reported previously except for small isotope shifts in the range 7-343 cm-1. The isotope shifts support the assignment of these spectra to fluorinated vinoxy radicals, and rule out the alternate assignment to FCO proposed by others. The X˜→B˜ electronic transition energy (T0) for CD2CFO was measured to be 29 867 cm-1, which is only 7 cm-1 lower than that for CH2CFO. From an analysis of the laser-induced single vibronic level fluorescence, some of the vibrational frequencies can be assigned for the ground electronic state; ν3(CO str.)=1735; ν4(CD2 sciss.)=1043; ν5 (CF str.)=1248; ν6(CD2 rock.)=774; ν7(CC str.)=863; ν8(CCF bend)=597; and ν9(CCO bend)=370 cm-1. For the B˜ 2A″ state, ν3=1772; ν4=1073; ν5=1241; ν6=783; ν7=827; ν8=530; and ν9=370 cm-1. These assignments are supported by ab initio calculations. Among these fundamental frequencies, the ν4 and ν6 modes showed the largest isotope shifts, although isotope effects were observed in all the above vibrational fundamentals. The radiative lifetimes of the excited CD2CFO and the quantum yield of formation of the CH2CFO radical from photolysis of CH3CFO at 193 nm are also reported.

  7. Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics

    SciTech Connect

    Carr, C W

    2003-09-23

    The mechanisms by which transparent dielectrics damage when exposed to high power laser radiation has been of scientific and technological interest since the invention of the laser. In this work, a set of three experiments are presented which provide insight into the damage initiation mechanisms and the processes involved in laser-induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of order K{sub b}T, are observed in the damage threshold at photon energies associated with the number of photons (3{yields}2 or 4{yields}3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multi-photon process in which the order is reduced through excited defect state absorption. In-situ fluorescence microscopy, in conjunction with theoretical calculations by Liu et al., has been used to establish that hydrogen displacement defects are potentially responsible for the reduction in the multi-photon cross-section. During the damage process, the material absorbs energy from the laser pulse and produces an ionized region that gives rise to broadband emission. By performing a time-resolved investigation of this emission, we demonstrate both that it is blackbody in nature, and we provide the first direct measurement of the localized temperature during and following laser damage initiation for various optical materials. For excitation using nanosecond laser pulses, the plasma, when confined in the bulk, is in thermal equilibrium with the lattice. These results allow for a detailed characterization of temperature, pressure, and electron densities occurring during laser-induced damage.

  8. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  9. Laser ablation laser induced fluorescence for sensitive detection of heavy metals in water

    NASA Astrophysics Data System (ADS)

    Godwal, Yogesh

    Laser Induced Breakdown Spectroscopy LIBS is a fast non-contact technique for the analysis of the elemental composition using spectral information of the emission from a laser-induced plasma. For the LIBS studies in this thesis the focus has been in using very low energy, microjoule pulses in order to give high spatial resolution and minimize the laser system requirements. This is a regime that we refer to as microLIBS. Under such conditions it is important to maximize the signal detected to give the lowest limit of detection LOD possible. One technique to improve the signal to noise ratios is by coupling LIBS with Laser Induced Fluorescence. This is a technique where the first pulse creates a vapor plume and the second pulse tuned to a resonant absorption line of the species of interest re-excites the plume. We term this technique as Laser ablation Laser Induced Fluorescence LA-LIF. We have been investigating the performance of LA-LIF at low pulse energies (≤ 1 mJ for both pulses) for the detection of elemental contaminants in water. This technique allows reasonable performance compared to high energy single-pulse LIBS, but at a much reduced total energy expenditure. This allows LODs in the parts per billion range ppb range which typically cannot be obtained with low energy single pulse probing of the systems. This approach or exceeds the sensitivities which can be obtained with many shots using much larger energy systems. In this thesis we investigated the performance of LIBS at low pulse energies for the detection of Pb as a contaminant in water. An LOD of 70 ppb was obtained for an accumulation of 100 shots with the ablation laser pulse energy of 250 muJ and an excitation laser pulse energy of 8 muJ. A systematic study of the detector conditions was made for the system for the detection of Pb. Scaling laws for the LOD in terms of the pump and probe energies were measured and also the effect of detector gain, the gate delay and the gate width were studied. In

  10. Color separation gratings

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Knowlden, Robert E.

    1993-01-01

    In this paper, we describe the theory, fabrication and test of a binary optics 'echelon'. The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffraction order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

  11. Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cau, M.; Dorval, N.; Attal-Trétout, B.; Cochon, J.-L.; Foutel-Richard, A.; Loiseau, A.; Krüger, V.; Tsurikov, M.; Scott, C. D.

    2010-04-01

    Gas-phase production of carbon nanotubes in presence of a metal catalyst with a continuous wave CO2 laser is investigated by combining coherent anti-Stokes Raman scattering (CARS), laser-induced fluorescence (LIF), and laser-induced incandescence (LII). These in situ techniques provide a unique investigation of the different transformation processes of the primarily carbon and metal vapors issued from the vaporization of the target by the laser and the temperature at which these processes occur. Continuous-wave laser provides with stable continuous vaporization conditions very well suited for such in situ investigations. Temperature profiles inside the reactor are known from CARS measurements and flow calculations. Carbon soot, density, and size of carbon aggregates are determined by LII measurements. LIF measurements are used to study the gas phases, namely, C2 and C3 radicals which are the very first steps of carbon recombination, and metal catalysts gas phase. Spectral investigations allow us to discriminate the signal from each species by selecting the correct pair of excitation/detection wavelengths. Spatial distributions of the different species are measured as a function of target composition and temperature. The comparison of LIF and LII signals allow us to correlate the spatial evolution of gas and soot in the scope of the different steps of the nanotube growth already proposed in the literature and to identify the impact of the chemical nature of the catalyst on carbon condensation and nanotube nucleation. Our study presents the first direct evidence of the nanotube onset and that the nucleation proceeds from a dissolution-segregation process from metal particles as assumed in the well-known vapor-liquid-solid model. Comparison of different catalysts reveals that this process is strongly favored when Ni is present.

  12. Laser driven grating linac

    SciTech Connect

    Palmer, R B

    1980-01-01

    The fields induced over a grating exposed to plane parallel light are explored. It is shown that acceleration is possible if either the particles travel skew to the grating lines, or if the radiation is falling at a skew angle onto the grating. A general theory of diffraction in this skew case is given. In one particular case numerical solutions are worked out for some deep grating. It is found that accelerating fields larger even than the initial fields can be obtained, the limit being set by resistive losses on the grating surface. Simple calculations are made to see what accelerating fields might be obtained using CO/sub 2/ lasers. Accelerations of 2 or 20 GeV per meter seem possible depending on whether the grating is allowed to be destroyed or not. Power requirements, injection and focussing are briefly discussed and no obvious difficulties are seen. It is concluded, therefore, that the proposed mechanism should be considered as a good candidate for the next generation of particle accelerators.

  13. Grate for coal stove

    SciTech Connect

    Harman, D.P.

