Science.gov

Sample records for laser-induced spark dplis

  1. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) For Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Initial hot-fire tests in a small-scale rocket chamber at MSFC have demonstrated the DPLIS concept having two main advantages over existing laser ignition concepts. First, the DPLIS can be potentially optimized its laser pulse format to maximize the initial plasma volume, the plasma lifetime, as well as the flame kernel growth rate. Characterization studies of the laser pulse format are now underway with experiments of igniting gaseous hydrogen/air in a Hencken burner. Once ignition is achieved, the flame is open to the atmosphere. This open environment allows easy access for diagnostics of the ignition phenomenon. The quick turn-around time of conducting experiments on this burner make it more amenable for conducting a large number of experiments for statistical analysis of the sensitivity of the test parameters. The results from these experiments will help optimize the laser format for future testing in an H2/O2 subscale rocket chamber.

  2. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los

  3. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  4. Density jumps in the plasma of a nanosecond laser-induced spark and their dynamics

    SciTech Connect

    Malyutin, A A; Podvyaznikov, V A; Chevokin, V K

    2011-01-31

    Experimental investigation of the structure of a laser-induced spark emerging in the focusing of 50-ns radiation pulses is described. Two density jumps were discovered in the plasma of the laser-induced spark. One of them is localised in the vicinity of the focal plane of the lens, the other propagates from this plane in the laser propagation direction at a constant velocity of {approx}7.5 km s{sup -1}. (laser plasma)

  5. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.

    PubMed

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

  6. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  7. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  8. Ignition study of acetone/air mixtures by using laser-induced spark.

    PubMed

    Tihay, Virginie; Gillard, Philippe; Blanc, Denis

    2012-03-30

    The breakdown and the laser-induced spark ignition of acetone-air mixtures were experimentally studied using a nanosecond pulse at 1064 nm from a Q-switched Nd:YAG laser. The breakdown was first characterized for different mixtures with acetone and air. This part of the work highlighted the wide variation in the energy absorbed by the plasma during a breakdown. We also demonstrated that the presence of acetone in air tends to reduce the energy required to obtain a breakdown. Next, the ignition of acetone-air mixtures in the equivalence ratio range 0.9-2.4 was investigated. The probabilities of ignition were calculated in function to the laser energy. However, according to the variability of energy absorption by the plasma, we preferred to present the result according to the energy absorbed by the plasma. The minimum ignition energies were also provided. The minimum ignition energy was obtained for an equivalence ratio of 1.6 and an absorbed energy of 1.15 mJ. Finally the characteristics of the plasma (absorption coefficient and kernel temperature) were calculated for the experiments corresponding to minimum ignition energies.

  9. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  10. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  11. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy.

    PubMed

    Hou, Zongyu; Wang, Zhe; Liu, Jianmin; Ni, Weidou; Li, Zheng

    2014-06-02

    Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

  12. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  13. Diagnosis of caries by spectral analysis of laser-induced plasma sparks

    NASA Astrophysics Data System (ADS)

    Niemz, Markolf H.

    1994-12-01

    A picosecond Nd:YLF laser system was used to remove sound and carious enamel by the mechanism of plasma-induced ablation. The plasma spark was optically imaged onto the entrance pupil of a spectrometer. The spectra were scanned between 400 - 700 nm with a typical resolution of 0.2 nm. Calcium in neutral and singly ionized states and the sodium doublet at 589 nm were observed. The second harmonic of the laser wavelength was generated in an external BBO crystal, thereby converting about 10 (mu) J of the pulse energy to radiation at 527 nm. The amplitude of the diffuse reflected second harmonic was used as a reference signal for normalization of the spectra. Several sound and artificial caries regions of different teeth were investigated. The spectra obtained from caries always showed a strong decrease in amplitude of all mineral lines, if compared to sound enamel. These results can be explained by the demineralization process of dental decay. Thus, caries infected teeth are easily distinguished from sound probes, enabling a computer controlled caries removal in the near future. The possible setup of such an automated system is discussed.

  14. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  15. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    SciTech Connect

    Omar, M. M. Aboulfotouh, A. M.; Gamal, Y. E. E.

    2015-03-30

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H{sub 2}. The analysis considered H{sub 2} over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532 nm with pulse length 5.5 ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  16. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    NASA Astrophysics Data System (ADS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-09-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features.

  17. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  18. Femtosecond laser induced breakdown for combustion diagnostics

    SciTech Connect

    Kotzagianni, M.; Couris, S.

    2012-06-25

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  19. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  20. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  1. Laser-induced breakdown spectroscopy expands into industrial applications

    NASA Astrophysics Data System (ADS)

    Noll, Reinhard; Fricke-Begemann, Cord; Brunk, Markus; Connemann, Sven; Meinhardt, Christoph; Scharun, Michael; Sturm, Volker; Makowe, Joachim; Gehlen, Christoph

    This paper presents R&D activities in the field of laser-induced breakdown spectroscopy for industrial applications and shows novel LIBS systems running in routine operation for inline process control tasks. Starting with a comparison of the typical characteristics of LIBS with XRF and spark-discharge optical emission spectrometry, the principal structure of LIBS machines embedded for inline process monitoring will be presented. A systematic requirement analysis for LIBS systems following Ishikawa's scheme was worked out. Stability issues are studied for laser sources and Paschen-Runge spectrometers as key components for industrial LIBS systems. Examples of industrial applications range from handheld LIBS systems using a fiber laser source, via a set of LIBS machines for inline process control tasks, such as scrap analysis, coal analysis, liquid slag analysis and finally monitoring of drill dust.

  2. Picosecond laser-induced water condensation in a cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-05

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  3. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  4. Laser-induced magnetization curve

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Sato, Masahiro; Oka, Takashi

    2014-12-01

    We propose an all optical ultrafast method to highly magnetize general quantum magnets using a circularly polarized terahertz laser. The key idea is to utilize a circularly polarized laser and its chirping. Through this method, one can obtain magnetization curves of a broad class of quantum magnets as a function of time even without any static magnetic field. We numerically demonstrate the laser-induced magnetization process in realistic quantum spin models and find a condition for the realization. The onset of magnetization can be described by a many-body version of Landau-Zener mechanism. In a particular model, we show that a plateau state with topological properties can be realized dynamically.

  5. A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements Of Trace Metals

    SciTech Connect

    Scott Goode; S. Michael Angel

    2004-01-20

    Develop a fiber-optic imaging probe for microanalysis of solid samples; Design a time-resolved plasma imaging system to measure the development of the LIBS signal; Setup a laboratory system capable of timing two lasers independently, for optimizing and characterizing dual-pulse LIBS; Compare the development of laser-induced plasmas generated with a single laser pulse to the development of laser-induced plasmas generated with a pre-ablation spark prior to sample ablation; Examine the effect of sample matrix on the LIBS signals of elements in different sample matrices; Investigate the effect of excitation wavelength of the ablation beam in pre-ablation spark dual-pulse LIBS experiments; Determine the effect of the physical properties of the sample on the mass of materials ablated.

  6. Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation.

    PubMed

    Brackmann, Christian; Nygren, Jenny; Bai, Xiao; Li, Zhongshan; Bladh, Henrik; Axelsson, Boman; Denbratt, Ingemar; Koopmans, Lucien; Bengtsson, Per-Erik; Aldén, Marcus

    2003-12-01

    Formaldehyde (CH2O) is an important intermediate species in combustion processes and it can through laser-induced fluorescence measurements be used for instantaneous flame front detection. The present study has focussed on the use of the third harmonic of a Nd:YAG laser at 355 nm as excitation wavelength for formaldehyde, and different dimethyl ether (C2H6O) flames were used as sources of formaldehyde in the experiments. The investigations included studies of the overlap between the laser profile and the absorption lines of formaldehyde, saturation effects and the potential occurrence of laser-induced photochemistry. The technique was applied for detection of formaldehyde in an internal combustion engine operated both as a spark ignition engine and as a homogenous charge compression ignition engine.

  7. ElectroSpark Deposition

    DTIC Science & Technology

    2007-01-25

    ElectroSpark Deposition Hard Chrome Alternatives Team Joint Cadmium Alternatives Team Canadian Hard Chrome Alternatives Team Joint Group on Pollution...00-2007 to 00-00-2007 4. TITLE AND SUBTITLE ElectroSpark Deposition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Processes, Inc. ElectroSpark Deposition (ESD) Results of Materials Testing and Technology Insertion January 25, 2007 Advanced Surfaces And Processes, Inc. 3

  8. Spark-hdf5

    SciTech Connect

    Asplund, Joshua; Jiang, Ming; Gallagher, Brian; Miller, Mark; Harrison, Cyrus

    2016-07-05

    The spark-hdf5 package is an extension to the Apache Spark program to allow native access to HDF5 files. It allows users to query the structured files using SQL-like syntax, and can parallelize large queries across several workers.

  9. The sparking voltage of spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1925-01-01

    This report has been prepared in order to collect and correlate into convenient and useful form the available data on this subject. The importance of the subject lies in the fact that it forms the common meeting ground for studies of the performance of spark generators and spark plugs on the one hand and of the internal combustion engines on the other hand. While much of the data presented was obtained from various earlier publications, numerous places were found where necessary data were lacking, and these have been provided by experiments in gasoline engines at the Bureau of Standards.

  10. Laser-induced caesium-137 decay

    SciTech Connect

    Barmina, E V; Simakin, A V; Shafeev, G A

    2014-08-31

    Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)

  11. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  12. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  13. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  14. Laser-Induced Ignition Modeling and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Dors, Ivan; Qin, W.; Chen, Y.-L.; Parigger, C.; Lewis, J. W. L.

    2000-11-01

    We have studied experimentally the ignition resulting from optical breakdowns in mixtures of oxygen and the fuel ammonia induced by a 10 nanosecond pulsewidth laser for a time of hundreds of milliseconds using laser spectroscopy. In these studies, we have for the first time characterized the laser-induced plasma, the formation of the combustion radicals, the detonation wave, the flame front and the combustion process itself. The objective of the modeling is to understand the fluid dynamic and chemical kinetic effects following the nominal 10 ns laser pulse until 1 millisecond after laser breakdown. The calculated images match the experimentally recorded data sets and show spatial details covering volumes of 1/10000 cc to 1000 cc. The code was provided by CFD Research Corporation of Huntsville, Alabama, and was appropriately augmented to compute the observed phenomena. The fully developed computational model now includes a kinetic mechanism that implements plasma equilibrium kinetics in ionized regions, and non-equilibrium, multistep, finite rate reactions in non-ionized regions. The predicted fluid phenomena agree with various flow patterns characteristic of laser spark ignition as measured in the CLA laboratories. Comparison of calculated and measured OH and NH concentration will be presented.

  15. Laser induced white lighting of graphene foam

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources.

  16. Laser induced white lighting of graphene foam

    PubMed Central

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources. PMID:28112254

  17. Temperature Dependence of Laser Induced Breakdown

    DTIC Science & Technology

    1994-01-01

    consistent dependence on the temperature of the medium. The theory of the temperature dependence of LIB and experimental observations for all pulse...durations and their implications for retinal damage are discussed. Laser Induced Breakdown, Temperature dependence , Threshold valve, Nanosecond, Picosecond, Femtosecond, laser pulses.

  18. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  19. Beamforming with a volumetric array of massless laser spark sources--Application in reflection tracking.

    PubMed

    Eskelinen, Joona; Hæggström, Edward; Delikaris-Manias, Symeon; Bolaños, Javier Gómez; Pulkki, Ville

    2015-06-01

    A volumetric array of laser-induced air breakdown sparks is used to produce a directional and steerable acoustic source. The laser breakdown array element is broadband, point-like, and massless. It produces an impulse-like waveform in midair, thus generating accurate spatio-temporal information for acoustic beamforming. A laser-spark scanning setup and the concept of a massless steerable source are presented and evaluated with a cubic array by using an off-line far field delay-and-sum beamforming method. This virtual acoustic array with minimal source influence can, for instance, produce narrow transmission beams to obtain localized and directional impulse response information by reflection tracking.

  20. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  1. On laser-induced harpooning reactions

    NASA Astrophysics Data System (ADS)

    Weiner, J.

    1980-05-01

    In the present paper, the switching of chemical reactivity by a nonresonant laser field in simple gas-phase collisions of the type A + BC to AB + C is discussed in terms of a second-order optical/collision perturbation. A simple expression relating laser-induced harpooning cross sections to the laser power density is derived and is applied to Hg/Cl2 collisions.

  2. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  3. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  4. Measurement of elemental concentration of aerosols using spark emission spectroscopy.

    PubMed

    Diwakar, Prasoon K; Kulkarni, Pramod

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~10(16) cm(-3)), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation.

  5. Measurement of elemental concentration of aerosols using spark emission spectroscopy†

    PubMed Central

    Diwakar, Prasoon K.

    2015-01-01

    A coaxial microelectrode system has been used to collect and analyse the elemental composition of aerosol particles in near real-time using spark emission spectroscopy. The technique involves focused electrostatic deposition of charged aerosol particles onto the flat tip of a microelectrode, followed by introduction of spark discharge. A pulsed spark discharge was generated across the electrodes with input energy ranging from 50 to 300 mJ per pulse, resulting in the formation of controlled pulsed plasma. The particulate matter on the cathode tip is ablated and atomized by the spark plasma, resulting in atomic emissions which are subsequently recorded using a broadband optical spectrometer for element identification and quantification. The plasma characteristics were found to be very consistent and reproducible even after several thousands of spark discharges using the same electrode system. The spark plasma was characterized by measuring the excitation temperature (~7000 to 10 000 K), electron density (~1016 cm−3), and evolution of spectral responses as a function of time. The system was calibrated using particles containing Pb, Si, Na and Cr. Absolute mass detection limits in the range 11 pg to 1.75 ng were obtained. Repeatability of spectral measurements varied from 2 to 15%. The technique offers key advantages over similar microplasma-based techniques such as laser-induced breakdown spectroscopy, as: (i) it does not require any laser beam optics and eliminates any need for beam alignment, (ii) pulse energy from dc power supply in SIBS system can be much higher compared to that from laser source of the same physical size, and (iii) it is quite conducive to compact, field-portable instrumentation. PMID:26491209

  6. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  7. Fostering the Curiosity Spark

    ERIC Educational Resources Information Center

    Crow, Sherry R.

    2010-01-01

    Many of the children in the early grades who marveled at the plethora of beautiful resources just did not seem that interested by the time they reached upper elementary school. While some children sustained their spark of curiosity, others did not. The force that keeps children (or people of any age) excited about anything is called…

  8. Remote express analysis of ground-layer aerosol based on laser-induced spark spectra

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Kopytin, Y. D.; Korolkov, V. A.; Levitskii, M. E.; Nebolsin, M. F.; Sidorov, B. G.; Soldatkin, N. P.

    1986-01-01

    The creation of high-power pulsed CO2 and Nd-glass lasers enables the realization of the method for remote spectro-chemical analysis of atmospheric aerosols based on excitation of the emission spectrum of the aerosol particle atoms. A description of construction and characteristics of a spectrochemical lidar based on both Nd-glass and CO2 lasers is presented.

  9. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  10. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  11. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  12. Modeling of Laser-Induced Metal Combustion

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  13. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  14. Laser-Induced Transfer of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Koch, Jürgen; Chichkov, Boris N.

    2010-10-01

    A novel approach for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The size of the transferred droplets depends on the volume of laser-molten metal and can be varied by changing the laser beam focus on the sample surface and the metal film thickness. Controllable fabrication of high quality spherical gold micro- and nanoparticles with sizes between 170 nm and 1500 nm is realized. Fabrication of miscellaneous structures consisting of gold particles as elementary building blocks is demonstrated.

  15. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  16. Laser induced fluorescence model of human goiter

    NASA Astrophysics Data System (ADS)

    Jaliashvili, Z. V.; Medoidze, T. D.; Mardaleishvili, K. M.; Ramsden, J. J.; Melikishvili, Z. G.

    2008-03-01

    Laser induced fluorescence (LIF) with wide area surveillance for resected thyroid tissue solid chunks is presented. The characteristic LIF spectra of goiter were established. The state of tissue at each point represents a superposition of normal and pathology states. To our knowledge two co-existing pathological effects were observed optically for the first time. It is demonstrated that the LIF spectral functions and their intensities well-labeled such areas and represent a good tool for medical diagnostics of goiter and for the definition of the degree of abnormality and geometrical sizes of these areas.

  17. Laser-induced torques in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  18. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  19. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  20. Laser-induced fluorescence spectroscopy at endoscopy

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; MacAulay, Calum E.; Lam, Stephen; Palcic, Branko

    1994-07-01

    A spectrofluorometry system has been developed for the collection of laser induced fluorescense spectra of tissue during endoscopy. In this system, a catheter with seven optical fibers was used to deliver the excitation light and collect the emitted fluorescence. The system enables one to switch from regular endoscopy into fluorescence measurement in 50 ms using a computerized shutter system. The fluorescence spectra can be recorded in 100 ms. This spectrofluorometry system has been used to obtain spectra from bronchial, larynx and nasopharyngeal tissues when employed with the appropriate endoscopes. The results demonstrate that laser induced fluorescence can be used to differentiate abnormal tissue from normal tissue. The illumination and fluorescence collection patterns of this system have been modeled using a Monte Carlo simulation. The Monte Carlo simulation data shows that the spectra recorded by our collection pattern is very close to the intrinsic spectra of tissue. The experimental results and the Monte Carlo simulation suggest that changes in fluorescence intensity are more robust for the detection of early cancers than the differences in spectral characteristics.

  1. Direct spark ignition system

    SciTech Connect

    Gann, R.A.

    1986-12-02

    This patent describes a direct spark ignition system having a gas burner, an electrically operable valve connected to the burner to admit fuel thereto, a gated oscillator having a timing circuit for timing a trial ignition, a spark generator responsive to the oscillator for igniting fuel emanating from the burner, and a flame sensor for sustaining oscillations of the oscillator while a flame exists at the burner. The spark generator has an inverter connected to a low voltage dc source and responsive to the oscillator for converting the dc voltage to a high ac voltage, a means for rectifying the high ac voltage, a capacitor connected to the rectifying means for storing the rectified high voltage, an ignition coil in series between the storage capacitor and a switch, and a means for periodically turning on the switch to produce ignition pulses through the coil. The ignition system is powered from the dc source but controlled by the oscillator. An improvement described here is wherein the inverter is comprised of a step-up transformer having its primary winding connected in series with the dc source and a common emitter transistor having its collector connected to the primary winding. The transistor has its base connected to be controlled by the oscillator to chop the dc into ac in the primary winding, and a diode connected between the storage capacitor and the collector of the transistor, the diode being poled to couple into the capacitor back EMF energy when the transistor is turned off.

  2. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  3. Characteristics of microwave plasma induced by lasers and sparks.

    PubMed

    Ikeda, Yuji; Tsuruoka, Ryoji

    2012-03-01

    Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N(2). Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement.

  4. Laser Induced Fluorescence Spectrum of Iridium Monophosphide

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Liu, Anwen; Cheung, A. S.-C.

    2009-06-01

    Laser induced fluorescence spectrum of IrP in the spectral region between 380-600 nm has been studied. Reacting laser ablated iridium atoms with 1% PH_3 seeded in argon produced the IrP molecule. A few vibronic transitions have been recorded. Preliminary analysis of the rotational structure indicated that these vibronic bands are with Ω^' = 0 and Ω^'' = 0 and is likely to be ^{1}Σ - X ^{1}Σ transition. Vibrational separation of the excited state is estimated to be about 442 cm^{-1}. The ground state bond length is determined to be 1.766 Å. This work represents the first experimental investigation of the spectra of IrP.

  5. Laser Induced Fluorescence Spectroscopy of Boron Carbide

    NASA Astrophysics Data System (ADS)

    Cheung, A. S.-C.; Ng, Y. W.; Pang, H. F.

    2011-06-01

    Laser induced fluorescence spectrum of boron carbide (BC) between 490 and 560 nm has been recorded and analyzed. Gas-phase BC molecule was produced by the reaction of B2H6 and CH4 in the presence of magnesium atom from laser ablation process. The (0, 0), (1, 0), and (2, 0) bands of the B4 Σ- - X4 Σ- transition were recorded and rotationally analyzed. Spectra of both isotopes: 10BC and 11BC were observed. Equilibrium molecular constants for the B4 Σ- and the X4 Σ- states for both isotopes were determined. A comparison of the determined gas-phase molecular constants with those obtained using matrix isolation spectroscopy and the theoretical calculations will be presented. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  6. Laser induced fluorescence of dental caries

    NASA Technical Reports Server (NTRS)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  7. Laser-induced autofluorescence of caries

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Hibst, Raimund; Flemming, Gabriela; Schneckenburger, Herbert

    1993-07-01

    The laser induced autofluorescence from carious regions of human teeth was studied using a krypton ion laser at 407 nm as an excitation source, a fiberoptical detection system combined with a polychromator and an optical multichannel analyzer. In addition, time-resolved and time-gated fluorescence measurements in the nanosecond range were carried out. It was found that carious regions contain different fluorophores which emit in the red spectral range. The emission spectra with maxima around 590 nm, 625 nm and 635 nm are typical for metalloporphyrins, copro- and protoporphyrin. During excitation the fluorescence was bleached. Non-carious regions showed a broad fluorescence band with a maximum in the short-wavelength spectral region with shorter fluorescence decay times than the carious regions. Therefore, caries can be detected by spectral analysis of the autofluorescence as well as by determination of the fluorescence decay times or by time-gated imaging.

  8. Flame Speed and Spark Intensity

    NASA Technical Reports Server (NTRS)

    Randolph, D W; Silsbee, F B

    1925-01-01

    This report describes a series of experiments undertaken to determine whether or not the electrical characteristics of the igniting spark have any effect on the rapidity of flame spread in the explosive gas mixtures which it ignites. The results show very clearly that no such effect exists. The flame velocity in carbon-monoxide oxygen, acetylene oxygen, and gasoline-air mixtures was found to be unaffected by changes in spark intensity from sparks which were barely able to ignite the mixture up to intense condenser discharge sparks having fifty time this energy. (author)

  9. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  10. Laser-induced inactivation of Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background Haemozoin crystals, produced by Plasmodium during its intra-erythrocytic asexual reproduction cycle, can generate UV light via the laser-induced, non-linear optical process of third harmonic generation (THG). In the current study the feasibility of using haemozoin, constitutively stored in the parasite’s food vacuole, to kill the parasite by irradiation with a near IR laser was evaluated. Methods Cultured Plasmodium parasites at different stages of development were irradiated with a pulsed NIR laser and the viability of parasites at each stage was evaluated from their corresponding growth curves using the continuous culture method. Additional testing for germicidal effects of haemozoin and NIR laser was performed by adding synthetic haemozoin crystals to Escherichia coli in suspension. Cell suspensions were then irradiated with the laser and small aliquots taken and spread on agar plates containing selective agents to determine cell viability (CFU). Results Parasites in the late-trophozoites form as well as trophozoites in early-stage of DNA synthesis were found to be the most sensitive to the treatment with ~4-log reduction in viability after six passes through the laser beam; followed by parasites in ring phase (~2-log reduction). A ~1-log reduction in E. coli viability was obtained following a 60 min irradiation regimen of the bacteria in the presence of 1 μM synthetic haemozoin and a ~2-log reduction in the presence of 10 μM haemozoin. Minimal (≤15%) cell kill was observed in the presence of 10 μM haemin. Conclusions Laser-induced third-harmonic generation by haemozoin can be used to inactivate Plasmodium. This result may have clinical implications for treating severe malaria symptoms by irradiating the patient’s blood through the skin or through dialysis tubing with a NIR laser. PMID:22873646

  11. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  12. Tool grinding and spark testing

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  13. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen-air flame

    SciTech Connect

    Ono, Ryo; Oda, Tetsuji

    2008-01-15

    To investigate the electrostatic ignition of hydrogen-air mixtures, the density of OH radicals and the gas temperature are measured in an incipient spark-ignited hydrogen-air flame using laser-induced predissociation fluorescence (LIPF). The assessment of the electrostatic hazard of hydrogen is necessary for developing hydrogen-based energy systems in which hydrogen is used in fuel cells. The spark discharge occurs across a 2-mm gap with pulse duration approximately 10 ns. First, a hydrogen (50%)-air mixture is ignited by spark discharge with E=1.35E{sub -}, where E is the spark energy and E{sub -} is the minimum ignition energy. In this mixture, OH density decreases after spark discharge. It is 3 x 10{sup 16}cm{sup -3} at t=0{mu}s and 4 x 10{sup 15}cm{sup -3} at t=100{mu}s, where t is the postdischarge time. On the other hand, the gas temperature increases after spark discharge. It is 900 K at t=30{mu}s and 1400 K at t=200{mu}s. Next, a stoichiometric (hydrogen (30%)-air) mixture is ignited by spark discharge with E=1.25E{sub -}. In this mixture, OH density is approximately constant at 4 x 10{sup 16}cm{sup -3} for 150 {mu}s after spark discharge, and the gas temperature increases from 1000 K (t=0{mu}s) to 1800 K (t=150{mu}s). (author)

  14. Rapid laser induced energy transfer in atomic systems

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.

    1978-01-01

    Analytical and experimental studies of the rapid transfer of stored populations from metastable states to selected target states of a different species are reported. Both laser-induced or laser-switched collision and laser-induced two-photon spontaneous emission are described. It is shown that the laser-induced collision method is particularly useful in the visible and UV spectral regions. It has applications in photochemistry, gas-phase kinetics, and in high-power, high-energy gas-phase lasers. The anti-Stokes source is useful in the VUV and soft X-ray spectral regions.

  15. Development of microwave-enhanced spark-induced breakdown spectroscopy

    SciTech Connect

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-05-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  16. Medical Applications of Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  17. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  18. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  19. Laser Induced Fluorescence Spectroscopy of Cobalt Monoboride

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Ng, Y. W.; Cheung, A. S.-C.

    2011-06-01

    Laser induced fluorescence spectrum of cobalt monoboride (CoB) in the visible region between 465 and 560 nm has been observed. CoB molecule was produced by the reaction of laser ablated cobalt atom and diborane (B_2H_6) seeded in argon. Over twenty five vibronic bands have been recorded, and both Co10B and Co11B isotopic species have been observed and analyzed. Preliminary analysis of the rotational lines showed that the observed vibronic bands belong to two categories namely: the Ω' = 2 - Ω'' = 2 and the Ω' = 3 - Ω'' = 3 transitions, which indicated the ground state of CoB is consistent with an assignment of a ^3Δ_i state predicted from ab initio calculations. Unresolved hyperfine structure arising from the Co nucleus (I = 7/2) causes a broadening of spectral lines. This work represents the first experimental investigation of the spectrum of the CoB molecule. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  20. Volume of a laser-induced microjet

    NASA Astrophysics Data System (ADS)

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  1. Laser induced fluorescence of trapped molecular ions

    SciTech Connect

    Winn, J.S.

    1980-10-01

    Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions (albeit with a considerable increase in experimental complexity over that necessary for stable neutral molecules).

  2. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  3. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  4. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  5. The Spark and Its Ember

    PubMed Central

    González, A.; Kirsch, W.G.; Shirokova, N.; Pizarro, G.; Stern, M.D.; Ríos, E.

    2000-01-01

    Amplitude, spatial width, and rise time of Ca2+ sparks were compared in frog fast-twitch muscle, in three conditions that alter activation of release channels by [Ca2+]. A total of ∼17,000 sparks from 30 cells were evaluated. In cells under voltage clamp, caffeine (0.5 or 1 mM) increased average spark width by 28%, rise time by 18%, and amplitude by 7%. Increases in width were significant even among events of the same rise time. Spontaneous events recorded in permeabilized fibers with low internal [Mg2+] (0.4 mM), had width and rise times greater than in reference, and not significantly different than those in caffeine. The spark average in reference rides on a continuous fluorescence “ridge” and is continued by an “ember,” a prolongation of width ∼1 μm and amplitude <0.2, vanishing in ∼100 ms. Ridge and ember were absent in caffeine and in permeabilized cells. Exposure of voltage-clamped cells to high internal [Mg2+] (7 mM) had effects opposite to caffeine, reducing spark width by 26% and amplitude by 27%. In high [Mg2+], the ember was visible in individual sparks as a prolongation of variable duration and amplitude up to 1.2. Based on simulations and calculation of Ca2+ release flux from averaged sparks, the increase in spark width caused by caffeine was interpreted as evidence of an increase in radius of the release source—presumably by recruitment of additional channels. Conversely, spark narrowing suggests loss of contributing channels in high Mg2+. Therefore, these changes in spark width at constant rise times are evidence of a multichannel origin of sparks. Because ridge and ember were reduced by promoters of Ca2+-dependent activation (caffeine, low [Mg2+]) and became more visible in the presence of its inhibitors, they are probably manifestations of Ca2+ release directly operated by voltage sensors. PMID:10653893

  6. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  7. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  8. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high

  9. Intrinsic laser-induced breakdown of silicate glasses

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid B.

    2002-03-01

    This paper is a survey of experimental results in laser- induced damage observed mainly at State Optical Institute (St. Petersburg, Russia; at School of Optics/CREOL (Orlando, FL) which expounds conditions of observation of an intrinsic breakdown of high-purity silicate glasses and proposes the general idea of its mechanism. It is shown that the surface laser-induced breakdown of dielectrics is resulted from photo- and thermo-ionization of surface defects but not from interaction of laser radiation with dielectric material itself. Conditions of thermal ionization of the volume of dielectric materials are determined in dependence on features of absorption of material and temporal features of laser radiation. Statistical properties of laser-induced breakdown of high-purity glasses are caused by statistical properties of laser radiation while the breakdown itself is a deterministic process. Elimination of impact of self-focusing on the results of the breakdown threshold measurements is observed if the spot size of laser radiation in focal plane is less than the wavelength. No photoionization of glass matrix is detected before laser- induced breakdown, and there is no effect of photoionization of impurities and defects on intrinsic breakdown. A mechanism of intrinsic laser-induced breakdown is proposed which is a spasmodic transformation of the electronic level structure in a wide-bandgap dielectric caused by the electric field of laser radiation. This is a collective process converting a transparent material to the opaque state but not an individual process of any type of ionization.

  10. Time-resolved imaging of flame kernels: Laser spark ignition of H{sub 2}/O{sub 2}/Ar mixtures

    SciTech Connect

    Spiglanin, T.A.; Mcilroy, A.; Fournier, E.W.; Cohen, R.B.; Syage, J.A.

    1995-08-01

    The shape and structure of developing flame kernels in laser-induced spark ignited hydrogen/air mixtures is investigated as a function of gas composition and time. Using planar laser-induce fluorescence (PLIF) to measure the spatial distribution of OH radicals produced inside the reacting zone, the authors have recorded the evolution of the nascent flame kernel in a series of images following the laser-induced spark. This series provides the rate of flame growth, the evolution of the flame shape, and the intensity of the PLIF signal as a function of time for both igniting flames and nonignition events. The reaction zones grow quickly at early times, but slowly decrease in propagation rate as the energy density within the flame kernel decreases. A distinct anisotropy is observed in the expanding spark and flame kernel. At short times (t<100 {micro}s), as toroidal shape is observed similar to that seen previously for electrode-spark ignitions and for laser ignitions in methane/air. There is also a tendency for the flame to grow back toward the ignition laser. Successful ignitions appear virtually identical to failed ignitions during the first 100 {micro}s. Significant differences, notably in intensity, appear between 100 and 500 {micro}s following the spark. These observations imply that early flame kernel growth is dominated by gas motion induced by the short-duration spark. The ultimate fate of an ignition lies with the chemistry of the reactions which determines whether the gas undergoes a transition from hot plasma to propagating flame.

  11. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  12. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGES

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; ...