    1989-02-14

    A stove grate for guiding fuel in two flows is described. The grate includes a stationary floor extending between opposed ends of the grate; spaced sidewalls extending along the sides of the floor between the ends of the grate. The floor includes an entrance section at one end of the gate, a fire support section at the other end of the grate above the entrance section and rise section means extending upwardly between the entrance section and the fire support section for guiding a lower fuel flow upwardly along the floor to the fire support section. It also guides an upper fuel flow located above the first flow up to fill a fuel reservoir located above the floor at the entrance section and at the lower part of the rise section means without overflowing the sidewalls. A plurality of combustion air openings in the floor of the grate extend along the upper part of the rise section means and along the fire support section, the entrance section and the lower part of the rise section being free of combustion air openings.

  14. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples

    NASA Astrophysics Data System (ADS)

    De Giacomo, A.; Dell'Aglio, M.; Bruno, D.; Gaudiuso, R.; De Pascale, O.

    2008-07-01

    In this paper, single pulse (SP)- and double pulse (DP)- Laser Induced Breakdown Spectroscopy (LIBS) on metallic titanium, aluminum-based alloy and copper-based alloy have been studied by spectrally resolved imaging to find out the fundamental difference in terms of fluid-dynamic and chemical aspects. To better clarify the different nature of SP- and DP-Laser Induced Plasma (LIP) a qualitative theoretical model including both fluid-dynamics and chemical processes has been applied for the interpretation of the experimental results. Moreover, an attempt to quantify the mechanisms inducing the DP-LIBS enhancement has been made. By the analysis of spectrally resolved imaging data, the temporal and spatial maps of the emission signal and of the corresponding DP-LIBS enhancement have been built in order to improve the analytical information conveyed. Finally, it has been pointed out the important effect of the different environment where SP- and DP-LIPs expand, as well as its relevance to the understanding of the basic questions underlying the comparison between SP- and DP-LIBS.

  15. Rat embryonic hippocampus and induced pluripotent stem cell derived cultured neurons recover from laser-induced subaxotomy

    PubMed Central

    Selfridge, Aaron; Chiang, Chai-Chun; Reyna, Sol M.; Weissmiller, April M.; Shi, Linda Z.; Preece, Daryl; Mobley, William C.; Berns, Michael W.

    2015-01-01

    Abstract. Axonal injury and stress have long been thought to play a pathogenic role in a variety of neurodegenerative diseases. However, a model for studying single-cell axonal injury in mammalian cells and the processes of repair has not been established. The purpose of this study was to examine the response of neuronal growth cones to laser-induced axonal damage in cultures of embryonic rat hippocampal neurons and induced pluripotent stem cell (iPSC) derived human neurons. A 532-nm pulsed Nd:YVO4 picosecond laser was focused to a diffraction limited spot at a precise location on an axon using a laser energy/power that did not rupture the cell membrane (subaxotomy). Subsequent time series images were taken to follow axonal recovery and growth cone dynamics. After laser subaxotomy, axons thinned at the damage site and initiated a dynamic cytoskeletal remodeling process to restore axonal thickness. The growth cone was observed to play a role in the repair process in both hippocampal and iPSC-derived neurons. Immunofluorescence staining confirmed structural tubulin damage and revealed initial phases of actin-based cytoskeletal remodeling at the damage site. The results of this study indicate that there is a repeatable and cross-species repair response of axons and growth cones after laser-induced damage. PMID:26157985

  16. Gold coated nano gratings for atom optics

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Perreault, John; Kornilov, Oleg; Cronin, Alex

    2007-06-01

    The Van der Waals (VdW) interaction between neutral atoms is important to the dynamics of mechanical systems on nanometer scales. We used diffraction of sodium atoms from nano gratings to measure the Van der Waals potentials for atoms and different surfaces with improved precision. Atoms passing through the grating acquire an additional phase shift due to the attractive potential between the atoms and the grating bars, causing the diffraction pattern to be modified [1]. Previous measurements reported the VdW coefficient for sodium atoms and a silicon-nitride(SiNx) surface [2]. In our experiment we used a SiNx grating coated with a 2 nm layer of gold and we were able to measure a 40% increase in the VdW coefficient due to the gold. We also improved precision by combing results from the sodium diffraction experiment with results from a diffraction experiment with helium atoms on the same gratings. [1] R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Kohler. Phys. Rev. Lett., 83(9):1755, 1999. [2] J. D. Perreault, A. D. Cronin, and T. A. Savas. Phys. Rev. A, 71(5):053612, 2005.

  17. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  18. In Vitro Effect of Laser-Induced Hydrodynamics on Cancer Cells.

    PubMed

    Elagin, V V; Pavlikov, A I; Yusupov, V I; Shirmanova, M V; Zagaynova, E V; Bagratashvili, V N

    2015-11-01

    We studied the effect of laser-induced hydrodynamic on viability of Colo-26 murine colon carcinoma cells in vitro. Laser-induced hydrodynamics was generated by a laser (λ=1.56 μ, power 3 W, 5 min exposure); to this end, the fiber end was submersed into a buffer above the cell monolayer. It was found that laser-induced hydrodynamics destructed the monolayer at standoff distances of between the working end of the laser fiber to cell monolayer of 1 and 5 mm and triggers apoptotic and necrotic death in remaining cells at a distance of 4 mm from the emitter.

  19. Laser-induced-fluorescence studies of fragment ions: CH/sup +/ and CD/sup +/

    SciTech Connect

    O'Keefe, A.

    1981-08-01

    The dynamics of ion-molecule interactions within a mass selective rf quadrupole ion trap are studied for several ion-molecule systems. Laser induced fluorescence is used as a probe of the internal energy distributions of molecular ions under collision free conditions and under controlled collision conditions. The effects of collisions at near thermal energies (0.3 to 0.5 eV) are easily understood in terms of processes such as charge transfer and other energy transfer mechanisms. The A/sup 1/PI - X/sup 1/..sigma../sup +/ system of CH/sup +/ and CD/sup +/ has been examined under collision free conditions. The ions were produced from methane through electron impact ionization/dissociation. The observed energy distributions reflect the dynamical partitioning of dissociation exothermicity, excepting short lived electronic states. Many new transitions belonging to this electronic system have been observed and a reliable vibrational frequency for the X/sup 1/..sigma../sup +/ state has been obtained. The radiative lifetimes of CH/sup +/ and CD/sup +/ A/sup 1/PI(v = 0) states have been measured and a revised oscillator strength for the A-X transition has been derived from this data.

  20. Semiconductor laser asymmetry cutting glass with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyang; Zhang, Hongzhi; Wang, Yang

    2014-12-01

    Laser induced thermal-crack propagation (LITP) makes the material to produce an uneven temperature field, maximum temperature can't soften or melt the material, induces the thermal stress, then the crack separates along the cutting path. One of the problems in laser asymmetry cutting glass with LITP is the cutting deviation along scanning trajectory. This study lays great emphasis on considering the dynamic extension of crack to explain the reason of the cutting deviation in laser asymmetry cutting glass, includes asymmetric linear cutting and a quarter of a circular curve cutting. This paper indicates the experiments of semiconductor laser asymmetry cutting glass with LITP. Optical microscope photographs of the glass sheet are obtained to examine the cutting deviation. The extended finite element method (XFEM) is used to simulate the dynamic propagation of crack; the crack path does not have to be specified a priori. The cutting deviation mechanism and the crack propagation process are studied by the stress fields using finite element software ABAQUS. This work provides a theoretical basis to investigate the cutting deviation in laser asymmetry cutting glass. In semiconductor laser asymmetry cutting glass, the tensile stress is the basis of crack propagation, then the compressive stress not only makes the crack to extend stably, but also controls the direction of crack propagation.

  1. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.

    PubMed

    Saini, V K

    2013-06-20

    Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s5→2p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

  2. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

    2015-12-01

    Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

  3. Characterization of nano-composite oxide ceramics and monitoring of oxide thin film growth by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Heitz, J.; Stehrer, T.; Praher, B.; Viskup, R.; Siraj, K.; Moser, A.; Vlad, A.; Bodea, M. A.; Bäuerle, D.; Babu, N. Hari; Cardwell, D. A.

    2008-10-01

    Multi-component oxide ceramics and epitaxial oxide thin films are analyzed by laser-induced breakdown spectroscopy (LIBS). Furthermore, pulsed-laser deposition (PLD) of thin films is investigated by long-term monitoring of the optical plasma emission. Both nano-composite high-temperature superconductors (HTS) consisting of YBa 2Cu 3O 7 - δ bulk and Y 2Ba 4MCuO x (M-2411, M = Ag, Nb) nano-particles, and semiconducting ZnO doped with Aluminum and Lithium are ablated by nano-second laser pulses. The plasma emission is recorded using grating spectrometers with intensified gated detectors. The LIBS signals of nano-particles correlate with the nominal content of the M-2411 phase (0-15 mol%) and reveal a strong signal of Ytterbium impurity (3-35 ppm). In situ monitoring of the PLD process shows element signals that are stable for more than 10,000 laser pulses for both HTS and ZnO ceramics. The relative concentration of elements in thin films and ceramics as determined by LIBS is almost the same.

  4. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  5. Neuronal growth cones respond to laser-induced axonal damage

    PubMed Central

    Wu, Tao; Mohanty, Samarendra; Gomez-Godinez, Veronica; Shi, Linda Z.; Liaw, Lih-Huei; Miotke, Jill; Meyer, Ronald L.; Berns, Michael W.

    2012-01-01

    Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness (‘thinning’) within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model. PMID:21831892

  6. Laser-induced incandescence measurements of particles in aeroengine exhausts

    NASA Astrophysics Data System (ADS)

    Black, John D.

    1999-09-01

    Laser Induced Incandescence (LII) has been demonstrated as a non-intrusive technique for measurement of particle concentration in the exhausts of aero-engines on sea level test beds as part of a European Union collaborative program (AEROJET) aimed at replacing gas sampling rakes behind development engines with non-intrusive instrumentation. Currently emissions of CO, NOx, unburned hydrocarbon, and smoke from aero-engines must be shown to be less than internationally specified limits. Measurements are made on development engines on sea level test beds by applying a number of standard analytical methods to extracted exhaust gas samples. The hardware required for exhaust gas sampling is heavy and complex and is expensive to build and install. As a result, only the minimum number of emissions tests are conducted during an engine development program, and emissions data is only available to combustion engineers late in the program. Hence, there is a need for more versatile and less costly non-intrusive measurement techniques. Molecular species can be measured using Fourier Transform Infrared (FTIR) spectroscopy, while LII is a promising smoke measuring technique. The development of an LII system specifically designed for exhaust applications is described.

  7. [The Progress in Remote Laser-Induced Breakdown Spectroscopy].

    PubMed

    Zhang, Ting-ting; Wan, Xiong; Shu, Rong; Liu, Peng-xi

    2015-07-01

    As a kind of spectroscopic technique, the remote laser-induced breakdown spectroscopy (Remote LIBS) can measure elemental compositions of remote targets by using high-power lasers and focusing approaches. In this paper, three remote detection approaches (open path LIBS, fiber optic LIBS and compact probe fiber optic LIBS) and their system architectures are summarized and analyzed. Conventional open path LIBS, with high requirement of specifications of lasers, optical systems, spectrographs and detectors, has always been a research focus in remote testing field. Fiber optic LIBS has the advantages of simplification of optical focusing system and high collection efficiency of the plasma light. This paper reviews the progress in new techniques of LIBS, for instance Filament-LIBS techniques and LIBS combines with other spectral detection techniques, and emphatically analyzes their characteristics and advantages. These new techniques have greatly broadened the detection range of LIBS, enhanced material recognition ability of LIBS, and made a great contribution to expanding applications of remote LIBS. Latest development of applications of remote LIBS in fields of deep space exploration, hazardous material detection, pollution testing, metallurgical industries and heritage restoration is introduced in detail. With the development of laser techniques, spectral detection and calibration techniques, the detection range of remote LIBS has been expended, their application fields has been extended, and the detection precision and accuracy have been improved. PMID:26717768

  8. Laser-induced incandescence applied to dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovačević, E.; Berndt, J.

    2016-07-01

    This paper reports on the laser heating of nanoparticles (diameters ≤slant 1 μm) confined in a reactive plasma by short (150 ps) and intense (˜ 63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the emission spectrum of the heated nanoparticles. The nanoparticles are not ideal black bodies, which is taken into account by calculating their emissivity using a light-scattering theory relevant to our conditions (Mie theory). Three sets of refractive index data from the literature serve as model input. The obtained radii range between 100 and 165 nm, depending on the choice of refractive index data set. By fitting the temperature decay of the particles to a heat exchange model, the product of their mass density and specific heat is determined as (1.3+/- 0.5) J K-1 cm-3, which is considerably smaller than the value for bulk graphite at the temperature our particles attain (3000 K): 4.8 J K-1 cm-3. The particle sizes obtained in situ with LII are compared with ex situ scanning electron microscopy analysis of collected particles. Quantitative assessment of the LII measurements is hampered by transport of particles in the plasma volume and the fact that LII probes locally, whereas the samples with collected particles have a more global character.

  9. Construction of a Laser Induced Breakdown Spectroscopy Setup

    NASA Astrophysics Data System (ADS)

    Mays, Joseph; Palmer, Andria; Amos, James; Dynka, Tom; Ujj, Lazlo

    Laser Induced Breakdown Spectroscopy (LIBS) is a practical spectroscopy to determine the chemical and atomic composition of materials. The third harmonic output of a Nd:YAG Q-switched laser generating 5ns pulses with 10Hz repetition rate was used to ablate the sample and create a micro-plasma. The emission of the radiating plasma was focused into an optical fiber with 0.22 numerical aperture. The spectra was measured with an Ocean Optics micro spectrometer. A synchronized shutter was used to select single laser pulses. In order to reach the breakdown threshold of the sample using the available energy of the laser pulses (<5 mJ) a beam expander and a parabolic mirror was used for tight focusing. The optical and technical details including the characterization of the system will be presented. LIBS spectra taken from a variety of metal and organic samples show appropriate selectivity for quantitative and qualitative analysis for materials. UWF NIH MARC U-STAR 1T34GM110517-01, UWF Office of Undergraduate Research.