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  13. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  14. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  15. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  16. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  17. Ultrafast molecular imaging by laser-induced electron diffraction

    SciTech Connect

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-05-15

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO{sub 2} molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  18. Impact-Ionization Cooling in Laser-Induced Plasma Filaments

    SciTech Connect

    Filin, A.; Romanov, D. A.; Compton, R.; Levis, R. J.

    2009-04-17

    The ionization rates and subsequent electron dynamics for laser-induced plasma channels are measured for the noble gas series He, Ne, Ar, Kr, and Xe at 1.0 atm. The cw fluorescence emission increases superlinearly in the series from He to Xe in agreement with Ammosov-Delone-Krainov tunnel ionization calculations. The electron temperature after laser-induced plasma formation, measured by four-wave mixing, evolves from >20 eV to <1 eV kinetic energies with time constants ranging from 1 ns for He to 100 ps for Xe in agreement with an impact-ionization cooling model.

  19. Efficiency of SparkJet

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.

    2013-01-01

    The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results

  20. Are Crab nanoshots Schwinger sparks?

    SciTech Connect

    Stebbins, Albert; Yoo, Hojin

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  1. Bright Sparks of Our Future!

    NASA Astrophysics Data System (ADS)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  2. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  3. Ignition-Spark Detector for Engine Testing

    NASA Technical Reports Server (NTRS)

    Kuhr, G.

    1985-01-01

    Optical fiber views sparks directly. In fuel or oxidizer tube, optical fiber collects light from ignition spark. Fibers also used to collect light from combustion reactions for spectrographic analysis. Useful in engine testing, detector helps determine reason for engine failure.

  4. Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Lu, Y. F

    2008-04-10

    Detection of uranium in solids by using laser-induced breakdown spectroscopy has been investigated in combination with laser-induced fluorescence. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected by using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.0 nm from U II.

  5. Laser-induced collisional autoionization in europium and strontium atoms.

    PubMed

    Buffa, R

    1995-01-15

    An experiment that involves laser-induced collisional autoionization in europium and strontium atoms is proposed and the spectral line shape of the cross section is calculated on the basis of data available in the literature. The feasibility of the experiment both in oven cells and in a crossed-atomic-beam geometry is discussed.

  6. Laser-induced copper deposition with weak reducing agents

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Fateev, S. A.; Logunov, L. S.; Tumkin, I. I.; Safonov, S. V.; Khairullina, E. M.

    2013-11-01

    The study showed that organic alcohols with 1,2,3,5,6 hydroxyl groups can be used as reducing agents for laser-induced copper deposition from solutions (LCLD).Multiatomic alcohols, sorbitol, xylitol, and glycerol, are shown to be effective reducing agents for performing LCLD at glass-ceramic surfaces. High-conductivity copper tracks with good topology were synthesized.

  7. Using Laser-Induced Incandescence To Measure Soot in Exhaust

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.; Sankar, Subramanian V.

    2005-01-01

    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable.

  8. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  9. Laser-Induced Breakdown Spectroscopy of Trace Metals

    NASA Technical Reports Server (NTRS)

    Simons, Stephen (Technical Monitor); VanderWal, Randall L.; Ticich, Thomas M.; West, Joseph R., Jr.

    2004-01-01

    An alternative approach for laser-induced breakdown spectroscopy (LIBS) determination of trace metal determination in liquids is demonstrated. The limits of detection (LOD) for the technique ranged from 10 ppb to 10 ppm for 15 metals metals (Mg, Al, Si, Ca, Ti, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Hg, Pb) tested.

  10. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  11. Investigating heating dynamics in sparks

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram; Zhang, Jin; van Heesch, Bert; Ebert, Ute

    2013-04-01

    After the first streamer discharge front in a spark, heating and gas expansion sets in.This effect underlies the streamer to leader transition in air, and becomes strongerwith increasing density of the medium. We model and solve heat generation by the discharge,the thermal shock and the induced pressure wave. In particular, we investigate the electric breakdown of supercritical nitrogen and the subsequent recovery of insulation, motivated by a possible applicationas a high voltage switch.

  12. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  13. Flame-enhanced laser-induced breakdown spectroscopy.

    PubMed

    Liu, L; Li, S; He, X N; Huang, X; Zhang, C F; Fan, L S; Wang, M X; Zhou, Y S; Chen, K; Jiang, L; Silvain, J F; Lu, Y F

    2014-04-07

    Flame-enhanced laser-induced breakdown spectroscopy (LIBS) was investigated to improve the sensitivity of LIBS. It was realized by generating laser-induced plasmas in the blue outer envelope of a neutral oxy-acetylene flame. Fast imaging and temporally resolved spectroscopy of the plasmas were carried out. Enhanced intensity of up to 4 times and narrowed full width at half maximum (FWHM) down to 60% for emission lines were observed. Electron temperatures and densities were calculated to investigate the flame effects on plasma evolution. These calculated electron temperatures and densities showed that high-temperature and low-density plasmas were achieved before 4 µs in the flame environment, which has the potential to improve LIBS sensitivity and spectral resolution.

  14. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  15. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  16. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  17. Estimating explosive performance from laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer

    2015-06-01

    A laboratory-scale method for predicting explosive performance (e.g., detonation velocity and pressure) based on milligram quantities of material is currently being developed. This technique is based on schlieren imaging of the shock wave generated in air by the formation of a laser-induced plasma on the surface of an energetic material. A large suite of pure and composite conventional energetic materials has been tested. Based on the observed linear correlation between the laser-induced shock velocity and the measured performance from full-scale detonation testing, this method is a potential screening tool for the development of new energetic materials and formulations prior to detonation testing. Recent results on the extension of this method to metal-containing energetic materials will be presented.

  18. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  19. Nanosecond-gated laser induced breakdown spectroscopy in hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Do, Hyungrok

    2015-09-01

    Nanosecond-gated laser induced breakdown spectroscopy have been carried out in four different hydrocarbon gas mixtures (CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) to investigate the effect of gas species on the laser induced breakdown kinetics and resulting the plasma emission. For this purpose, each mixture that consists of different species has the same atom composition. It is found that the temporal emission spectra and the decay rates of atomic line-intensities are almost identical for the breakdowns in the four different mixtures. This finding may indicate that the breakdown plasmas of these mixtures reach a similar thermodynamic and physiochemical state after its formation, resulting in a similar trend of quenching of excited species.

  20. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  1. Lifecycle of laser-produced air sparks

    SciTech Connect

    Harilal, S. S. Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  2. Lifecycle of laser-produced air sparks

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-01

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N2+. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  3. Laser-induced gas breakdown - Spectroscopic and chemical studies.

    NASA Technical Reports Server (NTRS)

    De Montgolfier, PH.; Dumont, P.; Mille, Y.; Villermaux, J.

    1972-01-01

    Discussion of the results of several experimental investigations on laser-induced gas breakdown. The experiments included time-resolved spectroscopy, direct detection of H atoms with a TiO2 probe, and chemical reactions; each of them provided insight into the behavior of the medium at different times. Chemical reactions and explosions have been initiated by the laser beam when a plasma was created. No primary multiphotonic absorption and no macroscopic chemical reactions were observed below the breakdown threshold.

  4. Laser-induced breakdown spectroscopy for specimen analysis

    DOEpatents

    Kumar, Akshaya; Yu-Yueh, Fang; Burgess, Shane C.; Singh, Jagdish P.

    2006-08-15

    The present invention is directed to an apparatus, a system and a method for detecting the presence or absence of trace elements in a biological sample using Laser-Induced Breakdown Spectroscopy. The trace elements are used to develop a signature profile which is analyzed directly or compared with the known profile of a standard. In one aspect of the invention, the apparatus, system and method are used to detect malignant cancer cells in vivo.

  5. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    Engineering, Department of 4-6-2012 Laser-induced Multi-energy Processing in Diamond Growth Zhiqiang Xie University of Nebraska-Lincoln, zhqxie@gmail.com This...Article is brought to you for free and open access by the Electrical Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It...I would also like to deliver my special thanks to Professors Dennis R. Alexander and Natale J. Ianno from the Department of Electrical Engineering

  6. Laser-induced transient grating setup with continuously tunable period

    SciTech Connect

    Vega-Flick, A.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Khanolkar, A.; Abi Ghanem, M.; Boechler, N.; Alvarado-Gil, J. J.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  7. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon...dextromethorphan, memantine or brimonidine . The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan, memantine or brimonidine

  8. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  9. A Mouse Model for Laser-induced Choroidal Neovascularization.

    PubMed

    Shah, Ronil S; Soetikno, Brian T; Lajko, Michelle; Fawzi, Amani A

    2015-12-27

    The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.

  10. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  11. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  12. Misalignment Effects in Laser-Induced Grating Experiments.

    PubMed

    Kiefer, Johannes; Sahlberg, Anna-Lena; Hot, Dina; Aldén, Marcus; Li, Zhongshan

    2016-12-01

    Laser-induced grating spectroscopy (LIGS) is an experimental method in which two pulsed laser beams and a continuous-wave laser beam have to be superimposed under well-defined angles to generate a coherent signal beam. In this Note, the possible effects of different forms of misalignment are examined. This includes the overlap of the pump lasers as well as the influence of the probe laser alignment on the temporal profile of the signal.

  13. Laser induced tuning of cholesteric liquid crystal without alignment layers

    NASA Astrophysics Data System (ADS)

    Cheng, M.-C.; Huang, T.-C.; Lee, C.-Y.; Hsiao, Vincent K. S.

    2014-12-01

    We demonstrate a laser induced tuning effect on non-chiral azobenzene-doped CLC (Azo-CLCs) without using orientated substrate. The reversible tuning range is 90 nm under alternative violet (405 nm) and green (532 nm) laser exposure corresponded to the response time of 3 and 15 s, respectively. The current demonstrations may find applications in photoactive micro- or nano-photonic devices where orientated substrate is difficult to be incorporated.

  14. Study of fast laser induced cutting of silicon materials

    NASA Astrophysics Data System (ADS)

    Weinhold, S.; Gruner, A.; Ebert, R.; Schille, J.; Exner, H.

    2014-03-01

    We report on a fast machining process for cutting silicon wafers using laser radiation without melting or ablating and without additional pretreatment. For the laser induced cutting of silicon materials a defocused Gaussian laser beam has been guided over the wafer surface. In the course of this, the laser radiation caused a thermal induced area of tension without affecting the material in any other way. With the beginning of the tension cracking process in the laser induced area of tension emerged a crack, which could be guided by the laser radiation along any direction over the wafer surface. The achieved cutting speed was greater than 1 m/s. We present results for different material modifications and wafer thicknesses. The qualitative assessment is based on SEM images of the cutting edges. With this method it is possible to cut mono- and polycrystalline silicon wafers in a very fast and clean way, without having any waste products. Because the generated cracking edge is also very planar and has only a small roughness, with laser induced tension cracking high quality processing results are easily accessible.

  15. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  16. Laser induced plasma expansion and existence of local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Skočić, Miloš; Bukvić, Srdjan

    2016-11-01

    In this paper we present a simple model of the laser induced plasma (LIP) expansion in a low pressure surrounding atmosphere. The model is based on assumption that expansion process is dominantly governed by kinematics of the heavy particles. The model is accompanied with a simple, yet effective, Monte-Carlo simulation. Results of the simulation are compared with spectroscopic measurements of the laser induced copper plasma expanding in low pressure (200 Pa) hydrogen atmosphere. We found that characteristic expansion time of the LIP is proportional to the linear dimension of the initial volume heated up by the laser. For sufficiently large initial volume copper plasma remains in local thermodynamic equilibrium on the submicrosecond-microsecond scale. It is shown that diagnostics based on the spectral lines of the hydrogen atmosphere is not suitable for characterization of the core of the copper plasma. We have demonstrated importance of radially resolved spectroscopic measurements as a key step for correct diagnostics and understanding of laser induced plasma.

  17. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  18. Q-Switched Alexandrite Laser-induced Chrysiasis

    PubMed Central

    Victor Ross, E.

    2015-01-01

    Background: Chyriasis is an uncommon side effect that occurs in patients who are receiving prolonged treatment with either intravenous or intramuscular gold as a distinctive blue-gray pigmentation of light-exposed skin. Laser-induced chrysiasis is a rarely described phenomenon in individuals who have received systemic gold and are subsequently treated with a Q-switched laser. Purpose: To describe the characteristics of patients with laser-induced chrysiasis. Methods: The authors describe a 60-year-old woman who developed chrysiasis at Q-switched alexandrite laser treatment sites. They also reviewed the medical literature using PubMed, searching the terms chrysiasis, gold, and laser-induced. Patient reports and previous reviews of these subjects were critically assessed and the salient features are presented. Results: Including the authors’ patient, laser-induced chrysiasis has been described in five Caucasian arthritis patients (4 women and 1 man); most of the patients had received more than 8g of systemic gold therapy during a period of 3 to 13 years. Gold therapy was still occurring or had been discontinued as long as 26 years prior to laser treatment. All of the patients immediately developed blue macules at the Q-switched laser treatment site. Resolution of the dyschromia occurred in a 70-year-old woman after two treatment sessions with a long-pulsed ruby laser and the authors’ patient after a sequential series of laser sessions using a long-pulsed alexandrite laser, followed by a nonablative fractional laser and an ablative carbon dioxide laser. Conclusion: Laser-induced chrysiasis has been observed following treatment with Q-switched lasers in patients who are receiving or have previously been treated with systemic gold. It can occur decades after treatment with gold has been discontinued. Therefore, inquiry regarding a prior history of treatment with gold—particularly in older patients with arthritis—should be considered prior to treatment with a Q

  19. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  20. Laser induced fluorescence of biochemical for UV LIDAR application.

    PubMed

    Gupta, L; Sharma, R C; Razdan, A K; Maini, A K

    2014-05-01

    Laser induced fluorescence spectroscopy in the ultraviolet regime has been used for the detection of biochemical through a fiber coupled CCD detector from a distance of 2 m. The effect of concentration and laser excitation energy on the fluorescence spectra of nicotinamide adenine dinucleotide (NADH) has been investigated. The signature fluorescence peak of NADH was centred about 460 nm. At lower concentration Raman peak centred at 405 nm was also observed. The origin of this peak has been discussed. Detection limit with the proposed set up is found to be 1 ppm.

  1. Communication: Bubbles, crystals, and laser-induced nucleation

    NASA Astrophysics Data System (ADS)

    Knott, Brandon C.; LaRue, Jerry L.; Wodtke, Alec M.; Doherty, Michael F.; Peters, Baron

    2011-05-01

    Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2 bubble nucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals.

  2. Laser-induced fluorescence spectroscopy of the secondary cataract

    NASA Astrophysics Data System (ADS)

    Maslov, N. A.; Larionov, P. M.; Rozhin, I. A.; Druzhinin, I. B.; Chernykh, V. V.

    2016-06-01

    Excitation-emission matrices of laser-induced fluorescence of lens capsule epithelium, the lens nucleus, and the lens capsule are investigated. A solid-state laser in combination with an optical parametric generator tunable in the range from 210 to 350 nm was used for excitation of fluorescence. The spectra of fluorescence of all three types of tissues exhibit typical features that are specific to them and drastically differ from one another. This effect can be used for intrasurgical control of presence of residual lens capsule epithelium cells in the capsular bag after surgical treatment of a cataract.

  3. Computer simulations of laser-induced melting of aluminum

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Bai, Mingze; Dou, Yusheng; Ran, Qi; Lo, Glenn V.

    2013-04-01

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2-3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones.

  4. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    DTIC Science & Technology

    2010-07-01

    hardness) to the ratio of the intensities of an ionized calcium atomic emission line, Ca II (396.8 nm) and a calcium atomic emission line, Ca I (422.6 nm...N.; McManus, C.; Harmon, R.; De Lucia, F.; Miziolek, A. Laser-Induced Breakdown Spectroscopy Analysis of Complex Silicate Minerals—Beryl. Anal...Analysis of Minerals: Carbonates and Silicates . Spectrochim. Acta, Part B 2007, 62B (12), 1528–1536. 30. Harmon, R. S.; Remus, J.; McMillan, N. J

  5. Evidence of laser induced degradation and graphitization of aromatic pollutants

    NASA Astrophysics Data System (ADS)

    Mele, A.; Letardi, T.; di Lazarro, P.

    The laser-induced photodecomposition and graphitization of polynuclear aromatic hydrocarbons is investigated by irradiating solid pollutant samples with an Nd-YAG laser, leaving a carbon-rich, black powder. The irradiation of anthracene and benzopyrene forms the ions Cn(+)-, CnH(+)-, and CnH2(+)- in a wide plume produced by a pulsed-CO2 laser. The tendency of aromatic compounds to fragment is noted, and the notion that ion formation is governed by the mechanism that produces ablation in the laser cloud is suggested. Optical multichannel analyzer emission spectra indicate the production of the Cn species, suggesting applications to the treatment of aromatic product wastes.

  6. Laser-induced incandescence from laser-heated silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Menser, Jan; Daun, Kyle; Dreier, Thomas; Schulz, Christof

    2016-11-01

    This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

  7. Colloid formation and laser-induced bleaching in fluorite

    SciTech Connect

    LeBret, Joel B.; Cramer, Loren P.; Norton, M. Grant; Dickinson, J. T.

    2004-11-08

    Colloid formation and subsequent laser-induced bleaching in fluorite has been studied by transmission electron microscopy and electron diffraction. At high incident electron-beam (e-beam) energies, Ca colloids with diameter {approx}10 nm form a simple cubic superlattice with lattice parameter a{approx}18 nm. The colloids themselves are topotactic with the fluorite matrix forming low-energy interfaces close to a {sigma}=21 special grain boundary in cubic materials. Laser irradiation using {lambda}=532 nm has been shown to effectively bleach the e-beam-irradiated samples returning the fluorite to its monocrystalline state. The bleached samples appear more resistant to further colloid formation.

  8. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  9. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  10. Laser-Induced Breakdown Spectroscopy (LIBS): specific applications

    NASA Astrophysics Data System (ADS)

    Trtica, M. S.; Savovic, J.; Stoiljkovic, M.; Kuzmanovic, M.; Momcilovic, M.; Ciganovic, J.; Zivkovic, S.

    2015-12-01

    A short overview of Laser Induced Breakdown Spectroscopy (LIBS) with emphasis on the new trends is presented. Nowadays, due to unique features of this technique, LIBS has found applications in a great variety of fields. Achievements in the application of LIBS in nuclear area, for hazardous materials detection and in geology were considered. Also, some results recently obtained at VINCA Institute, with LIBS system based on transversely excited atmospheric (TEA) CO2 laser, are presented. Future investigations of LIBS will be oriented toward further improvement of the analytical performance of this technique, as well as on finding new application fields.

  11. Laser-Induced-Emission Spectroscopy In Hg/Ar Discharge

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah; Blasenheim, Barry J.; Janik, Gary R.

    1992-01-01

    Laser-induced-emission (LIE) spectroscopy used to probe low-pressure mercury/argon discharge to determine influence of mercury atoms in metastable 6(Sup3)P(Sub2) state on emission of light from discharge. LIE used to study all excitation processes affected by metastable population, including possible effects on excitation of atoms, ions, and buffer gas. Technique applied to emissions of other plasmas. Provides data used to make more-accurate models of such emissions, exploited by lighting and laser industries and by laboratories studying discharges. Also useful in making quantitative measurements of relative rates and cross sections of direct and two-step collisional processes involving metastable level.

  12. Laser-induced removal of organic contaminants from metal substrates

    NASA Astrophysics Data System (ADS)

    Song, Wen D.; Lu, Yongfeng; Chen, Q.; Low, Tohsiew

    1998-08-01

    Laser-induced removal of organic contaminants, such as grease and wax, on Cr substrate surfaces was studied. The laser cleaning efficiency was analyzed by an optical microscope and an Auger Electron Spectroscopy (AES). It was found that the contaminants in the irradiated area can be effectively removed by pulsed laser irradiation and cleaning efficiency can be reached to 80% above under a certain cleaning condition without damage. The damage threshold of Cr substrates was obtained by numerical simulation, which is in good consistency with the experimental threshold.

  13. Enhancement of terahertz wave generation from laser induced plasma

    SciTech Connect

    Xie Xu; Xu Jingzhou; Dai Jianming; Zhang, X.-C.

    2007-04-02

    It is well known that air plasma induced by ultrashort laser pulses emits broadband terahertz waves. The authors report the study of terahertz wave generation from the laser induced plasma where there is a preexisting plasma background. When a laser beam from a Ti:sapphire amplifier is used to generate a terahertz wave, enhancement of the generation is observed if there is another laser beam creating a plasma background. The enhancement of the terahertz wave amplitude lasts hundreds of picoseconds after the preionized background is created, with a maximum enhancement up to 250% observed.

  14. Interaction of laser-induced stress waves with metals

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.

    1979-01-01

    An investigation of the effect of high intensity laser induced stress waves on the hardness and tensile strength of 2024 and 7075 aluminum and on the fatigue properties of 7075 aluminum were investigated. Laser shocking increases the hardness of the underaged 2024-T351 but has little or no effect on the peak aged 2024-T351 and 7075-T651 or the overaged 7075-T73. The fretting fatigue life of fastener joints of 7075-T6 was increased by orders of magnitude by laser shocking the region around the fastener hole; the fatigue crack propagation rates were decreased by laser shocking.

  15. Remote sensing of phytoplankton using laser-induced fluorescence

    SciTech Connect

    Babichenko, S.; Poryvkina, L.; Arikese, V. ); Kaitala, S. ); Kuosa, H. )

    1993-06-01

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed.

  16. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  17. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  18. Laser-induced breakdown system for colloid characterization in dilute aqueous suspensions

    SciTech Connect

    Brachman, A; Mihardja, S; Palmer, C A; Wruck, D

    1999-08-11

    Detection and sizing of colloids by acoustic detection of laser-induced breakdown and elemental analysis of colloids by laser-induced breakdown spectroscopy are investigated in dilute aqueous suspensions. Development and testing of the methods are performed with standard polystyrene suspensions and prepared suspensions of defined composition and particle size. Application of the methods to analysis of field and laboratory samples is discussed. Am atomic emission lines are observed by laser-induced breakdown spectroscopy of an Am hydroxycarbonate suspension.

  19. Direct probing of chromatography columns by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    McGuffin, V. L.

    1992-12-01

    This report summarizes the progress and accomplishments of this research project from 1 Sep. 1989 to 28 Feb. 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe in supercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  20. Laser-induced nucleation of carbon dioxide bubbles

    NASA Astrophysics Data System (ADS)

    Ward, Martin R.; Jamieson, William J.; Leckey, Claire A.; Alexander, Andrew J.

    2015-04-01

    A detailed experimental study of laser-induced nucleation (LIN) of carbon dioxide (CO2) gas bubbles is presented. Water and aqueous sucrose solutions supersaturated with CO2 were exposed to single nanosecond pulses (5 ns, 532 nm, 2.4-14.5 MW cm-2) and femtosecond pulses (110 fs, 800 nm, 0.028-11 GW cm-2) of laser light. No bubbles were observed with the femtosecond pulses, even at high peak power densities (11 GW cm-2). For the nanosecond pulses, the number of bubbles produced per pulse showed a quadratic dependence on laser power, with a distinct power threshold below which no bubbles were observed. The number of bubbles observed increases linearly with sucrose concentration. It was found that filtering of solutions reduces the number of bubbles significantly. Although the femtosecond pulses have higher peak power densities than the nanosecond pulses, they have lower energy densities per pulse. A simple model for LIN of CO2 is presented, based on heating of nanoparticles to produce vapor bubbles that must expand to reach a critical bubble radius to continue growth. The results suggest that non-photochemical laser-induced nucleation of crystals could also be caused by heating of nanoparticles.

  1. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  2. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  3. Kr II laser-induced fluorescence for measuring plasma acceleration.

    PubMed

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  4. Kr II laser-induced fluorescence for measuring plasma acceleration

    NASA Astrophysics Data System (ADS)

    Hargus, W. A.; Azarnia, G. M.; Nakles, M. R.

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d4D7/2 to the 5p ^4P^circ _{5/2} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d4D7/2-5p ^4P^circ _{5/2} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  5. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  6. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  7. A model for traumatic brain injury using laser induced shockwaves

    NASA Astrophysics Data System (ADS)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  8. Laser-induced fluorescence detection of stomach cancer using hypericin

    NASA Astrophysics Data System (ADS)

    Dets, Sergiy M.; Buryi, Alexander N.; Melnik, Ivan S.; Joffe, Alexander Y.; Rusina, Tatyana V.

    1996-12-01

    Natural photodynamic pigment hypericin having intrinsic antitumor properties was applied for fluorescence detection of cancer. Clinical investigation of hypericin was performed to ensure high tumor/normal fluorescence contrast in digestion organs. Laser-induced autofluorescence and exogenous fluorescence analysis of normal tissue and stomach adenocarcinoma was performed using helium-cadmium laser (8 mW, 442 nm). Twenty-one patients have undergone procedure of fluorescence detection of tumors before and after photosensitization. For sensitization of patients we used five or seven capsules containing hypericin in amount of 1 mg which have been administered orally. Strong yellow-red fluorescence of hypericin in tissue with maximum at 603 nm and autofluorescence peak at 535 nm gives an intensity ratio I(603 nm)/I(535 nm) of 2 - 2.5 from cancerous tissue and provides 85% specificity. Preliminary in vivo results of auto- and fluorescence analysis using hypericin photosensitization from one patient with esophageal cancer and eleven patients with stomach cancer proven histologically are encouraging and indicate the high reliability of laser-induced fluorescence technique with hypericin in detection of early stage malignant lesions.

  9. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    PubMed Central

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  10. Microwave scattering from laser spark in air

    SciTech Connect

    Sawyer, Jordan; Zhang Zhili; Shneider, Mikhail N.

    2012-09-15

    In this paper, microwave Mie scattering from a laser-induced plasma in atmospheric air is computed. It shows that the scattered microwave transitions from coherent Rayleigh scattering to Mie scattering based on the relative transparency of the laser-induced plasma at the microwave frequency. The microwave penetration in the plasma alters from total transparency to partial shielding due to the sharp increase of the electron number density within the avalanche ionization phase. The transition from Rayleigh scattering to Mie scattering is verified by both the temporal evolution of the scattered microwave and the homogeneity of polar scattering plots.

  11. Spectral Interference Elimination in Soil Analysis Using Laser-Induced Breakdown Spectroscopy Assisted by Laser-Induced Fluorescence.

    PubMed

    Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zhou, Ran; Yu, Huiwu; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan; Lu, Yongfeng

    2017-02-21

    The complex and serious spectral interference makes it difficult to detect trace elements in soil using laser-induced breakdown spectroscopy (LIBS). To address it, LIBS-assisted by laser-induced fluorescence (LIBS-LIF) was applied to selectively enhance the spectral intensities of the interfered lines. Utilizing this selective enhancement effect, all the interference lines could be eliminated. As an example, the Pb I 405.78 nm line was enhanced selectively. The results showed that the determination coefficient (R(2)) of calibration curve (Pb concentration range = 14-94 ppm), the relative standard deviation (RSD) of spectral intensities, and the limit of detection (LOD) for Pb element were improved from 0.6235 to 0.9802, 10.18% to 4.77%, and 24 ppm to 0.6 ppm using LIBS-LIF, respectively. These demonstrate that LIBS-LIF can eliminate spectral interference effectively and improve the ability of LIBS to detect trace heavy metals in soil.

  12. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Wang, H.; Xie, Z. Q.; Gao, Y.; Ling, H.; Lu, Y. F.

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10{sup 6}(ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.

  13. Spark discharge in conductive liquid with microbubbles

    NASA Astrophysics Data System (ADS)

    Vetchinin, S. P.; Vasilyak, L. M.; Pecherkin, V. Ya; Panov, V. A.; Son, E. E.

    2016-11-01

    Pulse electrical breakdown in 15% water solution of Isopropyl alcohol with air microbubbles from a pointed anode has been studied experimentally. It is shown, that the breakdown is always initiated from the bright region near the anode (anode “spot”). Detailed investigation into dynamic current-voltage characteristics and synchronized images reveals that it is thermal instability in the near anode region that causes spark channel initiation and development. The breakdown voltage, spark channel propagation speed and short-circuit current increase when the microbubbles are presented in the solution. The spark channel propagation speed is about 4-12 m/s and grows along with microbubbles concentration.

  14. What makes a good spark plug?

    NASA Astrophysics Data System (ADS)

    Yu, Andrew

    2006-05-01

    The quality and condition of spark plugs play a key role in achieving peak efficiency of a gasoline internal combustion engine. Since the first mass-produced spark plug, the design has remained constant, but the materials used in making them have changed. The original copper and nickel center and ground electrodes have been replaced with materials such as platinum and iridium. I will study the thermal and electrical conductivity and resistance to corrosion of a variety of spark plugs, and compare their performance to manufacturer's claims.

  15. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence.

    PubMed

    Storch, Michael; Lind, Susanne; Will, Stefan; Zigan, Lars

    2016-10-20

    In this work, the planar laser-induced fluorescence of a fuel tracer is applied for the analysis of mixture formation for various ethanol/iso-octane blends in a direct-injection spark-ignition (DISI) engine. The tracer triethylamine (TEA) was added to pure iso-octane and ethanol as well as to their blends E20 and E85 for the measurement of the fuel/air ratio. In general, ethanol blending strongly affects the mixture formation process, which is caused by specific physical fuel properties influencing the evaporation process of ethanol in comparison to iso-octane. As interactions of the fuel and tracer fluorescence appear possible, TEA fluorescence was studied for different fuel blends in a cuvette, in a calibration cell under constant conditions, and in an optically accessible internal combustion engine at late injection timing. It was found that ethanol blending strongly affects the fluorescence intensity of TEA in the liquid phase, which can be explained by the interaction of the tracer and ethanol molecules. However, in the gas phase a quantification of the fuel/air ratio is possible for different ethanol fuel blends, which is demonstrated in a DISI engine. Under stratified charge conditions the engine results showed a significant impact of a high amount of ethanol on the mixture formation process, leading to a leaner mixture in comparison to iso-octane.

  16. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

    NASA Astrophysics Data System (ADS)

    Feinaeugle, M.; Gregorčič, P.; Heath, D. J.; Mills, B.; Eason, R. W.

    2017-02-01

    We have studied the transfer regimes and dynamics of polymer flyers from laser-induced backward transfer (LIBT) via time-resolved shadowgraphy. Imaging of the flyer ejection phase of LIBT of 3.8 μm and 6.4 μm thick SU-8 polymer films on germanium and silicon carrier substrates was performed over a time delay range of 1.4-16.4 μs after arrival of the laser pulse. The experiments were carried out with 150 fs, 800 nm pulses spatially shaped using a digital micromirror device, and laser fluences of up to 3.5 J/cm2 while images were recorded via a CCD camera and a spark discharge lamp. Velocities of flyers found in the range of 6-20 m/s, and the intact and fragmented ejection regimes, were a function of donor thickness, carrier and laser fluence. The crater profile of the donor after transfer and the resulting flyer profile indicated different flyer ejection modes for Si carriers and high fluences. The results contribute to better understanding of the LIBT process, and help to determine experimental parameters for successful LIBT of intact deposits.

  17. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  18. Laser induced irreversible absorption changes in alkali halides at 10.6 µm

    NASA Astrophysics Data System (ADS)

    Wu, S.-T.; Bass, M.

    1981-12-01

    Laser induced irreversible changes in the absorption of alkali halides has been observed by using repetitively pulsed laser calorimetry. These changes occur at intensities below that required for laser induced breakdown and necessitate a change in the definition of laser damage threshold. A simple model is proposed to explain these observations based on the accumulation of microscopic failures as a result of each pulse.