  10. The motional stark effect with laser-induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  11. Analysis of human nails by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  12. Development and applications of laser-induced incandescence

    NASA Technical Reports Server (NTRS)

    Vanderwal, Randy L.; Dietrich, Daniel L.; Zhou, Zhiquang; Choi, Mun Y.

    1995-01-01

    Several NASA-funded investigations focus on soot processes and radiative influences of soot in diffusion flames given their simplicity, practical significance, and potential for theoretical modeling. Among the physical parameters characterizing soot, soot volume fraction, f(sub v), a function of particle size and number density, is often of chief practical interest in these investigations, as this is the geometrical property that directly impacts radiative characteristics and the temperature field of the flame and is basic to understanding soot growth and oxidation processes. Diffusion flames, however, present a number of challenges to the determination of f(sub v) via traditional extinction measurements. Laser-induced incandescence (LII) possesses several advantages compared to line-of-sight extinction techniques for determination of f(sub v). Since LII is not a line-of-sight technique, similar to fluorescence, it possesses geometric versatility allowing spatially resolved measurements of f(sub v) in real time in nonaxisymmetric systems without using deconvolution techniques. The spatial resolution of LII is determined by the detector and imaging magnification used. Neither absorption by polycyclic aromatic hydrocarbons (PAH's) nor scattering contributes to the signal. Temporal capabilities are limited only by the laser pulse and camera gate duration, with measurements having been demonstrated with 10 ns resolution. Because of these advantages, LII should be applicable to a variety of combustion processes involving both homogeneous and heterogeneous phases. Our work has focussed on characterization of the technique as well as exploration of its capabilities and is briefly described.

  13. Resonance fluorescence spectroscopy in laser-induced cavitation bubbles.

    PubMed

    Koch, Sandra; Garen, Walter; Neu, Walter; Reuter, Rainer

    2006-05-01

    Laser-induced breakdown spectroscopy (LIBS) in liquids using a double-pulse Q-switched Nd:YAG laser system has provided reliable results that give trace detection limits in water. Resonant laser excitation has been added to enhance detection sensitivity. A primary laser pulse (at 532 nm), transmitted via an optical fiber, induces a cavitation bubble and shockwave at a target immersed in a 10 mg l(-1)-100 mg l(-1) indium (In) water suspension. The low-pressure rear of the shockwave induces bubble expansion and a resulting reduction in cavity pressure as it extends away from the target. Shortly before the maximum diameter is expected, a secondary laser pulse (also at 532 nm) is fed into the bubble in order to reduce quenching processes. The plasma field generated is then resonantly excited by a fiber-guided dye laser beam to increase detection selectivity. The resulting resonance fluorescence emission is optically detected and processed by an intensified optical multichannel analyzer system.

  14. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    PubMed

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error < 4 for a short period of time, ∆t < 10 s, until the data corruption subsides. In its present form, the KF-MRTI method currently fails to compensate for consecutive for consecutive time periods of data loss ∆t > 10 sec.

  15. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  16. Enhancing the analytical performance of laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Chinni, R.C.; Pichahchy, A.E.; Thornquist, H.K.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this work is to enhance the analytical capabilities of laser-induced breakdown spectroscopy (LIBS). LIBS is a method of elemental analysis in which powerful laser pulses are focused on a sample to form a microplasma. LIBS is perhaps the most versatile elemental analysis method, applicable to a variety of different real-world analysis problems. Therefore, it is important to enhance the capabilities of the method as much as possible. Accomplishments include: (1) demonstration of signal enhancements of 5--30 times from soils and metals using a double pulse method; (2) development of a model of the observed enhancement obtained using double pulses; (3) demonstration that the analytical performance achievable using low laser-pulse energies (10 and 25 mJ) can match that achievable using an energy of 100 mJ; and (4) demonstration that time-gated detection is not necessary with LIBS.

  17. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  18. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    PubMed Central

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2013-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L2 (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error < 4 for a short period of time, Δt < 10sec, until the data corruption subsides. In its present form, the KF-MRTI method currently fails to compensate for consecutive for consecutive time periods of data loss Δt > 10sec. PMID:22203706

  19. Laser-induced coloration of magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Aleksandrovsky, A. L.; Naumova, I. I.

    1992-12-01

    The nonlinear absorption in LiNbO3:Mg crystals exposed to pulsed green laser radiation was studied. A brown track in LiNbO3:Mg was observed at room temperature. A dose of green light about 2 J/cm2 was necessary to reach the maximum coloration, the corresponding absorption being proportional to the square of optical power density. This absorption adds to the two-photon absorption thus increasing the total nonlinear absorption approximately by a factor of eight. The coloration can be bleached by heating (the relaxation time constant being less than a second at 100 degree(s)C) and by exposure to the visible light with small peak power density. The nonlinear absorption limits the efficiency of second harmonic generation (SHG) at room temperature. A 40 to 50% efficiency rise accompanying the temperature increase was caused by the decay of coloration. The two-photon pumping of electron traps is a plausible trigger mechanism for laser-induced coloration.

  20. Laser-induced thermoelastic effects can evoke tactile sensations

    PubMed Central

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  1. Oxide nanoparticles synthesis via laser-induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Goto, Taku; Weihs, Hansel; Honda, Mitsuhiro; Kulinich, Sergei; Shimizu, Yoshiki; Ito, Tsuyohito

    2014-10-01

    Laser ablation in fluids has recently attracted a lot of attention as one of synthetic techniques to prepare new attractive nanomaterials, with the ability to control both product chemistry and morphology in many systems. In this study, we generated laser-induced plasma in H2O - ethanol mixtures, while ablating metal targets to produce oxide nanoparticles and to study the effect of the medium on their properties. The ablated targets used in this study were Zn or Sn plates. A nanosecond Nd:YAG laser with the wavelength of 532 nm (10 Hz, 20--30 mJ/pulse) was applied to irradiate the targets. The liquid media were maintained at 0.1 to 30 MPa to study the effect of pressure. We found that the H2O/ethanol ratio (at atmospheric pressure) can control the properties of the produced ZnO nanoparticles, such as defects and oxidation degree. The properties were examined by photoluminescence (PL) spectroscopy, X-ray diffraction, electron microscopies, and so on. More details will be presented at the symposium.

  2. Laser-induced backside wet cleaning technique for glass substrates

    NASA Astrophysics Data System (ADS)

    Weng, Tsu-Shien; Tsai, Chwan-Huei

    2014-08-01

    The aim of this paper is to study the laser-induced backside wet cleaning techniques for glass substrates. Two kinds of laser cleaning techniques are proposed in this study. The first involves applying an Nd:YAG laser to the backside of the substrate which is submerged in water. A metal plate is placed below the glass substrate. Most of the laser energy will be absorbed by the metal plate. The metal then vaporizes the water and generates a turbulent bubble flow. The bubble flow removes the alumina particles from the surface of the glass substrate. The second involves using a CO2 laser to generate turbulent bubble flow to remove the particles. Both methods were successfully demonstrated for the removal of submicron particles of 0.5 μm in size. The phenomena of bubble generation and diffusion are presented in the paper. Because the laser is applied to the backside of the substrate, the damage due to the laser heat can be significantly reduced. The quality and efficient of the backside processing is better than those of the front side processing. The proposed techniques have great potential to provide an improved solution for glass cleaning.

  3. Laser-Induced Incandescence Measurements in Low Gravity

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.

    1997-01-01

    A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.

  4. Measuring turbulent fluid dispersion using laser induced phosphorescence

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis; Dam, Nico; van de Water, Willem; Kunnen, Rudie; Clercx, Herman; van Heijst, Gertjan

    2015-11-01

    Fluid dispersion due to turbulence is an important subject in both natural and engineering processes, from cloud formation to turbulent mixing and liquid spray combustion. The combination of small scales and often high velocities results in few experimental techniques that can follow the course of events. We introduce a novel technique, which measures the dispersion of ``tagged'' fluid particles by means of laser-induced phosphorescence, using a solution containing a europium-based molecular complex with a relatively long phosphorescence half-life. This technique is used to measure transport processes in both the dispersion of droplets in homogeneous isotropic turbulence and the dispersion of fluid of near-nozzle spray breakup processes. By tagging a small amount of droplets/fluid via laser excitation, the tagged droplets can be tracked in a Lagrangian way. The absolute dispersion of the droplets can be measured in a variety of turbulent flows. Using this technique it is shows that droplets around St =τp /τη ~ 1 (Stokes number) disperse faster than true fluid tracers in homogeneous isotropic turbulence, as well as differences between longitudinal and radial dispersion in turbulent sprays. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).

  5. Chemical consequences of laser-induced breakdown in molecular gases

    NASA Astrophysics Data System (ADS)

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    This article gives an account of chemical reactions initiated by laser-induced dielectric breakdown (LIDB) in homogeneous molecular gases. The systematic part of the article describes the laser-plasma-chemical behavior of simple inorganic gases and their mixtures, metal carbonyls and organometallics, and organic molecular gases. Research on LIDB-initiated chemical reactions producing well-defined fine solid particles has been triggered again recently by the advent of nanotechnologies. Laser ignition of fuel mixtures is also a well researched branch of laser-plasma chemistry because of strong commercial and military interests. However, the strongest current impulses for studying laser-spark chemistry come from planetary sciences, where laser sparks have been used as a laboratory model of high-energy-density phenomena (e.g., impact of extraterrestrial bodies, lightning) in planetary atmospheres. A single pulse from a high-power laser system was used to develop an improved method for investigating this phenomenon. The particular processes responsible for the chemical action of a laser spark are identified and described in detail by the end of the article.

  6. Evaluation of immunoglobulins in bovine colostrum using laser induced fluorescence.

    PubMed

    Abdel-Salam, Z; Abdel Ghany, Sh; Harith, M A

    2014-11-01

    The objective of the present study was to exploit laser induced fluorescence (LIF) as a spectrochemical analytical technique for evaluation of immunoglobulin (IgG) in bovine colostrum. Colostrum samples were collected from different American Holstein cows at different times after calving. Four samples were gathered from each cow; the first three samples were obtained from the first three milkings (colostrum) and the fourth sample (milk) was obtained a week after calving. It has been demonstrated that LIF can be used as a simple, fast, sensitive and less costly spectrochemical analytical technique for qualitative estimation of IgG in colostrum. LIF results have been confirmed via the quantitative evaluation of IgG in the same samples adopting the single radial immunodiffusion conventional technique and a very good agreement has been obtained. Through LIF it was possible to evaluate bovine colostrum after different milking times and to differentiate qualitatively between colostrum from different animals which may reflect their general health status. A fluorescence linear calibration curve for IgG concentrations from 0 up to 120 g L(-1) has been obtained. In addition, it is feasible to adopt this technique for in situ measurements, i.e. in dairy cattle farms as a simple and fast method for evaluation of IgG in bovine colostrum instead of using lengthy and complicated conventional techniques in laboratories. PMID:25127559

  7. Analysis of bakery products by laser-induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique.

  8. Hyperspectral laser-induced autofluorescence imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  9. Optofluidic tunable lenses using laser-induced thermal gradient.

    PubMed

    Chen, Qingming; Jian, Aoqun; Li, Zhaohui; Zhang, Xuming

    2016-01-01

    This paper reports a new design of optofluidic tunable lens using a laser-induced thermal gradient. It makes use of two straight chromium strips at the bottom of the microfluidic chamber to absorb the continuous pump laser to heat up the moving benzyl alcohol solution, creating a 2D refractive index gradient in the entrance part between the two hot strips. This design can be regarded as a cascade of a series of refractive lenses, and is distinctively different from the reported liquid lenses that mimic the refractive lens design and the 1D gradient index lens design. CFD simulation shows that a stable thermal lens can be built up within 200 ms. Experiments were conducted to demonstrate the continuous tuning of focal length from initially infinite to the minimum 1.3 mm, as well as the off-axis focusing by offsetting the pump laser spot. Data analyses show the empirical dependences of the focal length on the pump laser intensity and the flow velocity. Compared with previous studies, this tunable lens design enjoys many merits, such as fast tuning speed, aberration-free focusing, remote control, and enabling the use of homogeneous fluids for easy integration with other optofluidic systems. PMID:26584422

  10. Laser-induced acoustic emissions in experimental dental composites.

    PubMed

    Lee, S Y; Lin, C T; Keh, E S; Pan, L C; Huang, H M; Shih, Y H; Cheng, H C

    2000-07-01

    A laser thermoacoustic technique was innovated to evaluate laser-induced acoustic emissions (AEs) in experimental dental composites aged with 75% ethanol solution. Experimental composite systems of 75/25 BisGMA/TEGDMA resin filled with 0, 12.6, 30.0, and 56.5 vol% of 8-microm silanized and unsilanized BaSiO6 were analyzed. The sample size was 4.65 mm (diameter) x 0.5 mm (thick). Aging effects of immersing in 75% ethanol for up to 14 h on AEs were then evaluated. A continuous-wave CO2 laser was used to heat the samples. Acoustic emissions were collected as a function of filler fraction, laser power, silanization, and immersion time. Onset of burst-pattern acoustic signals characteristic of fracturing occurred at different laser powers for different tested groups. Acoustic emissions generally increased with laser power, in which lower laser powers produced low-amplitude (45-50 dB) signals; the amplitude distribution (50-85 dB) became more extensive as laser powers increased. After immersion, the lower laser powers could produce the same phenomenon. The higher the filler fraction, the fewer AEs generated. A large percentage AE reduction due to silanization was noted as a function of filler fraction. Unsilanized specimens showed more thermal damages than did silanized ones.

  11. Characteristics of laser-induced luminescence in poly(paraphenylene)

    NASA Astrophysics Data System (ADS)

    Jin, Changqin; Lu, Shaozhe; Su, Xi A.; Liu, Xing J.