  19. Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown

    PubMed Central

    Varghese, Babu; Bonito, Valentina; Jurna, Martin; Palero, Jonathan; Verhagen, Margaret Hortonand Rieko

    2015-01-01

    We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown. Furthermore, irradiance threshold gradually decreases with the increase in the absorption properties of the medium. Creating breakdown with lower irradiance threshold that is specific at the target chromophore can provide intrinsic target selectivity and improve safety and efficacy of skin treatment methods that use laser induced breakdown. PMID:25909007

  20. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

  1. Microfabrication of Fresnel zone plates by laser induced solid ablation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Thomas, John; Santhosh, Chidangil; Ramachandran, Hema; Mathur, Deepak

    2016-07-01

    A novel and simple single-step method of inscribing optical elements on metal-coated transparent substrates is demonstrated. Laser induced solid ablation (LISA) demands very low laser energies (nJ), as can be amply provided by a femtosecond laser oscillator. Here, LISA is used to write Fresnel zone plates on indium and tungsten coated glass. With up to 100 zones, remarkable agreement is obtained between measured and expected values of the focal length. LISA has enabled attainment of focal spot sizes that are 38% smaller than what would be obtained using conventional lenses of the same numerical aperture. The simplicity with which a high degree of automation can readily be achieved using LISA makes this cost-effective method amenable to a wide variety of applications related to microfabrication of optical elements.

  2. Digital barcodes of suspension array using laser induced breakdown spectroscopy

    PubMed Central

    He, Qinghua; Liu, Yixi; He, Yonghong; Zhu, Liang; Zhang, Yilong; Shen, Zhiyuan

    2016-01-01

    We show a coding method of suspension array based on the laser induced breakdown spectroscopy (LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in accuracy and stability to current fluorescent multicolor coding method. This demonstration increases the capability of multiplexed detection and accurate filtrating, expanding more extensive applications of suspension array in life science. PMID:27808270

  3. Containerless study of metal evaporation by laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, Robert A.; Nordine, Paul C.

    1987-01-01

    Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.

  4. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.

    PubMed

    Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K

    2014-06-05

    In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.

  5. Dynamic response of shear thickening fluid under laser induced shock

    SciTech Connect

    Wu, Xianqian Yin, Qiuyun; Huang, Chenguang; Zhong, Fachun

    2015-02-16

    The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.

  6. Printing biological solutions through laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Duocastella, M.; Fernández-Pradas, J. M.; Domínguez, J.; Serra, P.; Morenza, J. L.

    2008-12-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique adequate for the high-resolution printing of a wide range of materials, including biological molecules. In this article, the preparation through LIFT of microarrays of droplets from a solution containing rabbit antibody immunoglobulin G (IgG) is presented. The microarrays were prepared at different laser pulse energy conditions, obtaining microdroplets with a circular and well-defined contour. The transfer process has a double threshold: a minimum energy density required to generate an impulsion on the liquid film, and a minimum pulse energy, which corresponds to the onset for material ejection. In addition, it was demonstrated that the transfer process can be correctly described through a simple model which relates the energy density threshold with the amount of released material. Finally, a fluorescence assay was carried out in which the preservation of the activity of the transferred biomolecules was demonstrated.

  7. Apparatus, system, and method for laser-induced breakdown spectroscopy

    SciTech Connect

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  8. Laser-induced single point nanowelding of silver nanowires

    NASA Astrophysics Data System (ADS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-03-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  9. Laser-induced periodic surface structures: Fingerprints of light localization

    NASA Astrophysics Data System (ADS)

    Skolski, J. Z. P.; Römer, G. R. B. E.; Obona, J. V.; Ocelik, V.; Huis in't Veld, A. J.; de Hosson, J. Th. M.

    2012-02-01

    The finite-difference time-domain (FDTD) method is used to study the inhomogeneous absorption of linearly polarized laser radiation below a rough surface. The results are first analyzed in the frequency domain and compared to the efficacy factor theory of Sipe and coworkers. Both approaches show that the absorbed energy shows a periodic nature, not only in the direction orthogonal to the laser polarization, but also in the direction parallel to it. It is shown that the periodicity is not always close to the laser wavelength for the perpendicular direction. In the parallel direction, the periodicity is about λ/Re(ñ), with ñ being the complex refractive index of the medium. The space-domain FDTD results show a periodicity in the inhomogeneous energy absorption similar to the periodicity of the low- and high-spatial-frequency laser-induced periodic surface structures depending on the material's excitation.

  10. Femtosecond laser-induced modification at aluminum/diamond interface

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuya; Tomita, Takuro; Ueki, Tomoyuki; Masai, Yuki; Bando, Yota; Tanaka, Yasuhiro

    2017-02-01

    We investigated femtosecond-laser-induced modification at an Al/diamond interface. The interface was irradiated from the backside through the diamond substrate, which is transparent to the laser beam. Extremely high pulse energies, i.e., 200 and 100 µJ/pulse, were used to irradiate the interface. The cross-section of the laser-irradiated line was observed with conventional and high-voltage transmission electron microscopy. The modification of the laser-irradiated interface was characterized by the formation of an amorphous phase sandwiched between the deformed Al film and the diamond substrate. The major chemical component of the amorphous phase was identified as carbon, blown from the diamond substrate. The newly formed interface between the amorphous phase and the diamond substrate was concave. In addition, a fine ripple structure with an average spacing one-quarter the wavelength of the laser light was formed only in the sample irradiated by the higher-energy pulses.

  11. Laser-induced phase separation of silicon carbide.

    PubMed

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M; Im, James S; Ruoff, Rodney S; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-30

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  12. Analysis of fresco by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.

    2010-08-01

    The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.

  13. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

    SciTech Connect

    Singh, Vivek K.; Singh, Vinita; Rai, Awadhesh K.; Thakur, Surya N.; Rai, Pradeep K.; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  14. Laser-induced stress transients: applications for molecular delivery

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Lee, Shun; Zhang, Hong; McAuliffe, Daniel J.; Douki, Tina; Doukas, Apostolos G.

    1995-05-01

    Lasers can be used to enhance the delivery of a number of molecules. Other investigators have demonstrated local release of molecules from liposomes following laser irradiation, microbeam disruption of the cell membrane to increase cell transport, microbeam ablation of the zona pellucida surrounding the ovum to increase the chances of fertilization, and increased transcutaneous transport following ablation of the stratum corneum. Our experiments have shown that laser-induced stress transients can be utilized as a vector for intracellular delivery of molecules that may or may not normally cross the cell membrane. These two conditions have been tested with Photofrin and DNA. This technology may have applications in cell and molecular biology, cancer therapy, gene therapy, and others.

  15. Laser-induced jet formation in liquid films

    NASA Astrophysics Data System (ADS)

    Brasz, Frederik; Arnold, Craig

    2014-11-01

    The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.

  16. Investigation of the laser-induced damage of dispersive coatings

    NASA Astrophysics Data System (ADS)

    Angelov, Ivan B.; von Conta, Aaron; Trushin, Sergei A.; Major, Zsuzsanna; Karsch, Stefan; Krausz, Ferenc; Pervak, Vladimir

    2011-12-01

    Different dispersive coatings were tested in terms of laser-induced damage threshold by using a Ti:Sapphire laser yielding 1 mJ, 30 fs pulses at 500 Hz repetition rate at 790 nm central wavelength. The beam was focused down to 140 μm. Single layer coatings of Au, Ag, Nb2O5, SiO2, Ta2O5 and mixtures of Ta2O5 and silica were examined as well as different dispersive coatings. We observed a direct dependence of the damage threshold on the band gap of the materials used to produce the different samples. The damage threshold values for the dispersive coatings employing the same high index material lay within a range of 30% of each other.

  17. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  18. Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Syzdek, Jaroslaw; Mao, Xianglei; Russo, Richard E.; Kostecki, Robert

    2012-06-01

    Direct chemical analysis of electrode/electrolyte interfaces can provide critical information on surface phenomena that define and control the performance of Li-based battery systems. In this work, we introduce the use of ex situ femtosecond laser induced breakdown spectroscopy to probe compositional variations within the solid electrolyte interphase (SEI) layer. Nanometer-scale depth resolution was achieved for elemental and molecular depth profiling of SEI layers formed on highly oriented pyrolytic graphite electrodes in an organic carbonate-based electrolyte. This work demonstrates the unique ability of ultrafast laser spectroscopy as a highly versatile, light element-sensitive technique for direct chemical analysis of interfacial layers in electrochemical energy storage systems.

  19. OH Planar Laser-Induced Fluorescence from Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Wegge, Jason; Kang, Kyung-Tae

    1997-01-01

    Droplet combustion under microgravity conditions has been extensively studied, but laser diagnostics have just begun to be employed in microgravity droplet experiments. This is due in part to the level of difficulty associated with laser system size, power and economic availability. Hydroxyl radical (OH) is an important product of combustion, and laser-induced fluorescence (LIF) has proved to be an adequate and sensitive tool to measure OH. In this study, a frequency doubled Nd:YAG laser and a doubled dye laser, compact and reliable enough to perform OH PLIF experiments aboard a parabolic flight-path aircraft, has been developed and successfully demonstrated in a methanol droplet flame experiment. Application to microgravity conditions is planned aboard parabolic flight-path aircraft.

  20. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  1. Laser-induced breakdown spectroscopy analysis of energetic materials

    NASA Astrophysics Data System (ADS)

    de Lucia, Frank C.; Harmon, Russell S.; McNesby, Kevin L.; Winkel, Raymond J.; Miziolek, Andrzej W.

    2003-10-01

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

  2. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  3. Laser-Induced Acoustic Desorption of Natural and Functionalized Biochromophores

    PubMed Central

    2015-01-01

    Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10 000 Da. PMID:25946522

  4. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  5. Laser-induced phase separation of silicon carbide

    NASA Astrophysics Data System (ADS)

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (~2.5 nm) and polycrystalline silicon (~5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  6. Analytical study of seashell using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ying, LI; Yanhong, GU; Ying, Zhang; Yuandong, LI; Yuan, LU

    2017-02-01

    Seashell has been applied as an indicator for ocean research and element analysis of the seashell is used to track biological or environmental evolution. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for elementary analysis of an ezo scallop-shell, and a graphite enrichment method was used as the assistance. It was found that LIBS signal intensity of Ca fluctuated less than 5%, in spite of the sampling positions, and Sr/Ca was related to the shell growth. A similar variation was also found when using a direct LIBS analysis on the shell surface, and it might be more practicable to track shell growth by investigating Sr/Ca ratio with Sr ionic line at 421.6 nm. The obtained results prove that calcium (Ca) is qualified as an internal reference for shell analysis, and LIBS is a potential analytical method for seashell study.

  7. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  8. Laser induced sonofusion: A new road toward thermonuclear reactions

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, Rasoul; Gheshlaghi, Maryam

    2016-03-01

    The Possibility of the laser assisted sonofusion is studied via single bubble sonoluminescence (SBSL) in Deuterated acetone (C3D6O) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and -28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 106 K in hydro-chemical model and it is reached up to 1.9 × 106 K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 107 K can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

  9. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  10. Collisional Effects On Laser-Induced Fluorescence Flame Measurements

    NASA Astrophysics Data System (ADS)

    Crosley, David R.

    1981-08-01

    Abstract. Laser-induced fluorescence (LIF) is a method of considerable utility for the measurement of the transient free radicals which are the keys to the chemistry of flames. Collisions experienced by the electronically excited state can alter the magnitude and the spectral form of the fluorescence signals. Recent studies on both quenching and energy transfer collisions, and their influence on LIF measurements, are treated in this review; special emphasis is given to the important and popular OH molecule. Different solutions to the problem of accounting for quenching are considered, and both effects and exploitation of energy transfer within the excited state are discussed. Although further research is needed to better quantify these collisional effects, LIF can currently provide data significant for the understanding of combustion chemistry.

  11. Laser-induced acoustic desorption of natural and functionalized biochromophores.

    PubMed

    Sezer, Uğur; Wörner, Lisa; Horak, Johannes; Felix, Lukas; Tüxen, Jens; Götz, Christoph; Vaziri, Alipasha; Mayor, Marcel; Arndt, Markus

    2015-06-02

    Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10,000 Da.

  12. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  13. Discriminating crude oil grades using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Hussein, A.; Marzouk, A.; Harith, M. A.

    2015-11-01

    The analysis of crude oil using laser-based analytical techniques such as laser-induced breakdown spectroscopy (LIBS) has become of great interest to various specialists in different fields such as geology, petro-chemistry and environmental science. In this work, a detailed study is presented wherein the implementation of an efficient and simple LIBS technique to identify the elemental constituents of crude oil and to distinguish between different grades of petroleum crude oil is discussed. Laser-induced plasma (LIP) technique has been used in this work for direct measurements of atomic, ionic and molecular species in dry crude oil samples with API gravities ranging between 18 and 36. The technique was implemented using the first harmonic of a pulsed Nd-YAG laser source. Atomic and molecular emission bands were observed, consisting of characteristic spectral lines of atoms and diatomic molecular bands, namely from C, H, Si, Na, Ca, Mg, AL, Fe, Ti, Mo, C2 and CN. The intensities of high-resolution spectral lines for some atoms and molecules of elements such as Ca, Na, Fe, Mo, C2 and CN were evaluated at different wavelengths along the obtained spectra. The molecular bands and the elemental spectral lines were used to assess the possibility of adopting the LIBS technique in differentiating between crude oil samples with different American Petroleum Institute (API) gravity values. The results indicate the presence of a distinct correlation between the API gravity values of the various oil samples and the spectral line intensities of the elements and some molecular radical constituents. In addition, the possibility of identifying the API gravity values of unknown oil samples is also indicated.

  14. Noninvasive thermography of laser-induced hyperthermia using magnetic resonance

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Glickman, Randolph D.; Dodd, Stephen J.; Gao, Jia Hong

    2004-07-01

    The possibility to induce selective hyperthermia in a target tissue or organ is of great interest for the treatment of cancer and other diseases. An emerging application of thermotherapy is for choroidal neovascularization, a complication of age-related macular degeneration. The therapy is currently limited because the temperature required for optimal tissue response is unknown. We report here an investigation of near infrared laser-induced heating in an ocular phantom. Magnetic resonance thermography (MRT) was used as a non-invasive method to determine the temperature distribution inside the phantom during exposure to a continuous wave diode laser at 806 nm wavelength with 1 watt maximum output. The laser beam had a quasi-gaussian profile, with a radius of 0.8-2.4 mm at target. High quality temperature images were obtained from temperature-dependent phase shifts in the proton resonance frequency with a resolution of 1deg C or better, using a 2T magnet. A phantom with a layer of bovine RPE melanin of 1.5 mm thickness was used to determine the spatial resolution of the MRT measurements. Three dimensional temperature maps were also constructed showing a spatial resolution of 0.25 mm in all direction. The heat distribution depended on the laser parameters, as well as the orientation of the melanin layer with respect to the incident laser beam. The temperature profiles determined by MRT closely followed predictions of a heat diffusion model, based on the optical properties of infrared light in melanin. These results support the use of MRT to optimize laser-induced hyperthermia in a small organ such as the eye.

  15. Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics

    SciTech Connect

    Carr, Christopher Wren

    2003-09-23

    The mechanisms by which transparent dielectrics damage when exposed to high power laser radiation has been of scientific and technological interest since the invention of the laser. In this work, a set of three experiments are presented which provide insight into the damage initiation mechanisms and the processes involved in laser-induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of order KbT, are observed in the damage threshold at photon energies associated with the number of photons (3→2 or 4→3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multi-photon process in which the order is reduced through excited defect state absorption. In-situ fluorescence microscopy, in conjunction with theoretical calculations by Liu et al., has been used to establish that hydrogen displacement defects are potentially responsible for the reduction in the multi-photon cross-section. During the damage process, the material absorbs energy from the laser pulse and produces an ionized region that gives rise to broadband emission. By performing a time-resolved investigation of this emission, we demonstrate both that it is blackbody in nature, and we provide the first direct measurement of the localized temperature during and following laser damage initiation for various optical materials. For excitation using nanosecond laser pulses, the plasma, when confined in the bulk, is in thermal equilibrium with the lattice. These results allow for a detailed characterization of temperature, pressure, and electron densities occurring during laser-induced damage.

  16. Titanium monoxide spectroscopy following laser-induced optical breakdown

    NASA Astrophysics Data System (ADS)

    Parigger, Christian G.; Woods, Alexander C.; Keszler, Anna; Nemes, László; Hornkohl, James O.

    2012-07-01

    This work investigates Titanium Monoxide (TiO) in ablation-plasma by employing laser-induced breakdown spectroscopy (LIBS) with 1 to 10 TW/cm2 irradiance, pulsed, 13 nanosecond, Q-switched Nd:YAG laser radiation at the fundamental wavelength of 1064 nm. The analysis of TiO is based on our first accurate determination of transition line strengths for selected TiO A-X, B-X, and E-X transitions, particularly TiO A-X γ and B-X γ' bands. Electric dipole line strengths for the A3Φ-X3δ and B3Π-X3δ bands of TiO are computed. The molecular TiO spectra are observed subsequent to laser-induced breakdown (LIB). We discuss analysis of diatomic molecular spectra that may occur simultaneously with spectra originating from atomic species. Gated detection is applied to investigate the development in time of the emission spectra following LIB. Collected emission spectra allow one to infer micro-plasma parameters such as temperature and electron density. Insight into the state of the micro-plasma is gained by comparing measurements with predictions of atomic and molecular spectra. Nonlinear fitting of recorded and computed diatomic spectra provides the basis for molecular diagnostics, while atomic species may overlap and are simultaneously identified. Molecular diagnostic approaches similar to TiO have been performed for diatomic molecules such as AlO, C2, CN, CH, N2, NH, NO and OH.

  17. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  18. Kr II laser-induced fluorescence for measuring plasma acceleration

    SciTech Connect

    Hargus, W. A. Jr.

    2012-10-15

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d{sup 4}D{sub 7/2} to the 5p{sup 4}P{sub 5/2}{sup Ring-Operator} state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d{sup 4}D{sub 7/2}-5p{sup 4}P{sub 5/2}{sup Ring-Operator} transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  19. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  20. Titian: Data Provenance Support in Spark.

    PubMed

    Interlandi, Matteo; Shah, Kshitij; Tetali, Sai Deep; Gulzar, Muhammad Ali; Yoo, Seunghyun; Kim, Miryung; Millstein, Todd; Condie, Tyson

    2015-11-01

    Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and time consuming effort. Today's DISC systems offer very little tooling for debugging programs, and as a result programmers spend countless hours collecting evidence (e.g., from log files) and performing trial and error debugging. To aid this effort, we built Titian, a library that enables data provenance-tracking data through transformations-in Apache Spark. Data scientists using the Titian Spark extension will be able to quickly identify the input data at the root cause of a potential bug or outlier result. Titian is built directly into the Spark platform and offers data provenance support at interactive speeds-orders-of-magnitude faster than alternative solutions-while minimally impacting Spark job performance; observed overheads for capturing data lineage rarely exceed 30% above the baseline job execution time.

  1. Titian: Data Provenance Support in Spark

    PubMed Central

    Interlandi, Matteo; Shah, Kshitij; Tetali, Sai Deep; Gulzar, Muhammad Ali; Yoo, Seunghyun; Kim, Miryung; Millstein, Todd; Condie, Tyson

    2015-01-01

    Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and time consuming effort. Today’s DISC systems offer very little tooling for debugging programs, and as a result programmers spend countless hours collecting evidence (e.g., from log files) and performing trial and error debugging. To aid this effort, we built Titian, a library that enables data provenance—tracking data through transformations—in Apache Spark. Data scientists using the Titian Spark extension will be able to quickly identify the input data at the root cause of a potential bug or outlier result. Titian is built directly into the Spark platform and offers data provenance support at interactive speeds—orders-of-magnitude faster than alternative solutions—while minimally impacting Spark job performance; observed overheads for capturing data lineage rarely exceed 30% above the baseline job execution time. PMID:26726305

  2. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  3. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  4. Investigations Into Alternate Spark Gap Switching Techniques

    DTIC Science & Technology

    1994-09-01

    2 2. Spark gap in inactive sttge ............................................ 4 3. High voltage relay closing...spark gap in an inactive state with the high voltage relay open. The relay switch has very little contact capacitance, so the trigger resisters remain...open) Figure 2. Bork ggn in inactive stnM TRIGGER ARC CHARGE 200K_--- 100 CAPACITOR ohms_ _ _ ohms HIGH VOLTAGE SWITCH (closed) Figure 3. High voltaq

  5. Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures.

    PubMed

    Babankova, Dagmar; Civis, Svatopluk; Juha, Libor; Bittner, Michal; Cihelka, Jaroslav; Pfeifer, Miroslav; Skala, Jirí; Bartnik, Andrzej; Fiedorowicz, Henryk; Mikolajczyk, Janusz; Ryć, Leszek; Sedivcova, Tereza

    2006-11-09

    Large-scale plasma was created in molecular gases (CO, CO2, N2, H2O) and their mixtures by high-power laser-induced dielectric breakdown (LIDB). Compositions of the mixtures used are those suggested for the early earth's atmosphere of neutral and/or mildly reducing character. Time-integrated optical spectra emitted from the laser spark have been measured and analyzed. The spectra of the plasma generated in the CO-containing mixtures are dominated by emission of both C2 and CN radicals. A vibrational temperature of approximately 10(4) K was determined according to an intensity distribution in a vibronic structure of the CN (B2Sigma(+)u-X2Sigma(+)g) violet band. For comparison, the NH3-CH4-H2-H2O mixture has been irradiated as a model of the strongly reducing version of the early earth's atmosphere. In this mixture, excited CN seems to be significantly less abundant than C2. The LIDB experiments were in the molecular gases carried out not only in the static cell but also using a large, double stream pulse jet (gas puff target) placed in the vacuum interaction chamber. The obtained soft X-ray emission spectra indicate the presence of highly charged atomic ions in the hot core of high-power laser sparks.

  6. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  7. Resistance of a water spark.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  8. Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cau, M.; Dorval, N.; Attal-Trétout, B.; Cochon, J.-L.; Foutel-Richard, A.; Loiseau, A.; Krüger, V.; Tsurikov, M.; Scott, C. D.

    2010-04-01

    Gas-phase production of carbon nanotubes in presence of a metal catalyst with a continuous wave CO2 laser is investigated by combining coherent anti-Stokes Raman scattering (CARS), laser-induced fluorescence (LIF), and laser-induced incandescence (LII). These in situ techniques provide a unique investigation of the different transformation processes of the primarily carbon and metal vapors issued from the vaporization of the target by the laser and the temperature at which these processes occur. Continuous-wave laser provides with stable continuous vaporization conditions very well suited for such in situ investigations. Temperature profiles inside the reactor are known from CARS measurements and flow calculations. Carbon soot, density, and size of carbon aggregates are determined by LII measurements. LIF measurements are used to study the gas phases, namely, C2 and C3 radicals which are the very first steps of carbon recombination, and metal catalysts gas phase. Spectral investigations allow us to discriminate the signal from each species by selecting the correct pair of excitation/detection wavelengths. Spatial distributions of the different species are measured as a function of target composition and temperature. The comparison of LIF and LII signals allow us to correlate the spatial evolution of gas and soot in the scope of the different steps of the nanotube growth already proposed in the literature and to identify the impact of the chemical nature of the catalyst on carbon condensation and nanotube nucleation. Our study presents the first direct evidence of the nanotube onset and that the nucleation proceeds from a dissolution-segregation process from metal particles as assumed in the well-known vapor-liquid-solid model. Comparison of different catalysts reveals that this process is strongly favored when Ni is present.

  9. The effect of electrode temperature on the sparking voltage of short spark gaps

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1924-01-01

    This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.

  10. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1996-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated as one of the enabling technologies for advanced energy systems. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that promises an order of magnitude increase in deposition rates and achievable coating thicknesses. Since this regime borders on and exceeds the normal operating limits of existing ESD electronic equipment, development is in progress to produce equipment that can consistently and reliably achieve these conditions for a broad range of materials. Progress so far has resulted in a consistent 500% increase in deposition rates, and greater rates still are anticipated. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, the incorporation of the process into the operations of a major gas turbine manufacturer, major new applications in gas turbine blade and steam turbine blade protection and repair, and in military, medical, metal-working, and recreational equipment applications.

  11. Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications

    SciTech Connect

    Barefield Il, James E; Clegg, Samuel M; Le, Loan A; Lopez, Leon N

    2010-01-01

    In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements

  12. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  13. In Vitro Effect of Laser-Induced Hydrodynamics on Cancer Cells.

    PubMed

    Elagin, V V; Pavlikov, A I; Yusupov, V I; Shirmanova, M V; Zagaynova, E V; Bagratashvili, V N

    2015-11-01

    We studied the effect of laser-induced hydrodynamic on viability of Colo-26 murine colon carcinoma cells in vitro. Laser-induced hydrodynamics was generated by a laser (λ=1.56 μ, power 3 W, 5 min exposure); to this end, the fiber end was submersed into a buffer above the cell monolayer. It was found that laser-induced hydrodynamics destructed the monolayer at standoff distances of between the working end of the laser fiber to cell monolayer of 1 and 5 mm and triggers apoptotic and necrotic death in remaining cells at a distance of 4 mm from the emitter.

  14. Spark discharge coupled laser multicharged ion source.

    PubMed

    Shaim, Md Haider A; Elsayed-Ali, Hani E

    2015-07-01

    A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm(2)) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with charge state up to Al(3+). When the spark amplification stage is used (0.1 μF capacitor charged to 5.0 kV), the total charge measured increases by a factor of ∼9 with up to Al(6+) charge observed. Using laser pulse energy of 45 mJ, charge amplification by a factor of ∼13 was observed for a capacitor voltage of 4.5 kV. The spark discharge increases the multicharged ion generation without increasing target ablation, which solely results from the laser pulse. This allows for increased multicharged ion generation with relatively low laser energy pulses and less damage to the surface of the target.

  15. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  16. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  17. Laser-induced breakdown spectroscopy in industrial and security applications

    SciTech Connect

    Bol'shakov, Alexander A.; Yoo, Jong H.; Liu Chunyi; Plumer, John R.; Russo, Richard E.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) offers rapid, localized chemical analysis of solid or liquid materials with high spatial resolution in lateral and depth profiling, without the need for sample preparation. Principal component analysis and partial least squares algorithms were applied to identify a variety of complex organic and inorganic samples. This work illustrates how LIBS analyzers can answer a multitude of real-world needs for rapid analysis, such as determination of lead in paint and children's toys, analysis of electronic and solder materials, quality control of fiberglass panels, discrimination of coffee beans from different vendors, and identification of generic versus brand-name drugs. Lateral and depth profiling was performed on children's toys and paint layers. Traditional one-element calibration or multivariate chemometric procedures were applied for elemental quantification, from single laser shot determination of metal traces at {approx}10 {mu}g/g to determination of halogens at 90 {mu}g/g using 50-shot spectral accumulation. The effectiveness of LIBS for security applications was demonstrated in the field by testing the 50-m standoff LIBS rasterizing detector.

  18. Laser-Induced Incandescence Measurements in Low Gravity

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.

    1997-01-01

    A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.

  19. Laser-induced thermoelastic effects can evoke tactile sensations

    PubMed Central

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  20. Theory of terahertz emission from femtosecond-laser-induced microplasmas.

    PubMed

    Thiele, I; Nuter, R; Bousquet, B; Tikhonchuk, V; Skupin, S; Davoine, X; Gremillet, L; Bergé, L

    2016-12-01

    We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.

  1. Sample treatment and preparation for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Jantzi, Sarah C.; Motto-Ros, Vincent; Trichard, Florian; Markushin, Yuri; Melikechi, Noureddine; De Giacomo, Alessandro

    2016-01-01

    One of the most widely cited advantages of laser-induced breakdown spectroscopy (LIBS) is that it does not require sample preparation, but this may also be the biggest factor holding it back from becoming a mature analytical technique like LA-ICP-MS, ICP-OES, or XRF. While there are certain specimen types that have enjoyed excellent LIBS results without any sample treatment (mostly homogeneous solids such as metals, glass, and polymers), the possible applications of LIBS have been greatly expanded through the use of sample preparation techniques that have resulted in analytical performance (i.e., limits of detection, accuracy, and repeatability) on par with XRF, ICP-OES, and often ICP-MS. This review highlights the work of many LIBS researchers who have developed, adapted, and improved upon sample preparation techniques for various specimen types in order to improve the quality of the analytical data that LIBS can produce in a large number of research domains. Strategies, not only for solids, but also liquids, gases, and aerosols are discussed, including newly developed nanoparticle enhancement and biological imaging and tagging techniques.

  2. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  3. Laser-induced forward transfer of hybrid carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  4. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-03-31

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.

  5. Laser induced crystallization of hydrogenated amorphous silicon-carbon alloys

    NASA Astrophysics Data System (ADS)

    Summonte, C.; Rizzoli, R.; Servidori, M.; Milita, S.; Nicoletti, S.; Bianconi, M.; Desalvo, A.; Iencinella, D.

    2004-10-01

    Laser induced crystallization of hydrogenated amorphous silicon carbon alloy (a-Si1-xCx:H) films has been investigated by means of synchrotron x-ray diffraction. The a-Si1-xCx:H films were deposited on (100) silicon wafers by very high frequency plasma enhanced chemical vapor deposition at 100MHz in hydrogen diluted silane-methane gas mixtures. The substrate was kept at 250°C or 350°C and the stoichiometry was changed from x =0.20 to 0.63. The structural characterization of the as-grown films has been carried out by Rutherford backscattering (hydrogen concentration) and infrared spectroscopy (film ordering). The films were irradiated by a KrF excimer laser (248nm ) with varying energy density and number of pulses. After irradiation, the formation of SiC crystallites has been revealed by synchrotron x-ray diffraction. Besides SiC nanocrystals, the formation of crystalline Si and graphite is observed for under- (x <0.50) and over-stoichiometric (x>0.50) samples, respectively. The essential role played by hydrogen concentration and hydrogen bonding configuration in determining the melting threshold and the consequent SiC grain formation is highlighted.

  6. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  7. The LILIA (laser induced light ions acceleration) experiment at LNF

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  8. Production of miniaturized biosensors through laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Duocastella, M.; Colina, M.; Serra, P.; Morenza, J. L.

    2007-05-01

    Lasers are adequate tools for the production of patterns with high spatial resolution owing to the high focusing power of their radiation. Laser induced forward transfer (LIFT) is a direct-writing technique allowing the deposition of tiny amounts of material from a donor thin film through the action of a pulsed laser beam. A laser pulse is focused onto the donor thin film through a transparent support, what results in the transference of a small area of the film onto a receptor substrate that is placed parallel to the film-support system. Although LIFT was originally developed to operate with solid films, it has been demonstrated that deposition is also viable from liquid films. In this case, a small amount of liquid is directly ejected from the film onto the receptor substrate, where it rests deposited in the form of a microdroplet. This makes LIFT adequate for biosensors preparation, since biological solutions can be transferred onto solid substrates to produce micrometric patterns of biomolecules. In this case, the liquid solvent acts as transport vector of the biomolecules. The viability of the technique has been demonstrated through the preparation of functional miniaturized biosensors showing similar performances and higher scales of integration than those prepared through more conventional techniques.

  9. Liquids microprinting through laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Serra, P.; Duocastella, M.; Fernández-Pradas, J. M.; Morenza, J. L.