    1992-02-01

    Under laser inducement, we have observed steady state photoluminescence from poly(paraphenylene) and transient photoliininescence from PPP in nanosecond time regime for the first time. PPP samples studied were produced using the Kovacic method. The experimental results indicate that the lininescence spectra are well-resolved. The peaks are rather sharp and located at 4340Å(100K), 4332Å(50K), 4318Å(8.5K) (transient state) and 4309Å, 4575Å (steady state). The luminescence spectra have been discussed by using the lattice relaxation process. The lifetime of the luminescence of PPP was measured. The decay curve of PPP is found to have a double exponential form with a lifetime of 7.47 ns and 5.13 ns. The decay kinetics was interpreted by the interchain recombination of photoexcited polaron pairs. The decay kinetics of photoinduced absorption between a few nanoseconds and a few microseconds is mainly due to the interchain recombination of the photoexcited polaron pairs and exhibits the radiative luminescence after relaxation.

  12. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  13. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    SciTech Connect

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  14. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  15. Laser-induced forward transfer of hybrid carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  16. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  17. Drift mechanism of laser-induced electron acceleration in vacuum

    NASA Astrophysics Data System (ADS)

    Morgovsky, L.

    2015-12-01

    Laser-induced electron acceleration in vacuum is possible due to the ejection of electrons from the beam as a consequence of the transverse drift orthogonal to the propagation direction. The transverse drift is derived from the general solution of the equations of motion of the electrons in the field of a plane electromagnetic wave with arbitrary polarization. It is shown that the energy gain is proportional to the square of the field strength additionally modulated by the function of the injection and ejection phases. In particular, for a linearly polarized beam this function is reduced to the squared difference between the cosines of these phases. The finite laser pulse duration restricts the range of the field strength suitable for direct electron acceleration in vacuum within certain limits. It is demonstrated that the high efficiency of energy transfer from the laser wave into the kinetic energy of the accelerated electrons demands phase matching between the electron quiver phase at the exit point and the phase of the energy transfer.

  18. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  19. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  20. Laser-induced breakdown spectroscopy for polymer identification.

    PubMed

    Grégoire, Sylvain; Boudinet, Marjorie; Pelascini, Frédéric; Surma, Fabrice; Detalle, Vincent; Holl, Yves

    2011-07-01

    This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile-butadiene-styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C(2) Swan system (0,0) band in polymers containing no C-C (POM), few C-C (POE), or aromatic C-C linkages led us to the conclusion that the C(2) signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

  1. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  2. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  3. Laser-induced differential fluorescence for cancer diagnosis without biopsy

    SciTech Connect

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.; Buckley III, P.

    1997-01-01

    An optical diagnostic procedure based on laser-induced fluorescence was developed for direct {ital in vivo} cancer diagnosis without requiring biopsy. The methodology was applied in a clinical study involving over 100 patients in order to differentiate normal tissue from malignant tumors of the esophagus. Endogenous fluorescence of normal and malignant tissues was measured directly with the use of a fiber-optic probe inserted through an endoscope. The measurements were performed {ital in vivo} during routine endoscopy. Detection of the fluorescence signal from the tissue was performed with the use of laser excitation. This report describes the differential normalized fluorescence (DNF) procedure using the amplified spectral differences between the normalized fluorescence of malignant tissue and normal mucosa. The results of this DNF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal tissue and malignant tumors for the samples investigated. Data related to various grades of Barrett{close_quote}s esophagus are discussed. The DNF procedure could lead to the development of a rapid and cost-effective technique for cancer diagnosis. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  4. Laser-induced thermoelastic effects can evoke tactile sensations.

    PubMed

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  5. Laser-Induced Shocks in Strongly Coupled Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Tierney, T.; Benage, J.; Evans, S.; Glocer, A.; Kyrala, G.; Montoya, R.; Munson, C.; Roberts, J.; Skidmore, B.; Taylor, A.; Wood, B.; Workman, J.; Wysocki, F.

    2001-10-01

    Inverse bremsstrahlung is a dominant absorption mechanism at high densities and low temperatures, such as in strongly coupled plasmas. We electrically produce a 0.1 g/cm^3, 1 eV SCP target which is struck by a 2-3 J, 0.8 ns frequency-doubled Nd:Yag laser pulse. Under these conditions, the laser pulse couples into the plasma where the electron plasma frequency equals the laser frequency. For a wavelength of 532 nm, this happens at a critical density of ne = 4x10^21 cm-3. The rapid deposition of energy heats and compresses the plasma to shock conditions. The surface temperature of the plasma is measured using four filtered PMTs with the assumption of blackbody emission with constant emissivity. Pre-shocked and shocked density measurements are simultaneously made using a laser-produced Ti K-shell (4.75 keV) x-ray shadowgraph. We present the experiment design and results of a laser-induced shock in a strongly coupled plasma.

  6. Laser-induced porous graphene films from commercial polymers

    PubMed Central

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.

    2014-01-01

    Synthesis and patterning of carbon nanomaterials cost effectively is a challenge in electronic and energy storage devices. Here report a one-step, scalable approach for producing and patterning porous graphene films with 3-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF·cm−2 and power densities of ~9 mW·cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  7. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  8. Analysis of bakery products by laser-induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique. PMID:25794738

  9. Laser-induced porous graphene films from commercial polymers.

    PubMed

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L G; Yacaman, Miguel Jose; Yakobson, Boris I; Tour, James M

    2014-01-01

    The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp(3)-carbon atoms are photothermally converted to sp(2)-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm(-2) and power densities of ~9 mW cm(-2). Theoretical calculations partially suggest that enhanced capacitance may result from LIG's unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  10. Production of biomolecule microarrays through laser induced forward transfer

    NASA Astrophysics Data System (ADS)

    Fernandez-Pradas, Juan Marcos; Serra, Pere; Colina, Monica; Morenza, Jose-Luis

    2004-10-01

    Biomolecule microarrays are a kind of biosensors that consist in patterns of different biological molecules immobilized on a solid substrate and capable to bind specifically to their complementary targets. In particular, DNA and protein microarrays have been revealed to be very efficient devices for genen and protein identification, what has converted them in powerful tools for many applications, like clinical diagnose, drug discovery analysis, genomics and proteomics. The production of these devices requires the manipulation of tiny amounts of a liquid solution containing biomolecules without damaging them. In this work laser induced forward transfer (LIFT) has been used for spotting a biomolecule in order to check the viability of this technique for the production of microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength) has been used to transfer droplets of a biomolecule containing solution onto a solid slide. Optical microscopy of the transferred material has been carried out to investigate the morphological characteristics of the droplets obtained under different irradiation conditions. Afterwards, a DNA microarray has been spotted. The viability of the transference has been tested by checking the biological activity of the biomolecule in front of its specific complementary target. This has revealed that, indeed, the LIFT technique is adequate for the production of DNA microarrays.

  11. Laser-induced thermoelastic effects can evoke tactile sensations

    NASA Astrophysics Data System (ADS)

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  12. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  13. Laser induced mechanisms controlling the size distribution of metallic nanoparticles.

    PubMed

    Liu, Zeming; Vitrant, Guy; Lefkir, Yaya; Bakhti, Said; Destouches, Nathalie

    2016-09-21

    This paper describes a model to simulate changes in the size distribution of metallic nanoparticles (NPs) in TiO2 films upon continuous wave light excitation. Interrelated laser induced physical and chemical processes initiated directly by photon absorption or by plasmon induced thermal heating are considered. Namely the model takes into account the NP coalescence, Ostwald ripening, the reduction of silver ions and the oxidation of metallic NPs, competitive mechanisms that can lead to counter-intuitive behaviors depending on the exposure conditions. Theoretical predictions are compared successfully to the experimental results deduced from a thorough analysis of scanning transmission electron microscopy (STEM) pictures of Ag:TiO2 films processed with a scanning visible laser beam at different speeds. Ag:TiO2 systems are considered for many applications in solar energy conversion, photocatalysis or secured data printing. Numerical investigations of such a system provide a better understanding of light induced growth and shrinking processes and open up prospects for designing more efficient photocatalytic devices based on metal NP doped TiO2 or for improving the size homogeneity in self-organized metallic NP patterns, for instance. PMID:27539293

  14. In vivo laser-induced breakdown in the rabbit eye

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; DiCarlo, Cheryl D.; Kennedy, Paul K.; Noojin, Gary D.; Amnotte, Rodney E.; Roach, William P.

    1995-05-01

    Threshold measurements for femtosecond laser pulsewidths have been made for retinal minimum visible lesions (MVLs) in Dutch Belted rabbit and rhesus monkey eyes. Laser-induced breakdown (LIB) thresholds in biological materials including vitreous, normal saline, tap water, and ultrapure water have been measured and reported using an artificial eye. We have recorded on video the first LIB causing bubble formation in any eye in vivo using albino rabbit eyes (New Zealand white) with 120- femtosecond (fs) pulses and pulse energies as low as 5 microjoules ((mu) J). These bubbles were clearly formed anterior to the retina within the vitreous humor and, with 60 (mu) J of energy, they lasted for several seconds before disappearing and leaving no apparent damage to the retina. We believe this to be true LIB because of the lack of pigmentation or melanin granules within the albino rabbit eye (thus no absorptive elements) and because of the extremely high peak powers within the 5-(mu) J, 120-fs laser pulse. These high peak powers produce self-focusing of the pulse within the vitreous. The bubble formation at the breakdown site acts as a limiting mechanism for energy transmission and may explain why high-energy femotsecond pulses at energies up to 100 (mu) J sometimes do not cause severe damage in the pigmented rabbit eye. This fact may also explain why it is so difficult to produce hemorrhagic lesions in either the rabbit or primate eye with 100-fs laser pulses.

  15. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  16. Laser-induced breakdown spectroscopy enhanced by a micro torch.

    PubMed

    Liu, L; Huang, X; Li, S; Lu, Yao; Chen, K; Jiang, L; Silvain, J F; Lu, Y F

    2015-06-01

    A commercial butane micron troch was used to enhance plasma optical emissions in laser-induced breakdown spectroscopy (LIBS). Fast imaging and spectroscopic analyses were used to observe plasma evolution in the atmospheric pressure for LIBS without and with using a micro torch. Optical emission intensities and signal-to-noise ratios (SNRs) as functions of delay time were studied. Enhanced optical emission and SNRs were obtained by using a micro torch. The effects of laser pulse energy on the emission intensities and SNRs were studied. The same spectral intensity could be obtained using micro torch with much lower laser pulse energy. The investigation of SNR evolution with delay time at different laser pulse energies showed that the SNR enhancement factor is higher for plasmas generated by lower laser pulse energies than those generated by higher laser energies. The calibration curves of emission line intensities with elemental concentrations showed that detection sensitivities of Mn I 404.136 nm and V I 437.923 nm were improved by around 3 times. The limits of detection for both Mn I 404.136 nm and V I 437.923 nm are reduced from 425 and 42 ppm to 139 and 20 ppm, respectively, after using the micro torch. The LIBS system with micro torch was demonstrated to be cost-effective, compact, and capable of sensitivity improvement, especially for LIBS system operating with low laser pulse energy. PMID:26072861

  17. The stochastic nature of growth of laser-induced damage

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Cross, David A.; Liao, Zhi M.; Norton, Mary A.; Negres, Raluca A.

    2015-07-01

    Laser fluence and operational tempo of ICF systems operating in the UV are typically limited by the growth of laser- induced damage on their final optics (primarily silica optics). In the early 2000 time frame, studies of laser damage growth with relevant large area beams revealed that for some laser conditions damage sites located on the exit surface of a fused silica optic grew following an exponential growth rule: D(n) = D0 exp (n α(φ)), where D is final site diameter, D0 is the initial diameter of the site, φ is the laser fluence, α(φ) is the growth coefficient, and n is the number of exposures. In general α is a linear function of φ, with a threshold of φTH. In recent years, it has been found that that growth behavior is actually considerably more complex. For example, it was found that α is not a constant for a given fluence but follows a probability distribution with a mean equal to α(φ). This is complicated by observations that these distributions are actually functions of the pulse shape, damage site size, and initial morphology of damage initiation. In addition, there is not a fixed fluence threshold for damage sites growth, which is better described by a probability of growth which depends on site size, morphology and laser fluence. Here will review these findings and discuss implications for the operation of large laser systems.

  18. Analysis of human nails by laser-induced breakdown spectroscopy.

    PubMed

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  19. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    NASA Astrophysics Data System (ADS)

    De Giacomo, A.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; Senesi, G. S.; Rossi, M.; Ghiara, M. R.; Capitelli, F.; De Pascale, O.

    2012-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  20. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  1. Penta(cyclopentadienyl)-[eta]5-cyclopentadienylmanganesetricarbonyl: Structure and laser-induced conversion to fullerenes

    SciTech Connect

    Barrow, Mark P.; Cammack, J. Kevin; Goebel, Matthias; Wasser, Ian M.; Vollhardt, K.Peter C.; Drewello, Thomas

    1998-08-28

    The title compound [Cp5CpMn(CO)3], 1, has been characterized by X-ray crystallography and shown by laser-induced desorption/ionization (LDI) to undergo coalescence to fullerene C60 and other carbon clusters.

  2. APPLICATIONS OF CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION TO GROUND WATER MIGRATION STUDIES

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of groundwater migration based on laser-induced fluorescence (LIF) detection and traditional spectrofluorimetry. The detection limits of injected dye-fluorescent whitening agent (tinopal) in the low parts per tr...

  3. CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION OF FLUORESCEIN AS A GROUNDWATER MIGRATION TRACER

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of the groundwater migration tracer dye fluorescein based on laser-induced fluorescence (LIF) detection and compared to determinations obtained with traditional spectrofluorimetry. Detection limits of injected d...

  4. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands

    NASA Astrophysics Data System (ADS)

    Koral, Can; De Giacomo, Alessandro; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.

    2016-11-01

    Enhancement of molecular band emission in laser-induced plasmas is important for improving sensitivity and limits of detection in molecular sensing and molecular isotope analysis. In this work we introduce the use of Nanoparticle Enhanced Laser Induced Breakdown (NELIBS) for the enhancement of molecular band emission in laser-induced plasmas, and study the underlying mechanisms responsible for the observed enhancement. The use of Ag nanoparticles leads to an order of magnitude enhancement for AlO (B2Σ+ → Χ+ Σ+) system emission from an Al-based alloy. We demonstrate that the mechanism responsible for the enhancement of molecular bands differs from that of atomic emission, and can be traced down to the increased number of atomic species in NELIBS which lead to AlO molecular formation. These findings showcase the potential of NELIBS as a simple and viable technology for enhancing molecular band emission in laser-induced plasmas.