    2009-03-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which allows the deposition of tiny amounts of material from a donor thin film onto a receptor substrate. When LIFT is applied to liquid donor films, the laser radiation affects only a localized fraction of the liquid, thereby impelling the unaffected portion towards the receptor substrate. Thus, transfer takes place with no melting or vaporization of the deposited fraction and, in this way, LIFT can be used to successfully print complex materials like inorganic inks and pastes, biomolecules in solution, and even living cells and microorganisms. In addition, and for a wide range of liquid rheologies, the material can be deposited in the form of circular microdroplets; this provides LIFT with a high degree of spatial resolution leading to feature sizes below 10 μm, and making it competitive in front of conventional printing techniques. In this work, a revision of the main achievements of the LIFT of liquids is carried out, correlating the morphological characteristics of the generated features with the results of the study of the transfer process. Special emphasis is put on the characterization of the dynamics of liquid ejection, which has provided valuable information for the understanding of microdroplets deposition. Thus, new time-resolved imaging analyses have shown a material release behavior which contrasts with most of the previously made assumptions, and that allows clarifying some of the questions open during the study of the LIFT technique.

  10. Laser-induced thermoelastic effects can evoke tactile sensations

    NASA Astrophysics Data System (ADS)

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  11. Independent component analysis classification of laser induced breakdown spectroscopy spectra

    NASA Astrophysics Data System (ADS)

    Forni, Olivier; Maurice, Sylvestre; Gasnault, Olivier; Wiens, Roger C.; Cousin, Agnès; Clegg, Samuel M.; Sirven, Jean-Baptiste; Lasue, Jérémie

    2013-08-01

    The ChemCam instrument on board Mars Science Laboratory (MSL) rover uses the laser-induced breakdown spectroscopy (LIBS) technique to remotely analyze Martian rocks. It retrieves spectra up to a distance of seven meters to quantify and to quantitatively analyze the sampled rocks. Like any field application, on-site measurements by LIBS are altered by diverse matrix effects which induce signal variations that are specific to the nature of the sample. Qualitative aspects remain to be studied, particularly LIBS sample identification to determine which samples are of interest for further analysis by ChemCam and other rover instruments. This can be performed with the help of different chemometric methods that model the spectra variance in order to identify a the rock from its spectrum. In this paper we test independent components analysis (ICA) rock classification by remote LIBS. We show that using measures of distance in ICA space, namely the Manhattan and the Mahalanobis distance, we can efficiently classify spectra of an unknown rock. The Mahalanobis distance gives overall better performances and is easier to manage than the Manhattan distance for which the determination of the cut-off distance is not easy. However these two techniques are complementary and their analytical performances will improve with time during MSL operations as the quantity of available Martian spectra will grow. The analysis accuracy and performances will benefit from a combination of the two approaches.

  12. Construction of a Laser Induced Breakdown Spectroscopy Setup

    NASA Astrophysics Data System (ADS)

    Mays, Joseph; Palmer, Andria; Amos, James; Dynka, Tom; Ujj, Lazlo

    Laser Induced Breakdown Spectroscopy (LIBS) is a practical spectroscopy to determine the chemical and atomic composition of materials. The third harmonic output of a Nd:YAG Q-switched laser generating 5ns pulses with 10Hz repetition rate was used to ablate the sample and create a micro-plasma. The emission of the radiating plasma was focused into an optical fiber with 0.22 numerical aperture. The spectra was measured with an Ocean Optics micro spectrometer. A synchronized shutter was used to select single laser pulses. In order to reach the breakdown threshold of the sample using the available energy of the laser pulses (<5 mJ) a beam expander and a parabolic mirror was used for tight focusing. The optical and technical details including the characterization of the system will be presented. LIBS spectra taken from a variety of metal and organic samples show appropriate selectivity for quantitative and qualitative analysis for materials. UWF NIH MARC U-STAR 1T34GM110517-01, UWF Office of Undergraduate Research.

  13. Laser-induced photoacoustic tomography for small animals

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Pang, Yongjiang; Stoica, George; Wang, Lihong V.

    2003-06-01

    Photoacoustic tomography, also called opto-acoustic tomography when laser excitation is used, is a novel medical imaging modality that combines the merits of both light and ultrasound. Here, we present our study of laser-induced photoacoustic tomography of organs of small animals. Pulses of 6.5 ns in width from an Nd:YAG laser at 532 nm or 1064 nm are employed to generate the distribution of thermoelastic expansion in the sample. A wide-band ultrasonic transducer that is non-focused in the imaging plane scans around the sample to realize a full-view detection of the imaged cross-section. A modified back-projection algorithm is applied to reconstruct the distribution of optical absorption inside the biological sample. Using optical energy depositions that fall below safe levels, tissue structures in ex-vivo rat kidneys and in-situ mouse brains covered by the skin and skull are imaged successfully with the high intrinsic optical contrast and the high spatial resolution of ultrasound.

  14. Analysis of bakery products by laser-induced breakdown spectroscopy.

    PubMed

    Bilge, Gonca; Boyacı, İsmail Hakkı; Eseller, Kemal Efe; Tamer, Uğur; Çakır, Serhat

    2015-08-15

    In this study, we focused on the detection of Na in bakery products by using laser-induced breakdown spectroscopy (LIBS) as a quick and simple method. LIBS experiments were performed to examine the Na at 589 nm to quantify NaCl. A series of standard bread sample pellets containing various concentrations of NaCl (0.025-3.5%) were used to construct the calibration curves and to determine the detection limits of the measurements. Calibration graphs were drawn to indicate functions of NaCl and Na concentrations, which showed good linearity in the range of 0.025-3.5% NaCl and 0.01-1.4% Na concentrations with correlation coefficients (R(2)) values greater than 0.98 and 0.96. The obtained detection limits for NaCl and Na were 175 and 69 ppm, respectively. Performed experimental studies showed that LIBS is a convenient method for commercial bakery products to quantify NaCl concentrations as a rapid and in situ technique.

  15. Drift mechanism of laser-induced electron acceleration in vacuum

    NASA Astrophysics Data System (ADS)

    Morgovsky, L.

    2015-12-01

    Laser-induced electron acceleration in vacuum is possible due to the ejection of electrons from the beam as a consequence of the transverse drift orthogonal to the propagation direction. The transverse drift is derived from the general solution of the equations of motion of the electrons in the field of a plane electromagnetic wave with arbitrary polarization. It is shown that the energy gain is proportional to the square of the field strength additionally modulated by the function of the injection and ejection phases. In particular, for a linearly polarized beam this function is reduced to the squared difference between the cosines of these phases. The finite laser pulse duration restricts the range of the field strength suitable for direct electron acceleration in vacuum within certain limits. It is demonstrated that the high efficiency of energy transfer from the laser wave into the kinetic energy of the accelerated electrons demands phase matching between the electron quiver phase at the exit point and the phase of the energy transfer.

  16. Hyperspectral laser-induced autofluorescence imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  17. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    SciTech Connect

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  18. Laser-induced differential fluorescence for cancer diagnosis without biopsy

    SciTech Connect

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.; Buckley III, P.

    1997-01-01

    An optical diagnostic procedure based on laser-induced fluorescence was developed for direct {ital in vivo} cancer diagnosis without requiring biopsy. The methodology was applied in a clinical study involving over 100 patients in order to differentiate normal tissue from malignant tumors of the esophagus. Endogenous fluorescence of normal and malignant tissues was measured directly with the use of a fiber-optic probe inserted through an endoscope. The measurements were performed {ital in vivo} during routine endoscopy. Detection of the fluorescence signal from the tissue was performed with the use of laser excitation. This report describes the differential normalized fluorescence (DNF) procedure using the amplified spectral differences between the normalized fluorescence of malignant tissue and normal mucosa. The results of this DNF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal tissue and malignant tumors for the samples investigated. Data related to various grades of Barrett{close_quote}s esophagus are discussed. The DNF procedure could lead to the development of a rapid and cost-effective technique for cancer diagnosis. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  19. Laser-induced periodic surface structures, modeling, experiments, and applications

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Ocelík, V.; de Hosson, J. T. M.; Huis in't Veld, A. J.

    2014-03-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures, or ripples, with amplitudes and periodicity in the sub-micrometer range. A summary of experimentally observed LIPSSs is presented, as well as our model explaining their possible origin. Linearly polarized continuous wave (cw) or pulsed laser light, at normal incidence, can produce LIPSSs with a periodicity close to the laser wavelength, and direction orthogonal to the polarization on the surface of the material. Ripples with a periodicity (much) smaller than the laser wavelength develop when applying laser pulses with ultra-short durations in the femtosecond and picosecond regime. The direction of these ripples is either parallel or orthogonal to the polarization direction. Finally, when applying numerous pulses, structures with periodicity larger than the laser wavelength can form, which are referred to as "grooves". The physical origin of LIPSSs is still under debate. The strong correlation of the ripple periodicity to the laser wavelength, suggests that their formation can be explained by an electromagnetic approach. Recent results from a numerical electromagnetic model, predicting the spatially modulated absorbed laser energy, are discussed. This model can explain the origin of several characteristics of LIPSSs. Finally, applications of LIPSSs will be discussed.

  20. Laser induced damage and fracture in fused silica vacuum windows

    SciTech Connect

    Campbell, J.H.; Hurst, P.A.; Heggins, D.D.; Steele, W.A.; Bumpas, S.E.

    1996-11-01

    Laser-induced damage, that initiates catastrophic fracture, has been observed in large ({le}61 cm dia) fused silica lenses that also serve as vacuum barriers in Nova and Beamlet lasers. If the elastic stored energy in the lens is high enough, the lens will fracture into many pieces (implosion). Three parameters control the degree of fracture in the vacuum barrier window: elastic stored energy (tensile stress), ratio of window thickness to flaw depth, and secondary crack propagation. Fracture experiments were conducted on 15-cm dia fused silica windows that contain surface flaws caused by laser damage. Results, combined with window failure data on Beamlet and Nova, were used to develop design criteria for a ``fail-safe`` lens (that may catastrophically fracture but not implode). Specifically, the window must be made thick enough so that the peak tensile stress is less than 500 psi (3.4 MPa) and the thickness/critical flaw size is less than 6. The air leak through the window fracture and into the vacuum must be rapid enough to reduce the load on the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments ``lock`` in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase, leading to further (i.e. secondary) crack growth.

  1. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  2. Evaluation of immunoglobulins in bovine colostrum using laser induced fluorescence.

    PubMed

    Abdel-Salam, Z; Abdel Ghany, Sh; Harith, M A

    2014-11-01

    The objective of the present study was to exploit laser induced fluorescence (LIF) as a spectrochemical analytical technique for evaluation of immunoglobulin (IgG) in bovine colostrum. Colostrum samples were collected from different American Holstein cows at different times after calving. Four samples were gathered from each cow; the first three samples were obtained from the first three milkings (colostrum) and the fourth sample (milk) was obtained a week after calving. It has been demonstrated that LIF can be used as a simple, fast, sensitive and less costly spectrochemical analytical technique for qualitative estimation of IgG in colostrum. LIF results have been confirmed via the quantitative evaluation of IgG in the same samples adopting the single radial immunodiffusion conventional technique and a very good agreement has been obtained. Through LIF it was possible to evaluate bovine colostrum after different milking times and to differentiate qualitatively between colostrum from different animals which may reflect their general health status. A fluorescence linear calibration curve for IgG concentrations from 0 up to 120 g L(-1) has been obtained. In addition, it is feasible to adopt this technique for in situ measurements, i.e. in dairy cattle farms as a simple and fast method for evaluation of IgG in bovine colostrum instead of using lengthy and complicated conventional techniques in laboratories.

  3. Ultrafast laser induced local magnetization dynamics in Heusler compounds

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Müller, T.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-12-01

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations.

  4. Ultrafast laser induced local magnetization dynamics in Heusler compounds

    PubMed Central

    Elliott, P.; Müller, T.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2016-01-01

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations. PMID:27966585

  5. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    SciTech Connect

    Phongikaroon, Supathorn

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  6. Ultrafast laser induced local magnetization dynamics in Heusler compounds.

    PubMed

    Elliott, P; Müller, T; Dewhurst, J K; Sharma, S; Gross, E K U

    2016-12-14

    The overarching goal of the field of femtomagnetism is to control, via laser light, the magnetic structure of matter on a femtosecond time scale. The temporal limits to the light-magnetism interaction are governed by the fact that the electron spin interacts indirectly with light, with current studies showing a laser induced global loss in the magnetic moment on a time scale of the order of a few 100 s of femtoseconds. In this work, by means of ab-initio calculations, we show that more complex magnetic materials - we use the example of the Heusler and half-Heusler alloys - allow for purely optical excitations to cause a significant change in the local moments on the order of 5 fs. This, being purely optical in nature, represents the ultimate mechanism for the short time scale manipulation of spins. Furthermore, we demonstrate that qualitative behaviour of this rich magnetic response to laser light can be deduced from the ground-state spectrum, thus providing a route to tailoring the response of some complex magnetic materials, like the Heuslers, to laser light by the well established methods for material design from ground-state calculations.

  7. Laser-induced incandescence applied to dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovačević, E.; Berndt, J.

    2016-07-01

    This paper reports on the laser heating of nanoparticles (diameters ≤slant 1 μm) confined in a reactive plasma by short (150 ps) and intense (˜ 63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the emission spectrum of the heated nanoparticles. The nanoparticles are not ideal black bodies, which is taken into account by calculating their emissivity using a light-scattering theory relevant to our conditions (Mie theory). Three sets of refractive index data from the literature serve as model input. The obtained radii range between 100 and 165 nm, depending on the choice of refractive index data set. By fitting the temperature decay of the particles to a heat exchange model, the product of their mass density and specific heat is determined as (1.3+/- 0.5) J K-1 cm-3, which is considerably smaller than the value for bulk graphite at the temperature our particles attain (3000 K): 4.8 J K-1 cm-3. The particle sizes obtained in situ with LII are compared with ex situ scanning electron microscopy analysis of collected particles. Quantitative assessment of the LII measurements is hampered by transport of particles in the plasma volume and the fact that LII probes locally, whereas the samples with collected particles have a more global character.

  8. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  9. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  10. Analysis of human nails by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.

  11. Fast analysis of wood preservers using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Uhl, A.; Loebe, K.; Kreuchwig, L.

    2001-06-01

    Laser-induced breakdown spectroscopy (LIBS) is used for the investigation of wood preservers in timber and in furniture. Both experiments in laboratory and practical applications in recycling facilities and on a building site prove the new possibilities for the fast detection of harmful agents in wood. A commercial system was developed for mobile laser-plasma-analysis as well as for industrial use in sorting plants. The universal measuring principle in combination with an Echelle optics permits real simultaneous multi-element-analysis in the range of 200-780 nm with a resolution of a few picometers. It enables the user to detect main and trace elements in wood within a few seconds, nearly independent of the matrix, knowing that different kinds of wood show an equal elemental composition. Sample preparation is not required. The quantitative analysis of inorganic wood preservers (containing, e.g. Cu, Cr, B, As, Pb, Hg) has been performed exactly using carbon as reference element. It can be shown that the detection limits for heavy metals in wood are in the ppm-range. Additional information is given concerning the quantitative analysis. Statistical data, e.g. the standard deviation (S.D.), were determined and calibration curves were used for each particular element. A comparison between ICP-AES and LIBS is given using depth profile correction factors regarding the different penetration depths with respect to the different volumes in wood analyzed by both analytical methods.

  12. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  13. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  14. Airborne laser induced fluorescence imaging. Innovative technology summary report

    SciTech Connect

    1999-06-01

    Laser-Induced Fluorescence (LIF) was demonstration as part of the Fernald Environmental Management Project (FEMP) Plant 1 Large Scale Demonstration and Deployment Project (LSDDP) sponsored by the US Department of Energy (DOE) Office of Science and Technology, Deactivation and Decommissioning Focus Area located at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The demonstration took place on November 19, 1996. In order to allow the contaminated buildings undergoing deactivation and decommissioning (D and D) to be opened to the atmosphere, radiological surveys of floors, walls and ceilings must take place. After successful completion of the radiological clearance survey, demolition of the building can continue. Currently, this process is performed by collecting and analyzing swipe samples for radiological analysis. Two methods are used to analyze the swipe samples: hand-held frisker and laboratory analysis. For the purpose of this demonstration, the least expensive method, swipe samples analyzed by hand-held frisker, is the baseline technology. The objective of the technology demonstration was to determine if the baseline technology could be replaced using LIF.

  15. Theory of terahertz emission from femtosecond-laser-induced microplasmas

    NASA Astrophysics Data System (ADS)

    Thiele, I.; Nuter, R.; Bousquet, B.; Tikhonchuk, V.; Skupin, S.; Davoine, X.; Gremillet, L.; Bergé, L.

    2016-12-01

    We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.

  16. Laser induced breakdown spectroscopy application in joint European torus

    NASA Astrophysics Data System (ADS)

    Semerok, A.; L'Hermite, D.; Weulersse, J.-M.; Lacour, J.-L.; Cheymol, G.; Kempenaars, M.; Bekris, N.; Grisolia, C.

    2016-09-01

    The results on the first successful application of Laser Induced Breakdown Spectroscopy (LIBS) for remote in situ diagnostics of plasma facing components (a deposited layer on a divertor tile) in Joint European Torus (JET) are presented. The studies were performed with an available JET EDGE LIDAR laser system. For in-depth analysis of deposited layers on JET divertor tiles, a number of laser shots were applied onto the same divertor place without laser beam displacement. The spectral lines of D, CII and impurity elements (CrI, BeII, …) were identified in a wide spectral range (400-670 nm). With the increase in a number of laser shots applied onto the same divertor place, we observed consecutive changes in spectral line intensities of deuterium, carbon, and impurities with the appearance of spectral lines of tungsten substrate (WI). In-depth analysis of deposited layers on JET divertor tiles was made on the basis of the spectral line behaviour in reference to the applied laser shots. The possibility of surface cartography with laser beam displacement on the tile surface was demonstrated as well. Based on the results obtained, we may conclude that LIBS method is applicable for in situ remote analysis of deposited layers of JET plasma facing components.

  17. Unsupervised verification of laser-induced breakdown spectroscopy dataset clustering

    NASA Astrophysics Data System (ADS)

    Wójcik, Michał R.; Zdunek, Rafał; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced breakdown spectroscopy is a versatile, optical technique used in a wide range of qualitative and quantitative analyses conducted with the use of various chemometric techniques. The aim of this research is to demonstrate the possibility of unsupervised clustering of an unknown dataset using K-means clustering algorithm, and verifying its input parameters through investigating generalized eigenvalues derived with linear discriminant analysis. In all the cases, principal component analyses have been applied to reduce data dimensionality and shorten computation time of the whole operation. The experiment was conducted on a dataset collected from twenty four different materials divided into six groups: metals, semiconductors, ceramics, rocks, metal alloys and others with the use of a three-channel spectrometer (298.02-628.73nm overall spectral range) and a UV (248nm) excimer laser. Additionally, two more complex groups containing all specimens and all specimens excluding rocks were created. The resulting spaces of eigenvalues were calculated for every group and three different distances in the multidimensional space (cosine, square Euclidean and L1). As expected, the correct numbers of specimens within groups with small deviations were obtained, and the validity of the unsupervised method has thus been proven.

  18. In vivo laser-induced breakdown in the rabbit eye

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; DiCarlo, Cheryl D.; Kennedy, Paul K.; Noojin, Gary D.; Amnotte, Rodney E.; Roach, William P.

    1995-05-01

    Threshold measurements for femtosecond laser pulsewidths have been made for retinal minimum visible lesions (MVLs) in Dutch Belted rabbit and rhesus monkey eyes. Laser-induced breakdown (LIB) thresholds in biological materials including vitreous, normal saline, tap water, and ultrapure water have been measured and reported using an artificial eye. We have recorded on video the first LIB causing bubble formation in any eye in vivo using albino rabbit eyes (New Zealand white) with 120- femtosecond (fs) pulses and pulse energies as low as 5 microjoules ((mu) J). These bubbles were clearly formed anterior to the retina within the vitreous humor and, with 60 (mu) J of energy, they lasted for several seconds before disappearing and leaving no apparent damage to the retina. We believe this to be true LIB because of the lack of pigmentation or melanin granules within the albino rabbit eye (thus no absorptive elements) and because of the extremely high peak powers within the 5-(mu) J, 120-fs laser pulse. These high peak powers produce self-focusing of the pulse within the vitreous. The bubble formation at the breakdown site acts as a limiting mechanism for energy transmission and may explain why high-energy femotsecond pulses at energies up to 100 (mu) J sometimes do not cause severe damage in the pigmented rabbit eye. This fact may also explain why it is so difficult to produce hemorrhagic lesions in either the rabbit or primate eye with 100-fs laser pulses.

  19. Laser-Induced Incandescence Calibration via Gravimetric Sampling

    NASA Technical Reports Server (NTRS)

    VanderWal, R. L.; Zhou, Z.; Choi, M. Y.

    1995-01-01

    Various beam imaging and/or sheet forming optics delivered light at 1064 nm from a pulsed Nd:YAG laser for use either as a beam of 3 mm radius or as a laser sheet. Imaging measurements were performed with a grated intensified array camera equipped with an ultraviolet f4.5 lens and a 40 mm extension tube. Point measurements were performed using an ultraviolet 250 mm focal length lens to collect and focus the laser induced incandescence (LII) signal into a 1 meter long quartz optical fiber which directed the LII signal to a 1/4 meter monochromator. An aperture preceding the lens restricted the signal collection region to 1 cm along the laser beam at the center of the gravimetric chimney. Signals from the PMT were processed by a boxcar integrator whereas the images were captured digitally using a frame-grabber with 16 MByte of on-board memory. Both 'point' and planar measurements were made with detector gates of 250 ns to minimize possible morphology bias in collection of the LII signal. Additionally, the imaging measurements were performed with broadband spectral collection of the LII signal to maximize the signal and again minimize any potential effects of morphology dependent heating and/or cooling rates. Digital delay generators controlled the firing of he laser, detector gates and data acquisition. Neutral density filters were used for both sets of measurements to maintain signal levels within linear dynamic ranges of the detectors, the range being determined prior to experiments.

  20. Laser-induced incandescence measurements of particles in aeroengine exhausts

    NASA Astrophysics Data System (ADS)

    Black, John D.

    1999-09-01

    Laser Induced Incandescence (LII) has been demonstrated as a non-intrusive technique for measurement of particle concentration in the exhausts of aero-engines on sea level test beds as part of a European Union collaborative program (AEROJET) aimed at replacing gas sampling rakes behind development engines with non-intrusive instrumentation. Currently emissions of CO, NOx, unburned hydrocarbon, and smoke from aero-engines must be shown to be less than internationally specified limits. Measurements are made on development engines on sea level test beds by applying a number of standard analytical methods to extracted exhaust gas samples. The hardware required for exhaust gas sampling is heavy and complex and is expensive to build and install. As a result, only the minimum number of emissions tests are conducted during an engine development program, and emissions data is only available to combustion engineers late in the program. Hence, there is a need for more versatile and less costly non-intrusive measurement techniques. Molecular species can be measured using Fourier Transform Infrared (FTIR) spectroscopy, while LII is a promising smoke measuring technique. The development of an LII system specifically designed for exhaust applications is described.

  1. Laser induced formation of micro-rough structures

    NASA Astrophysics Data System (ADS)

    Singh, Rajiv K.; Fitz-Gerald, James M.

    1997-01-01

    Laser induced micro-rough structures (LIMS) are a by-product of laser ablation process and are created during multiple pulse irradiation on the surface of the material. Although LIMS have been found to be deleterious for the thin film deposition process, these surfaces have wide variety of applications in synthesis of adherent coatings in thermal expansion mismatched systems. Earlier models, based on interference effects of the laser beam, to explain the evolution of LIMS, are not consistent with the experimental results. Experiments were conducted on a wide variety of materials (e.g. SiC, alumina, YBaCuO superconductor, etc.) to understand the mechanisms for generation of the micro-rough structures. A novel model was developed to explain the characteristics of LIMS such as (i) feature orientation (ii) evolution of surface structures as a function of pulses, (iii) formation of LIMS within a energy window near ablation threshold and (iv) periodicity which is independent of the laser wavelength and incident angle.

  2. Laser-Induced Breakdown Spectroscopy of Cinematographic Film

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Abrusci, C.; Gaspard, S.; Rebollar, E.; Amo, A. del; Catalina, F.; Castillejo, M.

    Laser-induced breakdown spectroscopy (LIBS) was used to characterize the composition of black-and-white, silver-gelatine photographic films. LIB spectra of samples and reference gelatine (of various gel strengths, Bloom values 225 and 75 and crosslinking degrees) were acquired in vacuum by excitation at 266 nm. The elemental composition of the gelatine used in the upper protective layer and in the underlying emulsion is revealed by the stratigraphic analysis carried out by delivering successive pulses on the same spot of the sample. Silver (Ag) lines from the light-sensitive silver halide salts are accompanied by iron, lead and chrome lines. Fe and Pb are constituents of film developers and Cr is included in the hardening agent. The results demonstrate the analytical capacity of LIBS for study and classification of different gelatine types and the sensitivity of the technique to minor changes in gelatine composition. In addition LIBS analysis allows extracting important information on the chemicals used as developers and hardeners of archival cinematographic films.

  3. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  4. Laser-induced fluorescence in the detection of esophageal carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Kenneth K.; Gutta, Kumar; Laukka, Mark A.; Densmore, John

    1995-01-01

    Laser induced fluorescence (LIF) is a technique which can perform an 'optical biopsy' of gastrointestinal mucosa. LIF was performed in resected specimens using a pulsed N2-laser coupled fiberoptically to a probe. Fluorescence was measured using a 0.2 meter spectroscope with an intensified photodiode array. Measurements were made on fresh (<30 minutes after resection) esophageal specimens containing normal mucosa, Barrett's esophagus, and adenocarcinoma. Each tissue section was examined using an optical probe consisting of a central fiber for delivering the excitation energy and a 6 fiber bundle surrounding the central fiber for detection of the fluorescence. An excitation wavelength of 337 nm was used which generated 3-ns pulses while fluorescence intensities were acquired from 300-800 nm. Spectra were obtained from each section in a standardized fashion and background spectra subtracted. Fluorescence readings were taken from 54 normal esophageal sections and 32 sections of adenocarcinoma. A fluorescence index obtained from the tumor sections was 0.68+/- 0.01 compared with 0.51+/- 0.01 for the normal sections (p<0.001). Using a discriminant value of 0.65, this technique had a sensitivity of 81% and a specificity of 100% for detection of malignant tissue. The positive predictive value was 100% and the negative predictive value was 90% for an overall accuracy of 93%. LIF is a promising technique which has the capability of distinguishing normal versus malignant tissue in the esophagus with good accuracy.

  5. Laser-Induced Photic Injury Phenocopies Macular Dystrophy

    PubMed Central

    Zhang, Lijuan; Zheng, Andrew; Nie, Hongping; Bhavsar, Kavita V.; Xu, Yu; Sliney, David H.; Trokel, Stephen L.; Tsang, Stephen H

    2016-01-01

    Objective To describe the phenotypes associated with laser-induced retinal damage in children. Methods Five patients with maculopathy and reduced visual acuity associated with laser pointer use were evaluated. Best-corrected visual acuity, retinal structure, and function were monitored with color fundus, infrared (IR), and red-free images, fundus autofluorescence (AF), spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography (ERG). Results All five laser pointer injury patients had retinal lesions resembling a macular dystrophy (1 bilateral and 4 unilateral). These lesions were irregular in shape but all had a characteristic dendritic appearance with linear streaks radiating from the lesion. Photoreceptor damage was present in all patients, but serial OCT monitoring showed that subsequent photoreceptor recovery occurred over time in the eyes of at least 4 patients. 1 patient also had bilateral pigment epithelial detachments (PED). Both hyper- and hypoautofluorecence were observed in the laser damage area. Conclusions In general, OCT and IR images are quite useful to diagnose laser damage, but AF is not as sensitive. Laser pointer damage in children can occasionally be misdiagnosed as a macular dystrophy disease, but the distinctive lesions and OCT features are helpful for differentiating laser damage from other conditions. PMID:26927809

  6. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  7. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  8. Infrared luminescence from spark-processed silicon and erbium-doped spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghoon

    Spark-processed silicon has substantial potential as an optical material. In the past 15 years, our group has investigated a multitude of properties of this unique material, concentrating mostly on the visible and near UV spectral region. The present study expands our endeavors to infrared photoluminescence (PL) of undoped spark-processed silicon. A broad infrared photoluminescence peak at around 945 nm under Ar ion laser excitation was observed at room temperature when investigating a spark-processed layer on a silicon wafer. This light emission is interpreted to be the result of energy transfers between certain energy levels involving the spark-processed silicon matrix. The infrared PL intensity of spark-processed silicon was found to be proportional to the excitation energy. However, telecommunication requires presently a light emission near 1.54 mum (because fiber-optics "conductors" have a minimum in absorption at this wavelength). This cannot be achieved with pure spark-processed silicon. Therefore spark-processed silicon needs to be doped with a rare-earth element such as erbium to shift the emission to longer wavelengths. It is known that erbium has a light emission from intrashell energy transition, that is, from 4I13/2 →4I15/2. Erbium was deposited on a silicon wafer followed by spark-processing, which enables diffusion of some erbium into the SiOx matrix, thus achieving opto-electronically active spark-processed silicon. Rapid thermal annealing enhances the 1.54 mum wavelength intensity from erbium-doped spark-processed silicon. The processing conditions that result in the most efficient photoluminescence have been established and will be presented in this dissertation. In contrast to erbium-doped crystalline silicon, whose light emission is highly affected by temperature (103 times reduction in intensity when heating from 12 K to 150 K), the intensity of erbium-doped spark-processed silicon decreases by only a factor of 4 when heated from 15 K to room

  9. Laser-induced ignition of gasoline direct-injection engines

    NASA Astrophysics Data System (ADS)

    Liedl, Gerhard; Schuoecker, Dieter; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2005-03-01

    A q-switched Nd:YAG laser as well as an excimer laser with an unstable resonator have been used for ignition of combustion processes. Following first experiments with a combustion bomb a gasoline direct injection engine has been modified for laser ignition by installation of a focusing element and a beam entrance window. It was possible with the q-switched Nd:YAG laser which delivers short pulses with a duration of lesss than 6 ns to ignite the engine for several 100 hours without problems. Compared to conventional spark ignition, laser ignition allows a more flexible choice of the ignition location inside the combustion chamber with the possibility to ignite even inside the fuel spray. Measurements of fuel consumption and emissions prove that laser ignition has important advantages compared to conventional spark ignition systems. Experiments with the direct injection engine have been carried out at the fundamental wavelength of the Nd:YAG laser as well as with a frequency doubled system. No differences in the minimal pulse energy needed for ignition could be found, since the minimal pulse energy for ignition is mainly determined by the ablation thresholds of combustion deposits at the surface of the window to the combustion chamber. Such combustion deposits reduce the transparency of the window where the laser beam enters the combustion chamber and a "self-cleaning" mechanism of the window by ablation is essential for successful operation. Experiments show that above a certain threshold intensity of the laser beam at the window even highly polluted surfaces could be cleaned with teh first laser pulse which is important for operation in real-world engines. Theoretically calculated energy values for laser ignition are much lower since such mechanisms are usually not considered. Power and space requirements on possible future development of laser ignition systems are discussed briefly. Several concepts for laser ignition, like diode-pumped solid state lasers (DPSS

  10. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands

    NASA Astrophysics Data System (ADS)

    Koral, Can; De Giacomo, Alessandro; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.

    2016-11-01

    Enhancement of molecular band emission in laser-induced plasmas is important for improving sensitivity and limits of detection in molecular sensing and molecular isotope analysis. In this work we introduce the use of Nanoparticle Enhanced Laser Induced Breakdown (NELIBS) for the enhancement of molecular band emission in laser-induced plasmas, and study the underlying mechanisms responsible for the observed enhancement. The use of Ag nanoparticles leads to an order of magnitude enhancement for AlO (B2Σ+ → Χ+ Σ+) system emission from an Al-based alloy. We demonstrate that the mechanism responsible for the enhancement of molecular bands differs from that of atomic emission, and can be traced down to the increased number of atomic species in NELIBS which lead to AlO molecular formation. These findings showcase the potential of NELIBS as a simple and viable technology for enhancing molecular band emission in laser-induced plasmas.

  11. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  12. Low current extended duration spark ignition system

    DOEpatents

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  13. Using SPARK as a Solver for Modelica

    SciTech Connect

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  14. Recovery properties of vacuum spark gaps

    SciTech Connect

    Sampayan, S.E. ); Gurbaxani, S.H. . Dept. of Electrical Engineering); Buttram, M.T. . Pulsed Power Systems Dept.)

    1989-12-01

    Multi-kilohertz vacuum spark gap switching utilizing diffuse discharge and counter-pulse techniques has recently been demonstrated. In addition, commercial, high coulomb vacuum interrupter switches have shown free recovery rates greater than 10 kV / {mu}s. Thus, vacuum spark gap switches may provide an alternative method of high average power switching. The authors have investigated the recovery properties of a 90 kV, 15 kA multiple site, triggered vacuum spark gap. Triggering was accomplished with a multisite surface flashover plasma source with approximately 60 sites distributed over a 10 cm/sup 2/ area. Gap dimensions were 1-cm spacing by 7.5-cm diam. Recovery measurements are presented and discussed.

  15. Influence of Metal Substrates on the Detection of Explosive Residues With Laser-Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2013-04-01

    composition because some of the substrate is usually entrained in the laser-induced plasma and the laser– material interaction can be significantly...Detection of Explosive Residues With Laser-Induced Breakdown Spectroscopy Jennifer L. Gottfried Weapons and Materials Research Directorate, ARL...remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually

  16. Laser-Induced Breakdown Spectroscopy on Solution Samples Using Surface Excitation

    DTIC Science & Technology

    1996-12-01

    and R. Kellner, "New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water," Applied Spectroscopy 47 (9), 1484...34Quantitative Elemental Analysis of Iron Ore by Laser-Induced Breakdown Spectroscopy," Applied Spectroscopy 45 (4), 701-705 (1991). 7. D.A. Cremers...to 950 nm," Applied Spectroscopy 49 (10), 1490-1499 (1995). 17. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, and H. Griffin, "Laser- Induced

  17. Heat energy of various ignition sparks

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Fonseca, E L

    1920-01-01

    This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.

  18. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  19. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  20. Laser induced x-ray `RADAR' particle physics model

    NASA Astrophysics Data System (ADS)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  1. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  2. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  3. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  4. Single shot thermometry using laser induced thermal grating

    NASA Astrophysics Data System (ADS)

    Qu, Pubo; Guan, Xiaowei; Zhang, Zhenrong; Wang, Sheng; Li, Guohua; Ye, Jingfeng; Hu, Zhiyun

    2015-05-01

    With the concern of environmental protection and reducing the fossil fuel consumption, combustion processes need to be more efficient and less contaminable. Therefore, the ability to obtain important thermophysical parameters is crucial to combustion research and combustor design. Traditional surveying techniques were difficult to apply in a confined space, especially the physically intrusions of detectors can alter the combustion processes. Laser-based diagnostic techniques, like CARS, SVRS, PLIF and TDLAS, allow the in situ, non-intrusive, spatially and temporally resolved measurements of combustion parameters in hostile environments. We report here a new non-intrusive optical diagnostic technique, based on laser-induced thermal grating. Thermal gratings generated in NO2/N2 binary mixtures, arise from the nonlinear interaction between the medium and the light radiation from the interference of two pulsed, frequency-doubled Nd:YAG lasers (532 nm). This leads to the formation of a dynamic grating through the resonant absorption and the subsequent collisional relaxation. By the temporally resolved detection of a continuous wave, frequency-doubled Nd:YVO4 probe laser beam (671 nm) diffracted by LITG. The temporal behavior of the signal is a function of the local temperature and other properties of gas, various parameters of the target gas can be extracted by analyzing the signal. The accurate singleshot temperature measurements were carried out at different test conditions using a stainless steel pressurized cell, data averaged on 100 laser shots were compared with simultaneously recorded thermocouple data, and the results were consistent with each other. The LITG signal is shown to grow with increasing the gas pressure and is spatially coherent, which makes the LITG thermometry technique a promising candidate in high pressure environments.

  5. [Laser Induced Fluorescence Spectrum Characteristics of Paddy under Nitrogen Stress].

    PubMed

    Yang, Jian; Shi, Shuo; Gong, Wei; Du, Lin; Zhu, Bo; Ma, Ying-ying; Sun, Jia

    2016-02-01

    Order to guide fertilizing andreduce waste of resources as well as enviro nmental pollution, especially eutrophication, which are caused by excessive fertilization, a system of laser-induced fluorescence(LIF) was built. The system aimed to investigate the correlation between nitrogen(N) content of paddy leaf and the fluorescence intensity. We measuredNcontent and SPAD of paddy leaf (the samples came from the second upper leaves of paddy in tillering stage and the study area was located in Jianghan plain of China) by utilizing the Plant Nutrient (Tester TYS-3N). The fluorescence spectrum was also obtained by using the systembuilt based on theLIFtechnology. Fluorescence spectra of leaf with different N-content were collected and then a fluorescence spectra database wasestablished. It is analyzed that the relationship between the parameters of fluorescence (F₇₄₀/F₆₈₅ is the ratio of fluorescence intensity of 740 nm. dividing that of 685 nm) and the N level of paddy. It is found that the effect of different N-content on the fluorescence spectrum characteristics is significant. The experiment demonstrated the positive correlation between fluorescence parameters and paddy leaf N-content. Results showed a positive linear correlation between the ratio of peak fluorescence (F₇₄₀/F₆₈₅) and N-content The correlation coefficient (r) reached 0.871 8 and the root mean square error (RMSE) was 0.076 82. The experiment demonstrated that LIF spectroscopy detection technology has the advantages of rapidand non-destructive measurement, and it also has the potential to measure plant content of nutrient elements. It will provide a more accurate remote sensing method to rapidly detect the crop nitrogen levels.

  6. Coherence in ultrafast laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Colombier, Jean-Philippe; Li, Chen; Faure, Nicolas; Cheng, Guanghua; Stoian, Razvan

    2015-11-01

    Ultrafast laser irradiation can trigger anisotropically structured nanoscaled gratinglike arrangements of matter, the laser-induced periodic surface structures (LIPSSs). We demonstrate here that the formation of LIPSS is intrinsically related to the coherence of the laser field. Employing several test materials that allow large optical excursions, we observe the effect of randomizing spatial phase in generating finite domains of ripples. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface and show that modulated pattern, i.e., a spatially ordered electromagnetic solution, results from the coherent superposition of waves. By separating the field scattered from a surface rough topography from the total field, the inhomogeneous energy absorption problem is reduced to a simple interference equation. We further distinguish the contribution of the scattered near field and scattered far field on various types of inhomogeneous energy absorption features. It is found that the inhomogeneous energy absorption which could trigger the low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) of periodicity Λ >λ /Re(n ˜) are due to coherent superposition between the scattered far field (propagation) and the refracted field, while HSFLs of Λ <λ /Re(n ˜) are triggered by coherent superposition between the scattered near field (evanescent) and the refracted field. This is a general scenario that involves a topography-induced scattering phenomenon and stationary evanescent fields, being applied to two model case materials that exhibit large optical excursions upon excitation (W, Si) and nonplasmonic to plasmonic transitions. We indicate the occurrence of a general light interference phenomenon that does not necessarily involve wavelike surface plasmonic excitation. Finally, we discuss the role of interference field and scattered field on the enhancement of LIPSSs by

  7. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  8. Application of Laser Induced Breakdown Spectroscopy under Polar Conditions

    NASA Astrophysics Data System (ADS)

    Clausen, J. L.; Hark, R.; Bol'shakov, A.; Plumer, J.

    2015-12-01

    Over the past decade our research team has evaluated the use of commercial-off-the-shelf laser-induced breakdown spectroscopy (LIBS) for chemical analysis of snow and ice samples under polar conditions. One avenue of research explored LIBS suitability as a detector of paleo-climate proxy indicators (Ca, K, Mg, and Na) in ice as it relates to atmospheric circulation. LIBS results revealed detection of peaks for C and N, consistent with the presence of organic material, as well as major ions (Ca, K, Mg, and Na) and trace metals (Al, Cu, Fe, Mn, Ti). The detection of Ca, K, Mg, and Na confirmed that LIBS has sufficient sensitivity to be used as a tool for characterization of paleo-climate proxy indicators in ice-core samples. Techniques were developed for direct analysis of ice as well as indirect measurements of ice via melting and filtering. Pitfalls and issues of direct ice analysis using several cooling techniques to maintain ice integrity will be discussed. In addition, a new technique, laser ablation molecular isotopic spectroscopy (LAMIS) was applied to detection of hydrogen and oxygen isotopes in ice as isotopic analysis of ice is the main tool in paleoclimatology and glaciology studies. Our results demonstrated that spectra of hydroxyl isotopologues 16OH, 18OH, and 16OD can be recorded with a compact spectrograph to determine hydrogen and oxygen isotopes simultaneously. Quantitative isotopic calibration for ice analysis can be accomplished using multivariate chemometric regression as previously realized for water vapor. Analysis with LIBS and LAMIS required no special sample preparation and was about ten times faster than analysis using ICP-MS. Combination of the two techniques in one portable instrument for in-field analysis appears possible and would eliminate the logistical and cost issues associated with ice core management.

  9. Mechanisms of laser induced reactions in opaque heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Wilkinson, F.

    1993-11-01

    The technique of laser flash photolysis has been applied to both heterogeneous and homogeneous samples in order to increase understanding of the mechanisms of laser induced reactions at surfaces. Nanosecond diffuse reflectance laser flash photolysis has been used to study triplet state absorption and fluorescence emission of monomers and dimers of acridine orange and other dyes which are shown to aggregate when adsorbed on microcrystalline cellulose and on other surfaces. The properties of excited states within dyed fabrics have been evaluated in several cases. The mechanism of the yellowing of thermomechanical paper pulp has also been investigated and transients studied on nanosecond timescales for the first time. Triplet-triplet energy transfer from benzophenone to oxazine dyes, from eosin to anthracene, and from anthracene to azomethine dyes has been studied on both cellulose and silica surfaces. This work demonstrates the occurrence of energy transfer by static and dynamic mechanisms depending on both the nature of the surface and the adsorbed species. The first picosecond studies exciting directly into the charge transfer absorption bands of aromatic hydrocarbon/oxygen complexes formed in the presence of high pressures of oxygen have been carried out to demonstrate the role of charge-transfer interactions in determining the singlet oxygen formation efficiencies during quenching of electronically excited states by molecular oxygen. Nanosecond laser excitation of a series of naphthalene and anthracene derivatives in the presence and absence of oxygen has clearly demonstrated for the first time the importance of charge transfer interactions in determining oxygen quenching constants and singlet oxygen formation efficiencies.

  10. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  11. Laser-induced growth of nanocrystals embedded in porous materials.

    PubMed

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-06

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  12. Liquid Jet Formation in Laser-Induced Forward Transfer

    NASA Astrophysics Data System (ADS)

    Brasz, C. Frederik

    Laser-induced forward transfer (LIFT) is a direct-write technique capable of printing precise patterns of a wide variety of materials. In this process, a laser pulse is focused through a transparent support and absorbed in a thin donor film, propelling material onto an adjacent acceptor substrate. For fluid materials, this transfer occurs through the formation of a narrow liquid jet, which eventually pinches off due to surface tension. This thesis examines in detail the fluid mechanics of the jet formation process occurring in LIFT. The main focus is on a variant of LIFT known as blister-actuated LIFT (BA-LIFT), in which the laser pulse is absorbed in an ink-coated polymer layer, rapidly deforming it locally into a blister to induce liquid jet formation. The early-time response of a fluid layer to a deforming boundary is analyzed with a domain perturbation method and potential-flow simulations, revealing scalings for energy and momentum transfer to the fluid and providing physical insight on how and why a jet forms in BA-LIFT. The remaining chapters explore more complex applications and modifications of LIFT. One is the possibility of high-repetition rate printing and limits on time delay and separation between pulses imposed by a tilting effect found for adjacent jets. Another examines a focusing effect achieved by perturbing the interface with ring-shaped disturbances. The third contains an experimental study of LIFT using a silver paste as the donor material instead of a Newtonian liquid. The transfer mechanism is significantly different, although with repeated pulses at one location, a focusing effect is again observed. All three of these chapters investigate how perturbations to the interface can strongly influence the jet formation process.

  13. Diamond detectors with laser induced surface graphite electrodes

    NASA Astrophysics Data System (ADS)

    Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S.

    2016-11-01

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm2 pixels was realized on one side of a 10.0×10.0×0.5 mm3 polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 μm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  14. Characterisation of estuarine intertidal macroalgae by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gameiro, Carla; Utkin, Andrei B.; Cartaxana, Paulo

    2015-12-01

    The article reports the application of laser-induced fluorescence (LIF) for the assessment of macroalgae communities of estuarine intertidal areas. The method was applied for the characterisation of fifteen intertidal macroalgae species of the Tagus estuary, Portugal, and adjacent coastal area. Three bands characterised the LIF spectra of red macroalgae with emission maxima in the ranges 577-583 nm, 621-642 nm and 705-731 nm. Green and brown macroalgae showed one emission maximum in the red region (687-690 nm) and/or one in the far-red region (726-732 nm). Characteristics of LIF emission spectra were determined by differences in the main fluorescing pigments: phycoerythrin, phycocyanin and chlorophyll a (Chl a). In the green and brown macroalgae groups, the relative significance of the two emission maxima seems to be related to the thickness of the photosynthetic layer. In thick macroalgae, like Codium tomentosum or Fucus vesiculosus, the contribution of the far-red emission fluorescence peak was more significant, most probably due to re-absorption of the emitted red Chl a fluorescence within the dense photosynthetic layer. Similarly, an increase in the number of layers of the thin-blade green macroalgae Ulva rigida caused a shift to longer wavelengths of the red emission maximum and the development of a fluorescence peak at the far-red region. Water loss from Ulva's algal tissue also led to a decrease in the red/far-red Chl fluorescence ratio (F685/F735), indicating an increase in the density of chloroplasts in the shrinking macroalgal tissue during low tide exposure.

  15. Measurement of high viscosity with laser induced surface deformation technique

    SciTech Connect

    Yoshitake, Y.; Mitani, S.; Sakai, K.; Takagi, K.

    2005-01-15

    A technique for viscosity measurement was developed based on the principle of laser-induced surface deformation. Light incident into liquids increases its momentum due to the difference in refractive index and gives the surface an upward force as a reaction. The plane surface thus swells up and deforms, and the shape is determined so that the force is balanced with the surface tension and the gravity. On sudden laser irradiation, the deformation inevitably accompanies a viscous flow and exhibits a relaxational behavior with a delay time, which gives the viscosity. Theoretical prediction of the step-response function was given that takes surface tension waves excited by the laser into consideration. Nd-yttritium-aluminum-garnet laser with 0.6 W output was focused to {approx}200 {mu}m beam waist and used for the pumping. The deformation process was observed sensitively with another probe laser illuminating the activated area. This system was tested with the standard liquids for viscosity ranging from 1 to 10{sup 6} cSt. The results demonstrated the validity of this technique, though a correction for the inertia effect was needed in the range lower than 10 cSt. Further, effect of the thermal expansion by a slight optical absorption was discussed. This technique is especially useful at high viscosities since the measurement takes only a few seconds even in the specimen with 10{sup 6} cSt. Besides the rapidity, it has a great advantage of a noncontact feature and is appropriate for measuring the liquids that strongly dislike contamination. It has also potential applications in industries, measurement of liquids isolated in a production line, for instance.

  16. Novel Applications of Laser-Induced Breakdown Spectroscopy.

    PubMed

    Bauer, Amy J Ray; Buckley, Steven G

    2017-01-01

    The goal of this review article is to provide a description of recent and novel laser-induced breakdown spectroscopy (LIBS) applications and developments, especially those discussed during the NASLIBS Conference, held during SciX in Providence, RI, in September 2015. This topic was selected in view of the numerous recent overall review papers that have successfully given a broad view of the current understanding of laser-material interactions and plasma development and have also discussed the wide landscape of analytical applications of LIBS. This paper is divided into sections that focus on a few of the many applications under development in the LIBS community. We provide a summary of updates to calibration-free LIBS (CF-LIBS) and associated developments using plasma characteristics to improve quantification in LIBS output, both in a dedicated section and as applications are discussed. We have also described the most recent publications studying the sources, generation, and use of molecular features in LIBS, including those naturally present in the spectra of organic materials, and those induced with the addition of salts to enable the measurement of halogens, not typically present in LIBS signals. In terms of development of applications of LIBS, we focused on the use of LIBS for indirect measurements such as pH and degree of humification in soil and heating value in coal. We also reviewed the extant literature on LIBS analysis of agricultural materials, coal, minerals, and metals. Finally, we discuss the nascent developments of spatially heterodyne spectroscopy, a method that seeks to circumnavigate a serious drawback of most spectrometers - very small optical throughput - through the use of interferometers.

  17. Characterization of cinematographic films by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M.

    2007-12-01

    The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.

  18. Improved assessment of laser-induced choroidal neovascularization.

    PubMed

    Toma, Hassanain S; Barnett, Joshua M; Penn, John S; Kim, Stephen J

    2010-12-01

    The primary objective of this study was to develop and evaluate new methods of analyzing laser-induced choroidal neovascularization (CNV), in order to make recommendations for improving the reporting of experimental CNV in the literature. Six laser burns of sufficient power to rupture Bruch's membrane were concentrically placed in each eye of 18 adult Norway rats. Eyes received intravitreal injections of either triamcinolone acetonide, ketorolac, or balanced salt solution (BSS). Fluorescein angiography (FA) was performed 2 and 3 weeks after injection, followed by choroidal flat mount preparation. Vascular leakage on FAs and vascular budding on choroidal mounts were quantified by measuring either the cross-sectional area of each CNV lesion contained within the best-fitting polygon using Adobe Photoshop (Lasso Technique or Quick Selection Technique), or the area of bright pixels within a lesion using Image-Pro Plus. On choroidal mounts, the Lasso Technique and Image-Pro Plus detected a significant difference in lesion size between either ketorolac or triamcinolone when compared to BSS, while the Quick Selection Technique did not (Lasso Technique, 0.78 and 0.64; Image-Pro Plus, 0.77 and 0.65). On FA, the Lasso Technique and Quick Selection Technique detected a significant difference in lesion size between either ketorolac or triamcinolone when compared to BSS, while Image-Pro Plus did not (Lasso Tool, 0.81 and 0.54; Quick Selection Tool, 0.76 and 0.57). Choroidal mounts and FA are both valuable for imaging experimental CNV. Adobe Photoshop and Image-Pro Plus are both able to detect subtle differences in CNV lesion size, when images are not manipulated. The combination of choroidal mounts and FA provides a more comprehensive assessment of CNV anatomy and physiology.

  19. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  20. Development of laser-induced breakdown spectroscopy sensor to assess groundwater quality impacts resulting from geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin

    2015-05-01

    The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.

  1. Magnetite Nanoparticles Prepared By Spark Erosion

    NASA Astrophysics Data System (ADS)

    Maiorov, M.; Blums, E.; Kronkalns, G.; Krumina, A.; Lubane, M.

    2016-08-01

    In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  2. Release of Unreviewed Studies Sparks Debate

    ERIC Educational Resources Information Center

    Viadero, Debra

    2005-01-01

    Studies generally undergo an evaluation process before they are accepted for publication in an academic journal, presented at a conference, or released by a think tank. This article discusses the release of unreviewed research that sparks debate over the need for tighter peer-review mechanisms. Researchers from two of the nation's most eminent…

  3. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  4. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  5. Visible electroluminescence in spark-processed silicon

    NASA Astrophysics Data System (ADS)

    Shepherd, Nigel Dexter

    Spark-processing is a novel technique that transforms silicon into a material with unique optical and magnetic properties. In this work, the electroluminescence (EL) from spark-processed silicon (sp-Si) has been studied and characterized. The devices studied have a MOS (metal-oxide-semiconductor) type structure. The EL spectrum is broad, and has a threshold wavelength that extends beyond 350 nm, and peaks at around 650 and 730 nm. The threshold voltage for the EL process is typically in the 5--8 V range. Irrespective of whether the base silicon is n or p-type, EL is observed only under the condition of electron injection into the spark-processed layer. The processing conditions that result in the highest EL intensity have been established. Specifically, the processing parameters that results in the highest device currents and EL intensity are 7--8 kV, 10 mA, 12--13 kHz, around 750 mbar and 10 seconds of spark voltage, current, frequency, pressure and time respectively. It has been also been found that processing in air results in higher EL intensities, compared to processing in ultra-high purity nitrogen or oxygen. These conditions are believed to result in the optimal composition and thickness of the near surface SiOx layers, thought to be the optically active region in sp-Si EL devices. These processing conditions are also believed to result in a surface morphology that facilitates the best coverage by the semitransparent metal film, through which the electroluminescence is emitted. When a tungsten wire is used as the anode for spark-processing, the pattern of emission is a circular band of light. This band consists of small light-emitting spots, separated by non-emitting regions. It is shown that by modifying the anode arrangement, significant improvements to the pattern of emission and EL intensity can be achieved. These improvements are proposed to be due to enhanced coverage by the semitransparent metal film. Based on the results of the EL characterization

  6. Model system for investigating laser-induced subcellular microeffects

    NASA Astrophysics Data System (ADS)

    Huettmann, Gereon; Serbin, Jesper; Radt, Benno; Lange, Bjoern I.; Birngruber, Reginald

    2001-07-01

    Background: Laser induced protein denaturation is of fundamental interest for understanding the mechanisms of laser tissue interaction. Conjugates of nanoabsorbers coupled to proteins are presented as a model system for investigating ultrafast protein denaturation. Irradiation of the conjugates using repetitive picosecond laser pulses, which are only absorbed by the nanoabsorbers, could result in effects with a spatial confinement of less than 100 nm. Materials and Methods: Experiments were done with bovine intestinal alkaline phosphates (aP) coupled to 15 nm colloidal gold. This complex was irradiated at 527 nm wavelength and 35 ps pulse width with a varying number of pulses ranging form one up to 104. The radiant exposure per pulse was varied form 2 mJ/cm2 to 50 mJ/cm2. Denaturation was detected as a loss of protein function with the help of the fluorescence substrate 4MUP. Results and discussion: Irradiation did result in a steady decrease of the aP activity with increasing radiant exposures and increasing number of pulses. A maximal inactivation of 80% was reached with 104 pulses and 50 mJ/cm2 per pulse. The temperature in the particles and the surrounding water was calculated using Mie's formulas for the absorption of the nanometer gold particles and ana analytical solution of the equations for heat diffusion. With 50 mJ/cm2, the particles are heated above the melting point of gold. Since the temperature calculations strongly depend on changes in the state of matter of the particles and water, a very sophisticated thermal model is necessary to calculate exact temperatures. It is difficult to identify one of the possible mechanisms, thermal denaturation, photochemical denaturation or formation of micro bubbles from the dependance of the inactivation on pulse energy and number of applied pulses. Therefore, experiments are needed to further elucidate the damage mechanisms. In conclusion, denaturing proteins irreversibly via nanoabsorbers using picosecond laser

  7. Modeling of Laser Induced Damage in NIF UV Optics

    SciTech Connect

    Feit, M D; Rubenchik, A M

    2001-02-21

    Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations

  8. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  9. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  10. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  11. Spark Ignition: Effects of Fluid Dynamics and Electrode Geometry

    NASA Astrophysics Data System (ADS)

    Bane, Sally; Ziegler, Jack; Shepherd, Joseph

    2010-11-01

    The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels, and standard test methods for determining the MIE use a capacitive spark discharge as the ignition source. Developing the numerical tools necessary to quantitatively predict ignition is a challenging research problem and remains primarily an experimental issue. In this work a two-dimensional model of spark discharge in air and spark ignition was developed using the non-reactive and reactive Navier-Stokes equations. The simulations were performed with three different electrode geometries to investigate the effect of the geometry on the fluid mechanics of the evolving spark kernel and on flame formation. The computational results were compared with high-speed schlieren visualization of spark and ignition kernels. It was found that the electrode geometry had a significant effect on the fluid motion following spark discharge and hence influences the ignition process and the required spark energy.

  12. Laser Induced Breakdown Spectroscopy (LIBS) Applied to Reacting Gases for Mixture Ratio Measurement and Detection of Metallic Species

    DTIC Science & Technology

    2007-03-29

    et al, Laser Diagnostics of Painted Artworks: Laser Induced Breakdown Spectroscopy in Pigment Identification, Applied Spectroscopy , Vol. 51, No. 7...Laser-Induced Breakdown Spectroscopy for Online Engine Equivalence Ratio Measurements, Applied Spectroscopy , Vol. 57, No. 9, pp. 1183-1189, 2003. Fisher...A. K., at al. Flame Emission Spectroscopy for Equivalence Ratio Monitoring, Applied Spectroscopy , Vol. 52, No. 5, pp. 658-662, 1998. Laser Induced

  13. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  14. Reconstruction of laser-induced cavitation bubble dynamics based on a Fresnel propagation approach.

    PubMed

    Devia-Cruz, Luis Felipe; Camacho-López, Santiago; Cortés, Víctor Ruiz; Ramos-Muñiz, Victoria; Pérez-Gutiérrez, Francisco G; Aguilar, Guillermo

    2015-12-10

    A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7)   fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble.

  15. Towards spark-proof gaseous pixel detectors

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  16. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  17. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  18. SPARK Version 1. 1 user manual

    SciTech Connect

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  19. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  20. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  1. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  2. Acoustic signal characteristics of laser induced cavitation in DDFP droplet: Spectrum and time-frequency analysis.

    PubMed

    Feng, Yi; Qin, Dui; Zhang, Jun; Ma, Chenxiang; Wan, Mingxi

    2015-01-01

    Cavitation has great application potential in microvessel damage and targeted drug delivery. Concerning cavitation, droplet vaporization has been widely investigated in vitro and in vivo with plasmonic nanoparticles. Droplets with a liquid dodecafluoropentane (DDFP) core enclosed in an albumin shell have a stable and simple structure with good characteristics of laser absorbing; thus, DDFP droplets could be an effective aim for laser-induced cavitation. The DDPF droplet was prepared and perfused in a mimic microvessel in the optical microscopic system with a passive acoustic detection module. Three patterns of laser-induced cavitation in the droplets were observed. The emitted acoustic signals showed specific spectrum components at specific time points. It was suggested that a nanosecond laser pulse could induce cavitation in DDPF droplets, and specific acoustic signals would be emitted. Analyzing its characteristics could aid in monitoring the laser-induced cavitation process in droplets, which is meaningful to theranostic application.

  3. Simulation and characterization of laser induced deformation processes

    NASA Astrophysics Data System (ADS)

    Fan, Yajun

    2006-04-01

    Laser induced deformation processes include laser forming (LF) and laser shock processing. LF is a recently developed and highly flexible thermal forming technique, and laser shock processing is an innovative mechanical process in which shock waves up to 10GPa are generated by a confined laser ablation process. The generated high pressure imparts beneficial residual stress into the surface layer of metal parts as well as shapes thin metal parts. In laser forming, it has been known that microstructural evolution has an important effect on the deformation process, and that the typical thermal cycles in laser forming are much steeper than those in other thermal mechanical processes like welding and hot rolling. In this study, microstructural evolution in laser forming has been investigated, and a thermal-microstructural-mechanical model is developed to predict microstructural changes (phase transformations and recrystallization) and their effects on flow behavior and deformation. Grain structure and phase transformation in heat affected zone (HAZ) is experimentally characterized, and measurement of bending curvature also helps to validate the proposed model. Based on the similar methodology, two different materials have been studied: AISI 1010 low carbon steel and Ti-6Al-4V alloy. In the case of Ti-6A1-4V alloy, the initial phase ratio of Ti-alpha and Ti-beta need to be measured by X-ray diffraction. In laser shock processing, under shock loading solid material behavior is fluidlike and shock-solid interactions play a key role in determining the induced residual stress distributions and the final deformed shape. In this work shock-solid interactions under high pressure and thus high strain rate in laser shock processing are studied and simulated based on conservation's law, equation of state and elastoplasticity of material. A series of carefully controlled experiments, including spatially resolved residual stress measurement by synchrotron X-ray diffraction and

  4. SI Engine with repetitive NS spark plug

    NASA Astrophysics Data System (ADS)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  5. PIV, high-speed PLIF and chemiluminescence imaging for near-spark-plug investigations in IC engines

    NASA Astrophysics Data System (ADS)

    Fajardo, C. M.; Smith, J. D.; Sick, V.

    2006-07-01

    Measurements of the local flow and mixture condition near the spark plug of internal combustion engines are important to characterize their influence on ignition and combustion performance. This is especially true for direct-injection engines where limited time is available for mixture formation and optimum stratification of the fuel/air mixture to achieve best performance. Transient processes need to be visualized in an optically challenging environment. The application of digital Particle Image Velocimetry (PIV) for flow field measurements along with crank angle-resolved planar laser induced fluorescence (PLIF) and chemiluminescence imaging is discussed in the context of investigations of a highly stratified sprayguided direct-injection engine. Flow fields were captured in a firing optical single-cylinder engine to study the interaction of the fast spray and the underlying in-cylinder tumble flow. The impingement of the fuel spray on the spark plug electrodes and subsequent dispersion of the fuel cloud was filmed at a rate of 12kHz with a new PLIF technique using a diode-pumped Nd:YAG laser. Subsequent flame development and combustion progress could be followed via high-speed imaging of OH* chemiluminescence. This approach was also combined with double- pulse PLIF imaging of fuel distributions.

  6. Fiber optic diagnostic techniques applied to electrical discharge machining sparks

    NASA Astrophysics Data System (ADS)

    Pillans, B. W.; Evensen, M. H.; Taylor, H. F.; Eubank, P. T.; Ma, Lianxi

    2002-02-01

    Plasma sparks from an electrical discharge machining (EDM) process were observed using fiber optics positioned in the dielectric oil. Measurement techniques were developed to observe the spark in the extremely noisy environment. Optical data were used along with current pulse wave forms from the EDM machine to study the temporal characteristics of the spark in both the pulse time and the pause time. During the pause time, extinction of the sparks was longer than previously thought—perhaps due to the remaining infrared radiation after the collapse of the spark. Further, an optical pattern was identified that indicated in advance when an arc was being formed instead of a spark. Spectral data of the plasma spark was obtained by using a scanning grating spectrometer in conjunction with crosscorrelation to maximize the signal-to-noise ratio. Average spark temperatures from the spectral data were found to be significantly higher than those previously predicted from energy balances. The results showed a shift in the optical spectra to longer wavelengths during the spark, showing that the spark temperature decreased with time.

  7. Comparisons of Laser-Saturated, Laser-Induced, and Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in a Lean Direct-Injection Spray Flame

    NASA Astrophysics Data System (ADS)

    Cooper, Clayton S.; Ravikrishna, Rayavarapu V.; Laurendeau, Normand M.

    1998-07-01

    We report quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of nitric oxide (NO) concentration in a preheated, lean direct-injection spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane, and the overall equivalence ratio is unity. NO is excited by means of the Q 2 ( 26 . 5 ) transition of the (0, 0) band. LSF and LIF detection are performed in a 2-nm region centered on the (0, 1) band. PLIF detection is performed in a broad 70-nm region with a peak transmission at 270 nm. Quantitative radial NO profiles obtained by LSF are presented and analyzed so as to correct similar LIF and PLIF profiles. Excellent agreement is achieved among the three fluorescence methodologies.

  8. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  9. Effects of polarization and absorption on laser induced optical breakdown threshold for skin rejuvenation

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Bonito, Valentina; Turco, Simona; Verhagen, Rieko

    2016-03-01

    Laser induced optical breakdown (LIOB) is a non-linear absorption process leading to plasma formation at locations where the threshold irradiance for breakdown is surpassed. In this paper we experimentally demonstrate the influence of polarization and absorption on laser induced breakdown threshold in transparent, absorbing and scattering phantoms made from water suspensions of polystyrene microspheres. We demonstrate that radially polarized light yields a lower irradiance threshold for creating optical breakdown compared to linearly polarized light. We also demonstrate that the thermal initiation pathway used for generating seed electrons results in a lower irradiance threshold compared to multiphoton initiation pathway used for optical breakdown.

  10. Single-Walled Carbon Nanotubes, Carbon Nanofibers and Laser-Induced Incandescence

    NASA Technical Reports Server (NTRS)

    Schubert, Kathy (Technical Monitor); VanderWal, Randy L.; Ticich, Thomas M.; Berger, Gordon M.; Patel, Premal D.

    2004-01-01

    Laser induced incandescence applied to a heterogeneous, multi-element reacting flows is characterized by a) temporally resolved emission spectra, time-resolved emission at selected detection wavelengths and fluence dependence. Laser fluences above 0.6 Joules per square centimeter at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence beyond this value lead to a super-heated plasma, well above the vaporization of temperature of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solid-like structures.

  11. Modification of the photoelectron angular distribution through laser-induced continuum structure

    SciTech Connect

    Nakajima, Takashi; Buica, Gabriela

    2005-01-01

    We theoretically investigate how the photoelectron angular distribution is altered by the introduction of a dressing laser. The physical mechanism underlying this alteration is the so-called laser-induced continuum structure; namely, a strong dressing laser induces quantum mechanical interference, the degree of which is different for different ionization channels. Therefore the branching ratio into different ionization channels changes as a function of laser detuning, and accordingly the photoelectron angular distribution is altered. After a general argument, we present specific theoretical results for the K atom, which indeed exhibit significant modification of the photoelectron angular distribution.

  12. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    SciTech Connect

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  13. Pulse laser induced graphite-to-diamond phase transition: the role of quantum electronic stress

    NASA Astrophysics Data System (ADS)

    Wang, ZhengFei; Liu, Feng

    2017-02-01

    First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as "quantum electronic stress (QES)". We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.

  14. [Measurement of fruit maturity based on laser-induced photoluminescence spectrum].

    PubMed

    Wang, Le-yan; Zhang, Dong-xian; Zhang, Hai-jun; Wang, Xiao-ping

    2008-12-01

    Grounding on the concepts of biophotonics measurement, the authors first used a red semiconductor laser (655 nm) to irradiate fruits. Compared with other kinds of illuminating sources, the red semiconductor laser is less expensive and takes little space. The laser-induced photoluminescence spectrums could be detected by coupling fibre-optics probe when the fruits are illuminated by laser. And the spectrum has a distinct peak of relative intensity around the 685 nm wavelength that varies with the degree of fruit maturity. Sugar content measurement was used to prove the laser-induced photoluminescence measurement. The authors tested the sugar content of the fruit specimens, and found that the relative peak value of the fruits' laser-induced photoluminescence spectrum decreases with the increase in their sugar content. The authors used partial least-squares (PLS) regression to perform an analysis of the relationship between the laser-induced photoluminescence intensity and the sugar content, fitting a curve of the two parameters. The correlation coefficient r of the fitted value and the actual value is 98.92% for red-inside plum and 97.31% for nectarine. So the authors could generalize that there is an approximate linear relationship between the peak value of laser-induced photoluminescence intensity and the sugar content of fruits, and we could use the maturity measurement based on this concept to decide the fruit ripeness. The authors designed the analytic program for this laser-induced photoluminescence spectrum measurement system, which mainly realizes two functions: generating the standard ripe spectrum of a certain kind of fruit from a quantity of their spectra, and, according to this standard spectrum, determining the maturity degree of an unknown spectrum, and at the same time, displaying the unknown laser-induced photoluminescence spectrum. Incorporating this analytic program with the optical spectrometer, it becomes conceivable to test the fruit maturity

  15. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  16. Online compositional analysis in coal gasification environment using laser-induced plasma technology

    NASA Astrophysics Data System (ADS)

    Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

    2006-08-01

    Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

  17. Evaluation of a laser-induced fluorescence system for uranium analysis

    SciTech Connect

    White, L.E.

    1980-05-01

    A laser-induced fluorescence method for total uranium analysis of industrial process waters, waste waters, and leachates has been evaluated as a possible alternative for the normal, sodium fluoride and lithium fluoride, flame-fusion fluorescence method currently employed. Since the lower reporting limit of the laser fluorometer is on the order of 0.05 ..mu..g/L, samples for normal analysis can usually be diluted from 100 to 1000 fold which virtually eliminates interferences from quenching substances. Also, since the uranium determination is done in aqueous solution, laser-induced fluorescence entirely eliminates the need for organic extraction and the subsequent fusion process.

  18. LLNL small-scale static spark machine: static spark sensitivity test

    SciTech Connect

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal in New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.

  19. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

  20. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  1. Results of Materials Testing for ElectroSpark Deposition

    DTIC Science & Technology

    2006-01-01

    Results of materials testing for ElectroSpark Deposition Norma Price Advanced Surfaces and Processes, Inc. HCAT Program Review Meeting Hilton San...Results of materials testing for ElectroSpark Deposition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... ElectroSpark Deposition (ESD) as technically feasible and commercially viable for a production-scale process, and to perform the tests necessary to

  2. MetaSpark: a spark-based distributed processing tool to recruit metagenomic reads to reference genomes.

    PubMed

    Zhou, Wei; Li, Ruilin; Yuan, Shuo; Liu, ChangChun; Yao, Shaowen; Luo, Jing; Niu, Beifang

    2017-01-08

    With the advent of next-generation sequencing, traditional bioinformatics tools are challenged by massive raw metagenomic datasets. One of the bottlenecks of metagenomic studies is lack of large-scale and cloud computing suitable data analysis tools. In this paper, we proposed a Spark -: based tool, called MetaSpark, to recruit metagenomic reads to reference genomes. MetaSpark benefits from the distributed data set (RDD) of Spark, which makes it able to cache data set in memory across cluster nodes and scale well with the datasets. Compared with previous metagenomics recruitment tools, MetaSpark recruited significantly more reads than many programs such as SOAP2, BWA and LAST and increased recruited reads by ∼4% compared with FR-HIT when there were 1 million reads and 0.75 GB references. Different test cases demonstrate MetaSpark's scalability and overall high performance.

  3. Sorbitol as an efficient reducing agent for laser-induced copper deposition

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Logunov, L. S.; Safonov, S. V.; Tumkin, I. I.; Tver'yanovich, Yu. S.; Menchikov, L. G.

    2012-10-01

    We have pioneered in revealing the fact that sorbitol may be used as an efficient reducing agent in the process of laser-induced copper deposition from solutions; in this case, it is possible to obtain copper lines much higher quality than by using conventional formalin.

  4. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  5. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  6. High-speed energy efficient selective removal of large area copper layer by laser induced delamination

    NASA Astrophysics Data System (ADS)

    Kmetec, Blaž; Kovačič, Drago; Možina, Janez; Podobnik, Boštjan

    2009-07-01

    An indirect laser-induced method for selective removal of large copper areas from a printed circuit board is theoretically and experimentally investigated. The results show that the threshold condition for the process involves phase transition of the epoxy-based substrate resin. Optimal parameters for maximizing process speed are found and discussed.

  7. The study of substituted benzyl radicals by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Charlton, T. R.; Thrush, B. A.

    1986-04-01

    The visible absorption spectra of all the monomethylbenzyl and monofluorobenzyl radicals in the gas phase have been studied by laser-induced fluorescence. The fluorescence lifetimes of the stronger vibronic transitions have been measured. It is concluded that, unlike benzyl itself, a single excited electronic state, probably 2A 2, is involved except for p-methylbenzyl and perhaps o-fluorobenzyl.

  8. Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu; Yusupov, V. I.; Minaev, N. V.; Timashev, P. S.; Golant, K. M.; Bagratashvili, V. N.

    2016-10-01

    The thermo-plasmonic effect (heat deposition via absorption of laser light by metal nanoparticles) is applied to substantially enhance the effectiveness and controllability of the microstructure formation by laser-induced backside wet etching (LIBWE). Experiments were carried out with silicate glass plates using a pulsed 527 nm wavelength laser and an aqueous solution of AgNO3 as a precursor of the Ag nanoparticles. Mechanisms of such thermo-plasmonic LIBWE (TP-LIBWE) versions are considered. They involve: laser-induced photo-thermal reducing of silver (Ag) and self-assembling of Ag nanoparticles in water and the water/glass interface; fast laser-induced overheating of a water and glass surface through the thermo-plasmonic effect; formation of highly reactive supercritical water that causes glass etching and crater formation; generation of steam-gas bubbles in a liquid. It is significant that the emergence of the Marangoni convection results in bubble retention in the focal point at the interface and the accumulation of nanoparticles on the surface of the laser-induced crater, as this facilitates the movement of the bubbles with captured Ag particles from the fluid volume in the crater region, and accelerates the formation of the area of strong ‘surface absorption’ of laser energy. All these mechanisms provide a highly efficient and reproducible process for laser microstructure formation on the surface of glass using a novel TP-LIBWE technique.

  9. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Kamil; Rohwetter, Philipp; Méjean, Guillaume; Yu, Jin; Salmon, Estelle; Kasparian, Jérôme; Ackermann, Roland; Wolf, Jean-Pierre; Wöste, Ludger

    2004-11-01

    We demonstrate remote elemental analysis at distances up to 90m, using a laser-induced breakdown spectroscopy scheme based on filamentation induced by the nonlinear propagation of unfocused ultrashort laser pulses. A detailed signal analysis suggests that this technique, remote filament-induced breakdown spectroscopy, can be extended up to the kilometer range.

  10. Laser-Induced Breakdown Spectroscopy: A Review of Applied Explosive Detection

    DTIC Science & Technology

    2013-09-01

    discrimination. 3.5.2 Frequency Dependence in Laser-Induced Breakdown Spectroscopy Laser-based spectroscopy commonly uses pulsed, nanosecond neodymium ...mononitrotoulene Nd:YAG neodymium -doped yttrium aluminum garnet 47 NIR near infrared PA photoacoustic PAS photoacoustic spectroscopy PCA principal

  11. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  12. Recognition of edible oil by using BP neural network and laser induced fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Guo, Pan; Chen, He; Zhang, Hong-yan; Liu, Xiao-hua; Wang, Yuan; Bu, Zhi-chao

    2013-09-01

    In order to accomplish recognition of the different edible oil we set up a laser induced fluorescence spectrum system in the laboratory based on Laser induced fluorescence spectrum technology, and then collect the fluorescence spectrum of different edible oil by using that system. Based on this, we set up a fluorescence spectrum database of different cooking oil. It is clear that there are three main peak position of different edible oil from fluorescence spectrum chart. Although the peak positions of all cooking oil were almost the same, the relative intensity of different edible oils was totally different. So it could easily accomplish that oil recognition could take advantage of the difference of relative intensity. Feature invariants were extracted from the spectrum data, which were chosen from the fluorescence spectrum database randomly, before distinguishing different cooking oil. Then back propagation (BP) neural network was established and trained by the chosen data from the spectrum database. On that basis real experiment data was identified by BP neural network. It was found that the overall recognition rate could reach as high as 83.2%. Experiments showed that the laser induced fluorescence spectrum of different cooking oil was very different from each other, which could be used to accomplish the oil recognition. Laser induced fluorescence spectrum technology, combined BP neural network,was fast, high sensitivity, non-contact, and high recognition rate. It could become a new technique to accomplish the edible oil recognition and quality detection.

  13. tritium isotope separation by CO 2 laser-induced multiphoton dissociation of CTF 3

    NASA Astrophysics Data System (ADS)

    Makide, Yoshihiro; Hagiwara, Satoru; Tominaga, Takeshi; Takeuchi, Kazuo; Nakane, Ryohei

    1981-08-01

    Isotope separation of tritium at ppm concentration level was achieved by CO 2 laser-induced multiphoton dissociation of CTF 3 in CHF 3 with single-step separation factors exceeding 500. The effects of laser frequency, pulse energy, pulse duration, irradiation geometry, tritium concentration, sample pressure, and buffer gas were investigated.

  14. Laser Induced Patterning of Transparent Ceramics and Metallic Thin Films for Photonic and Sensing Applications

    DTIC Science & Technology

    2014-01-31

    complex brain processes. 4. Metallic oxides are of great interest for applications such as displays and gas-sensing due to their photochromic ...Plasmonic devices (sensors, light emitters)  Chromic sensors ( photochromic , gasochromic, thermo cromic, etc.)  Waveguide by laser-induced metallic

  15. Use of laser induced breakdown spectroscopy for the analysis of poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laser Induced Breakdown Spectroscopy is evaluated as a potential method to characterize a wide range of poultry product quality and safety characteristics. In one part of this study, breast meat quality indices, including pH and water holding capacity, were treated as dependent variables for correla...

  16. Theory Analysis of Wavelength Dependence of Laser-Induced Phase Explosion of Silicon

    DTIC Science & Technology

    2008-01-01

    and P. Martin , Appl. Phys. A: Mater. Sci. Process. 79, 1695 2004. 2R. E. Russo, X. Mao, and S. S. Mao, Anal. Chem. 74, 70A 2002. 3Laser Ablation...J. Radziemski and D. A. Cremers , Laser-Induced Plasmas and Appli- cation Dekker, New York, 1989. 13J. R. Ho, C. P. Grigoropoulos, and J. A

  17. Theoretical Studies of Laser-Induced Molecular Rate Processes: Topics in Line Broadening and Spectroscopy.

    DTIC Science & Technology

    1985-10-01

    GROUP SU. GRF. MOLECULAR RATE PROCESSES MOLECULAR DYNAMICS LASER-INDUCED LINE BROADENING THEORETICAL STUDIES SPECTROSCOPY 19. ABSI*ACT (Continue On...approaches half the band-gap energy. -q 14 This idea of using a laser to "charge" the surface region has fomed the basis of a semiclassical theory of charge

  18. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  19. Laser-induced fluorescence measurement of the dynamics of a pulsed planar sheath

    SciTech Connect

    Goeckner, M.J.; Malik, S.M. ); Conrad, J.R. ); Breun, R.A. )

    1994-04-01

    Using laser-induced fluorescence (LIF) the ion density near the edge of an expanding plasma sheath has been measured. These measurements utilized a transition of N[sup +][sub 2] [the P12 component of the [ital X] [sup 2][Sigma][sup +][sub [ital g

  20. Extreme ultraviolet emission from laser-induced plasma relevance to neutral gas environment simulation in LEO

    NASA Astrophysics Data System (ADS)

    Tagawa, Masahito; Kimoto, Yugo; Yokota, Kumiko; Ohira, Junki; Watanabe, Daiki; Nishimura, Hiroaki

    The reaction mechanism of atomic oxygen (AO) in low Earth orbit (LEO) with spacecraft materials has been studied by ground-based experiments using laser-detonation hyperthermal beam source, which enables to accelerate the electrically neutral AO up to 8 km/s. However, the beam conditions in the laser-detonation sources could not fully duplicate the AO environment in space. The difference in beam condition including side products leads to the different material responses. The light emission from the laser-induced oxygen plasma may affect the erosion of ultraviolet (UV)-sensitive materials. However, the light emission could also be used as a diagnostic tool to understand the molecular processes in plasma. In this presentation, extreme ultraviolet (EUV) emission from the laser-induced plasma during AO test was evaluated by the flat field EUV spectrometer. Many emission lines between 25-40 nm originated from OII and OIII were observed from the laser-induced oxygen plasma. This result suggested multiple-charged O ions are generated in the laser-induced plasma. Promotion of oxygen dissociation effect by adding Ar in the target gas was explained by the energy transfer processes from Ar to O2 in the plasma. From the viewpoint of reducing the side products in the AO exposure tests, a method to reduce the EUV emission will also be investigated. These results could be used for establishing more accurate ground-based natural gas simulations on the space environmental effect of materials.

  1. Wavelength Dependence on the Forensic Analysis of Glass by Laser Induced Breakdown Spectroscopy

    DTIC Science & Technology

    2009-10-29

    spectroscopy [2,4], atomic absorption spectroscopy (AAS) [3], x - ray fluorescence ( XRF ) [3,4], neutron activation analysis (NAA) [5...micro X - ray fluorescence spectroscopy , and laser induced breakdown spectroscopy for the discrimination of automotive glass,” Spectrochim. Acta Part...refractive index, energy dispersive X - ray fluorescence and inductively coupled plasma atomic emission spectrometry for forensic characterization

  2. Detection of Aequorea victoria green fluorescent protein by capillary electrophoresis laser induced fluorescence detection.

    PubMed

    Craig, D B; Wong, J C; Dovichi, N J

    1997-01-01

    Aequorea victoria green fluorescent protein was assayed by capillary electrophoresis using post-capillary laser-induced fluorescence detection in a sheath flow cuvette. The limit of detection was 3.0 x 10(-12) M protein in an injection volume of 17 nL, corresponding to a mass of 3100 molecules.

  3. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    hafnia:alumina ratio remained somewhat vague. In a study of the nanosecond-scale laser-induced damage threshold (LIDT) of an ALD titania -alumina...nanolaminate relative to a polycrystalline titania film indicated that the smooth, amorophous nanolaminate had at least twice the LIDT of the titania

  4. Infrared laser-induced desorption of NO and CO from alumina substrates

    NASA Astrophysics Data System (ADS)

    Weber, W. H.; Poindexter, B. D.

    1987-09-01

    We present results of laser-induced desorption (LID) experiments using a CO laser on layers of CO and NO physisorbed at low temperature (6-40K) on fire-polished alumina substrates. Resonant LID is observed for NO but not CO. The time-of-flight (TOF) spectra of both molecules agree with Maxwell-Boltzmann distributions and show no additional structure.

  5. Laser-induced photodissociation of oxyhemoglobin: Optical method of elimination of hypoxia (oxygen deficiency in biotissue)

    NASA Astrophysics Data System (ADS)

    Asimov, M. M.; Thanh, Nguyen Cong

    2011-08-01

    We consider the effect of laser-induced in vivo photodissociation of blood oxyhemoglobin on gas exchange in biological tissues. An optical method of laser-induced oxygenation of biotissues is developed and proposed. We show that, in the region of the action of the laser radiation, the degree of oxygenation of a tissue increases. We experimentally confirm that the phenomenon of laser-induced in vivo photodissociation of oxyhemoglobin opens up a new possibility of controlling the local concentration of free molecular oxygen in tissues, eliminating tissue hypoxia, and stimulating aerobic metabolism of cells. We show that the efficiency of the proposed method of laser-induced oxygenation of biotissues proves to be comparable with the efficiency of the hyperbaric oxygenation, but has the advantage of the locality of the action. The proposed optical method of local oxygenation of biotissues will make it possible to eliminate the problem of hypoxia in cancerous tumor tissue and to considerably increase the efficiency of photodynamic, radiation, and chemotherapy in modern oncology.

  6. In situ investigation of laser-induced ignition and the early stages of methane-air combustion at high pressures using a rapidly tuned diode laser at 2.55 microm.

    PubMed

    Lackner, Maximilian; Forsich, Christian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2003-11-01

    The laser-induced ignition of methane/air-mixtures at elevated pressures was investigated by an absorption spectroscopic technique. A room temperature continuous wave InGaAsSb/AlGaAsSb quantum well ridge diode laser was wavelength tuned around 2.55 mum by periodically modulating the injection current from 0 to 174 mA at a 5 kHz repetition rate. The laser heat sink temperature was fixed at 291 K. The infrared laser beam was sent through the pressurized combustion vessel perpendicularly to the igniting laser beam (Nd:YAG laser, 10 ns pulse duration, 20 mJ) at the position of the ignition spark. Fuel-rich to fuel-lean mixtures of methane/air (air equivalence ratio 0.89, 1.06, 1.42, 2.50) were investigated at initial pressures of up to 3 MPa. The initial temperature was 473 K, the volume of the combustion vessel 0.9x10(-3) m(3). The formation of water vapor in the vicinity of the laser spark was tracked by the diode laser. The time resolution of the measurements was 0.2 ms for a total continuous measurement time of up to 1 s. In this way, the laser-induced ignition and its accompanying effects could be investigated on a time scale spanning four orders of magnitude. Apart from the absorbance of water vapor which could be determined semi-quantitatively (due to the effects of severe pressure broadening at high pressures and the ignorance of the exact temperature distribution after ignition), the emissions from the flame (broadband, 1-10 mum) and a gas inhomogeneity index were recorded. The gas inhomogeneity index was obtained by extracting a frequency variable from the time-dependent fluctuations of the transmitted laser intensities and calculating its derivation. The absorbance of water vapor, the emissions from the flame and the gas inhomogeneity index were found to be a powerful tool to characterize laser-induced ignition. Major implications of in situ species concentration measurements at high pressures for the design and development of high-load combustors are

  7. Characterization of spark plasma sintered Ag nanopowders.

    PubMed

    Fu, Y Q; Shearwood, C; Xu, B; Yu, L G; Khor, K A

    2010-03-19

    The low temperature sintering behaviour of nanocrystalline Ag powder (with an average size of 70 nm) was characterized. Using spark plasma sintering (SPS), the Ag nanopowders can be successfully sintered at low pressure for only 5 min without external heating, and the sintering density increases and porosity decreases significantly with increase in the sintering temperature. Nanoindentation has been used to characterize the SPS sintered Ag samples. The mechanisms of the low sintering temperature behaviour of the nano-Ag powder and the nanoscale mechanical performance have been discussed. Compression tests were also used to characterize the mechanical properties of the sintered Ag sample with a maximum strain up to 15%.

  8. Anticipating Change, Sparking Innovation: Framing the Future

    PubMed Central

    Finnegan, John R.; Spencer, Harrison C.

    2015-01-01

    As the 100th anniversary of the 1915 Welch-Rose report approaches, the Association of Schools and Programs of Public Health (ASPPH) has been pursuing two initiatives to spark innovation in academic partnerships for enhancing population health: (1) Framing the Future: The Second 100 Years of Education for Public Health and (2) Reconnecting Public Health and Care Delivery to Improve the Health of Populations. We describe how ASPPH-member schools and programs accredited by the Council on Education for Public Health, along with their extraordinarily diverse array of partners, are working to improve education that better prepares health professionals to meet 21st-century population health needs. PMID:25706017

  9. Anticipating change, sparking innovation: framing the future.

    PubMed

    Petersen, Donna J; Finnegan, John R; Spencer, Harrison C

    2015-03-01

    As the 100th anniversary of the 1915 Welch-Rose report approaches, the Association of Schools and Programs of Public Health (ASPPH) has been pursuing two initiatives to spark innovation in academic partnerships for enhancing population health: (1) Framing the Future: The Second 100 Years of Education for Public Health and (2) Reconnecting Public Health and Care Delivery to Improve the Health of Populations. We describe how ASPPH-member schools and programs accredited by the Council on Education for Public Health, along with their extraordinarily diverse array of partners, are working to improve education that better prepares health professionals to meet 21st-century population health needs.

  10. Relativistic electrons from sparks in the laboratory

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Carlson, B. E.; Nisi, R. S.; Gjesteland, T.; Grøndahl, Ø.; Skeltved, A.; Lehtinen, N. G.; Mezentsev, A.; Marisaldi, M.; Kochkin, P.

    2016-03-01

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ˜300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (˜10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  11. A generalized chemistry version of SPARK

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.

    1988-01-01

    An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.

  12. Relativistic electrons from sparks in the laboratory.

    PubMed

    Østgaard, N; Carlson, B E; Nisi, R S; Gjesteland, T; Grøndahl, Ø; Skeltved, A; Lehtinen, N G; Mezentsev, A; Marisaldi, M; Kochkin, P

    2016-03-27

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm(2) each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ∼300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (∼10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  13. Development of a SPARK Training Dataset

    SciTech Connect

    Sayre, Amanda M.; Olson, Jarrod R.

    2015-03-01

    In its first five years, the National Nuclear Security Administration’s (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK’s intended analysis capability. The analysis demonstration sought to answer the

  14. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  15. Properties and preparation of ceramic insulators for spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Honaman, R K; Fonseca, E L; Bleininger, A V; Staley, H F

    1920-01-01

    Report describes in detail the preliminary experiments which were made on the conductivity of spark-plug insulators in order to develop a satisfactory comparative method for testing various spark-plug materials. Materials tested were cements, porcelain, feldspar, and quartz.

  16. Calcium Sparks in the Heart: Dynamics and Regulation

    PubMed Central

    Hoang-Trong, Tuan M.; Ullah, Aman; Jafri, M. Saleet

    2016-01-01

    Calcium (Ca2+) plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum. Ca2+sparks are the elementary events of calcium release from the sarcoplasmic reticulum. Therefore, understanding the dynamics of Ca2+sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions may develop that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias. PMID:27212876

  17. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  18. Theoretical analysis of the Ca2+ spark amplitude distribution.

    PubMed Central

    Izu, L T; Wier, W G; Balke, C W

    1998-01-01

    A difficulty of using confocal microscopy to study Ca2+ sparks is the uncertainty of the linescan position with respect to the source of Ca2+ release. Random placement of the linescan is expected to result in a broad distribution of measured Ca2+ spark amplitudes (a) even if all Ca2+ sparks were generated identically. Thus variations in Ca2+ spark amplitude due to positional differences between confocal linescans and Ca2+ release site are intertwined with variations due to intrinsic differences in Ca2+ release properties. To separate these two sources of variations on the Ca2+ spark amplitude, we determined the effect changes of channel current or channel open time--collectively called the source strength, alpha--had on the measured Ca2+ spark amplitude histogram, N(a). This was done by 1) simulating Ca2+ release, Ca2+ and fluo-3 diffusion, and Ca2+ binding reactions; 2) simulation of image formation of the Ca2+ spark by a confocal microscope; and 3) using a novel automatic Ca2+ spark detector. From these results we derived an integral equation relating the probability density function of source strengths, f alpha (alpha), to N(a), which takes into account random positional variations between the source and linescan. In the special, but important, case that the spatial distribution of Ca(2+)-bound fluo-3 is Gaussian, we show the following: 1) variations of Ca2+ spark amplitude due to positional or intrinsic differences can be separated, and 2) f alpha (alpha) can, in principle, be calculated from the Ca2+ spark amplitude histogram since N(a) is the sum of shifted hyperbolas, where the magnitudes of the shifts and weights depend on f alpha (alpha). In particular, if all Ca2+ sparks were generated identically, then the plot of 1/N(a) against a will be a straight line. Multiple populations of channels carrying distinct currents are revealed by discontinuities in the 1/N(a) plot. 3) Although the inverse relationship between Ca2+ spark amplitude and decay time might be

  19. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  20. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing

    NASA Astrophysics Data System (ADS)

    Delrot, Paul; Modestino, Miguel A.; Gallaire, François; Psaltis, Demetri; Moser, Christophe

    2016-08-01

    The on-demand generation of viscous microdroplets to print functional or biological materials remains challenging using conventional inkjet-printing methods, mainly due to aggregation and clogging issues. In an effort to overcome these limitations, we implement a jetting method to print viscous microdroplets by laser-induced shockwaves. We experimentally investigate the dependence of the jetting regimes and the droplet size on the laser-pulse energy and on the inks' physical properties. The range of printable liquids with our device is significantly extended compared to conventional inkjet printers's performances. In addition, the laser-induced flow-focusing phenomenon allows us to controllably generate viscous microdroplets up to 210 mPa s with a diameter smaller than the nozzle from which they originated (200 μ m ). Inks containing proteins are printed without altering their functional properties, thus demonstrating that this jetting technique is potentially suitable for bioprinting.

  1. The application of time decay characteristics of laser-induced fluorescence in the classification of vegetation.

    PubMed

    Gong, Wei; Yang, Jian; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei

    2017-02-01

    In this study, the time decay of the chlorophyll fluorescence intensity (TDCFI) of vegetation was measured based on laser-induced fluorescence (LIF) technology with a 355 nm laser serving as the excitation light source. The pseudo-color diagram of the TDCFI (PDTDCFIs) was proposed for use as a characteristic fingerprint for the analysis of various plant species based on variations in the fluorescence intensity over time. Compared with the steady-state fluorescence spectra, two-dimensional PDTDCFIs contained more spectral information, including variations in both the shape of the laser-induced fluorescence spectra and the relative intensity. The experimental results demonstrated that the PDTDCFIs of various plant species show distinct differences, and this was successfully applied in the classification of plant species. Therefore, the PDTDCFIs of plants could provide researchers with a more reliable and useful tool for the characterization of vegetation. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Zorov, N. B.; Popov, A. M.; Zaytsev, S. M.; Labutin, T. A.

    2015-10-01

    The key achievements in the determination of trace amounts of components in environmental samples (soils, ores, natural waters, etc.) by laser-induced breakdown spectrometry are considered. Unique capabilities of this method make it suitable for rapid analysis of metals and alloys, glasses, polymers, objects of cultural heritage, archaeological and various environmental samples. The key advantages of the method that account for its high efficiency are demonstrated, in particular, a small amount of analyzed material, the absence of sample preparation, the possibility of local and remote analysis of either one or several elements. The use of chemometrics in laser-induced breakdown spectrometry for qualitative sample classification is described in detail. Various approaches to improving the figures of merit of quantitative analysis of environmental samples are discussed. The achieved limits of detection for most elements in geochemical samples are critically evaluated. The bibliography includes 302 references.

  3. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    PubMed Central

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  4. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  5. Measurements of laser-induced plasma temperature field in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Genyu; Zhang, Mingjun; Zhao, Zhi; Zhang, Yi; Li, Shichun

    2013-02-01

    Laser-induced plasma in deep penetration laser welding is located inside or outside the keyhole, namely, keyhole plasma or plasma plume, respectively. The emergence of laser-induced plasma in laser welding reveals important information of the welding technological process. Generally, electron temperature and electron density are two important characteristic parameters of plasma. In this paper, spectroscopic measurements of electron temperature and electron density of the keyhole plasma and plasma plume in deep penetration laser welding conditions were carried out. To receive spectra from several points separately and simultaneously, an Optical Multi-channel Analyser (OMA) was developed. On the assumption that the plasma was in local thermal equilibrium, the temperature was calculated with the spectral relative intensity method. The spectra collected were processed with Abel inversion method to obtain the temperature fields of keyhole plasma and plasma plume.

  6. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy

    SciTech Connect

    Rusak, D. A.; Bell, Z. T.; Anthony, T. P.

    2015-11-15

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer to this technique as surface-enhanced laser-induced breakdown spectroscopy.

  7. Picosecond laser-induced breakdown at 5321 and 5347 A - Observation of frequency-dependent behavior

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1977-01-01

    A study is presented of picosecond laser-induced breakdown at 3547 and 5321 A of several materials. The thresholds obtained for breakdown at 5321 A are compared to previous results obtained at 1.064 microns using the same laser system. This comparison illustrates the transition of bulk laser-induced breakdown as it becomes increasingly frequency dependent. UV picosecond pulses are obtained by mixing 5321 A and 1.064 micron pulses in a KH2PO4 crystal. Upper and lower bounds on the 3547 A breakdown threshold are defined, although some effects of walk-off distortion and self-focusing are observed. The results are discussed with reference to models for the intrinsic processes involved in the breakdown, i.e., avalanche and multiphoton ionization.

  8. On two optomechanical effects of laser-induced electrostriction in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Gojani, Ardian B.; Bejtullahu, Rasim; Obayashi, Shigeru

    2014-09-01

    This paper presents electrostriction from the phenomenological perspective, and gives details on two mechanical effects arising from laser-matter interaction. Electrostriction is the tendency of materials to compress in the presence of a varying electric field. In this paper, the investigated materials are polar and nonpolar dielectric liquids. It is stressed that the dominant factor is the time evolution of the laser pulse, which causes tensile stresses and acoustic waves. The study is supported by experimental realization of electrostriction, which can be detected only at favorable conditions (observed in water, but not in castor oil). This study will shed light in developing measurement techniques (e.g., laser-induced grating spectroscopy) and in explaining the onset of cavities and laser-induced liquid breakdown.

  9. Application of Combined Laser-Induced Ignition and Plasma Spectroscopy on a Partially Premixed Combustor

    NASA Astrophysics Data System (ADS)

    Okai, Keiichi; Zimmer, Laurent; Kurosawa, Yoji

    Combined Laser Induced Ignition and Plasma Spectroscopy has a potential to give in situ measurement of fuel equivalence ratio in the laser ignition event at an exact time and location of plasma initiation. This method is an extension of a non-intuitive gaseous-composite measurement technique, i.e. Laser Induced Plasma Spectroscopy, to simultaneous ignition utilizing the same plasma source both for gaseous composite measurements and ignition. Calibration methods so far are not sufficient in terms of accuracy. The present study utilizes a new calibration technology without energy measurement under the ignition case. The example dealt in this study is a single injector combustor which provides a time-varying non-uniform fuel equivalence ratio under fuel lean cases. The result showed that the present calibration method is valid for the present measurement of the fuel equivalence ratio, and that the data is very useful to understand the ignition process of the configuration given.

  10. F2-Laser-Induced Modification of Aluminum Thin Films into Transparent Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iwai, Kazufumi; Nojiri, Hidetoshi; Inoue, Narumi

    2012-12-01

    A vacuum-UV F2 laser of 157 nm wavelength induced strong oxidation of 10-nm-thick Al thin films, forming transparent Al2O3 on silica glass. The laser-induced modification occurred at the surface of Al thin films; consequently, the thickness of the formed Al2O3 thin films increased linearly with increasing number of F2 laser photons. The formation of equivalent-phase Al2O3 thin films was confirmed by X-ray photoelectron spectroscopy. The oxidation reaction in the laser-induced modification of 10-nm-thick Al thin films was slower than that for 20- and 60-nm-thick Al thin films. Morphological changes leading to the crystallization of the Al2O3 thin films were also observed when the thickness of Al thin films increased from 10 to 20 and 60 nm.

  11. Laser-induced magnesium production from magnesium oxide using reducing agents

    NASA Astrophysics Data System (ADS)

    Mohamed, M. S.; Yabe, T.; Baasandash, C.; Sato, Y.; Mori, Y.; Shi-Hua, Liao; Sato, H.; Uchida, S.

    2008-12-01

    Experiments for laser induced production of magnesium (Mg) from magnesium oxide (MgO) using reducing agents (R) were conducted. In these experiments, continuous wave CO2 focused laser is focused on a mixture of magnesium oxide and reducing agent. High power density of focused laser leads to high temperature and the reduction reaction resulting in Mg production. The resultant vapor is collected on a copper plate and analyzed in terms of magnesium deposition efficiency. Deposition efficiencies with various reducing agents such as Zr, C, and Si have been measured to be 60, 9.2, and 12.1 mg/kJ respectively. An excess addition of reducing agent over their corresponding reaction stoichiometric amounts is found to be optimum condition for the most of performed laser induced reactions. In addition, utilizing solar-pumped laser in Mg production with reducing agent will reduce CO2 emission and produce magnesium with high-energy efficiency and large throughput.

  12. [Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].

    PubMed

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei

    2013-09-01

    In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.

  13. Laser-induced shock wave plasma spectrometry using a small chamber designed for in situ analysis

    NASA Astrophysics Data System (ADS)

    Kurniawan, Hendrik; Jie Lie, Tjung; Kagawa, Kiichiro; On Tjia, May

    2000-07-01

    Direct spectrochemical analyses on large bulk samples such as metal plates have been performed by using a small vacuum chamber, which was attached directly to the sample surface through an o-ring. This technique allowed the in situ generation of laser plasma and hence overcome to a good extent the inconvenient and sometime clumsy sample preparation procedure required in Laser-Induced Shock Wave Plasma Spectrometry. Additionally, the presence of the o-ring near the target surface effectively shielded off the surrounding area from the undesirable continuum emission from the primary plasma, and thereby enhanced the detection sensitivity of this technique. Using zinc plate and Pb glass as samples, it was further demonstrated in this experiment that even the time-integrated spectra, obtained by employing an OMA system, still exhibited a lower background than those obtained by ordinary time-resolved Laser-Induced Breakdown Spectroscopy.

  14. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  15. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  16. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Vila, A.; Rebollar, E.; García, J. F.; Castillejo, M.

    2005-08-01

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  17. Fast laser-induced aerosol formation for visualization of gas flows

    NASA Technical Reports Server (NTRS)

    Hassa, C.; Hanson, R. K.

    1985-01-01

    A technique for aerosol seeding of gas flows by laser-induced particle formation is demonstrated using a pulsed Nd:YAG laser (1.06 microns) for optical breakdown of a mixture of SF6 and H2 in an inert carrier gas. It is noted that, contrary to the smoke-wire approach, the laser-induced particles form first in zones of high turbulence, since mixing enhances coagulation. The method also allows seeding to be performed in locations hardly accessible otherwise and is mechanically nonintrusive. Finally, a study of the mixture and the breakdown effects indicates that for H2:SF6 ratios between 3:1 and 15:1 the particle formation is only limited by the physics of the gas/particle conversion.

  18. Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy.

    PubMed

    Fink, Herbert; Panne, Ulrich; Niessner, Reinhard

    2002-09-01

    An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.

  19. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  20. First results on laser-induced field emission from a CNT-based nanotip.

    PubMed

    Bionta, M R; Chalopin, B; Masseboeuf, A; Chatel, B

    2015-12-01

    We present the first demonstration of ultrafast laser-induced field emission and measurement of the energy distribution of electrons from a nanotip based on a carbon nanotube (CNT). Our experimental setup extends the studies performed on conventional tungsten or gold tips by using this new innovative tip. The carbon tip consists of concentric carbon layers in the shape of a cone, and has been previously studied as a very good candidate for cold field emission. The first laser-induced field emission from a CNT-based nanotip has been observed and we measured the energy spectrum as well as the polarization dependance of the emission. We also characterize the damage threshold of the tip, when illuminated by a high repetition rate femtosecond laser. These first results are encouraging further studies of electron emission from CNT-based carbon nanotips.

  1. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP).

  2. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    SciTech Connect

    MacDonald, N. A.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  3. Few-cycle pulse laser-induced damage of thin films in air and vacuum ambience

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.; Talisa, Noah; Tempea, Gabriel; Austin, Drake R.; Neacsu, Catalin; Chowdhury, Enam A.

    2016-12-01

    Laser-induced damage mechanisms were investigated for an ultra-broadband chirped mirror, as part of a systematic study of few-cycle pulse laser-induced damage threshold (LIDT) of widely-used ultra-broadband optics, in vacuum and in air, for single and multi-pulse regimes (S-on-1). Microscopic analysis of damage morphology suggests that three different damage mechanisms occur across the fluence range 0.15-0.4J/cm2, while no ablation was yet observed. The three regimes resulted in shallow swelling (< 10 nm tall), tall blistering ( 150 nm tall), and annular blistering (damage suppressed at highest intensity, forming a ring shape). Descriptions of the potential mechanisms are discussed.

  4. Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement

    NASA Astrophysics Data System (ADS)

    Junfeng, Shao; Tingfeng, Wang; Jin, Guo; Anmin, Chen; Mingxing, Jin

    2017-02-01

    In this paper, we present a study on the spatial confinement effect of laser-induced plasma with a cylindrical cavity in laser-induced breakdown spectroscopy (LIBS). The emission intensity with the spatial confinement is dependent on the height of the confinement cavity. It is found that, by selecting the appropriate height of cylindrical cavity, the signal enhancement can be significantly increased. At the cylindrical cavity (diameter = 2 mm) with a height of 6 mm, the enhancement ratio has the maximum value (approximately 8.3), and the value of the relative standard deviation (RSD) (7.6%) is at a minimum, the repeatability of LIBS signal is best. The results indicate that the height of confinement cavity is very important for LIBS technique to reduce the limit of detection and improve the precision.

  5. Hyperspectral laser-induced flourescence imaging for assessing internal quality of kiwi fruit

    NASA Astrophysics Data System (ADS)

    Liu, Muhua; Liao, Yifeng; Zhou, Xiaomei

    2008-03-01

    This paper describes an experimental study on non-destructive methods for predicting quality of kiwifruits using fluorescence imaging. The method is based on hyperspectral laser-induced fluorescence imaging in the region between 700 and 1110 nm, and estimates the kiwifruits quality in terms of internal sugar content and firmness. A station for acquiring hyperspectral laser-induced fluorescence imaging has been designed and carefully choosing each component. The fluorescence imaging acquired by the station has been pre-processed by selecting regions of interest (ROIs) of 50 100 × pixels. A line regressing prediction method estimates the quality of kiwifruit samples. The results obtained in classification show that the station and prediction model enables the correct discrimination of kiwifruits internal sugar content and firmness with a percentage of r= 98.5%, SEP=0.4 and r=99.9%, SEP=0.62.

  6. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  7. Multivariate discriminating algorithm for analyzing laser-induced fluorescence spectra of human gastrointestinal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wei, Guang Hui

    1998-09-01

    The purpose of this study has been to evaluate the laser- induced fluorescence characters of normal and malignant stomach tissue in Vitro and in Vivo. The stepwise multivariate discrimination analysis was used to make a multivariate statistical algorithm for analyzing the diagnostic parameters of human stomach tissues fluorescence spectrum. The resulting spectra could be differentiating histologically stomach abnormal tissue from normal tissue with a sensitivity and specificity value of 95% and 97%. The diagnosis results were in excellent agreement with histopathological results.

  8. Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage.

    DTIC Science & Technology

    1986-12-31

    N-retinylidene Schiff bases (NRB) and N-retinylidene protonated Schiff bases (NRBH). The direct method was unable to detect any differences in the...RESOLUTIOM TESI CHAWI NATIONAL BUR[A4 OF STANOARDS 1%,3-A AD__ _ _ _ _ FUNDAMENTAL STUDIES IN THE MOLECULAR BASIS OF LASER INDUCED RETINAL DAMAGE ANNUAL... based on this guiding framework ....................... 8 III. Superresolution Near-field Scanning Optical Microscopy ............. 12 REFERENCES

  9. Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine.

    PubMed

    Engel, Sascha Ronald; Koch, Peter; Braeuer, Andreas; Leipertz, Alfred

    2009-12-10

    We report on the simultaneous and two-dimensional measurement of laser-induced fluorescence (LIF) and Raman scattering (Ramanography) applied inside a hydrogen internal combustion (IC) engine. Two different LIF tracer molecules, triethylamine (TEA) and trimethylamine (TMA), were used for the LIF experiments. The LIF and Raman results were found to be in very good agreement. The simultaneous application of Ramanography and LIF imaging indicated that TMA is the more suitable LIF tracer molecule, compared to TEA.

  10. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  11. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  12. Laser-induced two-photon blackbody radiation in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Zych, L. J.; Young, J. F.; Harris, S. E.; Lukasik, J.

    1978-01-01

    Experimental measurements of a new type of vacuum-ultraviolet radiation source are reported. It is shown that the maximum source brightness, within its narrow linewidth, is that of a blackbody at the temperature of a metastable storage level. The laser-induced emission at 569 A from a He glow discharge corresponded to a metastable temperature of 22,700 K and was over 100 times brighter than the 584-A He resonance line.

  13. Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice

    PubMed Central

    Shah, Ronil S.; Soetikno, Brian T.; Yi, Ji; Liu, Wenzhong; Skondra, Dimitra; Zhang, Hao F.; Fawzi, Amani A.

    2016-01-01

    Purpose This study sought to determine the earliest time-point at which evidence of choroidal neovascularization (CNV) could be detected with visible-light optical coherence tomography angiography (vis-OCTA) in a mouse model of laser-induced CNV. Methods Visible light-OCTA was used to study laser-induced CNV at different time-points after laser injury to monitor CNV development and measure CNV lesion size. Measurements obtained from vis-OCTA angiograms were compared with histopathologic measurements from isolectin-stained choroidal flatmounts. Results Choroidal neovascularization area measurements between the vis-OCTA system and isolectin-stained choroidal flatmounts were significantly different in area for days 2 to 4 postlaser injury, and were not significantly different in area for days 5, 7, and 14. Choroidal neovascularization area measurements taken from the stained flatmounts were larger than their vis-OCTA counterparts for all time-points. Both modalities showed a similar trend of CNV size increasing from the day of laser injury until a peak of day 7 postlaser injury and subsequently decreasing by day 14. Conclusions The earliest vis-OCTA can detect the presence of aberrant vessels in a mouse laser-induced CNV model is 5 days after laser injury. Visible light-OCTA was able to visualize the maximum of the CNV network 7 days postlaser injury, in accordance with choroidal flatmount immunostaining. Visible light-OCTA is a reliable tool in both detecting the presence of CNV development, as well as accurately determining the size of the lesion in a mouse laser-induced CNV model. PMID:27409510

  14. Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1992-01-01

    Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.

  15. AN ACTIVE NITROGEN PLASMA ATOM RESERVOIR FOR LASER-INDUCED IONIZATION SPECTROMETRY

    DTIC Science & Technology

    1988-01-01

    An active nitrogen plasma was generat-J using a laboratory - constructed Beenakker type microwave cavity. 2 5 The microwave power oscillator (Micro...exhausting of ozone. Microarc Atomizer A laboratory -constructed microarc atomizer was positioned at the rear of the Beenakker cavity in direct line with the...the regions of interest, the laser- induced ionization signal was monitored. A laboratory -constructed etalon system of very low finesse was used to

  16. Flame front tracking by laser induced fluorescence spectroscopy and advanced image analysis

    NASA Astrophysics Data System (ADS)

    Abu-Gharbieh, Rafeef; Hamarneh, Ghassan; Gustavsson, Thomas; Kaminski, Clemens

    2001-02-01

    This paper presents advanced image analysis methods for extracting information from high speed Planar Laser Induced Fluorescence (PLIF) data obtained from turbulent flames. The application of non-linear anisotropic diffusion filtering and of Active Contour Models (Snakes) is described to isolate flame boundaries. In a subsequent step, the detected flame boundaries are tracked in time using a frequency domain contour interpolation scheme. The implementations of the methods are described and possible applications of the techniques are discussed.

  17. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  18. Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals

    NASA Astrophysics Data System (ADS)

    Wang, Jincheng; Guo, Chunlei

    2007-05-01

    We employ a surface plasmon technique to resolve the dynamics of femtosecond-laser-induced coherent acoustic phonons in noble metals. Clear acoustic oscillations are observed in our experiments. We further study the dependence of the initial phase of the oscillations on pump fluence, and we find that the initial phase decreases linearly with pump fluence. Our model calculations show that hot electrons instantaneously excited by femtosecond pulses contribute to the generation of coherent acoustic phonons in metals.

  19. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    PubMed

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy.

  20. Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres.

    PubMed

    Dekker, P; Ams, M; Marshall, G D; Little, D J; Withford, M J

    2010-02-15

    There is still significant speculation regarding the nature of femtosecond laser induced index change in bulk glasses with colour centre formation and densification the main candidates. In the work presented here, we fabricated waveguide Bragg gratings in doped and undoped phosphate glasses and use these as a diagnostic for monitoring subtle changes in the induced refractive index during photo- and thermal annealing experiments. Reductions in grating strengths during such experiments were attributed to the annihilation of colour centres.

  1. Analysis of laser-induced fluorescence spectra of in vitro plant tissue cultures

    NASA Astrophysics Data System (ADS)

    Muñoz-Muñoz, Ana Celia; Gutiérrez-Pulido, Humberto; Rodríguez-Domínguez, José Manuel; Gutiérrez-Mora, Antonia; Rodríguez-Garay, Benjamín; Cervantes-Martínez, Jesús

    2007-04-01

    We demonstrate the effectiveness of laser-induced fluorescence (LIF) for monitoring the development and stress detection of in vitro tissue cultures in a nondestructive and noninvasive way. The changes in LIF spectra caused by the induction of organogenesis, the increase of the F690/F740 ratio as a result of the stress originated in the organogenic explants due to shoot emergence, and the relationship between fluorescence spectra and shoot development were detected by LIF through closed containers of Saintpaulia ionantha.

  2. Kr II Laser-Induced Fluorescence for Measuring Plasma Acceleration (Preprint)

    DTIC Science & Technology

    2012-02-01

    krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator...velocity as the krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions...present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration

  3. Demonstration of Laser-Induced Fluorescence on Krypton Hall Effect Thruster

    DTIC Science & Technology

    2011-08-10

    Conference Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Demonstration of Laser-Induced Fluorescence on Krypton Hall Effect...Sep 2011. 14. ABSTRACT There is growing interest within the electrostatic propulsion community for the use of krypton as a propellant. It is a...probe thruster krypton propellant acceleration with the minimum disturbance to the overall propellant stream similar to those already developed for

  4. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals

    NASA Astrophysics Data System (ADS)

    Hwang, Taek Yong; Vorobyev, A. Y.; Guo, Chunlei

    2009-09-01

    We perform a comparison study on femtosecond laser-induced nanostructures on three noble metals, Cu, Ag, and Au. Under identical experimental conditions, the three metals each gain a different amount of surface area increase resulting from nanostructuring. We show that the different surface area increase from nanostructuring directly relates to the competition of two ultrafast processes, electron-phonon coupling and hot electron diffusion, following femtosecond laser heating of metals.

  5. Nonlinear-optical generation of short-wavelength radiation controlled by laser-induced interference structures

    SciTech Connect

    Popov, A K; Kimberg, V V

    1998-03-31

    A study is reported of the combined influence of laser-induced resonances in the energy continuum, of splitting of discrete resonances in the field of several strong radiations, and of absorption of the initial and generated radiations on totally resonant parametric conversion to the short-wavelength range. It is shown that the radiation power can be increased considerably by interference processes involving quantum transitions. (nonlinear optical phenomena and devices)

  6. Laser-Induced Fluorescence Velocity Measurements of a Diverging Cusped Field Thruster

    DTIC Science & Technology

    2010-11-15

    being studied. These include the High Efficiency Multi-stage Plasma ( HEMP ) thruster developed by the THALES Research Institute,4, 5 the Princeton...Hall thrusters, the strong magnetic fields seen in cusped field designs using permanent magnets (≈ 0.5 Tesla)19 do not rule out the possibility that...understand the operation of cusped field thrusters, this study seeks to characterize one par- ticular variant, the MIT DCFT, using laser-induced

  7. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review

    NASA Astrophysics Data System (ADS)

    Harmon, Russell S.; Russo, Richard E.; Hark, Richard R.

    2013-09-01

    Applications of laser-induced breakdown spectroscopy (LIBS) have been growing rapidly and continue to be extended to a broad range of materials. This paper reviews recent application of LIBS for the analysis of geological and environmental materials, here termed "GEOLIBS" . Following a summary of fundamentals of the LIBS analytical technique and its potential for chemical analysis in real time, the history of the application of LIBS to the analysis of natural fluids, minerals, rocks, soils, sediments, and other natural materials is described.

  8. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  9. Laser-induced interstitial thermotherapy in treatment of recurrent nodular goiter and thyroid cancer

    NASA Astrophysics Data System (ADS)

    Seliverstov, Oleg V.; Privalov, Valeriy A.; Lappa, Alexander V.; Demidov, A. K.; Faizrakhmanov, Alexey B.; Yarovoy, Nicolay N.

    2001-10-01

    Laser-induced interstitial thermotherapy was performed in 29 patients with recurrent nodular and multinodular goiter, and in 3 patients with recurrent inoperable thyroid cancer. There were used transcutaneous puncture under ultrasonic control, diode lasers with wavelength 805, 980, and 1060 nm, quartz monofibers, special computerized thermometer with microthermocouples. Disappearance or significant reduction of nodes in the most goiter cases, and regress of tumor in the cancer cases were marked during observation period (0.5 - 2.5 years).

  10. An alternative approach for femtosecond laser induced black silicon in ambient air

    NASA Astrophysics Data System (ADS)

    Ma, Yuncan; Ren, Hai; Si, Jinhai; Sun, Xuehui; Shi, Haitao; Chen, Tao; Chen, Feng; Hou, Xun

    2012-11-01

    An alternative approach for femtosecond laser induced black silicon in ambient air is proposed, in which, black silicon is fabricated on a tellurium coated silicon substrate via femtosecond laser irradiation in ambient air, and selectively etching with hydrofluoric acid is employed to remove the incorporated oxygen. Results of energy dispersive X-ray spectroscopy analysis and absorption measurement show that oxygen is effectively eliminated via etching, and the optical absorption of the black silicon is enhanced.

  11. [Spectroscopic study of laser induced breakdown plasma spectroscopy in air and semi-empirical simulation].

    PubMed

    Sun, Dui-xiong; Su, Mao-gen; Dong, Chen-zhong; Ma, Yun-yun; Yang, Feng; Cao, Shi-quan

    2014-12-01

    A laser induced breakdown spectroscopy experiment was carried out using Nd:YAG laser in air, and time-resolved spectra were measured. Based on local thermodynamic equilibrium assumption, a method used to simulate LIBS spectra is proposed. A LIBS spectrum of air in the wavelength range of 700~900 nm was simulated using this method. A good agreement between experiment and simulation was obtained, and moreover, the relative concentrations of the N, O and Ar in air were obtained.

  12. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer.

    PubMed

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem

    2017-03-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturing in the micrometer to millimeter range, i.e., between lithography and other 3D printing technologies.

  13. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  14. Determination of the Zinc Concentration in Human Fingernails Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Riberdy, Vlora A; Frederickson, Christopher J; Rehse, Steven J

    2017-04-01

    The absolute concentration of Zn in human fingernail clippings was determined ex vivo using 1064 nm laser-induced breakdown spectroscopy and confirmed by speciated isotope dilution mass spectrometry. A nail testing protocol that sampled across the nail (perpendicular to the direction of growth) was developed and validated by scanning electron microscopy energy-dispersive X-ray spectrometry. Using this protocol, a partial least squares (PLS) regression model predicted the Zn concentration in the fingernails of five people to within an average of 7 ppm. The variation in the Zn concentration with depth into the nail determined by laser-induced breakdown spectroscopy was studied and showed no systematic variation for up to 15 subsequent laser pulses in one location. The effects of nail hydration (dehydrated and over-hydrated) and nail surface roughness were investigated to explain an anomalously large scatter observed in the measurements. This scatter was attributed to the layered nature and fibrous structure of the fingernails, which resulted in non-uniform ablation as determined by scanning electron microscopy. This work demonstrates that a protocol consisting of low pulse energy (<10 mJ) 1064 nm laser pulses incident on human fingernail clippings in an Ar environment can produce quantifiable Zn emission in the laser-induced plasma and that the measured Zn intensity can be used to accurately predict the Zn concentration in human fingernails.

  15. Nanomanufacturing via fast laser-induced self-organization in thin metal films

    NASA Astrophysics Data System (ADS)

    Favazza, C.; Krishna, H.; Sureshkumar, R.; Kalyanaraman, R.

    2007-09-01

    Robust nanomanufacturing methodologies are crucial towards realizing simple and cost-effective products. Here we discuss nanofabrication of ordered metal nanoparticles through pulsed-laser-induced self-organization. When ultrathin metal films are exposed to short laser pulses, spontaneous pattern formation results under appropriate conditions. Under uniform laser irradiation two competing modes of self-organization are observed. One, a thin film hydrodynamic dewetting instability due to the competition between surface tension and attractive van derWaals interactions, results in nanoparticles with well-defined and predictable interparticle spacings and sizes with short range spatial order. The second, thermocapillary flow due to interference between the incident beam and a scattered surface wave, results in laser induced periodic surface structures. Non-uniform laser irradiation, such as by 2-beam laser interference irradiation, initiates a tunable thermocapillary effect in the film giving rise to nanowires, and continued laser irradiation leads to a Rayleigh-like breakup of the nanowires producing nanoparticles with spatial long-range and short-range order. These self-organizing approaches appear to be applicable to a variety of metal films, including Co, Cu, Ag, Fe, Ni, Pt, Zn, Ti, V and Mn. These results suggest that laser-induced self-organization in thin films could be an attractive route to nanomanufacture well-defined nanoparticle arrangements for applications in optical information processing, sensing and solar energy harvesting.

  16. Stoichiometric changes in KH2PO4 crystals during laser-induced breakdown

    SciTech Connect

    Negres, R A; Kucheyev, S O; DeMange, P; Bostedt, C; van Buuren, T; Nelson, A J; Demos, S G

    2004-08-31

    The structure of KH{sub 2}PO{sub 4} single crystals (so-called KDP) irradiated with {approx} 3-ns, 355-nm laser pulses with fluences above the laser-induced breakdown threshold is studied by a combination of Raman scattering, photoluminescence, and soft x-ray absorption spectroscopies. We compare spectra from the as-grown material, surface and bulk laser-induced damage sites, as well as from KPO{sub 3} references. Results show that irradiation with fluences above the laser-induced breakdown threshold leads to stoichiometric changes at surface damage sites but not at bulk damage sites. New spectroscopic features are attributed to dehydration products. For the laser irradiation conditions used in this study, the decomposed near-surface layer absorbs photons at {approx} 3.4 eV (364 nm). These results may explain the recently reported fact that surface laser damage sites in KDP crystals tend to grow with subsequent exposure to high-power laser pulses, while bulk damage sites do not.

  17. Stoichiometric changes to KH2PO4 during laser-induced breakdown

    SciTech Connect

    Negres, R A; Kucheyev, S O; DeMange, P; Carr, C W; Demos, S G

    2004-11-15

    The local structure of KH{sub 2}PO{sub 4} crystals (so-called KDP) at laser-induced damage sites created by irradiation with {approx} 3-ns, 355-nm laser pulses is studied by a combination of Raman scattering and photoluminescence spectroscopies. We compare spectra from pristine material, surface and bulk laser-induced damage sites, as well as from KPO{sub 3} references. Results show that irradiation with uences above the laser-induced breakdown threshold leads to stoichiometric changes at surface damage sites but not at bulk damage sites. New spectroscopic features are attributed to dehydration products. For the laser irradiation conditions used in this study, the decomposed near-surface layer absorbs photons at {approx} 3.4 eV (364 nm). These results may help explain the recently reported observation that surface laser damage sites in KDP crystals tend to grow with subsequent exposure to high-power laser pulses, while bulk damage sites do not.

  18. Laser induced micro plasma processing of polymer substrates for biomedical implant applications

    NASA Astrophysics Data System (ADS)

    French, P. W.; Rosowski, A.; Murphy, M.; Irving, M.; Sharp, M. C.

    2015-07-01

    This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the "backside" of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the "topside" of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates.

  19. In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Triebel, W.; Bark-Zollmann, S.; Grebner, D.

    2000-05-01

    Excimer laser pulses (λ=248 or 193 nm) induce transient and permanent defects in optical glasses of high UV transparency. Such defects are causing additional absorption and changes of density and refractive index, respectively (compaction). The interaction of each laser pulse with different OH-rich fused silica samples was investigated by real time measurements of laser-induced fluorescence (LIF) and of Raman spectra excited by the 248 nm KrF-excimer laser. The irradiation of the glasses with energy densities of about 10 mJ/cm2 and more induces E‧ and NBOH defects simultaneously. The laser-induced fluorescence of NBOH defect centres at 650 nm characterises the kinetics of defect generation and relaxation. The primary absorption process is the two-photon absorption of KrF laser pulses. The relaxation of defects in the time interval between the laser pulses is mainly influenced by diffusion limited processes. Locally resolved LIF and Raman spectra allow the investigation of homogeneity and laser damage stability in large area substrates (e.g. for mask blanks). Raman spectra excited by KrF laser pulses are measured to detect precursors and intermediates of laser-induced defects and molecular hydrogen in the glass matrix. The detection limit of H2 molecules is in the range of 1017 cm-3. A correlation between LIF intensities and H2 concentrations is found.

  20. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy.

    PubMed

    Khoshroo, H; Khadem, H; Bahreini, M; Tavassoli, S H; Hadian, J

    2015-11-10

    Laser-induced fluorescence and Raman spectroscopy are used for the investigation of different genotypes of Thymus daenensis native to the Ilam province of Iran. Different genotypes of T. daenensis essential oils, labeled T1 through T7, possess slight differences with regard to the composition of the thymol. The gas chromatography-mass spectrometry (GC-MS) method is performed to determine the concentration of each constituent as a reference method. The Raman spectra of different concentrations of pure thymol dissolved in hexane as standard samples are obtained via a laboratory prototype Raman spectroscopy setup for the calculation of the calibration curve. The regression coefficient and limit of detection are calculated. The possibility of the differentiation of different genotypes of T. daenensis is also examined by laser-induced fluorescence spectroscopy, although we do not know the exact amounts of their components. All the fluorescence spectral information is used jointly by cluster analysis to differentiate between 7 genotypes. Our results demonstrate the acceptable precision of Raman spectroscopy with GC-MS and corroborate the capacity of Raman spectroscopy in applications in the quantitative analysis field. Furthermore, the cluster analysis results show that laser-induced fluorescence spectroscopy is an acceptable technique for the rapid classification of different genotypes of T. daenensis without having any previous information of their exact amount of constituents. So, the ability to rapidly and nondestructively differentiate between genotypes makes it possible to efficiently select high-quality herbs from many samples.

  1. Application Prospects and Microstructural Features in Laser-Induced Rapidly Solidified High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Pan, Ye; He, Yi-Zhu; Wu, Ji-Li; Yue, T. M.; Guo, Sheng

    2014-10-01

    Recently, high-entropy alloys (HEAs) have attracted much interest in the materials community, as they offer massive opportunities to observe new phenomena, explore new structure, and develop new materials. Particularly, it is attractive to prepare high-performance HEA coatings by laser-induced rapid solidification, which can be formed on the surface of components and parts in a variety of sizes and shapes with a lower cost in comparison with those bulk material fabrication methods. From the technical point of view, laser-induced rapid solidification could hamper the compositional segregation, improve the solubility in solid-solution phases, and lead to the strengthening effect by the grain refinement. This article reviews the recent work on the typical microstructural features and the mechanical and chemical properties in laser-induced rapidly solidified HEAs, and these data are compared with conventional Co- and Ni-based alloy coatings. The article concludes with suggestions for future research and development in HEAs, from considerations of their characteristic properties.

  2. Perspective of laser-induced plasma ignition of hydrocarbon fuel in Scramjet engine

    NASA Astrophysics Data System (ADS)

    Yang, Leichao; Li, Xiaohui; Liang, Jianhan; Yu, Xin; Li, Xipeng

    2016-01-01

    Laser-induced plasma ignition of an ethylene fuelled cavity was successfully conducted in a model scramjet engine combustor. The ethylene was injected 10mm upstream of cavity flameholder from 3 orifices 60 degree inclined relative to freestream direction. The 1064nm laser beam, from a Q-switched Nd:YAG laser source running at 3Hz and 200mJ per pulse, was focused into cavity for ignition. High speed photography was used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation were all recorded and ensuing stable supersonic combustion was established in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upwards as the entrainment of circulation flow in cavity. The flame is then stretched from leading edge to trailing edge to fully fill the entire cavity. Eventually, a stable combustion is achieved roughly 900μs after the laser pulse. The results show promising potentials for practical application. The perspective of laser-induced plasma ignition of hydrocarbon fuel in scramjet engine is outlined.

  3. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  4. Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Rosenfeld, A.; Bock, M.; Pfuch, A.; Seeber, W.; Grunwald, R.

    2011-03-01

    The formation of laser induced periodic surface structures (LIPSS) is to a large extent of self-organizing nature and in its early stages essentially influenced by optical scattering. The evolution of related mechanisms, however, has still to be studied in detail and strongly depends on materials and laser parameters. Excitation with highly intense ultrashort pulses leads to the creation of nanoripple structures with periods far below the fundamental wavelength because of opening multiphoton excitation channels. Because of the drastically reduced spatial scale of such laser induced periodic nanostructures (LIPNS), a particular influence of scattering is expected in this special case. Here we report on first investigations of femtosecond-laser induced nanostructuring of sputtered titanium dioxide (TiO2) layers in comparison to bulk material. The crucial role of the optical film quality for the morphology of the resulting LIPNS was worked out. Typical periods of nanoripples were found to be within the range of 80-180 nm for an excitation wavelength of 800 nm. Unlike our previously reported results on bulk TiO2, LIPNS in thin films appeared preferentially at low pulse numbers (N=5-20). This observation was explained by a higher number of scattering centers caused by the thin film structure and interfaces. The basic assumptions are further supported by supplementary experiments with polished and unpolished surfaces of bulk TiO2 single crystals.

  5. PIC-DSMC analysis on interaction of a laser induced discharge and shock wave

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2015-09-01

    Laser induced discharge and the shock wave have attracted great interest for use in the electrical engineering. When the high intensity laser (10 GW >) is focused in the atmosphere, the breakdown occurs and the discharge wave propagates toward to the laser irradiation. The shock wave is generated around the discharge wave, which is called as the laser supported detonation wave. After breakdown occurred, the initial electron of the avalanche ionization is produced by the photoionization due to the plasma radiation. It is well recognized that the radiation of the laser plasma affects the propagation mechanism of the laser induced discharge wave after the initiation of the breakdown. However, it is difficult to observe the interaction between the plasma radiation and the electron avalanche in the ionization-wave front in experimentally except in the high intensity laser. In the numerical calculation of the laser-induced discharge, the fluid dynamics based on the Navier-Stokes equation have been widely used. However, it is difficult to investigate the avalanche ionization at the wave front using the fluid dynamics simulation. To investigate the interaction of the ionization-wave front and the shock wave, it is appropriate to utilize the PIC-DSMC method. The present study showed the propagation of the ionization front of the discharge wave and the shock wave using the particle simulation. This work was supported by Kato Foundation for Promotion of Science and Japan Power Academy.

  6. Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses.

    PubMed

    Duchateau, Guillaume; Dyan, Anthony

    2007-04-16

    By coupling statistics and heat transfer, we investigate numerically laser-induced crystal damage by multi-gigawatt nanosecond pulses. Our model is based on the heating of nanometric absorbing defects that may cooperate when sufficiently aggregated. In that configuration, they induce locally a strong increase of temperature that may lead to a subsequent damage. This approach allows to predict cluster size distribution and damage probabilities as a function of the laser fluence. By studying the influence of the pulse duration onto the laser-induced damage threshold, we have established scaling laws that link the critical laser fluence to its pulse duration tau. In particular, this approach provides an explanation to the deviation from the standard tau(1/2) scaling law that has been recently observed in laser-induced damage experiments with KH(2)PO(4) (KDP) crystals [J.J. Adams et al., Proc. of SPIE 5991, 5991R-1 (2005)]. In the present paper, despite the 3D problem is tackled, we focus our attention on a 1D modeling of thermal diffusion that is shown to provide more reliable predictions than the 3D one. These results indicate that absorbers involved in KDP damage may be associated with a collection of planar defects. First general comparisons with some experimental facts have been performed.

  7. Measurement and Analysis of CN Violet System in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Behery, Sultan A.; Parigger, Christian G.

    2014-03-01

    Pulsed, infrared Nd:YAG laser radiation is utilized to ablate material from carbon-containing samples in air. Time-resolved measurements of the micro-plasma show well-developed diatomic spectra of the CN violet system. Of Interest are interferences from the C2 Deslandres D'Azambuja system in the CN spectra, as previously noted in experiments with CO2 laser radiation focused into CO2 gas expanding into air. The recombination emission spectra from diatomic species, e.g., CN or C2, clearly indicate temperatures in excess of 6000 Kelvin. Studies of the CO2 TEA laser-induced micro-plasmas show these highly excited, high-temperature molecular transitions several tens of microseconds after plasma generation, mixed with signatures of Stark-broadened atomic lines. Spectroscopic fitting with accurate molecular line strengths of superposed emission spectra is of current interest, including study of the C2 Deslandres D'Azambuja system near the 4-4 band of the CN Δv = 0 sequence of the CN B2Σ+ --> X2Σ+ Violet System. In addition, discussed are physics phenomena associated with laser-induced optical breakdown. Laser-induced plasma applications include characterization of carbon and nitrogen containing materials.

  8. Laser induced plasma on copper target, a non-equilibrium model

    SciTech Connect

    Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis

    2014-02-15

    The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.

  9. Time-resolved characterization of laser-induced plasma from fresh potatoes

    NASA Astrophysics Data System (ADS)

    Lei, Wenqi; Motto-Ros, Vincent; Boueri, Myriam; Ma, Qianli; Zhang, Dacheng; Zheng, Lijuan; Zeng, Heping; Yu, Jin

    2009-09-01

    Optical emission of laser-induced plasma on the surface of fresh vegetables provides sensitive analysis of trace elements for in situ or online detection of these materials. This emergent technique promises applications with expected outcomes in food security or nutrition quality, as well as environment pollution detection. Characterization of the plasma induced on such soft and humid materials represents the first step towards quantitative measurement using this technique. In this paper, we present the experimental setup and protocol that optimize the plasma generation on fresh vegetables, potatoes for instance. The temporal evolution of the plasma properties are investigated using time-resolved laser-induced breakdown spectroscopy (LIBS). In particular, the electron density and the temperatures of the plasma are reported as functions of its decay time. The temperatures are evaluated from the well known Boltzmann and Saha-Boltzmann plot methods. These temperatures are further compared to that of the typical molecular species, CN, for laser-induced plasma from plant materials. This comparison validates the local thermodynamic equilibrium (LTE) in the specific case of fresh vegetables ablated in the typical LIBS conditions. A study of the temporal evolution of the signal to noise ratio also provides practical indications for an optimized detection of trace elements. We demonstrate finally that, under certain conditions, the calibration-free LIBS procedure can be applied to determine the concentrations of trace elements in fresh vegetables.

  10. Effect of polishing induced subsurface damages on laser induced damage in fused silica optics

    NASA Astrophysics Data System (ADS)

    He, Xiang; Zhao, Heng; Huang, Ying; Cai, Chao; Hu, JiangChuan; Ma, Ping

    2016-10-01

    Conventional used ceria polishing would induce both of Ce contaminants and subsurface damages, which mainly restricts the laser induced damage resistance of fused silica optics. To control the near surface defects, nanometer sized colloidal silica are used to polish fused silica optics after the normal ceria polishing process. Then the contaminant elements and subsurface damages of the polished samples were analyzed by secondary ion mass spectrometry and Nomarski microscopy. It reveals that ceria polishing would introduce lots of subsurface damages whereas colloidal silica polishing induces much fewer subsurface damages especially no fracture induced severe subsurface damages. The laser damage tests reveal that subsequent colloidal silica polishing of the ceria pre-polished samples could gradually eliminate the ceria polishing induced subsurface damages and lower the laser induced damage density accordingly with the increased polishing time. But unlike the damage density, only the severe subsurface damages are totally eliminated could the damage threshold be substantially improved. These results incline to indicate that the subsurface damages have great influence on the laser induced damage density and the fracture related severe subsurface damages will greatly restrict the damage threshold in polished optics.

  11. Unraveling the Image of Commutation Spark Generated in Universal Motors

    NASA Astrophysics Data System (ADS)

    Hanazawa, Tamio; Almazroui, Ali; Egashira, Torao

    A universal motor, which is mainly used in vacuum cleaners, generates commutation sparks at the moment when the brush and the commutator segment are separated from each other during rotation. This study investigates the mechanism of commutation spark generation by analyzing high-speed camera images and its electrical aspect. We invented a new external trigger method that used laser light as the trigger signal for the shuttering a high-speed camera. This method enabled us to photograph sparks on any desired commutator segments during high-speed rotation, and that made the analysis after photographing easier. This paper shows that commutation sparks in universal motors are generated on every other commutator segment and at the peak of pulses in the voltage between the brush and commutator segment. Other aspects are also clarified, such as the generation of the singular and plural number of sparks on one commutator segment at a time, the time from the moment of spark generation to extinction, and spark generation during a single rotation.

  12. Altered Ca2+ sparks in aging skeletal and cardiac muscle

    PubMed Central

    Weisleder, Noah; Ma, Jianjie

    2008-01-01

    Ca2+ sparks are the fundamental units that comprise Ca2+-induced Ca2+ release (CICR) in striated muscle cells. In cardiac muscle, spontaneous Ca2+ sparks underlie the rhythmic CICR activity during heart contraction. In skeletal muscle, Ca2+ sparks remain quiescent during the resting state and are activated in a plastic fashion to accommodate various levels of stress. With aging, the plastic Ca2+ spark signal becomes static in skeletal muscle, whereas loss of CICR control leads to leaky Ca2+ spark activity in aged cardiomyocytes. Ca2+ spark responses reflect the integrated function of the intracellular Ca2+ regulatory machinery centered around the triad or dyad junctional complexes of striated muscles, which harbor the principal molecular players of excitation-contraction coupling. This review highlights the contribution of age-related modification of the Ca2+ release machinery and the effect of membrane structure and membrane cross-talk on the altered Ca2+ spark signaling during aging of striated muscles. PMID:18272434

  13. Eavesdropping on the social lives of Ca(2+) sparks.

    PubMed

    Izu, Leighton T; Bányász, Tamás; Balke, C William; Chen-Izu, Ye

    2007-11-15

    Ca(2+) sparks arise from the stochastic opening of spatially discrete clusters of ryanodine receptors called a Ca(2+) release unit (CRU). If the RyR clusters were not spatially separated, then Ca(2+) released from one RyR would immediately diffuse to its neighbor and lead to uncontrolled, runaway Ca(2+) release throughout the cell. While physical separation provides some isolation from neighbors, CRUs are not incommunicado. When inter-neighbor interactions become large enough, Ca(2+) waves spontaneously emerge. A more circumscribed interaction shows up in high-speed two-dimensional confocal images as jumping Ca(2+) sparks that seem to be sequentially activated along the Z-line and across Z-lines. However, since Ca(2+) sparks are stochastic events how can we tell whether two sparks occurring close together in space and time are causally related or appeared simply by coincidence? Here we develop a mathematical method to disentangle cause and coincidence in a statistical sense. From our analysis we derive three fundamental properties of Ca(2+) spark generation: 1), the "intrinsic" spark frequency, the spark frequency one would observe if the CRUs were incommunicado; 2), the coupling strength, which measures how strongly one CRU affects another; and 3), the range over which the communication occurs. These parameters allow us to measure the effect RyR regulators have on the intrinsic activity of CRUs and on the coupling between them.

  14. Eavesdropping on the Social Lives of Ca2+ Sparks

    PubMed Central

    Izu, Leighton T.; Bányász, Tamás; Balke, C. William; Chen-Izu, Ye

    2007-01-01

    Ca2+ sparks arise from the stochastic opening of spatially discrete clusters of ryanodine receptors called a Ca2+ release unit (CRU). If the RyR clusters were not spatially separated, then Ca2+ released from one RyR would immediately diffuse to its neighbor and lead to uncontrolled, runaway Ca2+ release throughout the cell. While physical separation provides some isolation from neighbors, CRUs are not incommunicado. When inter-neighbor interactions become large enough, Ca2+ waves spontaneously emerge. A more circumscribed interaction shows up in high-speed two-dimensional confocal images as jumping Ca2+ sparks that seem to be sequentially activated along the Z-line and across Z-lines. However, since Ca2+ sparks are stochastic events how can we tell whether two sparks occurring close together in space and time are causally related or appeared simply by coincidence? Here we develop a mathematical method to disentangle cause and coincidence in a statistical sense. From our analysis we derive three fundamental properties of Ca2+ spark generation: 1), the “intrinsic” spark frequency, the spark frequency one would observe if the CRUs were incommunicado; 2), the coupling strength, which measures how strongly one CRU affects another; and 3), the range over which the communication occurs. These parameters allow us to measure the effect RyR regulators have on the intrinsic activity of CRUs and on the coupling between them. PMID:17675349

  15. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  16. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    NASA Astrophysics Data System (ADS)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  17. KrF- and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder

    SciTech Connect

    Kuzuu, Nobu; Sasaki, Toshiya; Kojima, Tatsuya; Tanaka, Jun-ichiro; Nakamura, Takayuki; Horikoshi, Hideharu

    2013-07-07

    KrF- and ArF-excimer-laser-induced absorption of silica glasses produced by electric melting and flame fusion of synthetic silica powder were investigated. The growth of KrF-laser-induced absorption was more gradual than that of ArF-laser-induced absorption. Induced absorption spectra exhibited a peak at about 5.8 eV, of which the position and width differed slightly among samples and laser species. Widths of ArF-laser-induced absorption spectra were wider than those of KrF-laser-induced spectra. KrF-laser-induced absorption is reproducible by two Gaussian absorption bands peaking at 5.80 eV with full width at half maximum (FWHM) of 0.62 eV and at 6.50 eV with FWHM of 0.74 eV. For reproduction of ArF-laser-induced absorption, Gaussian bands at 5.41 eV with FWHM of 0.62 eV was necessary in addition to components used for reproducing KrF-laser-induced absorption. Based on the discussion of the change of defect structures evaluated from change of absorption components, we proposed that the precursor of the 5.8-eV band ascribed to E Prime center ({identical_to}Si{center_dot}) is {identical_to}Si-H HO-Si{identical_to} structures formed by the reaction between strained Si-O-Si bonds and interstitial H{sub 2} molecules during the irradiation.

  18. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  19. The Spatial Distribution and Spectrum of Radiation Produced by Sparks

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Kochkin, P.; Hansen, R. S.; Grondahl, O.

    2012-12-01

    Energetic x-rays are produced by lab sparks, though the exact mechanism is the subject of some debate. We report the results of experiments with a scintillating optical fiber detector at various positions around nearly 1000 sparks. The statistical properties of the spatial distributions and correlations between different positions within a single spark will be described. In addition to the scintillating fiber detector, data from a pair of conventional scintillation detectors are also presented and the resulting energy spectra and statistical properties are given. These data are very useful for evaluation of mechanisms of runaway electron and x-ray production in sparks and may have implications for larger-scale processes in lightning and terrestrial gamma-ray flashes.

  20. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  1. Spark-eroded particles: Influence of processing parameters

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Radousky, H. B.; Berkowitz, A. E.

    2004-02-01

    Ni particles were prepared by spark erosion in a fixed-gap apparatus, and in the usual "shaker-pot" assembly, in an investigation of the influence of various processing parameters on the particles' properties. The sizes of the particles were studied as functions of spark energies ranging from 10 μJ to 1 J, and a scaling relation derived from a simple model was verified. Several different static and rotating electrode configurations were compared with respect to their suitability for producing significant yields of small particles. The advantages of stirring the dielectric with the fixed-gap apparatus and of rotating the electrodes were demonstrated. Water, kerosene, and liquid argon and nitrogen were used as dielectric liquids. When compounds were formed, the reaction with the dielectric proceeded inversely with particle size. Spark erosion in kerosene at low spark energies, followed by annealing, proved to be an effective method to produce fine nickel particles.

  2. Exploring the Performance of Spark for a Scientific Use Case

    SciTech Connect

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2016-01-01

    We present an evaluation of the performance of a Spark implementation of a classification algorithm in the domain of High Energy Physics (HEP). Spark is a general engine for in-memory, large-scale data processing, and is designed for applications where similar repeated analysis is performed on the same large data sets. Classification problems are one of the most common and critical data processing tasks across many domains. Many of these data processing tasks are both computation- and data-intensive, involving complex numerical computations employing extremely large data sets. We evaluated the performance of the Spark implementation on Cori, a NERSC resource, and compared the results to an untuned MPI implementation of the same algorithm. While the Spark implementation scaled well, it is not competitive in speed to our MPI implementation, even when using significantly greater computational resources.

  3. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  4. Novel Estimation of the Humification Degree of Soil Organic Matter by Laser-Induced Breakdown Spectroscopy (LIBS) Compared to Laser-Induced Fluorescence Spectroscopy (LIFS)

    NASA Astrophysics Data System (ADS)

    Ferreira, Edilene; Ferreira, Ednaldo; Villas-Boas, Paulino; Senesi, Giorgio; Carvalho, Camila; Romano, Renan; Martin-Neto, Ladislau; Milori, Debora

    2014-05-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration in soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of Laser-Induced Breakdown Spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. In a LIBS experiment a high-energy laser pulse irradiates the sample and the energy absorbed by the sample causes a local heating of the material that results in its evaporation or sublimation. The high temperature of the ablated material generates a small plasma plume and, as a result of the plasma temperature, the ablated material breaks down into excited atomic and ionic species. During the plasma cooling, the excited species return to their lower energy state emitting electromagnetic radiation at characteristic wavelengths. In a LIBS spectrum the measurement of the characteristic emission wavelengths provides qualitative information about the elemental composition of the sample, whereas the intensities of the signals can be used for quantitative determinations. The LIBS potential for the analysis of organic compounds has been explored recently by using the emission lines of elements that are commonly present in organic compounds, such as the predominant C, H, P, O and N. LIBS elemental emissions were correlated to fluorescence emissions determined by Laser-Induced Fluorescence Spectroscopy (LIFS), which was considered as the reference technique. The HD of SOM determined by LIBS showed a strong correlation to that

  5. Spark-integrated propellant injector head with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory Stuart (Inventor); Fisher, David James (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  6. Electro-Spark Deposited Coatings for Replacement of Chrome Electroplating

    DTIC Science & Technology

    2005-06-01

    Wear and Corrosion: the Electrospark Deposition Process", published in Proceedings, American Electroplaters and Surface Finishers Society, Jan. 2002. 6...Johnson, R.N., " ElectroSpark Deposition : Principals and Applications", Society of Vacuum Coaters 45th Annual Technical Conference Proceedings, Apr...AD AD-E403 050 Contractor Report ARAET-CR-05002 ELECTRO-SPARK DEPOSITED COATINGS FOR REPLACEMENT OF CHROME PLATING R. N. Johnson J. A. Bailey Pacific

  7. ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating

    DTIC Science & Technology

    2003-04-02

    roger.johnson@pnl.gov, 509-375-6906 ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating (SERDP Project 1147) Report Documentation...3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating 5a...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ELECTROSPARK DEPOSITION (ESD) Process

  8. ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating

    DTIC Science & Technology

    2001-04-26

    roger.johnson@pnl.gov, 509-375-6906 ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating (SERDP Project 1147) Report Documentation...3. DATES COVERED 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE ElectroSpark Deposited Coatings for Replacement of Chrome Electroplating 5a...Northwest National Laboratory 2 Electrospark Deposition Technology Coatings: Electrically conductive metals, alloys, or cermets Micro-welding

  9. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    NASA Astrophysics Data System (ADS)

    Mitroglou, N.; Arcoumanis, C.; Mori, K.; Motoyama, Y.

    2006-07-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine.

  10. Multiple Spark-Generated Bubble Interactions

    NASA Astrophysics Data System (ADS)

    Khoo, Boo Cheong; Adikhari, Deepak; Fong, Siew Wan; Klaseboer, Evert

    The complex interactions of two and three spark-generated bubbles are studied using high speed photography. The corresponding simulations are performed using a 3D Boundary Element Method (BEM) code. The bubbles generated are between 3 to 5 mm in radius, and they are either in-phase or out-of-phase with one another. The possible interaction phenomena between two identically sized bubbles are summarized. Depending on their relative distances and phase differences, they can coalesce, jet towards or away from one another, split into smaller bubbles, or 'catapult' away from one another. The 'catapult' effect can be utilized to generated high speed jet in the absence of a solid boundary or shockwave. Also three bubble interactions are highlighted. Complicated phenomena such as bubble forming an elliptical shape and bubble splitting are observed. The BEM simulations provide insight into the physics of the phenomena by providing details such as detailed bubble shape changes (experimental observations are limited by the temporal and spatial resolution), and jet velocity. It is noted that the well-tested BEM code [1,2] utilized here is computationally very efficient as compared to other full-domain methods since only the bubble surface is meshed.

  11. NEWS: Don't forget Sparks!

    NASA Astrophysics Data System (ADS)

    2000-07-01

    Following our early notification of the `creating SPARKS' festival in London (see Phys. Educ. January 2000 p 7) more details of the programme have now been made available. The event takes place on 6-30 September in South Kensington and the lengthy programme of talks and sessions covers such items as: Science writing; A sustainable world - the issues; Hands-on particle physics; Powering into the new millennium - innovative transport and energy solutions; The enigma of time; Scientific futures in contemporary science fiction; The cases for and against nuclear energy; The microscopic world of superconductors; Michael Faraday; Quantum information - parallelism, secrecy and teleportation; and The origin of the solar system. Among the speakers are Sir Eric Ash, Nigel Henbest, Professors Cyril Hilsum, Peter Landsberg and Richard Palmer. The Science Museum's new Wellcome Wing devoted to contemporary science and technology will be open for viewing, children will attend science and arts hands-on workshops at the Royal Albert Hall on Friday 15 September, and leading scientists will be discussing the scientific developments of the future at Imperial College. In addition the Victoria and Albert Museum will demonstrate how science is involved in the creation, appreciation and conservation of the Musuem's collections. Full programmes for the festival will be available this month from the South Kensington institutions, the festival website (www.creatingsparks.co.uk) or by calling 0906 402 0022.

  12. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  13. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  14. Nanosecond laser-induced damage of high-reflection coatings: NUV through NIR

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Ma, Hongping; Cheng, Xinbin; Zhang, Jinlong; He, Pengfei; Ma, Bin; Jiao, Hongfei; Tang, Yongjian

    2016-12-01

    Laser-induced damage of high reflection (HR) coatings, working at near ultraviolet (NUV) and near infrared (NIR) regions was investigated. For NIR HR coatings, the nodules still remain the most limiting defects. The E-field intensity (EFI) enhancement in nodules plays a central role for triggering laser-induced damage. We established a simple model for EFI enhancement in nodules using the focusing and light penetrating concept. With the help of finite-difference time domain (FDTD) simulations, we found that refractive indices and nodular geometries affected the focal length as well as the size of focal spots. Furthermore, the angular reflection bandwidth (ARB) of nodules determined the fraction of light that can penetrate to the focal region. For NUV HR coatings, we explored the increase of the laser-induced damage threshold (LIDT) by increasing the incident angle from 0 degrees to 65 degrees for S-polarization. The EFI in a 65 degree HR coating is more than 4 times lower compared to 0 degree HR coatings, which suggests that the LIDT of 65 degree HR coating is much higher compared to 0 degree HR coating. However, we found some contradictory results. For small testing laser beam size with a diameter of 20 μm, the LIDT of 65 degree HR coating is 3.5 times higher compared to a 0 degree HR coating. However, for a large sized testing laser beam with a diameter of 1000 μm, the LIDT of 65 degree HR coating is 2 times lower compared to a 0 degree HR coating. Possible reasons for the observed damage phenomena are discussed.

  15. Spontaneous and nonphotochemical laser-induced nucleation in levitated supersaturated microdroplets

    NASA Astrophysics Data System (ADS)

    Fang, Ke

    Research of nucleation in levitated supersaturated microdroplets was conducted in this dissertation. An unconventional crystallization system, levitated microdroplets, was utilized in this research. The microdroplet was levitated by an electrodynamic balance (EDB) constructed inside a vacuum chamber. EDB has the advantage of creating a containerless environment for the crystallization system. Spontaneous nucleation in levitated microdroplets was investigated. Spontaneous nucleation of aqueous microdroplets was caused by reducing the ambient relative humidity (RH) surrounding the solution droplets. Different polymorphs of glutaric acid and malonic acid are nucleated in levitated microdroplets when injected into a chamber maintained at different initial RH values. Effect of surfactant as additive is also investigated. A site-dependent evaporation-driven crystallization theory is established to explain the spontaneous nucleation phenomena in levitated aqueous microdroplets. Levitated microdroplets containing a solute and an organic solvent were also investigated. The crystallization behavior of glutaric acid methanol solutions and ethanol solutions was observed. ROY, a deca-polymorphic compound, was also studied from its DMSO solution microdroplets. Non-photochemical laser induced nucleation (NPLIN) was observed in levitated microdroplets of supersaturated potassium chloride (KCl) aqueous solution. A focused green (532 nm) pulsed laser with 1 ns pulse width was used to induce nucleation. Nucleation of levitated KCl microdroplet with high supersaturation was observed upon laser irradiation. A laser-induced charge loss phenomenon was also observed. A hypothesis of laser-induced electrostriction and corona discharge is discussed. Analysis with classical nucleation theory suggests that the NPLIN results in levitated microdroplets are consistent with previously published data on bulk samples.

  16. Laser-induced thermal desorption facilitates postsource decay of peptide ions.

    PubMed

    Kim, Shin Hye; Lee, Aera; Song, Jae Yong; Han, Sang Yun

    2012-05-01

    We investigated the thermal mechanism involved in laser desorption/ionization (LDI) of thermally labile molecules from the flat surfaces of amorphous Si (a-Si) and crystalline Si (c-Si). a-Si was selected for this study because of its thermal property, such as low thermal conductivity; thus, it was predicted to be highly susceptible to laser-induced surface heating. By virtue of lack of surface nanostructures, the flat surfaces offer a simple model system to focus on the thermal mechanism, avoiding other effects, including possible non-thermal contributions that can arise from the physical existence of surface nanostructures. For the energetics study, the internal energies of substituted benzylpyridinium ions produced by LDI on the bare and coated surfaces of a-Si and c-Si were obtained using the survival yield method. The results, including LDI thresholds, ion yields, and internal energies all suggested that the LDI mechanism would be indeed thermal, which is most likely promoted by thermal desorption caused by laser-induced surface heating. In addition, the LDI process driven by laser-induced thermal desorption (LITD) was also found to be capable of depositing an excessive internal energy in resulting LDI ions, which underwent a dissociation. It exhibited the essentially same features as in postsource decay (PSD) in MALDI-TOF/TOF mass spectrometry. We report that the LDI process by LITD offers not only a way of intact ionization but also a facile means for PSD of peptide ions, which this work demonstrates is well suited to peptide sequencing using TOF/TOF mass spectrometry.

  17. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  18. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration

    NASA Astrophysics Data System (ADS)

    Bora, Puran S.; Hu, Zhiwei; Tezel, Tongalp H.; Sohn, Jeong-Hyeon; Kang, Shin Goo; Cruz, Jose M. C.; Bora, Nalini S.; Garen, Alan; Kaplan, Henry J.

    2003-03-01

    Age-related macular degeneration (AMD) is the leading cause of blindness after age 55 in the industrialized world. Severe loss of central vision frequently occurs with the exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature (CNV) that damages the macular region of the retina. We tested the effect of an immunotherapy procedure, which had been shown to destroy the pathological neovasculature in solid tumors, on the formation of laser-induced CNV in a mouse model simulating exudative AMD in humans. The procedure involves administering an Icon molecule that binds with high affinity and specificity to tissue factor (TF), resulting in the activation of a potent cytolytic immune response against cells expressing TF. The Icon binds selectively to TF on the vascular endothelium of a CNV in the mouse and pig models and also on the CNV of patients with exudative AMD. Here we show that the Icon dramatically reduces the frequency of CNV formation in the mouse model. After laser treatment to induce CNV formation, the mice were injected either with an adenoviral vector encoding the Icon, resulting in synthesis of the Icon by vector-infected mouse cells, or with the Icon protein. The route of injection was i.v. or intraocular. The efficacy of the Icon in preventing formation of laser-induced CNV depends on binding selectively to the CNV. Because the Icon binds selectively to the CNV in exudative AMD as well as to laser-induced CNV, the Icon might also be efficacious for treating patients with exudative AMD.

  19. State-to-state modeling of ultrashort laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Morel, Vincent; Bultel, Arnaud; Schneider, Ioan; Grisolia, Christian

    2017-01-01

    The question of the Local Thermodynamic Equilibrium (LTE) of laser-induced plasmas is crucial regarding the Laser-Induced Breakdown Spectroscopy (LIBS) technique. The most relevant way to assess theoretically the possible departure from LTE is to develop state-to-state models of the chemical species involved. The present paper illustrates such an elaboration in the case of aluminum and tungsten. Based on this state-to-state approach, the two collisional-radiative models CoRaM-Al and CoRaM-W are elaborated. They include elementary processes under electron and heavy particle impact in thermal non-equilibrium, spontaneous emission, radiative recombination and thermal Bremsstrahlung. These models are applied to the case of ultrashort laser-induced plasmas expanding in an argon gas at different pressure, for which a relevant collisional-radiative model is also elaborated to predict the propagation of the shock wave. The laser conditions are close to those used for a typical LIBS analysis under ultrashort regime. At high argon pressure (105 Pa), the relaxation of the plasma takes place according to a rather low departure from LTE, as revealed by the thorough examination of the Boltzmann plots derived from the state-to-state models. This relaxation occurs at temperature higher for aluminum than for tungsten, but close to 10,000 K from 200 ns. Conversely, at low pressure (10 Pa), the extinction of the plasma is observed at ∼ 500 ns, just after a phase corresponding to significant departure from equilibrium. These results support the idea of the choice of short gate delays close to the laser pulse for the LIBS characterization of tungsten matrices in tokamak-like conditions.

  20. Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles

    PubMed Central

    Ashiq, Muhammad Gul Bahar; Tahir, Bashir Ahmad; Ibrahim, Noorddin; Nadeem, Muhammad

    2013-01-01

    Objective Laser-induced Coulomb explosion of gold nanoparticles for breast cancer has been studied by nanophotolysis technique. This study aimed to investigate whether laser-induced bubble formation due to Coulomb explosion can provide an effective approach for selective damage of breast cancer with gold nanoparticles. Method Numerical method involves laser-induced Coulomb explosion of gold nanoparticles. Different parameters related to nanophotolysis such as laser fluence, tumor depth, cluster radius, laser pulse duration, and bubble formation is studied numerically. Numerical simulation was performed using Mat lab. Results The gold nanoparticles of 10, 20, 30, 40, and 50 nm in radius could penetrate into tumor 1.14, 1.155, 1.189, 1.20 and 1.22 cm in depth respectively. The maximum penetration depth in tumor could be obtained with nanoparticles of 50 nm radius. Short laser pulse of 40 ns with nanoparticles of 10 nm radius could penetrate into tumor 1.14 cm in depth. Bubbles with a radius of 9 µm could effectively kill breast cancer cells without damaging healthy ones. The bubble radius increased from 4 to 9 µm with an increase in pulse duration in the range of 10 to 30 ns. Conclusions Gold nanoparticles with increasing radius and bubble formation for selective damage of breast cancer cells are successfully probed. The present calculated results are compared with other experimental findings, and good correlation is found between the present work and previous experimental values. It was demonstrated that bubble formation in tumor may further increase the efficacy of breast cancer treatment. PMID:24385705