  5. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  6. Laser-based diagnostics for coal gasification instrumentation. [Coherent anti-Stokes Raman spectroscopy (CARS), laser induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF)

    SciTech Connect

    Taylor, D.J.; Loree, T.R.; Hartford, A. Jr.; Tiee, J.J.

    1984-01-01

    In this program the investigators have investigated the suitability of a number of optical diagnostic techniques for nonintrusive real-time measurements of species concentrations and temperatures of coal gasification streams. They have identified and evaluated several promising techniques including coherent Raman spectroscopy, laser-induced breakdown spectroscopy, and laser-induced fluorescence. They emphasize that these are complementary, rather than competing, diagnostic technologies, as each can provide a different class of data for gasifier operation. The results of their gasifier field tests and supporting laboratory work on these diagnostic techniques have been summarized and recommendations for continued work on optical diagnostics for coal gasification streams are presented. 12 references, 17 figures.

  7. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  8. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  9. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  10. Effects of aberrations in vortex-beams generated with amplitude diffraction gratings

    NASA Astrophysics Data System (ADS)

    Cuartas-Vélez, Carlos; Echeverri-Chacón, Santiago; Restrepo, René

    2016-03-01

    We present a mathematical model for the generation of vortex-beams by using a square profile amplitude fork diffraction grating with arbitrary topological charge. The mathematical framework of aberrations in the forked-shape diffraction grating is analysed, and the resulting diffracted pattern is simulated. Three cases of desired distortions (aberrations) in the diffraction grating are considered, obtaining phase modulation from the amplitude grating. Experimental optical vortices are generated by using a transmission spatial light modulator, which is used as a dynamic diffraction grating, allowing us to aberrate it. We show the effect of aberrations in the experimental diffracted vortex-beams and compare it with the numerical simulation.

  11. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  12. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Oloff, L.-P.; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K.

    2016-06-01

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  13. Influence of oscillating features of a laser-induced bubble on laser propulsion in water environment near different interfaces

    NASA Astrophysics Data System (ADS)

    Chen, J.; Han, B.; Dou, L.; Pan, Y.-X.; Shen, Z.-H.; Lu, J.; Ni, X.-W.

    2010-12-01

    Laser propulsion in a water environment is influenced by oscillating features of a laser-induced bubble. In our study an optical beam deflection method is used to investigate dynamics of laser-induced semispherical cavitation bubbles near three different interfaces: the rigid boundary (water-solid interface), the free surface (water-air interface) and the liquid-liquid interface (water-soybean oil interface), and in the bulk. The maximum radius of the first bubble oscillation Rmax1 was widened and the collapse time T1 is prolonged in the case of the rigid boundary. Rmax1 is diminished and T1 is shortened in the case of the free surface and the water-oil interface, among which the latter makes Rmax1 even smaller. In order to get the maximum propelling force in different distances near different medium interfaces, different pulse energy of the laser is used. The bubble moves toward the rigid boundary and moves away from the free surface during its oscillations. This will change the application point of the propelling force on the object, and cause a change in the propelling direction of the object.

  14. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  15. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy.

    PubMed

    Lackner, Maximilian; Charareh, S; Winter, F; Iskra, K; Rüdisser, D; Neger, T; Kopecek, H; Wintner, E

    2004-09-20

    Laser ignition has been discussed widely as a potentially superior ignition source for technical appliances such as internal combustion engines. Ignition strongly affects overall combustion, and its early stages in particular have strong implications on subsequent pollutant formation, flame quenching, and extinction. Our research here is devoted to the experimental investigation of the early stages of laser-induced ignition of CH4/air mixtures up to high pressures. Tests were performed in a 0.9-l combustion cell with initial pressures of up to 25 bar with stoichiometric to fuel-lean mixtures using a 5-ns 50-mJ 1064-nm Nd:YAG laser. Laserinduced fluorescence (LIF) was used to obtain two dimensionally resolved images of the OH radical distribution after the ignition event. These images were used to produce an animation of laser ignition and early flame kernel development. Schlieren photography was used to investigate the laserinduced shock wave, hot core gas, and developing flame ball. We extend existing knowledge to high-pressure regimes relevant for internal combustion engines.

  16. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Maximilian; Charareh, S.; Winter, F.; Iskra, K. F.; Rüdisser, D.; Neger, T.; Kopecek, H.; Wintner, E.

    2004-09-01

    Laser ignition has been discussed widely as a potentially superior ignition source for technical appliances such as internal combustion engines. Ignition strongly affects overall combustion, and its early stages in particular have strong implications on subsequent pollutant formation, flame quenching, and extinction. Our research here is devoted to the experimental investigation of the early stages of laser-induced ignition of CH4/air mixtures up to high pressures. Tests were performed in a 0.9-l combustion cell with initial pressures of up to 25 bar with stoichiometric to fuel-lean mixtures using a 5-ns 50-mJ 1064-nm Nd:YAG laser. Laserinduced fluorescence (LIF) was used to obtain two dimensionally resolved images of the OH radical distribution after the ignition event. These images were used to produce an animation of laser ignition and early flame kernel development. Schlieren photography was used to investigate the laserinduced shock wave, hot core gas, and developing flame ball. We extend existing knowledge to high-pressure regimes relevant for internal combustion engines.

  17. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  18. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance. PMID:19891832

  19. Laser-induced spreading arrest of Mytilus gill cilia

    PubMed Central

    1975-01-01

    Using a "slit camera" recording technique, we have examined the effects of local laser irradiation of cilia of the gill epithelium of Mytilus edulis. The laser produces a lesion which interrupts epithelial integrity. In artificial sea water that contains high K+ or is effectively Ca++ free, metachronism of the lateral cilia continues to either side of the lesion with only minor perturbations in frequency synchronization and wave velocity, such as would be expected if metachronal wave coordination is mechanical. However, in normal sea water and other appropriate ionic conditions (i.e., where Ca++ concentration is elevated), in addition to local damage, the laser induces distinct arrest responses of the lateral cilia. Arrest is not mechanically coordinated, since cilia stop in sequence depending on stroke position as well as distance from the lesion. The velocity of arrest under standard conditions is about 3 mm/s, several orders of magnitude faster than spreading velocities associated with diffusion of materials from the injured region. Two responses can be distinguished on the basis of the kinetics of recovery of the arrested regions. These are (a) a nondecremental response that resembles spontaneous ciliary stoppage in the gills, and (b) a decremental response, where arrest nearer the stimulus point is much longer lasting. The slower recovery is often periodic, with a step size approximating lateral cell length. Arrest responses with altered kinetics also occur in laterofrontal cilia. The responses of Mytilus lateral cilia resemble the spreading ciliary arrest seen in Elliptio and arrest induced by electrical and other stimuli, and the decremental response may depend upon electrotonic spread of potential change produced at the stimulus site. If this were coupled to transient changes in Ca++ permeability of the cell membrane, a local rise in Ca++ concentration might inhibit ciliary beat at a sensitive point in the stroke cycle to produce the observed arrest. PMID

  20. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows