Science.gov

Sample records for laser-induced surface nanostructuring

  1. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  2. Nanosecond laser-induced nanostructuring of thin metal layers and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Klöppel, M.; Ehrhardt, M.; Zimmer, K.; Schwaller, P.

    2015-03-01

    Nanostructuring of dielectric surfaces has a widespread field of applications. In this work the recently introduced laser method validates this novel concept for complex nanostructuring of dielectric surfaces. This concept combines the mechanism of self-assembly of metal films due to laser irradiation with the concept of laser-assisted transfer of these patterns into the underlying material. The present work focuses on pattern formation in fused silica near the border of the laser spot, where distorted nested ring-like patterns were found in contrast to concentric ring patterns at homogeneous laser irradiation. For the experiments a lateral homogeneous spot of a KrF excimer laser (λ = 248 nm) and a Gaussian beam Yb fiber laser (λ = 1064 nm) was used for irradiation of a thin chromium layer onto fused silica resulting in the formation of different ring structures into the fused silica surface. The obtained structures were analysed by AFM and SEM. It is found that the mechanism comprises laser-induced metal film melting, contraction of the molten metal, and successive transfer of the metal hole geometry to the fused silica. Simulations taking into account the heat and the Navier-Stokes equations were compared with the experimental results. A good agreement of simulation results with experimental data was found. These first results demonstrate that the variation of the laser beam profile allows the local control of the melt dynamics which causes changes of the shape and the size of the ring patterns. Hence, a light-controlled self-assembly is feasible.

  3. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures

    NASA Astrophysics Data System (ADS)

    Long, Jiangyou; Fan, Peixun; Zhong, Minlin; Zhang, Hongjun; Xie, Yongde; Lin, Chen

    2014-08-01

    In this study, functional copper surfaces combined with vivid structural colors and superhydrophobicity were fabricated by picosecond laser. Laser-induced periodic surface structures (LIPSS), i.e. ripples, were fabricated by picosecond laser nanostructuring to induce rainbow-like structural colors which are uniquely caused by the grating - type structure. The effects of laser processing parameters on the formation of ripples were investigated. We also discussed the formation mechanism of ripples. With different combinations of the laser processing parameters, ripples with various morphologies were fabricated. After the modification with triethoxyoctylsilane, different types of ripples exhibited different levels of wettability. The fine ripples with minimal redeposited nanoparticles exhibited high adhesive force to water. The increased amount of nanoscale structures decreased the adhesive force to water and increased the contact angle simultaneously. In particular, a specific type of ripples exhibited superhydrophobicity with a large contact angle of 153.9 ± 3.2° and a low sliding angle of 11 ± 3°.

  4. Femtosecond laser-induced periodic nanostructure creation on PET surface for controlling of cell spreading

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Shinonaga, Togo; Kawa, Takuya

    2016-03-01

    A new method of periodic nanostructure formation on a polyethylene terephthalate (PET) surface has been developed, employing a femtosecond laser with a wavelength of 1045 nm. To generate structured films, the PET was placed in contact with a silicon (Si) wafer, followed by irradiation with the laser focused on the Si wafer, passing through the PET film. In order to evaluate the surface morphology, atomic force microscopy analysis was conducted on both treated and untreated PET surfaces. From the results, nanostructures with a period of 600 nm and height of 100 nm were formed on the PET film surface by laser treatment. A cell cultivation test was carried out on PET films with and without periodic nanostructures, showing that for nanostructured films, the cells (MG-63) were spread along the periodic grooves; in contrast, random cell spreading was observed for cultures grown on the untreated PET film.

  5. Laser Induced Surface Chemical Epitaxy

    DTIC Science & Technology

    1990-03-01

    Laser-Induced Surface Chemical Epitaxy ( LSCE ). The essential features of LSCE as applied to CdTe epitaxy involve: coadsorption of DMCd and DMTe on a GaAs...DIAGRAM OF THE LSCE PROCESS UHV environment 1M substra1e 9 /X Adsorbed thin film produced CH 3 -Cd-GH 3 CH 3 -Te-CH, by molecular beam source hv ’ CH...with Anneal W/// substraIe %/"/,’ Figure 1.1. Schematic of the LSCE process. (1-2) t I 2. EXPERIMENTAL APPROACH 2.1 Experimental Apparatus The

  6. F2-laser-induced micro/nanostructuring and surface modification of iron thin film to realize hydrophobic and corrosion resistant

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Awaihara, Yuta; Yamashita, Tsugito; Inoue, Narumi

    2014-11-01

    Nanoswellings of 60 nm height and 500 nm diameter on average of an iron thin film deposited on a silica glass substrate at regular intervals of 2.5 µm were fabricated by the irradiation of a 157 nm F2 laser. The F2 laser was focused on the iron thin film by each microsphere made of silica glass of 2.5 µm diameter, which covered the entire surface of the films. The surface of the silica glass substrate underneath the F2-laser-irradiated iron thin film selectively swelled to push up the film. After the laser-induced micro/nanostructuring, the F2 laser was again irradiated onto the entire surface of the periodic micro/nanostructured iron thin film to form an approximately 2-nm-thick Fe3O4 modified layer. As a result, the samples showed hydrophobicity and high corrosion resistance to 3 wt % NaCl aqueous solution (quasi-seawater). No rust was observed on the samples after the immersion test in the quasi-seawater for 24 h.

  7. Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Rosenfeld, A.; Bock, M.; Pfuch, A.; Seeber, W.; Grunwald, R.

    2011-03-01

    The formation of laser induced periodic surface structures (LIPSS) is to a large extent of self-organizing nature and in its early stages essentially influenced by optical scattering. The evolution of related mechanisms, however, has still to be studied in detail and strongly depends on materials and laser parameters. Excitation with highly intense ultrashort pulses leads to the creation of nanoripple structures with periods far below the fundamental wavelength because of opening multiphoton excitation channels. Because of the drastically reduced spatial scale of such laser induced periodic nanostructures (LIPNS), a particular influence of scattering is expected in this special case. Here we report on first investigations of femtosecond-laser induced nanostructuring of sputtered titanium dioxide (TiO2) layers in comparison to bulk material. The crucial role of the optical film quality for the morphology of the resulting LIPNS was worked out. Typical periods of nanoripples were found to be within the range of 80-180 nm for an excitation wavelength of 800 nm. Unlike our previously reported results on bulk TiO2, LIPNS in thin films appeared preferentially at low pulse numbers (N=5-20). This observation was explained by a higher number of scattering centers caused by the thin film structure and interfaces. The basic assumptions are further supported by supplementary experiments with polished and unpolished surfaces of bulk TiO2 single crystals.

  8. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  9. Laser-induced circular nanostructures in fused silica assisted by a self-assembling chromium layer

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Klöppel, Michael; Frost, Frank; Ehrhardt, Martin; Zimmer, Klaus; Li, Pu

    2013-09-01

    Nanostructures have a widespread field of applications and are of growing industrial importance. However, the economic fabrication of nanostructures poses a critical challenge. In this work, a fundamental research of a laser-induced surface nanostructuring of fused silica using the dynamic self-assembling structure formation in metal layers is presented. This method may offer promising opportunities for nanostructuring of dielectrics. This new approach is demonstrated by the formation of randomly distributed concentric nanostructures into fused silica. The irradiation of chromium-covered fused silica samples with a KrF excimer laser results in melting, partial ablation, restructuring, and resolidification of both the metal layer and the dielectric surface. In this way, concentric circular structures into the dielectric were formed with dimensions that can be controlled by the laser fluence Φ and by the pulse number N. The distance of the concentric rings increases with increasing laser fluence. The experimental results were compared with simulated structure dimensions taking into account the heat equation and the Navier-Stokes equation. Despite the currently applied decoupled approach for the simulations, i.e. separating the heat equation and the fluid flow, a good agreement of simulation results with experimental data was achieved.

  10. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  11. Dynamics of the laser-induced nanostructuring of thin metal layers: experiment and theory

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Klöppel, M.; Smausz, T.; Csizmadia, T.; Ehrhardt, M.; Zimmer, K.; Hopp, B.

    2015-02-01

    Nanostructures are of increasing importance in manifold application fields such as electronics, optics and beyond. However, the fast and cost-effective production of nanostructures is a big technological challenge for laser machining. One promising approach is laser irradiation of thin metal layers, which allows the fabrication of metal nanostructures induced by a melting and transformation process. The influence of laser parameters (laser fluence, laser pulse number) on the morphology of the nanopatterned film and the dynamics of the nanostructure formation during excimer laser irradiation of a 20 nm chromium film on fused silica were studied. The dynamics of nanopatterning, comprising hole and droplet formation, were investigated by time-dependent reflection and transmission measurements as well as time-dependent optical microscopy. The resulting patterns were investigated by optical and scanning electron microscopy (SEM). However, for an optimization of this process a better understanding of the underlying physical phenomena is necessary. Therefore, experimental data of laser-induced nanopatterning were compared with results of physical simulations that consider the heat equation (laser-solid interaction including melting and evaporation) and the Navier-Stokes equation (transformation processes of the molten phase). The simulations, making use of laser fluence-dependent effective material parameters (surface tension and viscosity), are in good agreement with the experimental results.

  12. Efficiency enhancement using ArF laser induced micro/nanostructures on the polymeric layer of solar cell

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Reyhani, A.; Mehrabi, M.; Refahizadeh, M.; Mortazavi, S. Z.; Ranjbar, A.

    2017-02-01

    Here, the solar cell surface is irradiated with ArF excimer laser at 193 nm. This process forms regular micro/nanostructures on the samples, most likely due to the surface resonance phenomena. Laser induced surface rippling in the form of the conical micro/nanostructures or micro/nano-pillars are strongly dependent on the energy dose which induces a great number of micro/nano cavities on the surface. Despite the reflection events are taken into account as the major source of the optical losses, however the laser induced self-micro/nano structuring significantly reduces the spectral reflectivity. It leads to enhance the efficiency of solar cell accordingly. The effect of laser fluence is also investigated as to several forms of the micro/nanostructures are created at various UV doses. Finally, the electrical characterization is carried out based on the current-voltage plots. The surface morphology is analyzed using SEM and the spectral reflectivity is measured by the spectrophotometry, indicating that the current density rises due to the light trapping in micro/nano-cavities.

  13. Laser induced structural phase transformation of cobalt oxides nanostructures.

    PubMed

    Ravindra, A V; Behera, B C; Padhan, P

    2014-07-01

    Face-centered-cubic (fcc) and hexagonal-close-packed (hcp) phases of cobalt monoxide (CoO) nanostructures are prepared using thermolysis route at the same reaction temperature 296 degrees C with synthetic approach conditions. These nanostructures show mixture of nearly spherical and nanoflake morphologies. The structural phases of these nanostructures transform to spinel-Co3O4 by application of heat or Raman excitation laser beam power. The absorbance spectra of fcc and hcp-CoO and Co3O4 nanostructures yield significantly higher values of band gap which can be explained by electron confinement. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterial.

  14. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    PubMed Central

    Müller, Frank A.; Kunz, Clemens; Gräf, Stephan

    2016-01-01

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces. PMID:28773596

  15. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    PubMed

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  16. Laser-induced forward transfer of hybrid carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  17. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  18. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  19. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  20. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  1. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  2. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  3. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    PubMed Central

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  4. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution.

    PubMed

    Bavali, A; Parvin, P; Mortazavi, S Z; Nourazar, S S

    2015-05-01

    The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers.

  5. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution

    PubMed Central

    Bavali, A.; Parvin, P.; Mortazavi, S. Z.; Nourazar, S. S.

    2015-01-01

    The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers. PMID:26137372

  6. Laser-induced periodic surface structures: Fingerprints of light localization

    NASA Astrophysics Data System (ADS)

    Skolski, J. Z. P.; Römer, G. R. B. E.; Obona, J. V.; Ocelik, V.; Huis in't Veld, A. J.; de Hosson, J. Th. M.

    2012-02-01

    The finite-difference time-domain (FDTD) method is used to study the inhomogeneous absorption of linearly polarized laser radiation below a rough surface. The results are first analyzed in the frequency domain and compared to the efficacy factor theory of Sipe and coworkers. Both approaches show that the absorbed energy shows a periodic nature, not only in the direction orthogonal to the laser polarization, but also in the direction parallel to it. It is shown that the periodicity is not always close to the laser wavelength for the perpendicular direction. In the parallel direction, the periodicity is about λ/Re(ñ), with ñ being the complex refractive index of the medium. The space-domain FDTD results show a periodicity in the inhomogeneous energy absorption similar to the periodicity of the low- and high-spatial-frequency laser-induced periodic surface structures depending on the material's excitation.

  7. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  8. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    NASA Astrophysics Data System (ADS)

    Gokhale, R. R.; Thakare, V. P.; Warule, S.; Lefez, B.; Hannoyer, B.; Jog, J. P.; Ogale, S. B.

    2012-06-01

    A novel route employing UV laser pulses (KrF Excimer, 248 nm) to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS) process when applied to routine laboratory solvents (or toxic chemical wastes when discarded) Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs) comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  9. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  10. Characterisation of CFRP surface contamination by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Sawczak, Miroslaw; Wandowski, Tomasz; Ostachowicz, Wieslaw M.; Cenian, Adam

    2014-03-01

    The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

  11. Laser-induced periodic surface structures, modeling, experiments, and applications

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Ocelík, V.; de Hosson, J. T. M.; Huis in't Veld, A. J.

    2014-03-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures, or ripples, with amplitudes and periodicity in the sub-micrometer range. A summary of experimentally observed LIPSSs is presented, as well as our model explaining their possible origin. Linearly polarized continuous wave (cw) or pulsed laser light, at normal incidence, can produce LIPSSs with a periodicity close to the laser wavelength, and direction orthogonal to the polarization on the surface of the material. Ripples with a periodicity (much) smaller than the laser wavelength develop when applying laser pulses with ultra-short durations in the femtosecond and picosecond regime. The direction of these ripples is either parallel or orthogonal to the polarization direction. Finally, when applying numerous pulses, structures with periodicity larger than the laser wavelength can form, which are referred to as "grooves". The physical origin of LIPSSs is still under debate. The strong correlation of the ripple periodicity to the laser wavelength, suggests that their formation can be explained by an electromagnetic approach. Recent results from a numerical electromagnetic model, predicting the spatially modulated absorbed laser energy, are discussed. This model can explain the origin of several characteristics of LIPSSs. Finally, applications of LIPSSs will be discussed.

  12. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    SciTech Connect

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  13. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS)

    PubMed Central

    He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2016-01-01

    Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility. PMID:27721428

  14. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS).

    PubMed

    He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M; Xu, Xianfan

    2016-10-10

    Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility.

  15. Femtosecond laser induced periodic nanostructures on titanium dioxide film for improving biocompatibility

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Horiguchi, N.; Tsukamoto, M.; Nagai, A.; Yamashita, K.; Hanawa, T.; Matsushita, N.; Guoqiang, X.; Abe, N.

    2013-03-01

    Periodic nanostructures formation on Titanium dioxide (TiO2) film by scanning of femtosecond laser beam spot at fundamental and second harmonic wave is reported. Titanium (Ti) is one of the most widely used for biomaterials, because of its excellent anti-corrosion and high mechanical properties. However, Ti implant is typically artificial materials and has no biofunction. Hence, it is necessary for improving the bioactivity of Ti. Recently, coating of TiO2 film on Ti plate surface is useful methods to improve biocompatibility of Ti plate. Then, if periodic nanostructures were formed on the film surface, cell spreading might be controlled at one direction. We propose periodic nanostructures formation on TiO2 film by femtosecond laser irradiation. Cell spread could be controlled along the grooves of periodic nanostructures. In the experiments, the film was formed on Ti plate with an aerosol beam. A commercial femtosecond Ti : sapphire laser system was employed in our experiments. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film at fundamental and second harmonic wave. Periodic nanostructures were also produced on Ti plate with femtosecond laser. The period of periodic nanostructures on the film was much shorter than that on Ti plate. By cell test, there was a region of cell spreading along the grooves of periodic nanostructures on the film formed with femtosecond laser at fundamental wave. On bare film surface, cell spreading was observed at all direction. These results suggest that direction of cell spread could be controlled by periodic nanostructures formation on the film.

  16. Measurement of high viscosity with laser induced surface deformation technique

    SciTech Connect

    Yoshitake, Y.; Mitani, S.; Sakai, K.; Takagi, K.

    2005-01-15

    A technique for viscosity measurement was developed based on the principle of laser-induced surface deformation. Light incident into liquids increases its momentum due to the difference in refractive index and gives the surface an upward force as a reaction. The plane surface thus swells up and deforms, and the shape is determined so that the force is balanced with the surface tension and the gravity. On sudden laser irradiation, the deformation inevitably accompanies a viscous flow and exhibits a relaxational behavior with a delay time, which gives the viscosity. Theoretical prediction of the step-response function was given that takes surface tension waves excited by the laser into consideration. Nd-yttritium-aluminum-garnet laser with 0.6 W output was focused to {approx}200 {mu}m beam waist and used for the pumping. The deformation process was observed sensitively with another probe laser illuminating the activated area. This system was tested with the standard liquids for viscosity ranging from 1 to 10{sup 6} cSt. The results demonstrated the validity of this technique, though a correction for the inertia effect was needed in the range lower than 10 cSt. Further, effect of the thermal expansion by a slight optical absorption was discussed. This technique is especially useful at high viscosities since the measurement takes only a few seconds even in the specimen with 10{sup 6} cSt. Besides the rapidity, it has a great advantage of a noncontact feature and is appropriate for measuring the liquids that strongly dislike contamination. It has also potential applications in industries, measurement of liquids isolated in a production line, for instance.

  17. Coherence in ultrafast laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Colombier, Jean-Philippe; Li, Chen; Faure, Nicolas; Cheng, Guanghua; Stoian, Razvan

    2015-11-01

    Ultrafast laser irradiation can trigger anisotropically structured nanoscaled gratinglike arrangements of matter, the laser-induced periodic surface structures (LIPSSs). We demonstrate here that the formation of LIPSS is intrinsically related to the coherence of the laser field. Employing several test materials that allow large optical excursions, we observe the effect of randomizing spatial phase in generating finite domains of ripples. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface and show that modulated pattern, i.e., a spatially ordered electromagnetic solution, results from the coherent superposition of waves. By separating the field scattered from a surface rough topography from the total field, the inhomogeneous energy absorption problem is reduced to a simple interference equation. We further distinguish the contribution of the scattered near field and scattered far field on various types of inhomogeneous energy absorption features. It is found that the inhomogeneous energy absorption which could trigger the low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) of periodicity Λ >λ /Re(n ˜) are due to coherent superposition between the scattered far field (propagation) and the refracted field, while HSFLs of Λ <λ /Re(n ˜) are triggered by coherent superposition between the scattered near field (evanescent) and the refracted field. This is a general scenario that involves a topography-induced scattering phenomenon and stationary evanescent fields, being applied to two model case materials that exhibit large optical excursions upon excitation (W, Si) and nonplasmonic to plasmonic transitions. We indicate the occurrence of a general light interference phenomenon that does not necessarily involve wavelike surface plasmonic excitation. Finally, we discuss the role of interference field and scattered field on the enhancement of LIPSSs by

  18. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  19. Laser induced periodic surface structures on pyrolytic carbon prosthetic heart valve

    NASA Astrophysics Data System (ADS)

    Stepak, Bogusz D.; Łecka, Katarzyna M.; Płonek, Tomasz; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced periodic surface structures (LIPSS) can appear in different forms such as ripples, grooves or cones. Those highly periodic wavy surface features which are frequently smaller than incident light wavelength bring possibility of nanostructuring of many different materials. Furthermore, by changing laser parameters one can obtain wide spectrum of periodicities and geometries. The aim of this research was to determine possibility of nanostructuring pyrolytic carbon (PyC) heart valve leaflets using different irradiation conditions. The study was performed using two laser sources with different pulse duration (15 ps, 450 fs) as well as different wavelengths (1064, 532, 355 nm). Both low and high spatial frequency LIPSS were observed for each set of irradiation parameters. In case femtosecond laser pulses we obtained deep subwavelength ripple period which was even ten times smaller than applied wavelength. Obtained ripple period was ranging from 90 up to 860 nm. Raman spectra revealed the increase of disorder after laser irradiation which was comparable for both pico- and femtosecond laser.

  20. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  1. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  2. Laser induced breakdown spectroscopy stratigraphic characterization of multilayered painted surfaces

    NASA Astrophysics Data System (ADS)

    Staicu, A.; Apostol, I.; Pascu, A.; Iordache, I.; Damian, V.; Pascu, M. L.

    2012-08-01

    Laser spectroscopy techniques are modern and competitive methods for elemental analysis. Laser induced breakdown spectroscopy (LIBS), due to its advantages as minimally invasive method that provides real time monitoring and selectivity, is a suitable tool to analyze sample composition. Based on the known emission spectra of heavy metals such as Pb, Zn, Au, Ca, a stratigraphic study regarding the identification of the painting layers content of different mock-up samples was performed. LIBS was used to monitor the laser induced stepwise selective removal of the painting layers and to analyze their composition. The obtained LIBS spectra were correlated with profilometric measurements.

  3. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration

    SciTech Connect

    Das, Susanta Kumar; Andreev, Alexander; Braenzel, Julia; Schnuerer, Matthias; Grunwald, Ruediger; Messaoudi, Hamza

    2016-03-21

    The feasibility of femtosecond laser-induced periodic nanostructures on thin Ti and Cu foils (thickness down to 1 μm) is demonstrated. At pulse durations of 120 fs and a wavelength of 400 nm, periods of 61 nm to 320 nm were obtained. Particle-in-cell simulations of laser ion acceleration processes with such nanostructured targets indicate their potential for high energy particle physics applications. In particular, a measurable enhancement of the proton cut-off energy and a significant enhancement of the number of accelerated particles compared to non- or weakly structured targets of same thickness and material are expected.

  4. Diamond detectors with laser induced surface graphite electrodes

    NASA Astrophysics Data System (ADS)

    Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S.

    2016-11-01

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm2 pixels was realized on one side of a 10.0×10.0×0.5 mm3 polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 μm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  5. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  6. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  7. Laser-induced periodic surface structures of thin, complex multi-component films

    NASA Astrophysics Data System (ADS)

    Reif, Juergen; Varlamova, Olga; Ratzke, Markus; Uhlig, Sebastian

    2016-04-01

    Femtosecond laser-induced regular nanostructures are generated on a complex multilayer target, namely a piece of a commercial, used hard disk memory. It is shown that after single-shot 800-nm irradiation at 0.26 J/cm2 only the polymer cover layer and—in the center—a portion of the magnetic multilayer are ablated. A regular array of linearly aligned spherical 450-nm features at the uncovered interface between cover and magnetic layers appears not to be produced by the irradiation. Only after about 10 pulses on one spot, classical ripples perpendicular to the laser polarization with a period of ≈700 nm are observed, with a modulation between 40 nm above and 40 nm below the pristine surface and an ablation depth only slightly larger than the thickness of the multilayer magnetic film. Further increase of the pulse number does not result in deeper ablation. However, 770-nm ripples become parallel to the polarization and are swelling to more than 120 nm above zero, much more than the full multilayer film thickness. In the spot periphery, much shallower 300-nm ripples are perpendicular to the strong modulation and the laser polarization. Irradiation with 0.49-J/cm2 pulses from an ultrafast white-light continuum results—in the spot periphery—in the formation of 200-nm ripples, only swelling above zero after removal of the polymer cover, without digging into the magnetic film.

  8. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass.

    PubMed

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheng; Xu, Zhizhan

    2010-11-08

    We systematically study the morphological and optical characteristics of the large-area micro/nanostructures produced by femtosecond laser irradiation on GaAs, Si, and brass. The experimental results demonstrate that along with the increase of laser fluence, significant changes in the surface morphology can be observed, and the most prominent phenomenon is the enlarging of the feature size of formed structures. Interestingly, by the fourier analysis of the treated areas, a peculiar phenomenon can be revealed: as laser fluence increases, the spatial frequencies of the structures change following a specific law--the allowed main frequencies are discrete, and appear to be a sequence of 2f, f, f/2, f/4, and f/8 (f is the fundamental frequency corresponding to the near-subwavelength ripples). In our opinion, the new frequency components of f/2, f/4, and f/8 originate in the 2-order, 4-order, and 8-order grating coupling. The law can offer us new insights for the evolving mechanisms of a variety of laser-induced micro/nanostructures in different scales. Furthermore, the optical characteristics of the treated surface are strongly dependent on the morphological characteristics that are mainly determined by laser fluence, such as the feature size of the micro/nanostructures, the topology of the surface morphology, the surface roughness, and the irregular degree of the formed structures. In general, as laser fluence increases in a moderate range, the specular reflectance of the structured surface would be significantly reduced. However, if laser fluence is excessive, the anti-specular-reflection effect would be much weakened. In ideal laser fluence, the micro/nanostructures produced by the near-infrared laser can achieve an ultra-low specular reflectance in the visible and near-infrared spectral region, which exhibits an attracting application prospect in the field of utilizing solar energy.

  9. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2015-05-01

    Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.

  10. In situ probing of pulsed laser melting and laser-induced periodic surface structures formation by dynamic reflectivity

    NASA Astrophysics Data System (ADS)

    Huynh, T. T. D.; Semmar, N.

    2017-09-01

    The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm‑2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm‑2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.

  11. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    NASA Astrophysics Data System (ADS)

    Nikov, Ru. G.; Nedyalkov, N. N.; Atanasov, P. A.; Hirsch, D.; Rauschenbach, B.; Grochowska, K.; Sliwinski, G.

    2016-06-01

    The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  12. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures

    PubMed Central

    Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  13. Time resolved EUV pump-probe microscopy of fs-LASER induced nanostructure formation

    NASA Astrophysics Data System (ADS)

    Freiberger, R.; Hauck, J.; Reininghaus, M.; Wortmann, D.; Juschkin, L.

    2011-05-01

    We report on our efforts in design and construction of a compact Extreme Ultraviolet (EUV)-pump-probe microscope. The goal is the observation of formation of nanostructures, induced by a femtosecond (fs)-laser pulse. The unique interaction processes of fs-laser radiation with matter open up new markets in laser material processing and, therefore, are actively investigated in the last decade. The resulting "sub 100 nm"-structures offer vast potential benefits in photonics, biotechnology, tribological surface design, plasmonic applications and production of nanoparticles. Focused fs-laser radiation causes a local modification resulting in nanostructures of high precision and reproducibility. However the formation dynamics is not well understood. Research in this field requires high temporal and spatial resolution. A combination of fs-laser and EUV-microscope provides a tool for "in situ"-observation of the formation dynamics. As exemplary structures to be investigated, we use nanojets on thin gold films and periodic surface structures (ripples) on dielectrics. In the future, the EUV-pump-probe microscope can become a versatile tool to observe physical or biological processes. Microscopy using EUV-light is capable of detecting structures on a scale down to several tens of nanometers. For detailed investigations a compact EUV-microscope has been realized utilizing OVI Balmer-alpha radiation at 17.3 nm coming from a discharge produced oxygen plasma. As optical elements a grazing incidence elliptical collector and a zone plate with a width of outermost zone of 50 nm and a spectral filter to avoid chromatic aberrations are used. The detector is a fast gated microchannel plate with a pore size of 2 microns contacted by a low impedance transmission line. The expected spatial resolution of the setup is better than 100 nm and the time resolution is better than 1 ns. The newly developed EUV-microscope is a powerful tool for a wide field of investigations that need high time

  14. Optical chirality in AgCl-Ag thin films through formation of laser-induced planar crossed-chain nanostructures

    NASA Astrophysics Data System (ADS)

    Nahal, Arashmid; Kashani, Somayeh

    2017-09-01

    Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.

  15. Uv Laser-Induced Dehydroxylation of UV Fused Silica Surfaces

    NASA Astrophysics Data System (ADS)

    Fernandes, A. J.; Kane, D. M.; Gong, B.; Lamb, R. N.

    The 'clean' surface of silica glass is usually covered with a quasi-layer of hydroxyl groups. These groups are significant as their concentration on a surface affects surface adhesion and chemical reactivity. Removal of hydroxyl groups from the surface by a UV pulsed laser treatment has been demonstrated to be an alternative technique to the dehydroxylation of glass by the traditional oven heat treatment. Silica so treated has improved resistance to particulate adhesion. Dehydroxylation using this UV laser treatment has key advantages of being: a much faster process; largely limited to heating the surface not the bulk of the silica; and which allows selective spatial patterning of the dehydroxylation of the silica surface. This work outlines a technique developed to allow systematic, quantitative measurements of the dehydroxylation of UV fused silica. The removal of hydroxyl groups using laser irradiation is shown to be a thermal process.

  16. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  17. Laser Induced Temperature Field on Surfaces: Application to SAM Patterning

    NASA Astrophysics Data System (ADS)

    Shadnam, Mohammad Reza; Amirfazli, Alidad

    2004-03-01

    Laser is used to thermally desorb a self assembeled monolayer (SAM) from a gold substrate. This process is a key step in making patterned surfaces. In many applications making curvilinear features is useful. Heating of a surface by a CW laser along a nonlinear trajectory is considered using Green's functions. Temperature profiles are calculated for heating along circular-arc trajectories of different curvatures. The effect of heating trajectory's radius of curvature and heating spot's velocity (Laser scanning rate) on resulting surface temperature is studied. It is shown that within the range of parameters considered, the induced surface temperature profiles are symmetric. It is also shown that change of heating trajectory's radius of curvature by one order of magnitude at heating velocity of 0.1 mm/s changes the induced surface temperatures by 12 K; this temperature increase will be 36 K at 1 mm/s. The effect of such temperature increases are discussed in terms of laser processing of SAM coated surfaces. For a case of heating along straight line, the kinetics of SAM desorption is coupled with heat diffusion equation to predict the percentage of SAM desorped and determine the feature size. The resulting surface chemical composition profiles are compared with experimental measurements and good agreement is reported.

  18. Fabrication of "petal effect" surfaces by femtosecond laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Li, Hong-Jin; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Cheng-Wei; Qian, Jing; Zhao, Quan-Zhong

    2017-01-01

    Superhydrophobic adhesive glass surfaces with polystyrene has been obtained via femtosecond laser induced forward transfer (LIFT). Using this facile method, we obtained composite structures on the glass surface, achieving the transformation from hydrophilicity to superhydrophobicity with contact angle from 36.22° on the glass surface to 159.19° on the LIFT modified glass surface. Analogous to the ;petal effect;, the obtained superhydrophobic surface also shows high adhesion. Furthermore, the wettability of LIFT modified glass surface can be tuned by changing the interval width of laser scanning, which can be explained by the Cassie impregnating wetting model.

  19. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.

    PubMed

    Chang, Han-Wei; Tsai, Yu-Chen; Cheng, Chung-Wei; Lin, Cen-Ying; Lin, Yen-Wen; Wu, Tzong-Ming

    2011-08-01

    Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.

  20. Analytical treatment of ultrafast laser-induced spin-flipping Λ processes on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Lefkidis, Georgios; Hübner, Wolfgang

    2013-01-01

    In this paper, we analytically treat ultrafast, laser-induced, spin-flipping processes based on Λ model systems with triplet ground state. After obtaining the wave functions, we give analytical solutions for the induced material polarization in the time domain. Compact summation formulas for the time-dependent (windowed) induced polarization of the material in the frequency domain, as well as its helicity (fourth Stokes parameter), are given. These solutions compare excellently with numerical results obtained for realistic systems (i.e., systems that can or have been synthesized and were treated with high-level quantum chemical methods including electron correlations and relativistic effects). We thus analytically show that laser-induced spin flip is possible and can be detected from the helicity of the emitted light during the process. Additionally, we analyze the effects of a finite temperature and the time window of a measuring apparatus on the signal detected. These are very crucial steps not only for verifying the validity of previous numerical results, but also for the deeper understanding of the physical mechanisms involved.

  1. Tuning micropillar cavity birefringence by laser induced surface defects

    SciTech Connect

    Bonato, Cristian; Ding Dapeng; Gudat, Jan; Exter, Martin P. van; Thon, Susanna; Kim, Hyochul; Petroff, Pierre M.; Bouwmeester, Dirk

    2009-12-21

    We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.

  2. Excimer laser induced surface chemical modification of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Révész, K.; Hopp, B.; Bor, Z.

    1997-02-01

    Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.

  3. Inexpensive laser-induced surface modification in bismuth thin films

    NASA Astrophysics Data System (ADS)

    Contreras, A. Reyes; Hautefeuille, M.; García, A. Esparza; Mejia, O. Olea; López, M. A. Camacho

    2015-05-01

    In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD-DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  4. Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes

    NASA Astrophysics Data System (ADS)

    Arakelian, S.; Kutrovskaya, S.; Kucherik, A.; Osipov, A.; Povolotckaia, A.; Povolotskiy, A.; Manshina, A.

    2016-04-01

    Synthesis of nanotructured metal-carbon materials by laser irradiation is an actual branch of laser physics and nanotechnology. Laser sources with different pulse duration allow changing the heating rate with realization of different transition scenarios and synthesis materials with various physical properties. We study the process of the formation of nanostructured metal-clusters and complexes using laser irradiation of colloidal systems which were consisted of carbon micro- nanoparticles and nanoparticles of noble metals. For carbon nanoparticles synthesis we use the method of laser ablation in liquid. For the realization of different regimes of laser surface modification of the target (glassycarbon and shungite) and the formation of micro- nanoparticles in a liquid the YAG:Nd laser with a pulse duration from 0.5 ms up to 20 ms (pulse energy up to 50J) was applied. We have used the CW-laser with moderate intensity in liquid (water or ethanol) for nanoparticle of noble metals synthesis. Thus, colloidal systems were obtained by using CW-laser with λ = 1.06 μm, I ~ 105-6 W/cm2, and t = 10 min. The average size of resulting particles was approximately about 10 to 100 nm. The nanoparticle obtaining was provided in the colloidal solution with different laser parameters. In this work we have investigated the mechanism of the metal-carbon cluster formation during the process of irradiation of colloidal system which were consisted of separate carbon, silver and gold nanoparticles. This system was irradiated by nanosecond laser (100 ns) with average power up to 50W.

  5. Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Gupta, Shradhey; Mishra, Narendra Kumar; Singh, Ramesh; Yadav, Santosh K. S.; Ballabh Joshi, Khashti

    2017-03-01

    This study demonstrates the synthesis of a new class of peptide amphiphiles derived from aleuritic acid. The aleuritic acid was extracted and purified from the natural source shellac, which was later conjugated with tryptophan, leading to a new class of very short peptide amphiphiles. The self-assembling behavior of this compound was studied using spectroscopic and microscopic tools. This shellac-driven peptide was further used to cultivate gold nanoparticles (AuNPs) with the help of continuous wave (CW) laser light, where the AuNPs were encapsulated by peptide nanostructures. Laser irradiation caused nanoscopically confined heating in the AuNPs-peptide hybrid nanostructures. Such confined heating is mainly the result of scattering and simultaneous absorption of subwavelength power which is subjected to enhanced plasmonic resonances of the metal nanostructures. Hence, the generated heat power/photothermal effect of these AuNPs leads to disruption of the AuNP-peptide hybrids. Such light-induced prototype nano-structure hydrid devices have a wide range of thermal-plasmonic applications in the morphological modification of soft metal hybrid nanostructures for photothermal therapy and drug release.

  6. Laser-induced deposition of nanostructured copper tracks from solutions containing oxidising additives

    NASA Astrophysics Data System (ADS)

    Fateev, Sergey A.; Araslanova, Svetlana M.; Mironov, Vasilii S.; Gordeychuk, Dmitrii I.

    2015-05-01

    This paper involves the laser-induced chemical liquid phase deposition of metals (LCLD). Organic alcohols with low molecular weights, such as ethanol and ethylene glycol, were used as the reductants. The addition of KBrO3 demonstrates how inorganic oxidizing additives affect the process of copper laser deposition from aqueous solutions. Such additives increase the deposition speed, which is an important challenge in the LCLD method. The deposited copper structures were investigated by scanning electron microscopy, energy-dispersive analysis (EDX), and impedance spectroscopy. The equivalent circuit of copper tracks was constructed using the impedance spectroscopy data. The studies revealed that the structures deposited from the solutions consist of densely agglomerated nanocrystals, which is in contrast to the microcrystalline deposit obtained in the absence of oxidizing additives.

  7. Laser-induced micron and submicron ordering effects in quasi-percolated nanostructured silver thin films.

    PubMed

    Haro-Poniatowski, E; Alonso-Huitrón, J C; Acosta-Zepeda, C; Acosta-García, M C; Batina, N

    2009-09-02

    Quasi-percolated nanostructured silver thin films are used as the starting morphology for inducing simultaneously changes in shape and ordering effects by laser irradiation. The complex fingered nanostructures are transformed into nanospheres which in turn are arranged in micro-circular patterns when irradiated through a pinhole. These transformations are characterized by transmission electron microscopy and atomic force microscopy. The observed effects are explained using Fresnel diffraction theory. Good agreement with the experimental results is obtained. These results suggest that precise patterning engineering can be achieved through control of the spatial parameters such as the pinhole diameter and the distance from the mask to the sample.

  8. Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films

    NASA Astrophysics Data System (ADS)

    Berta, Marco; Biver, Émeric; Maria, Sébastien; Phan, Trang N. T.; D'Aleo, Anthony; Delaporte, Philippe; Fages, Frederic; Gigmes, Didier

    2013-10-01

    In this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N3)-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N3) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities.

  9. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  10. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  11. TOPICAL REVIEW: Magnetic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Enders, A.; Skomski, R.; Honolka, J.

    2010-11-01

    Recent trends in the emerging field of surface-supported magnetic nanostructures are reviewed. Current strategies for nanostructure synthesis are summarized, followed by a predominantly theoretical description of magnetic phenomena in surface magnetic structures and a review of experimental research in this field. Emphasis is on Fe- or Co-based nanostructures in various low-dimensional geometries, which are studied as model systems to explore the effects of dimensionality, atomic coordination, chemical bonds, alloying and, most importantly, interactions with the supporting substrate on the magnetism. This review also includes a discussion of closely related systems, such as 3d element impurities integrated into organic networks, surface-supported Fe-based molecular magnets, Kondo systems or 4d element nanostructures that exhibit emergent magnetism, thereby bridging the traditional areas of surface science, molecular physics and nanomagnetism.

  12. TEM investigation of laser-induced periodic surface structures on polymer surfaces

    NASA Astrophysics Data System (ADS)

    Prendergast, Úna; Kudzma, Sylwester; Sherlock, Richard; O'Connell, Claire; Glynn, Thomas

    2007-02-01

    Laser Induced Periodic Surface Structures (LIPSS) may have numerous applications, ranging from biomaterial applications to LCDs, microelectronic fabrication and photonics. However, in order to control the development of these structures for their particular application, it is necessary to understand how they are generated. We report our work on investigating the melting that occurs during LIPSS formation. LIPSS were generated on three polymer surfaces - polyethylene terephthalate (PET), amorphous polycarbonate (APC) and oriented crystalline polycarbonate (OPC) - which were irradiated with a polarized ArF excimer laser (193 nm) beam with fluences between 3 and 5 mJ/cm2. The structures were imaged using a Transmission Electron Microscope (TEM), which facilitated investigation of changes in the polymer structures and consequently the depth of the melt zone that accompanies LIPSS generation. We also present theoretical calculations of the temperature-depth profile due to the interaction of the low fluence 193 nm laser beam with the polymer surfaces and compare these calculations with our experimental results.

  13. Laser-induced surface modification: regular and chaotic structures on metals and polymers

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1992-04-01

    The present article contains the description of simple experiments and their theoretical interpretations mounted for demonstrations of temporal and spatial structures (regular, stochastic and chaotic) of nonlinear dynamical systems. Results of three different types of experiments are presented: a) Nonlinear oscillations and current fluctuations in V2O5 single crystals (n-type semiconductors) in external magnetic field. b) Self-sustained oscillations of heat field appeared on the surface of metallic vanadium plates during their oxidation processes under influence of cw IR laser light. c) Excimer laser induced modification of polymers yielding synergetic type surface structures.

  14. Wavelength dependence of picosecond laser-induced periodic surface structures on copper

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Derrien, Thibault J.-Y.; Levy, Yoann; Bulgakova, Nadezhda M.; Ostendorf, Andreas; Gurevich, Evgeny L.

    2017-09-01

    The physical mechanisms of the laser-induced periodic surface structures (LIPSS) formation are studied in this paper for single-pulse irradiation regimes. The change in the LIPSS period with wavelength of incident laser radiation is investigated experimentally, using a picosecond laser system, which provides 7-ps pulses in near-IR, visible, and UV spectral ranges. The experimental results are compared with predictions made under the assumption that the surface-scattered waves are involved in the LIPSS formation. Considerable disagreement suggests that hydrodynamic mechanisms can be responsible for the observed pattern periodicity.

  15. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    NASA Astrophysics Data System (ADS)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  16. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  17. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films

    SciTech Connect

    Rebollar, Esther; Castillejo, Marta; Vazquez de Aldana, Javier R.; Moreno, Pablo

    2012-01-23

    This work demonstrates the formation of femtosecond laser induced periodic surface structures (LIPSS) by multipulse irradiation with the fundamental and 3rd harmonic of a linearly polarized Ti:sapphire laser (795 and 265 nm) on thin films of the polymers poly (ethylene terephthalate), poly (trimethylene terephthalate), and poly (carbonate bisphenol A) prepared by spin-coating. LIPSS, inspected by atomic force microscopy, are formed upon multiple pulse UV and IR irradiation with wavelength-sized period in a narrow range of fluences below the ablation threshold. Control and tunability of the size and morphology of the periodic structures become thus possible ensuring photochemical integrity of polymer films.

  18. Light scattering from laser-induced shallow pits on silica exit surfaces

    NASA Astrophysics Data System (ADS)

    Feigenbaum, E.; Raman, R. N.; Nielsen, N.; Matthews, M. J.

    2015-11-01

    We study the formation of laser-induced shallow pits (LSPs) on silica output surfaces and relate these features to optical performance as a function of incident laser fluence. Typical characteristics of the LSPs morphology are presented. Closed-form expressions for the scattered power and far-field angular distribution are derived and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell's equations. The model predictions agree well with the measurements for precise profile micro-machined shallow pits on glass, and for pitting caused by laser cleaning of bound metal micro-particles at different fluences.

  19. Glycine crystallization in solution by CW laser-induced microbubble on gold thin film surface.

    PubMed

    Uwada, Takayuki; Fujii, Sho; Sugiyama, Teruki; Usman, Anwar; Miura, Atsushi; Masuhara, Hiroshi; Kanaizuka, Katsuhiko; Haga, Masa-aki

    2012-03-01

    We have developed a novel laser-induced crystallization method utilizing local heat-induced bubble/water interface. Continuous laser beam of 1064 nm is focused on a gold nanoparticles thin film surface covered with glycine supersaturated aqueous solution. Light absorption of the film due to localized plasmon resonance caused local heating at the focal position and produced a single thermal vapor microbubble, which generated thermal gradient followed by convection flow around the bubble and eventually induced glycine crystallization and growth. The crystallization mechanism is discussed by considering gathering and accumulating molecules around the bubble/water interface assisted by convection flow and temperature jump.

  20. Ultrasonic approach for surface nanostructuring.

    PubMed

    Skorb, Ekaterina V; Möhwald, Helmuth

    2016-03-01

    The review is about solid surface modifications by cavitation induced in strong ultrasonic fields. The topic is worth to be discussed in a special issue of surface cleaning by cavitation induced processes since it is important question if we always find surface cleaning when surface modifications occur, or vice versa. While these aspects are extremely interesting it is important for applications to follow possible pathways during ultrasonic treatment of the surface: (i) solely cleaning; (ii) cleaning with following surface nanostructuring; and (iii) topic of this particular review, surface modification with controllably changing its characteristics for advanced applications. It is important to know what can happen and which parameters should be taking into account in the case of surface modification when actually the aim is solely cleaning or aim is surface nanostructuring. Nanostructuring should be taking into account since is often accidentally applied in cleaning. Surface hydrophilicity, stability to Red/Ox reactions, adhesion of surface layers to substrate, stiffness and melting temperature are important to predict the ultrasonic influence on a surface and discussed from these points for various materials and intermetallics, silicon, hybrid materials. Important solid surface characteristics which determine resistivity and kinetics of surface response to ultrasonic treatment are discussed. It is also discussed treatment in different solvents and presents in solution of metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Analysis of impurities on contaminated surface of the tokamak limiter using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh K.

    2016-12-01

    Laser induced breakdown spectroscopy (LIBS) analysis of plasma dust/impurities deposited on the surface of graphite limiter of Aditya tokamak is presented in the manuscript. LIBS spectra of contaminated curved surface of the limiter show the presence of Fe, Cr, Ni, Mo, Mn, Cu and C. The depth profile analysis of impurities has been performed by recording LIBS spectra with successive number of laser shots. Variation of spectral line intensity of impurities on its surface with distance from one end of the curved surface to the other end has been studied which shows spatial analysis i.e. deposition pattern of plasma dust/impurities on its surface. The concentration of constituents has been calculated using calibration free LIBS (CF-LIBS) method. The study demonstrates the capability of LIBS for depth profile and spatial analysis of deposited impurities on tokamak limiter.

  2. Noneffect of electronegative gases on pulsed laser-induced optical surface damage thresholds

    NASA Astrophysics Data System (ADS)

    Kardach, J. A.; Stewart, A. F.; Guenther, A. H.

    1984-11-01

    Laser-induced damage testing was conducted on a variety of optical surfaces using an Nd:YAG laser. The samples tested included conventional dielectric coatings of ZrO2, diamond-turned copper, bare surfaces of fused silica and ARG-2 glass, and porous surface layers of both leached ARG-2 glass and some solgel coatings. Measurements were made in vacuum and in nitrogen, Freon 14 (CF4), and SF6 at pressures up to 2 atm. It is found that the ambient gas has no observable effect on the surface damage threshold, in agreement with previous observations that damage sites are initiated on or just below the surface of optical elements.

  3. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    SciTech Connect

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-23

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  4. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser.

    PubMed

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheng; Xu, Zhizhan

    2009-12-22

    We show that short-pulse laser-induced classical ripples on dielectrics, semiconductors, and conductors exhibit a prominent "non-classical" characteristic-in normal incidence the periods are definitely smaller than laser wavelengths, which indicates that the simplified scattering model should be revised. Taking into account the surface plasmons (SPs), we consider that the ripples result from the initial direct SP-laser interference and the subsequent grating-assisted SP-laser coupling. With the model, the period-decreasing phenomenon originates in the admixture of the field-distribution effect and the grating-coupling effect. Further, we propose an approach for obtaining the dielectric constant, electron density, and electron collision time of the high-excited surface. With the derived parameters, the numerical simulations are in good agreement with the experimental results. On the other hand, our results confirm that the surface irradiated by short-pulse laser with damage-threshold fluence should behave metallic, no matter for metal, semiconductor, or dielectric, and the short-pulse laser-induced subwavelength structures should be ascribed to a phenomenon of nano-optics.

  5. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  6. Chemical Etch Effects on Laser-Induced Surface Damage Growth in Fused Silica

    SciTech Connect

    Hrubesh, L W; Norton, M A; Molander, W A; Wegner, P J; Staggs, M; Demos, S G; Britten, J A; Summers, L J; Lindsey, E F; Kozlowski, M R

    2000-12-22

    We investigated chemical etching as a possible means to mitigate the growth of UV laser-induced surface damage on fused silica. The intent of this work is to examine the growth behavior of existing damage sites that have been processed to remove the UV absorbing, thermo-chemically modified material within the affected area. The study involved chemical etching of laser-induced surface damage sites on fused silica substrates, characterizing the etched sites using scanning electron microscopy (SEM) and laser fluorescence, and testing the growth behavior of the etched sites upon illumination with multiple pulses of 351nm laser light. The results show that damage sites that have been etched to depths greater than about 9 {micro}m have about a 40% chance for zero growth with 1000 shots at fluences of 6.8-9.4 J/cm{sup 2}. For the etched sites that grow, the growth rates are consistent with those for non-etched sites. There is a weak dependence of the total fluorescence emission with the etch depth of a site, but the total fluorescence intensity from an etched site is not well correlated with the propensity of the site to grow. Deep wet etching shows some promise for mitigating damage growth in fused silica, but fluorescence does not seem to be a good indicator of successful mitigation.

  7. Surface treatment analyses of car bearings by using laser-induced breakdown spectroscopy.

    PubMed

    Alvira, F C; Orzi, D J O; Bilmes, G M

    2009-02-01

    Determination of surface coating composition is a problem of great importance for industry and production related to the quality control of products and processes. One of the most outstanding aspects of laser-induced breakdown spectroscopy (LIBS) is its unique ability to carry out real-time depth profile analysis. This allows, for instance, the identification of layered coatings composition. In this work we performed depth profile analysis using LIBS to determine the composition of layered surface treatments of car bearings. Laser ablation thresholds for each coating layer were determined by acoustic measurements. Transitions between the different coating layers were also identified by an acoustic method. We developed faster and simpler semi-quantitative procedures to determine the relative composition of alloy surface coatings of car bearings as well as the possibility to characterize in real time these treatments.

  8. Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

    SciTech Connect

    Skolski, J. Z. P. Vincenc Obona, J.; Römer, G. R. B. E.; Huis in 't Veld, A. J.

    2014-03-14

    A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.

  9. [Application progress of laser-induced breakdown spectroscopy for surface analysis in materials science field].

    PubMed

    Zhang, Yong; Jia, Yun-Hai; Chen, Ji-Wen; Liu, Ying; Shen, Xue-Jing; Zhao, Lei; Wang, Shu-Ming; Yu, Hong; Han, Peng-Cheng; Qu, Hua-Yang; Liu, Shao-Zun

    2012-06-01

    As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

  10. The influence of laser-induced surface modifications on the backside etching process

    NASA Astrophysics Data System (ADS)

    Zimmer, K.; Böhme, R.; Ruthe, D.; Rauschenbach, B.

    2007-05-01

    Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 10 5 cm -1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 10 4 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.

  11. Analysis of moving surface structures at a laser-induced boiling front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    2014-10-01

    Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.

  12. Dynamics of Nanostructures at Surfaces

    SciTech Connect

    Schmid, Andreas K.

    2001-02-28

    Currently, much effort is being devoted to the goal of achieving useful nanotechnologies, which depend on the ability to control and manipulate things on a very small scale. One promising approach to the construction of nanostructures is 'self-assembly', which means that under suitable conditions desired nanostructures might form automatically due to physical and chemical forces. Remarkably, the forces controlling such self-assembly mechanisms are only poorly understood, even though highly successful examples of self-assembly are known in nature (e.g., complex biochemical machinery regularly self-assembles in the conditions inside living cells). This talk will highlight basic measurements of fundamental forces governing the dynamics of nanostructures at prototypical metal surfaces. We use advanced surface microscopy techniques to track the motions of very small structures in real time and up to atomic resolution. One classic example of self-organized nanostructures are networks of surface dislocations (linear crystal defects). The direct observation of thermally activated atomic motions of dislocations in a reconstructed gold surface allows us to measure the forces stabilizing the remarkable long-range order of this nanostructure. In another example, the rapid migration of nano-scale tin crystals deposited on a pure copper surface was traced to an atomic repulsion between tin atoms absorbed on the crystal surface and bronze alloy formed in the footprint of the tin crystals. It is intriguing to consider the clusters as simple chemo-mechanical energy transducers, essentially tiny linear motors built of 100,000 Sn atoms. We can support this view by providing estimates of the power and energy-efficiency of these nano-motors.

  13. Surface microstructures of silica glass by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Kurosaki, R.

    2008-02-01

    We have investigated a one-step method to fabricate a microstructure on a silica glass plate using laser-induced backside wet etching (LIBWE) upon irradiation with DPSS (diode-pumped solid state) lasers. Well-defined deep microtrenches without crack formations on a fused silica glass plate were fabricated by LIBWE method. As the laser beam of DPSS UV laser at a high repetition rate up to 5 - 100 kHz is scanned on the sample surface with the galvanometer controlled by a computer for flexible operations, galvanometer-based point scanning system is suitable for a rapid prototyping process according to electronic design data in the computer. The behavior of liquid ablation (explosive vaporization) was monitored by impulse pressure detection with a fast-response piezoelectric pressure gauge. LIBWE method is suitable for rapid prototyping and rapid manufacturing of surface microstructuing of silica glass as mask-less exposure system in a conventional atmospheric environment.

  14. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium.

    PubMed

    Nathala, Chandra S R; Ajami, Ali; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Ganz, Thomas; Assion, Andreas; Husinsky, Wolfgang

    2015-03-09

    In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL. It was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different. Therefore, the HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation.

  15. Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients.

    PubMed

    Ohta, Takayuki; Ito, Masafumi; Kotani, Takashi; Hattori, Takeaki

    2009-05-01

    We demonstrate the monitoring of plant nutrients in leaves of Citrus unshiu and Rhododendron obtusum using low-energy (<1 mJ) laser-induced breakdown spectroscopy. The raw plant leaf was successfully ablated without desiccation before laser irradiation, by applying metallic colloidal particles to the leaf surface. The emission intensity with the metallic particles was larger than that without the particles. This result indicates an improvement of the sensitivity and the detection limit of laser-induced breakdown spectroscopy. The emission enhancement was caused by localized surface plasmon resonance and was dependent on the size and material of metallic particles.

  16. Molecular dynamics simulations of laser induced surface melting in orthorhombic Al13Co4

    NASA Astrophysics Data System (ADS)

    Sonntag, S.; Roth, J.; Trebin, H.-R.

    2010-10-01

    Laser induced surface melting of the aluminum-cobalt alloy Al13Co4 is investigated. For the simulations of the lattice ions we use molecular dynamics, while for the time evolution of the electron temperature a generalized heat-conduction equation is solved. Energy transfer between the sub-systems is allowed by an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well-known two-temperature model [Anisimov et al. in JETP Lett. 39(2), 1974]. The alloy shows large structural affinity to decagonal quasicrystals, which have an in-plane five-fold symmetry,while in perpendicular direction the planes are stacked periodically. As a consequence we observe slight anisotropic melting behavior.

  17. Laser-induced periodic surface structure in nickel-fullerene composites

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Lavrentiev, V.; Havranek, V.; Horak, P.; Hnatowicz, V.; Fajgar, R.

    2016-02-01

    The phase separation of a thin film of the binary composite of Ni and C60 has been studied using laser illumination of the sample through an array of pinholes (with a diameter of 10-µm and 60-µm × 80-µm spacing). The mesh with pinholes enabled splitting of the probing beam into an array of close-spaced laser micro-beams. The simultaneous illumination of the composite, with a set of micro-beams, resulted in a fast phase separation of the hybrid matter and an occurrence of unusual laser-induced periodic surface structures - a net of complex Ni and C allotropes (C60 and amorphous C) concentric rings and a fine array of the C60 - based islands, regularly distributed over the Ni + C60 thin film matrix. The results confirmed the high proclivity of the hybrid Ni + C60 composites to a correlated separation of the Ni and C-allotrope phases.

  18. Measuring the dispersion of a surface layer by breaking waves using planar laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Marson, Alan E.; Schlicke, Ted; Greated, Clive A.

    2004-06-01

    Surface films can be found all over the world, from the algae blooms of the Mediterranean to oil or sewage pollution near harbours and cities. In this paper the experimental method of planar laser induced fluorescence is used to measure how breaking waves disperse these films. The method for preparing and extracting quantitative results from laboratory experiments is presented with sample results for depth, area and fractal dimension from mild spilling breakers. Two cases are examined, a single isolated breaker and an identical breaking wave occurring 32 s after an initial breaker has disturbed the film. Presented at the Rank Prize Fund Mini-Symposium on Optics in Fluid Dynamics, Meteorology and the Atmosphere, held at Grasmere, UK, on 12-15 August 2002.

  19. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R2 ∼ 0.84) and transverse (R2 ∼ 0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  20. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy.

    PubMed

    Washburn, Kathryn E; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R(2)∼0.84) and transverse (R(2)∼0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  1. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  2. Formation of organic layer on femtosecond laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Yasumaru, Naoki; Sentoku, Eisuke; Kiuchi, Junsuke

    2017-05-01

    Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  3. Finite-difference Time-domain Modeling of Laser-induced Periodic Surface Structures

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Veld, A. J. Huis in't.

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures with amplitudes the (sub)micrometer range and periodicities in the (sub)wavelength range. It is thought that periodically modulated absorbed laser energy is initiating the growth of LIPSSs. The "Sipe theory" (or "Efficacy factor theory") provides an analytical model of the interaction of laser radiation with a rough surface of the material, predicting modulated absorption just below the surface of the material. To address some limitations of this model, the finite-difference time-domain (FDTD) method was employed to numerically solve the two coupled Maxwell's curl equations, for linear, isotropic, dispersive materials with no magnetic losses. It was found that the numerical model predicts the periodicity and orientation of various types of LIPSSs which might occur on the surface of the material sample. However, it should be noted that the numerical FDTD model predicts the signature or "fingerprints" of several types of LIPSSs, at different depths, based on the inhomogeneously absorbed laser energy at those depths. Whether these types of (combinations of) LIPSSs will actually form on a material will also depend on other physical phenomena, such as the excitation of the material, as well as thermal-mechanical phenomena, such as the state and transport of the material.

  4. Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Beresko, Christian; Kohns, Peter; Ankerhold, Georg

    2014-09-01

    During lateral mapping with laser-induced breakdown spectroscopy (LIBS) the focal position of the plasma-generating laser needs to be kept stable on the sample surface area to be probed. Therefore, three-dimensional structures like edged surfaces require a permanent re-focusing. We describe a new auto-focusing technique to perform surface elemental mapping with LIBS by correcting the focusing lens-to-sample distance using a direct monitoring of the LIBS signal intensity. This method allows the scanning of surfaces with strong height fluctuations of several millimeters without the need of any additional devices. The auto-focusing method is valuable for LIBS applications made on complex-shaped samples or simply to improve the measurement reproducibility. Applications are LIBS analyses of samples exhibiting drill holes or steep edges. Our procedure does not need a constant focal plane and follows the topographic profile of the sample surface. Impurities and material inclusions are well detected. From the topographic information additionally obtained, a three-dimensional image of the sample can be deduced. Depth resolution is limited by the Rayleigh range of the LIBS laser light. The method is best suited for low energy laser pulses with high repetition rate and infrared emission.

  5. Fabricating micro embossments on the metal surface through spatially modulating laser-induced shock wave

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Hua, X. J.; Fu, Y. H.

    2015-12-01

    In this paper, we propose one improved method to fabricate micro embossments on the metal surface through laser shock processing. One mapping layer with holes must be actively designed and produced on the metal surface, with which, laser-induced shock wave will be spatially modulated. Laser shock experiments were conducted. Then the surface morphologies, and metallographic microstructures were characterized. The forming process of the micro embossments was simulated with ABAQUS. The results show that under the spatially modulated shock loading, the surface material flows from the high-pressure zone to the low-pressure zone, which is responsible for forming the micro embossments. The shapes, sizes and arrangements of the micro embossments conform to those of the mapping holes. The hardnesses on the entire laser-shocked zones improve remarkably due to the plastic deformation at a high strain rate. The influences of the laser energy and mask pattern on the embossed structures are presented. Within certain limits, increasing laser energy is beneficial for making the embossment more convex. However, further excessively increasing the laser energy, the embossment will exhibit the height saturation due to the pressure rise within the closed mapping hole. The transverse sizes of the mapping holes also can influence the embossment heights significantly. Process parameters need to be chosen carefully to suppress the severe adiabatic compression of the gas within the mapping holes, and then avoid weakening the mechanical properties of the micro embossments. This method has a potential application in manufacturing protruded structures on the metal surface.

  6. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  7. Laser-induced desorption determinations of surface diffusion on Rh(111)

    SciTech Connect

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 < theta < 0.33, the pre-exponential factor D/sub 0/ - 8 x 10/sup -2/ cm/sup 2//s, with a diffusion activation energy 3.7 < E/sub diff/ < 4.3 kcal/mol. For CO, E/sub diff/ = 7 kcal/mol, but D/sub 0/ rises from 10/sup -3/ to 10/sup -2/ cm/sup 2//s between theta = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab.

  8. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    NASA Astrophysics Data System (ADS)

    Afshar, Maziar; Leber, Moritz; Poppendieck, Wigand; König, Karsten; Seidel, Helmut; Feili, Dara

    2016-01-01

    In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  9. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  10. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    NASA Astrophysics Data System (ADS)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Deepak, K. L. N.; Rao, D. Narayana

    2014-09-01

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C2H5OH) and water (H2O) using linearly polarized Ti:sapphire fs laser pulses of ˜110 fs pulse duration and ˜800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  11. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    SciTech Connect

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana E-mail: dnr-laserlab@yahoo.com; Deepak, K. L. N.

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  12. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  13. Laser-induced surface alloying in nanosized Ni/Ti multilayer structures

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Radak, B.; Peruško, D.; Pelicon, P.; Kovač, J.; Mitrić, M.; Gaković, B.; Trtica, M.

    2013-01-01

    Laser-induced alloying effects on the composition and structure of different Ni/Ti multilayer structures were studied. Thin films composed of one, five, and ten (Ni/Ti) bilayers were deposited by DC ion sputtering on (1 0 0) Si wafers. Laser irradiations were performed by 150 ps pulses of a Nd:YAG laser operating at 1064 nm. The samples were characterized by Rutherford backscattering spectrometry (RBS), Auger electron spectroscopy (AES), X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). At a laser fluence of 0.9 J cm-2, interaction between Ni and Ti layers was initiated, and NiTi alloy formed in 5- and 10-bilayered samples. Progressed alloying was achieved at a laser fluence of 1.2 J cm-2. The alloy was formed mostly within the heat affected zone (HAZ) of the sample. Surface segregation of titanium was followed by formation of a 25 nm thin TiO2 film on the surface of the multilayered structures. In addition, parallel periodic surface structures on the surfaces of the 5- and 10-bilayered samples were clearly recorded. Their period in the case of the 5-bilayered system (0.77 μm) agrees very well with the predictions of the common theory, whereas, in the case of the 10-bilayered system, two periods of such structures are observed (1.43 μm and 0.4 μm), and none of them coincides with the prediction.

  14. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    SciTech Connect

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surface quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.

  15. Structuring of glass fibre surfaces by laser-induced front side etching

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    2014-05-01

    The fabrication of sub-μm structures on glass fibre surfaces poses a big challenge for the laser processing. However, the laser-induced front side etching (LIFE) method has a great potential for the fast, nm-precision, and cost-effective production of surface structures. LIFE is a method for laser etching of transparent materials using thin absorber layers with a high absorption coefficient like metal layers. The LIFE process of the front surface of a fused silica wafer as well as of a glass fibre is studied in dependence on the laser parameters. A KrF excimer laser with a wavelength of 248 nm and a pulse duration of 25 ns was used. The resultant structures were analysed with microscopic methods (white light interferometry, scanning electron microscopy (SEM)). The analysing of the surface structures presented that the LIFE methods allow the fabrication of well-defined periodic sub-μm structures. Furthermore, the structuring process was simulated by a thermodynamic equation including an approach of the laser-plasma interaction. The theoretically predicted results presented a good agreement with the experimental results.

  16. Assessment of femtosecond laser induced periodic surface structures on polymer films.

    PubMed

    Rebollar, Esther; Vázquez de Aldana, Javier R; Martín-Fabiani, Ignacio; Hernández, Margarita; Rueda, Daniel R; Ezquerra, Tiberio A; Domingo, Concepción; Moreno, Pablo; Castillejo, Marta

    2013-07-21

    In this work we present the formation of laser induced periodic surface structures (LIPSS) on spin-coated thin films of several model aromatic polymers including poly(ethylene terephthalate), poly(trimethylene terephthalate) and poly carbonate bis-phenol A upon irradiation with femtosecond pulses of 795 and 265 nm at fluences well below the ablation threshold. LIPSS are formed with period lengths similar to the laser wavelength and parallel to the direction of the laser polarization vector. Formation of LIPSS upon IR irradiation at 795 nm, a wavelength at which the polymers absorb weakly, contrasts with the absence of LIPSS in this spectral range upon irradiation with nanosecond pulses. Real and reciprocal space characterization of LIPSS obtained by Atomic Force Microscopy (AFM) and Grazing Incidence Small Angle X-ray Scattering (GISAXS), respectively, yields well correlated morphological information. Comparison of experimental and simulated GISAXS patterns suggests that LIPSS can be suitably described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice. Fluorescence measurements, after laser irradiation, provide indirect information about dynamics and structure of the polymer at the molecular level. Our results indicate that the LIPSS are formed by interference of the incident and surface scattered waves. As a result of this process, heating of the polymer surface above its glass transition temperature takes place enabling LIPSS formation.

  17. Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin

    2017-10-01

    Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.

  18. Characterization of Si nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Zaidi, Saleem H.; Gee, James M.; Ruby, Douglas S.; Brueck, Steven R. J.

    1999-06-01

    Surface scattering of Si to enhanced absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broad band reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large (approximately 42 cm2) area solar cells. Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350 - 680 nm), but significantly higher IR (700 - 1200 nm) efficiency.

  19. Characterization of Si Nanostructured Surfaces

    SciTech Connect

    Brueck, S.R.J.; Gee, James M.; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

  20. Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures

    SciTech Connect

    Nürnberger, P.; Reinhardt, H.; Kim, H-C.; Yang, F.; Peppler, K.; Janek, J.; Hampp, N.

    2015-10-07

    The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grain size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.

  1. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect

    Petrović, Suzana M.; Gaković, B.; Peruško, D.; Stratakis, E.; Bogdanović-Radović, I.; Čekada, M.; Fotakis, C.; Jelenković, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  2. A statistical study of the relationship between surface quality and laser induced damage

    NASA Astrophysics Data System (ADS)

    Turner, Trey; Turchette, Quentin; Martin, Alex R.

    2012-11-01

    Laser induced damage of optical components is a concern in many applications in the commercial, scientific and military market sectors. Numerous component manufacturers supply "high laser damage threshold" (HLDT) optics to meet the needs of this market, and consumers pay a premium price for these products. While there's no question that HLDT optics are manufactured to more rigorous standards (and are therefore inherently more expensive) than conventional products, it is not clear how this added expense translates directly into better performance. This is because the standard methods for evaluating laser damage, and the underlying assumptions about the validity of traditional laser damage testing, are flawed. In particular, the surface and coating defects that generally lead to laser damage (in many laserparameter regimes of interest) are widely distributed over the component surface with large spaces in between them. As a result, laser damage testing typically doesn't include enough of these defects to achieve the sample sizes necessary to make its results statistically meaningful. The result is a poor correlation between defect characteristics and damage events. This paper establishes specifically why this is the case, and provides some indication of what might be done to remedy the problem.

  3. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses.

    PubMed

    Gräf, Stephan; Kunz, Clemens; Müller, Frank A

    2017-08-10

    The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications.

  4. Laser-Induced Breakdown Spectroscopy on Solution Samples Using Surface Excitation

    DTIC Science & Technology

    1996-12-01

    and R. Kellner, "New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water," Applied Spectroscopy 47 (9), 1484...34Quantitative Elemental Analysis of Iron Ore by Laser-Induced Breakdown Spectroscopy," Applied Spectroscopy 45 (4), 701-705 (1991). 7. D.A. Cremers...to 950 nm," Applied Spectroscopy 49 (10), 1490-1499 (1995). 17. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, and H. Griffin, "Laser- Induced

  5. Plasma-edge studies in ISX-B and EBT-S using surface probes and laser-induced fluorescence

    SciTech Connect

    Roberto, J.B.

    1982-08-01

    Surface probe and laser-induced fluorescence measurements in ISX-B and EBT-S have made significant contributions to the understanding of plasma edge characteristics and plasma-surface interactions in these devices. Where comparison is possible, these techniques have led to results which are consistent with plasma diagnostics. Charge-exchange neutral sputtering and self-ion sputtering have been identified as the dominent heavy impurity release mechanisms in ISX-B and EBT-S, respectively.

  6. Real-time specific surface area measurements via laser-induced breakdown spectroscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Howard, James E.

    2017-01-01

    From healthcare to cosmetics to environmental science, the specific surface area (SSA) of micro- and mesoporous materials or products can greatly affect their chemical and physical properties. SSA results are also widely used to examine source rocks in conventional and unconventional petroleum resource plays. Despite its importance, current methods to measure SSA are often cumbersome, time-consuming, or require cryogenic consumables (e.g., liquid nitrogen). These methods are not amenable to high-throughput environments, have stringent sample preparation requirements, and are not practical for use in the field. We present a new application of laser-induced breakdown spectroscopy for rapid measurement of SSA. This study evaluates geological samples, specifically organic-rich oil shales, but the approach is expected to be applicable to many other types of materials. The method uses optical emission spectroscopy to examine laser-generated plasma and quantify the amount of argon adsorbed to a sample during an inert gas purge. The technique can accommodate a wide range of sample sizes and geometries and has the potential for field use. These advantages for SSA measurement combined with the simultaneous acquisition of composition information make this a promising new approach for characterizing geologic samples and other materials.

  7. Measurements of deuterium retention and surface elemental composition with double pulse laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Krawczyk, Natalia; Czarnecka, Agata; Gasior, Pawel; Kubkowska, Monica; Lepek, Michal

    2016-02-01

    Estimating the tritium amount retained in the plasma facing components and their surface layer composition is of crucial importance for ITER. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique suitable for in situ measurements of both these quantities. For improving its sensitivity, the double pulse (DP) variant can be used, instead of the standard single pulse (SP). In this work Mo samples coated with 1.5-1.8 μm thick W-Al (as a proxy for Be) mixed layer, with co-deposited deuterium were analyzed under vacuum (˜5 × 10-5 mbar) by SP and DP LIBS, showing enhancement of the spectral intensity for the latter. Calibration free method was applied to the LIBS data for getting the elemental concentration of W and Al. Results are in satisfactory agreement with those obtained from preliminary, ion beam analysis measurements. Deuterium concentration was tentatively estimated by accounting for the intensity ratio between Dα and nearby WI lines.

  8. Thermal, anisotropic microhardness and laser induced surface damage studies on certain metal complexes of thiourea

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Sabari Girisun, T. C.

    2011-09-01

    Single crystals of thiourea metal complexes with selected group II metal ions, zinc and cadmium, have been grown by solvent evaporation technique and characterized by XRD studies. The thermal, mechanical and laser induced surface damage properties of thiourea and its metal complexes in (1 0 0) plane were studied. From the improved photopyroelectric technique the thermal properties of the metal complexes were evaluated. Due to larger heat capacity ZTS (382.4 J kg -1 K -1) has better thermal stability than BTCC (304.09 J kg -1 K -1), TTCS (293.5 J kg -1 K -1) and BTZC (255.24 J kg -1 K -1). Vickers hardness studies reveal that the materials have reverse indentation size effect and belong to soft material type. Elastic stiffness was found to be very large for ZTS (8.05) than TTCS (5.38), BTCC (1.57 GPa) and BTZC (0.76 GPa). Multi-shot laser damage studies reveal that ZTS (40 GW/cm 2) has higher laser damage threshold and the roles of the group II metal ions in improving the mechanical and thermal stability of the metal complexes are discussed.

  9. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring

    NASA Astrophysics Data System (ADS)

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V.; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M.; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C.; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-01

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser

  10. Laser-induced patterns on metals and polymers for biomimetic surface engineering

    NASA Astrophysics Data System (ADS)

    Kietzig, Anne-Marie; Lehr, Jorge; Matus, Luke; Liang, Fang

    2014-03-01

    One common feature of many functional surfaces found in nature is their modular composition often exhibiting several length scales. Prominent natural examples for extreme behaviors can be named in various plant leaf (rose, peanut, lotus) or animal toe surfaces (Gecko, tree frog). Influence factors of interest are the surface's chemical composition, its microstructure, its organized or random roughness and hence the resulting surface wetting and adhesion character. Femtosecond (fs) laser micromachining offers a possibility to render all these factors in one single processing step on metallic and polymeric surfaces. Exemplarily, studies on Titanium and PTFE are shown, where the dependence of the resulting feature sizes on lasing intensity is investigated. While Ti surfaces show rigid surface patterns of micrometer scaled features with superimposed nanostructures, PTFE exhibits elastic hairy structures of nanometric diameter, which upon a certain threshold tend to bundle to larger features. Both surface patterns can be adjusted to mimic specific wetting and flow behaviour as seen on natural examples. Therefore, fs-laser micromachining is suggested as an interesting industrially scalable technique to pattern and fine-tune the surface wettability of a surface to the desired extends in one process step. Possible applications can be seen with surfaces, which require specific wetting, fouling, icing, friction or cell adhesion behaviour.

  11. Local modification of ceramic surfaces by a laser induced cladding process

    NASA Astrophysics Data System (ADS)

    Schreck, Sabine; Rohde, Magnus

    2009-02-01

    In order to develop a multifunctional material, a laser induced process was applied to change the properties of a glass-ceramic by introducing a second phase into the surface. Localized melting of the ceramic and/or a melting of a preplaced powder layer was achieved by the application of laser energy. After solidification a composite with new properties was developed. The characteristic feature of the process is the option of a local modification, which is restricted to the substrate surface and can be controlled by adjustment of the laser parameters. Accordingly modified areas with different geometries and with a complex multiphase microstructure could be fabricated, while the ceramic bulk remains in its original state. Sintered LTCC-substrates (Low Temperature Co-fired Ceramic) were modified with powders metal-oxides (WO3, CuO) with nanosized particles. Powders of metals (Cu, Ni) were used too. Cladding layers located at the top of the substrate or layers with a thickness up to several hundred microns, which were embedded into the substrate surface, could be fabricated. The properties of the laser modified regions differ significantly from that of the LTCC-substrate. The obtained structures offer modified mechanical, thermophysical and electrical properties. In particular an enhanced thermal conductivity could be detected. The electrical resistivity of the laser modified tracks widely varied depending on the process parameters and the powder. Tracks made with CuO- and WO3-powders show a negative temperature coefficient for electrical resistance, i.e. it decreases with increasing temperature, which is typical for semiconductors.

  12. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring.

    PubMed

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-21

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.

  13. Remote surface pollutant measurement by adopting a variable stand-off distance based laser induced spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.

    2015-11-01

    In an offshore environment, measurement of surface pollutants on rotating wind turbine blades is necessary to protect the blades from lightning damage. A remote laser-induced breakdown spectroscopy (LIBS) technique combined with a photometric device is proposed and demonstrated at the laboratory scale for remote sensing and quantification of surface pollutants such as salt deposits on the wind turbine blade material from different standoff distances. A telescope-based photometric device consisting of a translation stage coupled with an optical fiber is designed for acquiring the optical emissions from the laser-induced plasma at different standoff distances ranging from 1 to 100 m. The experimental studies clearly demonstrate the use of the photometric device in obtaining LIBS spectra for identifying and quantifying the salt deposits by temporal measurements of the optical emissions of a plasma from standoff distances between 1 and 40 m.

  14. Multi-elemental surface mapping and analysis of carbonaceous shale by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Liu, Jie; Shi, Qi; He, Yi; Niu, Guanghui; Duan, Yixiang

    2016-01-01

    Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and redox sensitive trace elements, has been proved as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements for the shale composition, especially those with spatial resolution, will reveal rich information for the understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy as an effective technique to perform spectrochemical analysis for shale samples. In case of the bulk analysis of pressed shale pellet, spectral analysis of the plasma emission revealed high sensitivity of LIBS for major, minor and even trace elements. More than 356 lines emitted by 19 different elements can be found. Among these species, redox sensitive trace elements such as V, Cr, and Ni were detected with high signal-to-ratios. Two-dimensional surface micro-analysis for the concerned major or minor elements with strong emissions was then applied to the smoothed shale slab. Local thermodynamic equilibrium for the plasma was first verified with a line profile point-by-point on the sample surface, the matrix effect was then assessed as negligible by the extracted electron density and temperature of the plasmas induced at each position on the same profile. Concentration mappings for the major elements of Si, Al, Fe, Ca, Mg, Na and K were finally constructed with their measured relative variations of line emission intensities. The distribution and correlations of these elements in concentration may reflect changes of shale mineral components with respected to the variations of the depositional environments and provide an important clue in identifying sedimentary processes when combined with other geological or geochemical evidences. These results well

  15. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    NASA Astrophysics Data System (ADS)

    Wu, Taotao; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-01

    Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm2. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the "positive feedback" effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. The oxide films were thin, orientated and badly crystallized. The oxidation process was influenced by the grain orientation of the metal substrate. These results made the mechanism of laser-induced oxidation of iron clear and provided available experimental data for accurate modeling of the oxidation kinetics.

  16. Tailored magnetic nanostructures on surfaces

    NASA Astrophysics Data System (ADS)

    Pierce, John Philip

    Nanostructuring has introduced us to a new world of tunable, artificially structured materials. An exciting aspect of this new world is that we control where the atoms, or layers of atoms, are arranged in materials and have learned that this can awaken new properties in them. But, we are only at the beginning stages in developing this control and an understanding of what can be done with it. This dissertation is about an important part of finding our way in this new world; learning to tailor magnetic nanostructures on surfaces. We begin by showing ways in which the magnetic properties of ultrathin films, nanostripes, and isolated nanoclusters can be systematically varied in order to teach us about their behavior. The ultrathin films are from the historically challenging Fe/Cu(100) system. We use small fractions of a single layer of cobalt capping atoms to control their magnetization direction and find a completely new way to cause the magnetization direction to reorient. The nanostripes are made of alloys of iron and cobalt on a tungsten surface. We explore how the magnetic ordering in these stripes is affected by variation of their composition. We then show how changing the size and spacing of isolated Fe dots on a copper surface can teach us about magnetic interactions between them. Finally, we show how our ability to synthesize the dots represented the last piece in an important puzzle. This work enables us to make the first direct observation of how the magnetic properties of a particular amount of a single material change as it is prepared in the form of an ultrathin film, wire array, or dot assembly on a common template.

  17. Nanostructured surfaces of dental implants.

    PubMed

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-17

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  18. In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering.

    PubMed

    Rebollar, Esther; Rueda, Daniel R; Martín-Fabiani, Ignacio; Rodríguez-Rodríguez, Álvaro; García-Gutiérrez, Mari-Cruz; Portale, Giuseppe; Castillejo, Marta; Ezquerra, Tiberio A

    2015-04-07

    The formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation. The variation of both the GISAXS signal with the number of pulses and the LIPSS period with laser irradiation time is revealing key kinetic aspects of the nanostructure formation process. By considering LIPSS as one-dimensional paracrystalline lattice and using a correlation found between the paracrystalline disorder parameter, g, and the number of reflections observed in the GISAXS patterns, the variation of the structural order of LIPSS can be assessed. The role of the laser repetition rate in the nanostructure formation has been clarified. For high pulse repetition rates (i.e., 10 Hz), LIPSS evolve in time to reach the expected period matching the wavelength of the irradiating laser. For lower pulse repetition rates LIPSS formation is less effective, and the period of the ripples never reaches the wavelength value. Results support and provide information on the existence of a feedback mechanism for LIPSS formation in polymer films.

  19. Pre-resonance-stimulated Raman scattering for water bilayer structure on laser-induced plasma bubble surface.

    PubMed

    Li, Zhanlong; Li, Hongdong; Fang, Wenhui; Wang, Shenghan; Sun, Chenglin; Li, Zuowei; Men, Zhiwei

    2015-07-15

    Pre-resonance-stimulated Raman scattering (PSRS) from water molecules in the air/water interfacial regions was studied when the laser-induced plasma bubble was generated at the interfaces. A characteristically lower Raman shift of OH-stretching vibrational modes of water molecules at around 3000  cm(-1) (370 meV) was observed, in which the mechanisms were possibly attributed to the strong hydrogen bond in a well-ordered water bilayer structure that was formed on a laser-induced plasma bubble surface. Simultaneously, the PSRS of ice Ih at about 3100  cm(-1) was obtained, which also belonged to the strong hydrogen bond effect in ice Ih structure.

  20. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE PAGES

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...

    2017-08-28

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  1. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    SciTech Connect

    Sedao, Xxx; Garrelie, Florence Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent; Maurice, Claire; Quey, Romain

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  2. Effects of chemical etching on the surface quality and the laser induced damage threshold of fused silica optics

    NASA Astrophysics Data System (ADS)

    Pfiffer, Mathilde; Cormont, Philippe; Néauport, Jérôme; Lambert, Sébastien; Fargin, Evelyne; Bousquet, Bruno; Dussauze, Marc

    2016-12-01

    Effects of deep wet etching on the surface quality and the laser induced damage probability have been studied on fused silica samples. Results obtained with a HF/HNO3 solution and a KOH solution were compared on both polished pristine surface and scratched surfaces. The hydrofluoric solution radically deteriorated the surface quality creating a haze on the whole surface and increasing considerably the roughness. For both solutions, neither improvement nor deterioration of the laser damage performances has been observed on the etched surfaces while the laser damage resistance of scratches has been increased to the level of the surface. We conclude that laser damage performances are equivalent with both solutions but an acid etching induces surface degradation that is not experienced with basic etching.

  3. Optical monitoring of surface adlayers by laser-induced thermal desorption during the plasma etching of semiconductors

    NASA Astrophysics Data System (ADS)

    Choe, Jae Young

    1999-11-01

    Laser induced thermal desorption with optical detection by laser induced fluorescence and transient plasma induced emission is used to analyze the surface adlayer during plasma etching of semiconductors, including Si, Ge, and InP. In the investigation of Si etching in a Cl2 inductively coupled plasma (ICP), 308 nm radiation from a XeCl excimer laser heats the surface to desorb the surface species (LD) and excites laser induced fluorescence (LIF) in the desorbing SiCl. This measured LD-LIF optical signal indicates the adlayer chlorine content during steady-state plasma etching. The LD-LIF of SiCl increases with dc substrate bias voltage indicating that the adlayer chlorine content increases with increasing substrate bias. The SiCl LD-LIF signal is almost independent of rf power, while the ion density and etch rate increase by an order of magnitude over the range of rf power studied. In the investigation of Ge etching in a Cl2 ICP, 308 nm radiation from a XeCl excimer laser is used for LD-LIF of GeCl. The LD-LIF of GeCl is also independent of rf power, as for Si etching, but the rate of chlorination is faster than that during Si etching. The GeCl LD-LIF signal remains almost constant as dc substrate bias is increased from 0 V to over -100 V. The transient increase in plasma-induced emission following laser-induced thermal desorption (LD-PIE) is also used to analyze the surface adlayer during Si and InP etching by a Cl2 plasma. Several different species are monitored during Si etching by a Cl2 plasma, including Si, SiCl and SiCl2. The LD-PIE intensities from all of these species increase with rf power. In order to properly interpret the LD-PIE signal to determine the level of surface chlorination, the LD-PIE signal is normalized by the electron density. The LD-PIE intensities during Si etching increase with the dc substrate bias as in the LD-LIF study. Both the LD-LIF and LD-PIE measurements of Si etching are consistent with each other for determining the adlayer

  4. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Cheung, Hoi Ching; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Delepine-Gilon, Nicole; Yu, Jin

    2016-10-01

    We have developed in this work a method of elemental analysis of powdered materials with laser-induced breakdown spectroscopy (LIBS). This method requires simple sample preparation. Powders are first mixed into a 75 cSt base oil to obtain a paste which is then smeared onto the polished surface of a solid state substrate, aluminum plate for instance, in the form of a uniform thin film. The prepared sample is ablated by a high energy infrared (IR at 1064 nm) nanosecond laser pulse. The laser beam transmits through the coating layer of the material to be analyzed and induces a strong plasma from the substrate. The initial plasma interacts in turn with the coating layer, leading to the vaporization and excitation of the incorporated powder particles. The subsequent emission from the plasma includes emission lines of the elements contained in the powder, which is preferentially captured by a suitable detection system. The analysis of the recorded spectrum allows the concentration determination of the targeted elements in the powder. We first applied the method on a cellulose powder of 20 μm typical particle size. The powder was spiked with titanium dioxide (TiO2) nanoparticles for Ti concentrations ranging from 25 ppm to 5000 ppm by weight. Calibration graphs were thus built to deduce figures-of-merit parameters such as the coefficient of determination (R2) and the limits of detection and quantification (LoD and LoQ). We optimized especially the choice of reference line for spectrum normalization, which resulted in better analytical performances. In the second step, two sets of powders, the aforementioned cellulose powder and an alumina powder with average particle size of ≤ 10 μm, were spiked with TiO2 nanoparticles. We then assessed the matrix effect between these two different powders for the determination of Ti by comparing their calibration curves. Our results show universal calibration curve in Ti determination in the two tested matrices. The results are

  5. The formation mechanism and evolution of ps-laser-induced high-spatial-frequency periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.

    2017-01-01

    We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.

  6. Laser-Induced Transfer of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Koch, Jürgen; Chichkov, Boris N.

    2010-10-01

    A novel approach for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The size of the transferred droplets depends on the volume of laser-molten metal and can be varied by changing the laser beam focus on the sample surface and the metal film thickness. Controllable fabrication of high quality spherical gold micro- and nanoparticles with sizes between 170 nm and 1500 nm is realized. Fabrication of miscellaneous structures consisting of gold particles as elementary building blocks is demonstrated.

  7. Flip-chip bonding of vertical-cavity surface-emitting lasers using laser-induced forward transfer

    SciTech Connect

    Kaur, K. S. Missinne, J.; Van Steenberge, G.

    2014-02-10

    This letter reports the use of the Laser-Induced Forward Transfer (LIFT) technique for the fabrication of indium micro-bumps for the flip-chip (FC) bonding of single vertical-cavity surface-emitting laser chips. The FC bonded chips were electrically and optically characterized, and the successful functioning of the devices post-bonding is demonstrated. The die shear and life-time tests carried out on the bonded chips confirmed the mechanical reliability of the LIFT-assisted FC bonded assemblies.

  8. Observation of particle ejection behavior following laser-induced breakdown on the rear surface of a sodium chloride optical window

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Cheng, Xiang'ai; Xu, Zhongjie; Wei, Ke; Jiang, Tian

    2017-01-01

    Laser-induced rear surface breakdown process of sodium chloride (NaCl) optical window was investigated based on the time-resolved shadowgraphy and interferometry. Violent particle ejection behavior lasting from tens of nanoseconds to tens of microseconds after the breakdown was observed. Classified by the particle velocity and propagating direction, the ejection process can be divided into three phases: (1) high-speed ejection of liquid particles during the first 100-ns delay; (2) micron-sized material clusters ejection from ˜100-ns to ˜1-μs delay; (3) larger and slower solid-state particles ejection from ˜1 μs to tens of microseconds delay. The moving directions of particles in the first and third phases are both perpendicular to the sample surface while particles ejected in the second phase exhibits angular ejection and present a V-like particle pattern. Mechanisms include explosive boiling, impact ejection, and shockwave ejection are discussed to explain this multiple phase ejection behavior. Our results highlight the significance of impact ejection induced by recoil pressure and backward propagating internal shockwave for laser-induced rear surface breakdown events of optical materials with low melting point.

  9. Nanostructured surfaces for bone biotemplating applications.

    PubMed

    Popat, Ketul C; Daniels, R Hugh; Dubrow, Robert S; Hardev, Veeral; Desai, Tejal A

    2006-04-01

    A major goal of orthopedic biomaterials research is to design better surface chemistries and configurations to control behavior of bone cells such as osteoblasts. Nanostructured architecture significantly affects the response of several cell lines. In this work, nanostructured surfaces were prepared by vapor liquid solid growth of silicon nanowires from size-controlled gold colloid catalysts deposited on fused silica substrates. The lengths and surface densities of the nanowires were varied to assess the effect of these parameters on bone cell response. Osteoblasts were seeded on nanowire surfaces to investigate both short-term adhesion and proliferation and long-term functionality and matrix production. Cell adhesion and proliferation were characterized using a standard 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and cell counting for up to 4 days of culture. The total protein content, alkaline phosphatase activity, and matrix production were quantified using standard colorimetric assays for up to 4 weeks of culture. Matrix production was also characterized by measuring surface concentrations of calcium and phosphorus using X-ray photoelectron spectroscopy. Further, scanning electron microscopy was used to investigate osteoblast morphology on nanostructured surfaces. Over the 4-week study, the nanostructured surfaces demonstrated improved osteoblast adhesion and proliferation and increased alkaline phosphatase activity and matrix production compared to non-nanostructured control surfaces.

  10. Laser induced projectile impact test (LIPIT): A micron-scale ballistic test for high-strain rate mechanical study of nano-structures

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Nelson, Keith; Thomas, Edwin

    2012-02-01

    We present a method to apply a highly localized deformation at a high-strain-rate for the study of mechanical characteristics of micro- and nano-structures. In the technique, Laser Induced Projectile Impact Test (LIPIT), micro-projectiles (solid silica spheres of 3.7μm diameter) are accelerated to a supersonic speed (up to 4 km/s) in air by a micro-explosion created by laser ablation of polystyrene and impact a sample target. The velocity information of the micro-projectiles is explicitly determined by two consecutive high-speed images during the flight of the projectiles. For demonstration, a glassy-rubbery nanocomposite consisting of a periodic self-assembled stack of 20 nm thick layers of polystyrene and polydimethylsiloxane blocks (PS-b-PDMS) is tested by LIPIT at the extremely high-strain rate of 10^8 s-1. The polymer nanocomposite demonstrates new orientation dependent deformation and failure mechanisms including a surprising order to disorder transition fluidization, and the energy absorbing ability of a layered nanocomposite through plastic deformation leading to a melting of the layered structure.

  11. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang

    2015-05-01

    The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8 J cm-2 for pulse duration of ∼25 fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100 fs, for a constant fluence of 11.8 J cm-2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4-4 mJ cm-2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370 nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25 fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.

  12. Enhancement of Thermoelectric Properties in Surface Nanostructures

    NASA Astrophysics Data System (ADS)

    Takaki, Hirokazu; Kobayashi, Kazuaki; Shimono, Masato; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-10-01

    The thermoelectric properties of TiN/MgO surface nanostructures have been determined using first-principles calculations based on the nonequilibrium Green's function (NEGF) method. Through structural modification of the surfaces at the atomistic level, we find that the metallic TiN thin-film layer becomes semiconducting with a small bandgap, which enhances the Seebeck coefficient, while the electrical conductivity remains high at room temperature. Hence, a much larger thermoelectric figure of merit is obtained compared with bulk. These findings indicate the possibility of designing thermoelectric devices with surface nanostructures.

  13. Laser induced breakdown spectroscopy surface analysis correlated with the process of nanoparticle production by laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Apostol, I.; Damian, V.; Damian, R.; Nistor, L. C.; Pascu, A.; Staicu, A.; Udrea, C.

    2013-04-01

    Laser induced ablation of solids situated in liquids (LAL) was used in order to produce nanoparticles. Laser induced breakdown spectroscopy (LIBS) surface analysis correlated with the process of nanoparticle production by LAL was applied to explain the composition of the obtained nanoparticles as determined by Electron Dispersive X-ray Spectroscopy (EDS). In the case of aluminum rods placed in distilled water irradiated with pulsed laser radiation (355 nm wavelength, 6 ns pulse length) we have obtained spheric nanoparticles with dimensions lower than 100 nm. Quantitative EDS analyses on the obtained spheres showed the presence of, Al, O, and Si. This indicates that probably the composition of the nanoparticles is an aluminum silicate. LIBS analysis on the aluminum target have shown the presence of a Si line with low intensity indicating a small quantity of silicon in the first ablated layers. The LIBS spectra for a sequence of pulses evidenced also that the intensity of the aluminum lines after a number of pulses decreases. This means that the quantity of ablated material becomes smaller due to the ablation depth decrease.

  14. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  15. High spatial frequency laser induced periodic surface structure formation in germanium by mid-IR femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Austin, Drake. R.; Kafka, Kyle R. P.; Lai, Yu Hang; Wang, Zhou; Zhang, Kaikai; Li, Hui; Blaga, Cosmin I.; Yi, Allen Y.; DiMauro, Louis F.; Chowdhury, Enam A.

    2016-10-01

    Formation of high spatial frequency laser induced periodic surface structures (HSFL) in germanium by 90 fs mid-IR pulses at a 1 kHz repetition rate with wavelengths between λ = 2 and 3.6 μm was studied with varying angle of incidence and polarization. The period of these structures varied from λ/3 to λ/8. A modified surface-scattering model including Drude excitation and the optical Kerr effect explains the spatial period scaling of HSFL across the mid-IR wavelengths. Transmission electron microscopy shows the presence of a 30 nm amorphous layer above the structure of crystalline germanium. Various mechanisms including two photon absorption and defect-induced amorphization are discussed as probable causes for the formation of this layer.

  16. Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface

    DOE PAGES

    Feigenbaum, Eyal; Raman, Rajesh N.; Cross, David; ...

    2016-05-16

    Laser-induced Hertzian fractures on the exit surface of silica glass are found to result from metal surface-bound micro particles. Two types of metal micro-spheres are studied (stainless-steel and Al) using ultraviolet laser light. The fracture initiation probability curve as a function of fluence is obtained, resulting in an initiation threshold fluence of 11.1 ± 4.7 J/cm2 and 16.5 ± 4.5 J/cm2 for the SS and Al particles, accordingly. The modified damage density curve is calculated based on the fracture probability. Here, the calculated momentum coupling coefficient linking incident laser fluence to the resulting plasma pressure is found to be similarmore » for both particles: 32.6 ± 15.4 KN/J and 28.1 ± 10.4 KN/J for the SS and Al cases accordingly.« less

  17. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning.

    PubMed

    Hendrikson, Wim; Masman-Bakker, Wendy; van Bochove, Bas; Skolski, Johann; Eichstädt, Justus; Koopman, Bart; van Blitterswijk, Clemens; Grijpma, Dirk; Römer, Gert-Willem; Moroni, Lorenzo; Rouwkema, Jeroen

    2016-01-01

    Laser-induced periodic surface structures (LIPSS) are highly regular, but at the same time contain a certain level of disorder. The application of LIPSS is a promising method to functionalize biomaterials. However, the absorption of laser energy of most polymer biomaterials is insufficient for the direct application of LIPSS. Here, we report the application of LIPSS to relevant biomaterials using a two-step approach. First, LIPSS are fabricated on a stainless steel surface. Then, the structures are replicated onto biomaterials using the steel as a mold. Results show that LIPSS can be transferred successfully using this approach, and that human mesenchymal stromal cells respond to the transferred structures. With this approach, the range of biomaterials that can be supplied with LIPSS increases dramatically.

  18. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  19. Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface

    SciTech Connect

    Feigenbaum, Eyal; Raman, Rajesh N.; Cross, David; Carr, C. W.; Matthews, Manyalibo J.

    2016-05-16

    Laser-induced Hertzian fractures on the exit surface of silica glass are found to result from metal surface-bound micro particles. Two types of metal micro-spheres are studied (stainless-steel and Al) using ultraviolet laser light. The fracture initiation probability curve as a function of fluence is obtained, resulting in an initiation threshold fluence of 11.1 ± 4.7 J/cm2 and 16.5 ± 4.5 J/cm2 for the SS and Al particles, accordingly. The modified damage density curve is calculated based on the fracture probability. Here, the calculated momentum coupling coefficient linking incident laser fluence to the resulting plasma pressure is found to be similar for both particles: 32.6 ± 15.4 KN/J and 28.1 ± 10.4 KN/J for the SS and Al cases accordingly.

  20. The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-08-01

    The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features is investigated by introducing a metallic blocker. Nd: YAG laser at various fluences ranging from 7 to 28 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6, 8 and 10 mm from the target surface. It is revealed from laser-induced breakdown spectroscopy analysis that both plasma parameters, i.e., excitation temperature and electron number density initially increase with increasing laser fluence due to enhancement in energy deposition. With further increase in laser fluence, a decreasing trend followed by saturation is observed which is attributable to shielding effect and self-regulating regime. It is also observed that spatial confinement offered by metallic blocker is responsible for the significant enhancement of both electron temperature and electron number density of Mg plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 8335 K and 2.4 × 1016 cm-3, respectively, whereas these values are enhanced to 12,200 K and 4 × 1016 cm-3 in the presence of the blocker. The physical mechanisms responsible for the enhancement of Mg plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning electron microscope analysis was performed to explore the surface morphology of laser-ablated Mg. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of the blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters

  1. Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B.; Srijanto, Bernadeta R.; Nguyen, Trung Dac; Vega, Carlos; Fuentes-Cabrera, Miguel; Collier, C. Patrick

    2013-07-03

    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.

  2. Water desorption from nanostructured graphite surfaces.

    PubMed

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  3. An Integrated Laser-Induced Piezoelectric/Differential Confocal Surface Acoustic Wave System for Measurement of Thin Film Young's Modulus

    PubMed Central

    Yang, Fei; Dorantes-Gonzalez, Dante J.; Chen, Kun; Lu, Zimo; Jin, Baoyin; Li, Yanning; Chen, Zhi; Hu, Xiaotang

    2012-01-01

    The present paper presents the design and development results of a system setup for measuring Young's modulus of thin films by laser-induced surface acoustic waves based on the integration of two detection methods, namely, piezoelectric transducer detection and differential confocal detection, which may be used for conducting consecutive or simultaneous measurements. After demonstrating the capabilities of each detection approach, it is shown how, depending on a wider range of applications, sample materials and measurement environments, the developed integrated system inherits and harnesses the main characteristics of its detection channels, resulting in an more practical and flexible equipment for determining Young's modulus than traditional nanoindentation equipment, and also suitable for cross-validation purposes.

  4. Laser-Induced Periodic Surface Structures on P3HT and on Its Photovoltaic Blend with PC71BM.

    PubMed

    Cui, Jing; Rodríguez-Rodríguez, Álvaro; Hernández, Margarita; García-Gutiérrez, Mari-Cruz; Nogales, Aurora; Castillejo, Marta; Moseguí González, Daniel; Müller-Buschbaum, Peter; Ezquerra, Tiberio A; Rebollar, Esther

    2016-11-23

    We describe the conditions for optimal formation of laser-induced periodic surface structures (LIPSS) over poly(3-hexylthiophene) (P3HT) spin-coated films. Optimal LIPSS on P3HT are observed within a particular range of thicknesses and laser fluences. These conditions can be translated to the photovoltaic blend formed by the 1:1 mixture of P3HT and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) when deposited on an indium tin oxide (ITO) electrode coated with (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). Solar cells formed by using either a bilayer of P3HT structured by LIPSS covered by PC71BM or a bulk heterojunction with a P3HT:PC71BM blend structured by LIPSS exhibit generation of electrical photocurrent under light illumination. These results suggest that LIPSS could be a compatible technology with organic photovoltaic devices.

  5. Laser-induced processes on the back side of dielectric surfaces using a CuSO4-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Zehnder, Sarah; Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Micro-structured dielectric surfaces in combination with electrode structures are promising in the field of rapid prototyping of micro-sensors. In this work laser-induced back side etching and back side deposition using aqueous copper sulfate in form of a tartrate complex with formaldehyde as absorber liquid has been investigated regarding this aim. Results obtained with different laser systems ranging from UV to Near-IR and with pulse lengths from femtoseconds to nanoseconds will be presented, in order to give a wide-spread overview of the different observable effects. Depending on the specific setup and laser parameters, either well-defined compact Cu deposits, micro- or nanoscaled Cu droplets or ablation of the dielectric substrate was observed. Best quality crystalline and conducting Cu structures were achieved using ns pulses at 532 nm wavelength. Droplet formation with UV excimer laser was observed. Parameters influencing each configuration will be discussed.

  6. Laser-induced periodic surface structures formation on mesoporous silicon from nanoparticles produced by picosecond and femtosecond laser shots

    NASA Astrophysics Data System (ADS)

    Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib

    2017-07-01

    This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.

  7. Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces.

    PubMed

    Bengtsson, M; Grönlund, R; Lundqvist, M; Larsson, A; Kröll, S; Svanberg, S

    2006-10-01

    The detection of contamination such as salt in outdoor high-voltage insulator systems and its subsequent removal are vital for a reliable transmission of electric power. Remote detection of salt on a copper metal surface was carried out by using a mobile laser-induced breakdown spectroscopy (LIBS) Lidar system with a laser wavelength of 355 nm. Detection of salt on a polymeric high-voltage insulator was obtained when an additional lens was inserted into the beam path, and the number of photons that was detected could be calculated by using a calibrated white light source. Ablative cleaning could readily be carried out with LIBS and was verified by observing the disappearance of the sodium D-line emission.

  8. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  9. Surface temperature measurements in a porous media burner using a new laser-induced phosphorescence intensity ratio technique

    NASA Astrophysics Data System (ADS)

    Jaber, A.; Zigan, L.; Sakhrieh, A.; Leipertz, A.

    2013-07-01

    Applying the laser-induced phosphorescence technique, the phosphorescence from a phosphor-coated surface can be used for the determination of the surface temperature during hydrocarbon fuel combustion in a porous media burner. A mixture of dysprosium-cerbium double-doped: yttrium aluminium garnet (Dy:Er:YAG) thermographic phosphor powder and an adhesive agent was used for coating the front surface of the burner which was operated with a thermal load of 1000 W and 2000 W and equivalence ratios of 0.7 and 0.8. A pulsed laser of 355 nm wavelength was used for phosphorescence excitation and a spectrometer for luminescence detections. An adapted intensity ratio (IR) method was applied for temperature determination and compared with two other IR methods. Temperature calibrations were executed in an oven which can be operated up to 2073 K. Imprecision and inaccuracy of the temperature measurements in the phosphor and the mixture calibrations and in the burner-coated front surface have been investigated. The adapted IR method allowed temperature measurements which were more accurate than the other two IR methods, applied for comparison. Compared to additionally performed thermocouple measurements and to published results in the literature using an infrared camera, the adapted IR method turned out to be the more accurate one. The temperature results were also in good agreement with numerical simulations given in the literature.

  10. Laser-induced oxidation kinetics of bismuth surface microdroplets on GaAsBi studied in situ by Raman microprobe analysis.

    PubMed

    Steele, J A; Lewis, R A

    2014-12-29

    We report the cw-laser-induced oxidation of molecular-beam-epitaxy grown GaAsBi bismuth surface microdroplets investigated in situ by micro-Raman spectroscopy under ambient conditions as a function of irradiation power and time. Our results reveal the surface droplets are high-purity crystalline bismuth and the resultant Bi2O3 transformation to be β-phase and stable at room temperature. A detailed Raman study of Bi microdroplet oxidation kinetics yields insights into the laser-induced oxidation process and offers useful real-time diagnostics. The temporal evolution of new β-Bi2O3 Raman modes is shown to be well described by Johnson-Mehl-Avrami-Kolmogorov kinetic transformation theory and while this study limits itself to the laser-induced oxidation of GaAsBi bismuth surface droplets, the results will find application within the wider context of bismuth laser-induced oxidation and direct Raman laser processing.

  11. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample

  12. Laser-induced damage characteristics in fused silica surface due to mechanical and chemical defects during manufacturing processes

    NASA Astrophysics Data System (ADS)

    Li, Yaguo; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2017-06-01

    Mechanical and chemical defects incurred by grinding and polishing as well as post-processing have been recognized as the most influential culprits that hamper the elevation of laser power/energy in high peak power/energy laser systems. In order to find out the causes for limiting the operational power of laser systems, the effects of these defects on laser damage and removal and mitigation of the defects were investigated in detail in the article. Cracks and scratches were created, annealed, etched and damaged so as to reveal the likely effects of mechanical defects on damage and potential techniques to reduce their influence. The results show that HF-based etching can open and smooth cracks/scratches, improving laser-induced damage threshold (LIDT) at scratches by up to >250%. Thermal annealing did heal, to some extent, cracks but the LIDT is little improved. Both HF-etching and leaching proves to be effective in removing metallic contamination during polishing process and handling of optics, which can "contribute" to damage/damage density in fused silica. However, HF-based etching may degrade surface roughness, from <1 nm to >20 nm under some conditions when >20 μm material was etched away while the surface roughness was perceptibly altered by leaching (<1 nm to 1-2 nm). Although the LIDT might not be directly correlated to each individual kind of metallic contaminants or surface roughness, it is found that the surfaces with the highest LIDT's have some distinguished characteristics: clean surface (almost no metallic contamination) plus very smooth surface (RMS surface roughness: <5 nm). By removing metallic contamination and scratches, surface damage threshold of fused silica can exceed >30 J/cm2 (355 nm @3 ns, beam diameter 400 μm @1/e2), a significant progress.

  13. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  14. Characterization and antibacterial functions of Ag-TiO2 and W-TiO2 nanostructured thin films prepared by sol-gel/laser-induced technique

    NASA Astrophysics Data System (ADS)

    Joya, Y. F.; Liu, Z.; Wang, T.

    2011-11-01

    A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W-TiO2, Ag-TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75-85 mJ/cm2 fluence in W-TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag-TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.

  15. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  16. Surface smoothing of poly(methyl methacrylate) film by laser induced photochemical etching

    NASA Astrophysics Data System (ADS)

    Kang, JoonHyun; Lee, Song-ee; Park, Joon-Suh; Kim, Young-Hwan; Han, Il Ki

    2017-09-01

    The surface of poly(methyl methacrylate) (PMMA) film was etched by laser irradiation under O2 and vacuum conditions. By activating the O2 molecules near the rough surface, oxygen radicals will preferably etch the protrusions on the PMMA surface. Three lasers of different wavelengths were used for comparison. Laser irradiation at a short wavelength such as 325 nm resulted in high etch rates whereas a long wavelength such as 532 nm resulted in no effect on the surface profile. The PMMA surface was not etched under the vacuum condition, indicating the necessity of O2 molecules in etching.

  17. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2016-03-01

    Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz) was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200) is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS), Ultimate Tensile Strength (UTS) and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  18. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  19. Pulsed laser-induced oxygen deficiency at TiO{sub 2} surface: Anomalous structure and electrical transport properties

    SciTech Connect

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2009-09-15

    We have studied pulsed laser-induced oxygen deficiencies at rutile TiO{sub 2} surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO{sub 2-{delta}} layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm{sup 2} for 2000 pulses. The TiO{sub 2-{delta}} layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO{sub 2-{delta}} layer exhibited unconventional metallic behavior with hysteresis. A metal-insulator transition occurred at 42 K, and the electrical resistivity exceeded 10{sup 4} OMEGA cm below 42 K. This metal-insulator transition could be caused by bipolaronic ordering derived from Ti-Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti{sub 4}O{sub 7}. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation. - Graphical abstract: A pulsed laser-irradiated TiO{sub 2-{delta}} substrate showed an unconventional metallic phase, with hysteresis over a wide range of temperatures and a metal-insulator transition at 42 K.

  20. Improved detection of highly energetic materials traces on surfaces by standoff laser-induced thermal emission incorporating neural networks

    NASA Astrophysics Data System (ADS)

    Figueroa-Navedo, Amanda; Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2013-05-01

    Terrorists conceal highly energetic materials (HEM) as Improvised Explosive Devices (IED) in various types of materials such as PVC, wood, Teflon, aluminum, acrylic, carton and rubber to disguise them from detection equipment used by military and security agency personnel. Infrared emissions (IREs) of substrates, with and without HEM, were measured to generate models for detection and discrimination. Multivariable analysis techniques such as principal component analysis (PCA), soft independent modeling by class analogy (SIMCA), partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and neural networks (NN) were employed to generate models, in which the emission of IR light from heated samples was stimulated using a CO2 laser giving rise to laser induced thermal emission (LITE) of HEMs. Traces of a specific target threat chemical explosive: PETN in surface concentrations of 10 to 300 ug/cm2 were studied on the surfaces mentioned. Custom built experimental setup used a CO2 laser as a heating source positioned with a telescope, where a minimal loss in reflective optics was reported, for the Mid-IR at a distance of 4 m and 32 scans at 10 s. SVM-DA resulted in the best statistical technique for a discrimination performance of 97%. PLS-DA accurately predicted over 94% and NN 88%.

  1. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  2. Femtosecond laser induced surface deformation in multi-dimensional data storage

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Chen, Yuhang; Li, Jiawen; Hu, Daqiao; Chu, Jiaru; Zhang, Qijin; Huang, Wenhao

    2012-12-01

    We investigate the surface deformation in two-photon induced multi-dimensional data storage. Both experimental evidence and theoretical analysis are presented to demonstrate the surface characteristics and formation mechanism in azo-containing material. The deformation reveals strong polarization dependence and has a topographic effect on multi-dimensional encoding. Different stages of data storage process are finally discussed taking into consideration the surface deformation formation.

  3. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Çelen, Serap; Özden, Hüseyin

    2012-12-01

    Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200-250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  4. Scanning electron microscopic study of laser-induced morphologic changes of a coated enamel surface

    SciTech Connect

    Hess, J.A. )

    1990-01-01

    A low-energy Nd:YAG laser was used to irradiate extracted human teeth coated with a black energy-absorbent laser initiator in a study to determine the extent of the morphologic changes produced in the enamel surface. The laser initiator was applied to a cleaned enamel surface and irradiated at an energy output of 30 mJ or 75 mJ. Both energy levels produced morphologic changes of the surface. There was a sharp line of demarcation between the coated, irradiated area and the surrounding noncoated enamel surface. The scanning electron microscope view at the lower energy level showed that the surface had melted and reformed with numerous small, bubble-like inclusions. The 75 mJ energy level showed individual impact craters with shallow centers and raised edges containing numerous pores and large, bubble-like inclusions. Etching is a dental procedure in which an acid is normally used to remove a thin outer layer of the tooth structure. This is necessary to create a roughened, irregular surface in order to provide mechanical retention for dental restorative materials. The changes produced by the laser in this study suggest a simple, effective, and controlled method of etching the enamel surface of a tooth by altering its surface characteristics.

  5. Surface nanostructures in manganite films.

    PubMed

    Gambardella, A; Graziosi, P; Bergenti, I; Prezioso, M; Pullini, D; Milita, S; Biscarini, F; Dediu, V A

    2014-06-19

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications.

  6. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  7. Acute inflammatory response to laser-induced micro- and nano-sized titanium surface features.

    PubMed

    Palmquist, Anders; Johansson, Anna; Suska, Felicia; Brånemark, Rickard; Thomsen, Peter

    2013-02-01

    The inflammatory process induced by implant surfaces is an important component of the tissue response, where limited knowledge is available regarding the role of surface topography. With laser ablation, a combined micro- and nanoscale surface modification could be created, which have been shown to enhance bone growth and biomechanical stability in vivo. The aim of this article was to evaluate the early in vivo inflammatory response to laser-modified titanium disks, with machined titanium disks and sham operation sites serving as controls. Circular disks were installed in a subcutaneous rat model for 24 and 72 hours, where the cell number, cell types, and cytokine levels were evaluated. The results revealed that significantly fewer inflammatory cells (mononuclear and polymorphonuclear) were attracted to the sites with the laser-modified implants compared with the machined titanium implants. Similar concentrations of pro-inflammatory cytokines (TNF-a and MCP-1), together with slightly higher cell viability, were observed around the laser-modified surface compared with the machined surface. The results in the present study suggest that the combination of surface micro and nano features of the laser-treated surface contributes to the downregulation of early inflammatory events. © 2011 Wiley Periodicals, Inc.

  8. Ultrafast laser-induced reproducible nano-gratings on a molybdenum surface

    NASA Astrophysics Data System (ADS)

    Dar, Mudasir H.; Saad, Nabil A.; Sahoo, Chakradhar; Naraharisetty, Sri Ram G.; Rao Desai, Narayana

    2017-02-01

    Wavelength-dependent reproducible nano-gratings were produced on a bulk molybdenum surface upon irradiation with femtosecond laser pulses at near normal incidence in ambient air and water environments. The surface morphology of the irradiated surfaces was characterized by field emission scanning electron microscopy. The ripple spacing was observed to decrease by half when the surface was irradiated with the second harmonic of the fundamental 800 nm radiation. Careful choice of the laser parameters such as fluence, scanning speed, polarization and wavelength were observed to be important for the formation of smooth periodic ripples. The mechanism of formation of polarization-dependent periodic ripples is explained based on the interference model. We also demonstrated the use of a laser direct writing technique for the fabrication of periodic subwavelength structures that have potential applications in photonic devices.

  9. Laser Induced-Plasma Ion Mass Spectrometry for Characterization of Lunar and Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Blacic, J. D.; Cremers, D. A.; Ritzau, S. M.; Nordholt, J. E.; Funsten, H. O.

    1999-03-01

    LIMS is being developed to perform isotopic and elemental analysis of lunar and planetary surfaces at standoff distances. It uses an advanced ion mass spectrometer to obtain mass and energy spectra from the ionized plume produced by a laser.

  10. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    SciTech Connect

    Han, Weina; Jiang, Lan; Li, Xiaowei Liu, Yang

    2015-12-21

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence of the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.

  11. Geochemical mapping of the lunar surface using laser-induced ion mass spectrometry from landers and rovers

    NASA Astrophysics Data System (ADS)

    Funsten, H. O.; Elphic, R. C.; Blacic, J. D.; Borovsky, J. E.; McComas, D. J.; Nordholt, J. E.

    In-situ lunar geochemical assessment is essential when remotely prospecting for lunar resources or characterizing the mineralogy of a lunar site. We discuss a technique for lunar geochemical mapping from landed platforms using Laser-induced Ion Mass Spectrometry (LIMS). In this technique, a focused diode-pumped Nd:YAG laser on an lunar lander or rover vaporizes a thin layer of a soil or rock target located at a range of 1 to 100 m. The vapor is ionized through electron heating by inverse Bremsstrahlung, and the expanding plasma cloud contains information about the target composition. Ions in this plasma are analyzed using specialized time-of-flight ion mass spectrometry, providing detailed composition analysis of the lunar surface. In considering this technique, we discuss the effects on the ion trajectories of ambient electric and magnetic fields and present a high sensitivity, high mass-resolution mass spectrometer that is capable of detecting low atomic mass abundances, trace elements, and isotopic variations.

  12. Cell culture surfaces with immobilized gold nanostars: a new approach for laser-induced plasmonic cell optoporation

    NASA Astrophysics Data System (ADS)

    Vanzha, Ekaterina; Pylaev, Timofey; Prilepskii, Artur; Golubev, Alexander; Khlebtsov, Boris; Bogatyrev, Vladimir; Khlebtsov, Nikolai

    2017-03-01

    The application of gold nanoparticles (GNPs) for laser-induced cell transfection has been studied intensively during the past decade as efficient and gentle alternative to well-established molecule delivery methods like lipid-based transfection or electroporation. The method is based on temporal increase of membrane permeability induced by laser irradiation of GNPs attached to cell membranes. Although this approach is attractive due to high throughput and easy usability, it is not free from serious drawbacks related to random adsorption of GNPs during preincubation of cells with GNPs. This stage can affect the optoporation results because of potential nanoparticle toxicity, thus leading to decreased delivery efficiency and to low reproducibility of independent optoporation runs. Herein, we suggest a novel GNP-mediated laser transfection technique based on immobilized gold nanostars (GNSs) that are adsorbed on microplate wells and act as a plasmonic surface. The HeLa cells are grown directly on the monolayer of immobilized GNSs followed by CW NIR laser irradiation. We used the propidium iodide (PI) as a model transfecting agent to monitor simultaneously the delivery of PI into HeLa cells and their viability. These proof-of-the-concept experiments demonstrated enhanced penetration of PI into irradiated cells as compared to untreated ones.

  13. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  14. Geochemical mapping of the lunar surface using laser-induced ion mass spectrometry from landers and rovers

    SciTech Connect

    Funsten, H.O.; Elphic, R.C.; Blacic, J.D.; Borovsky, J.E.; McComas, D.J.; Nordholt, J.E.

    1992-12-01

    In-situ lunar geochemical assessment is essential when remotely prospecting for lunar resources or characterizing the mineralogy of a lunar site. We discuss a technique for lunar geochemical mapping from landed platforms using Laser-induced Ion Mass Spectrometry (LIMS). In this technique, a focused diode-pumped Nd:YAG laser on an lunar lander or rover vaporizes a thin layer of a soil or rock target located at a range of 1 to 100 m. The vapor is ionized through electron heating by inverse Bremsstrahlung, and the expanding plasma cloud contains information about the target composition. Ions in this plasma are analyzed using specialized time-of-flight ion mass spectrometry, providing detailed composition analysis of the lunar surface. In considering this technique, we discuss the effects on the ion trajectories of ambient electric and magnetic fields and present a high sensitivity, high mass-resolution mass spectrometer that is capable of detecting low atomic mass abundances, trace elements, and isotopic variations.

  15. Geochemical mapping of the lunar surface using laser-induced ion mass spectrometry from landers and rovers

    SciTech Connect

    Funsten, H.O.; Elphic, R.C.; Blacic, J.D.; Borovsky, J.E.; McComas, D.J.; Nordholt, J.E.

    1992-01-01

    In-situ lunar geochemical assessment is essential when remotely prospecting for lunar resources or characterizing the mineralogy of a lunar site. We discuss a technique for lunar geochemical mapping from landed platforms using Laser-induced Ion Mass Spectrometry (LIMS). In this technique, a focused diode-pumped Nd:YAG laser on an lunar lander or rover vaporizes a thin layer of a soil or rock target located at a range of 1 to 100 m. The vapor is ionized through electron heating by inverse Bremsstrahlung, and the expanding plasma cloud contains information about the target composition. Ions in this plasma are analyzed using specialized time-of-flight ion mass spectrometry, providing detailed composition analysis of the lunar surface. In considering this technique, we discuss the effects on the ion trajectories of ambient electric and magnetic fields and present a high sensitivity, high mass-resolution mass spectrometer that is capable of detecting low atomic mass abundances, trace elements, and isotopic variations.

  16. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid-liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g- 1 of Mn.

  17. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    SciTech Connect

    Huynh, T. T. D.; Petit, A.; Semmar, N.

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  18. Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces

    SciTech Connect

    Muir, A. C.; Mailis, S.; Eason, R. W.

    2007-05-15

    Lithium niobate crystal surfaces become superhydrophilic after ultraviolet laser irradiation. The crystal surface hydrophilicity, which was assessed by the contact angle of a sessile drop of de-ionized water, was found to undergo a transition from mildly hydrophobic (contact angle {theta}{sub E}{approx_equal}50 degree sign ) to a superhydrophilic state ({theta}{sub E}<5 degree sign ). Patterning of the hydrophilicity at the micron and submicron ranges has been achieved by spatially modulating the illuminating laser beam.

  19. Laser-induced damage initiated on the surface of particle contamination fused silica at 1064nm

    SciTech Connect

    Michlitsch, K.J.

    1998-06-01

    An experimental study was undertaken to quantify the effects of contamination particles on the damage threshold of laser-illuminated fused silica optics and set cleanliness requirements for optics on the beam line of the National Ignition Facility at Lawrence Livermore National Laboratory. Circular contamination particles were sputter-deposited onto fused silica windows which were then illuminated repetitively using a 1064nm laser. A variety of contaminants were tested including metals, oxides, and organics. Tests were conducted with particles on the input and output surfaces of the window, and the morphological features of the damage were very reproducible. A plasma often ignited at the contamination particle; its intensity was dependent upon the mass of the contaminant. Input surface damage was characteristically more severe than output surface damage. The size of the damaged area scaled with the size of the particle. On a few occasions, catastrophic damage (cracking or ablation of the substrate) initiated on the output surface due to contamination particles on either the input or output surface. From damage growth plots, predictions can be made about the severity of damage expected from contamination particles of known size and material.

  20. Surface plasmon polaritons in artificial metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  1. Optical Deflection Technique for Investigation of Laser-Induced Oscillating Bubble on Metal Surface

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Qing; Chen, Xiao; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2004-08-01

    The oscillation of a laser-generated single cavitation bubble on a metal surface is investigated by a fiber-optic diagnostic technique based on an optical beam deflection (OBD). The sequence of waveforms induced by the bubble pulsation is obtained with respect to detection distance. The maximum and minimum bubble radii for each oscillation cycle are determined from the experimental results. Furthermore, by tracking the arrival time of a bubble wall during its expanding and collapsing stages, the temporal development of a cavitation bubble on the metal surface is obtained.

  2. Excimer laser-induced surface fixation of polymer and its patterning

    NASA Astrophysics Data System (ADS)

    Nakayama, Yasuhide; Matsuda, Takehisa

    1996-07-01

    When ArF excimer laser pulses irradiated an UV-absorbing polymer film, such as poly(N,N-dimethylacrylamide) or polystyrene, in close contact with an optically transparent substrate, such as polyethylene or poly(vinyl alcohol), the target was selectively photolyzed, resulting in the formation of a crosslinked polymer which was covalently bonded onto the substrate surface. The formed polymer exhibited IR spectral features very similar to those of the target. Fine surface patterning of the formed polymer layer was attained by pulsed irradiation through a projection mask.

  3. Excimer laser-induced surface fixation of polymer and its patterning

    SciTech Connect

    Nakayama, Y.; Matsuda, T.

    1996-07-01

    When ArF excimer laser pulses irradiated an UV-absorbing polymer film, such as poly({ital N},{ital N}-dimethylacrylamide) or polystyrene, in close contact with an optically transparent substrate, such as polyethylene or poly(vinyl alcohol), the target was selectively photolyzed, resulting in the formation of a crosslinked polymer which was covalently bonded onto the substrate surface. The formed polymer exhibited IR spectral features very similar to those of the target. Fine surface patterning of the formed polymer layer was attained by pulsed irradiation through a projection mask. {copyright} {ital 1996 American Institute of Physics.}

  4. Theory of Laser-Induced Surface Chemistry with Applications to Microelectronics and Heterogeneous Catalysis.

    DTIC Science & Technology

    1984-05-01

    electronic transition from state II to I’, P2 is the Landau - Zener -type curve-crossing probability from state I to I’, and P3(wj) is the probability...review see: Goodman, F. 0.; Wachman, H. Y. "Dynamics of Gas-Surface Scattering", Academic Press: New York, 1976. 9. Landau , L. D.; Lifshitz, E. M

  5. Formation of laser induced periodic surface structures (LIPSS) on Ti upon double fs pulse exposure

    NASA Astrophysics Data System (ADS)

    Gemini, Laura; Hashida, Masaki; Nishii, Takaya; Miyasaka, Yasuhiro; Inoue, Shunsuke; Limpouch, Jiri; Mocek, Tomas; Sakabe, Shuji

    2015-03-01

    Recently a parametric decay model was proposed in order to foresee LIPSS interspaces, and experimental results are in reasonable agreement. To confirm the possibility assumed by the model of pre-formed plasma generation, Ti surface was irradiated by a femtosecond (fs) laser beam composed by double fs pulses, with a fixed delay of 160 fs. The fluence of the first pulse (FPP), responsible for surface plasma formation, was varied in the range 10-50 mJ cm-2 and always kept below the LIPSS formation threshold fluence (FLIPSS) of Ti for 50-single-shots exposure. The fluence of the delayed pulse (FLP), responsible for LIPSS formation, was varied in the range 60-150 mJ cm-2 and always kept above FLIPSS. Regardless the specific fluence FLP of the delayed pulse, the interspace of the grating structures increases with the increase of FPP, that is the increase of the surface plasma density. This tendency suggests that a variation of the surface plasma density, due to a variation of FPP, actually leads to a modification of the grating features, highlighting the driving role of the first pulse in LIPSS formation. Moreover, we observed that the LIPSS periodicities after double pulse exposures are in quite good agreement with data on LIPSS periodicities after single 160 fs pulse irradiations on Ti surface and with the curve predicted by the parametric decay model. This experimental result suggests that the preformed plasma might be produced in the rising edge of the temporal profile of the laser pulse.

  6. Elemental mass spectroscopy of remote surfaces from laser-induced plasmas

    NASA Technical Reports Server (NTRS)

    Situ, W.; DeYoung, R. J.

    1994-01-01

    The elemental mass analysis of laser-produced ions from Al, Cu, Ge, Ag, and a lunar simulant target when irradiated by a 400-mJ, 8-ns, Nd: YAG laser at 1 x 10(exp 9) W/cm(exp 2), is reported. Ions traveled down a 11.1-m evacuated tube to an ion-trap 1-m time-of-flight (TOF) mass spectrometer where an elemental mass spectrum was recorded. The amount of target material removed per laser pulse and the ionization fraction were measured. The ion spatial distribution was measured at 11.1-m distance and found to be near a fourth-power cosine distribution. These results indicate the ability to mass analyze a surface over a distance of many kilometers for lunar and asteroid surface elemental mass analysis by a remote satellite or lunar rover.

  7. Elemental mass spectroscopy of remote surfaces from laser-induced plasmas

    NASA Technical Reports Server (NTRS)

    Situ, W.; DeYoung, R. J.

    1994-01-01

    The elemental mass analysis of laser-produced ions from Al, Cu, Ge, Ag, and a lunar simulant target when irradiated by a 400-mJ, 8-ns, Nd: YAG laser at 1 x 10(exp 9) W/cm(exp 2), is reported. Ions traveled down a 11.1-m evacuated tube to an ion-trap 1-m time-of-flight (TOF) mass spectrometer where an elemental mass spectrum was recorded. The amount of target material removed per laser pulse and the ionization fraction were measured. The ion spatial distribution was measured at 11.1-m distance and found to be near a fourth-power cosine distribution. These results indicate the ability to mass analyze a surface over a distance of many kilometers for lunar and asteroid surface elemental mass analysis by a remote satellite or lunar rover.

  8. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Huang, Zhulin; Zhou, Fei; Lei, Xing; Yao, Bo; Meng, Guowen; Mao, Qinghe

    2016-05-01

    Fibre surface-enhanced Raman scattering (SERS) probes have the advantages of flexibility, compactness, remote sensing capability and good repeatability in SERS detection and thus have a range of different applications. However, it is difficult to realize simple, low-cost and high-throughput preparations of fibre SERS probes with high sensitivity and desirable repeatability using the currently available fabrication techniques, which restricts their practical applications. We report here a simple, low-cost method using laser-induced self-assembly to realize the fast fabrication of fibre SERS probes with high sensitivity and excellent reproducibility. By lifting the fibre facet above a pre-synthesized nanoparticle colloid, a meniscus can be formed with the help of the surface tension of the liquid. Using irradiation from an induced laser guided by the fibre, localized thermal effects on the nanoparticles in the meniscus control the growth of the fibre probes and the electromagnetic interactions among the closely spaced nanoparticles assist the arrangement of nanoparticle clusters on the fibre facet. The prepared fibre probes showed a very high SERS sensitivity of 10-10 M for p-aminothiophenol using a portable commericial Raman spectrometer with a short integration time of 2 s. They also showed excellent repeatability with relative standard deviations <2.8% in the SERS peak intensities for different detections with the same probe and 7.8% for different fibre probes fabricated under the same conditions.Fibre surface-enhanced Raman scattering (SERS) probes have the advantages of flexibility, compactness, remote sensing capability and good repeatability in SERS detection and thus have a range of different applications. However, it is difficult to realize simple, low-cost and high-throughput preparations of fibre SERS probes with high sensitivity and desirable repeatability using the currently available fabrication techniques, which restricts their practical applications

  9. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  10. Laser-induced actuation of individual microsize liquid metal droplets on an open solid surface

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Chunqing; Dou, Guangbin; Tian, Yanhong; Yang, Lei

    2017-01-01

    The actuation of microsize liquid metal droplets on an open solid surface with laser offset heating is reported in this work. The process allows the droplets to move towards the laser beam center. The analysis of the actuations showed that the droplets were predominantly driven by the thermally induced wettability alteration on the solid; in contrast, Marangoni flow and vapor recoil weakened the motion of the droplets. This indicates that a localized thermal gradient was the driving force for droplet motion and suggests that it may be an alternative actuation technique in manipulating liquid metal droplets for microsystems.

  11. Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Luo, Li; Zhang, Yubo; Hu, Ruifeng; Feng, Guoying

    2016-09-01

    Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave. The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients, making the particles easier to be removed. Laser plasma can ionize and even vaporize particles more significantly than an incident laser and, therefore, it can remove the particles more efficiently. The laser plasma shock wave plays a dominant role in removing particles, which is attributed to its strong burst force. The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface. In order to obtain the working conditions for particle removal, the removal mechanism, as well as the temporal and spatial characteristics of velocity, propagation distance and pressure of shock wave have been researched. On the basis of our results, the conditions for nano-particle removal are achieved. Project supported by the National Natural Science Foundation of China (Grant No. 11574221).

  12. Femtosecond-laser-induced periodic surface structures on magnetic layer targets: The roles of femtosecond-laser interaction and of magnetization

    NASA Astrophysics Data System (ADS)

    Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen

    2017-09-01

    We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.

  13. Dynamics study of a laser-induced bubble on a finite metallic surface in water

    NASA Astrophysics Data System (ADS)

    Qiang, Hao; Han, Bing; Chen, Jun; Yang, Chen; Li, Thomas; Pan, Yunxiang; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2017-07-01

    To investigate the dynamics of a bubble induced on a finite rigid boundary in water, a simple experimental method based on laser beam transmission probe is developed to measure the time dependence of the bubble's radius on a finite metallic surface under different incident laser energies, and a numerical method is employed to simulate the bubble's first collapse. A correction factor based on the Raleigh collapse time formula is proposed to describe the collapse time of the bubble induced on a finite rigid boundary. The experimental and simulation results show that the correction factor is slightly different for the bubble's first and subsequent two oscillations, and its detailed expression is obtained from the experimental and simulation results. The experimental results show that the conversion efficiency of the incident laser energy into bubble energy increases with the former, and the ratio of the energy left for subsequent bubble oscillation increases with the number of bubble oscillation.

  14. Generation of laser-induced periodic surface structures in indium-tin-oxide thin films and two-photon lithography of ma-N photoresist by sub-15 femtosecond laser microscopy for liquid crystal cell application

    NASA Astrophysics Data System (ADS)

    Klötzer, Madlen; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten; Straub, Martin

    2015-03-01

    Indium-tin-oxide (ITO) is a widely used electrode material for liquid crystal cell applications because of its transparency in the visible spectral range and its high electrical conductivity. Important examples of applications are displays and optical phase modulators. We report on subwavelength periodic structuring and precise laser cutting of 150 nm thick indium-tin-oxide films on glass substrates, which were deposited by magnetron reactive DC-sputtering from an indiumtin target in a low-pressure oxygen atmosphere. In order to obtain nanostructured electrodes laser-induced periodic surface structures with a period of approximately 100 nm were generated using tightly focused high-repetition rate sub-15 femtosecond pulsed Ti:sapphire laser light, which was scanned across the sample by galvanometric mirrors. Three-dimensional spacers were produced by multiphoton photopolymerization in ma-N 2410 negative-tone photoresist spin-coated on top of the ITO layers. The nanostructured electrodes were aligned in parallel to set up an electrically switchable nematic liquid crystal cell.

  15. Computational characterization of ordered nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  16. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.

    PubMed

    Morikawa, Kyojiro; Tsukahara, Takehiko

    2016-01-01

    In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics.

  17. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  18. Neutralization of H- at Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan; Thumm, Uwe

    2006-05-01

    The charge transfer rates and the neutralization probabilities for hydrogen anions colliding with nanostructured (vicinal) surfaces are obtained by direct numerical integration of the time-dependent Schroedinger equation for the motion of the active electron in the field of the projectile-surface compound. The electronic structure of the surface is calculated from a Thomas-Fermi - von Weizsaecker statistical model with local density approximation for the exchange-correlation energy. In fixed-ion approximation, the decay rate of the electronic state of the anion in front of the surface is obtained by projecting the density of states of the collision system onto the unperturbed projectile level. The ion neutralization probability is calculated from this static width within a rate equation approach for a set of broken-straight-line collision trajectories for kinetic energies of 1 keV. The dependence of decay rates and neutralization probabilities on the surface morphology and the scattering trajectories, and a comparison of our numerical results with the experiments will be discussed.

  19. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Rosenfeld, A.; Krüger, J.

    2011-04-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed.

  20. Surface Plasmon Propagation in Nanostructured Metallic Waveguides

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Rose, A. H.; Nesbitt, N. T.; Boyce, A. M.; McMahon, G.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    2015-03-01

    Visible frequencies of light can be routed on subwavelength scales with nanostructured, metallic waveguides by coupling optical energy to surface plasmon (SP) modes at a metal-insulator interface. Epitaxially-grown Ag nanowires and nanocoaxes provide a low-loss, ``model'' system to characterize the propagation of SP waves. We have studied these structures by electron, focused ion, scanning probe, and optical microscopies, and have observed propagation lengths exceeding 15λvac with confinement on the order of 0 . 07(λvac) 2 . Experimental efforts towards lithographically-fabricated metal-insulator-metal waveguides are discussed. Finally, an architecture for a nanocoax-based optical microscope, which extracts near-field (evanescent) information and propagates it into the far-field, is presented. Supported by the W.M. Keck Foundation.

  1. In situ diagnosis of pulsed UV laser surface ablation of tungsten carbide hardmetal by using laser-induced optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-12-01

    Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.

  2. Nanostructuring of titanium oxide thin film by UV femtosecond laser beam: From one spot to large surfaces

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Tameko, C. Tchiffo; Stolz, A.; Millon, E.; Boulmer-Leborgne, C.; Semmar, N.

    2017-10-01

    Surface structuring of titanium oxide thin films by a UV femtosecond laser beam (266 nm, 100 fs) is presented in this paper. Without using laser scanning, the results show the formation of regular dots and laser induced periodic surface structures (LIPSS) with a period close to that of the beam wavelength. These nanostructures seem to be due to free-surface energy minimization. Furthermore, laser irradiation of large homogeneous surfaces by laser scan (5 × 5 mm2) showed more exotic surface morphologies, ranging from regular dots and low spatial frequency LIPSS to microstructures that are completely controlled by the laser fluence and the number of shots. Typically 2D circular dots of 100 nm diameter with two distinct periods (260 and 130 nm) are achieved under a very low fluence of 15 mJ/cm2 after 13000 shots.

  3. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth.

    PubMed

    Chen, L; Cao, C R; Shi, J A; Lu, Z; Sun, Y T; Luo, P; Gu, L; Bai, H Y; Pan, M X; Wang, W H

    2017-01-06

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd_{40}Ni_{10}Cu_{30}P_{20} metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  4. Landau damping of surface plasmons in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Shahbazyan, Tigran V.

    2016-12-01

    We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal nanostructures of arbitrary shape. We show that the electron surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated into the metal dielectric function on par with phonon and impurity scattering. The derived surface scattering rate is determined by the local field polarization relative to the metal-dielectric interface and is highly sensitive to the system geometry. We illustrate our model by providing analytical results for surface scattering rate in some common shape nanostructures. Our results can be used for calculations of hot carrier generation rates in photovoltaics and photochemistry applications.

  5. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  6. Surface analysis of nanostructured carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  7. All-optical characterization of fs-laser induced refractive index changes in bulk and at the surface of zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Hernandez-Rueda, J.; Semenov, V.; Troy, N.; Smith, C. E.; Brow, R. K.; Krol, D. M.

    2015-03-01

    The permanent refractive index change induced by ultrashort laser pulses in zinc phosphate glasses has been investigated both at the surface and in bulk. At the sample surface, irradiations have been performed by using loosely focused single fs-laser pulses at different energies. Optical microscopy images of the irradiations illustrate an interferometric pattern in form of concentric Newton rings due to the laser induced multilayer system (unmodified glass, thin laser-modified layer, air). This experimental reflectivity modulation along with simulations based on Abeles theory for multilayer optical systems allows retrieving laser-induced refractive index changes on the order of Δns= -10-3. In bulk, fs-laser written waveguides have been generated by translating the sample with respect to a tightly focused laser beam. The so-produced waveguides have been characterized by studying the optical near field of the TEM00 guided mode at 660 nm and using white light microscopy. The optical changes linked to the inscribed waveguides have been characterized by measuring the far field output profiles yielding values of approximately Δnb= +3·10-4. The laser-modified optical properties in bulk and at the surface will be linked to the glass structural changes as well as discussed in terms of the role of the incubation effects for multi-pulse processing.

  8. Water Droplet Spreading and Wicking on Nanostructured Surfaces.

    PubMed

    Chen, Xue; Chen, Jiannan; Ouyang, Xiaolong; Song, Yu; Xu, Ruina; Jiang, Peixue

    2017-07-11

    Phase-change heat transfer on nanostructured surfaces is an efficient cooling method for high heat flux devices due to its superior wettability. Liquid droplet spreading and wicking effect then dominate the heat transfer. Therefore, this study investigates the flow behavior after a droplet touches a nanostructured surface focusing on the ZnO nanowire surface with three different nanowire sizes and two array types (regular and irregular). The spreading diameter and the wicking diameter are measured against time. The results show that the average spreading and wicking velocities on a regular nanostructured surface are both smaller than those on an irregular nanostructured surface and that the nanowire size affects the liquid spreading and capillary wicking.

  9. Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering

    SciTech Connect

    Sokolowski-Tinten, Klaus; Shymanovich, Uladzimir; Barty, Anton; Chapman, Henry; Bajt, Sasa; Schulz, Joachim; Boutet, Sebastien; Bogan, Mike; Bostedt, Christoph; Marchesini, Stefano; Hau-Riege, Stefan; Frank, Matthias; Stojanovic, Nikola; Duesterer, Stefan; Redlin, Harald; Treusch, Rolf; Bonse, Joern; Rosandi, Yudi; Urbassek, Herbert M.; Tobey, Ra'anan

    2010-10-08

    The structural dynamics of short-pulse laser irradiated surfaces and nano-structures has been studied with nm spatial and ultrafast temporal resolution by means of single-shot coherent XUV-scattering techniques. The experiments allowed us to time-resolve the formation of laser-induced periodic surface structures, and to follow the expansion and disintegration of nano-objects during laser ablation.

  10. Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-09-01

    Laser-induced breakdown spectroscopy (LIBS) was successfully used in on-line control of selective removal of cobalt from tungsten carbide hardmetal by pulsed UV laser surface ablation. The dependence of LIBS on number of laser shots was investigated at different laser fluences. The optimal laser fluence of 2.5 J/cm 2 suited for selective removal of cobalt from surface layer of hardmetal was confirmed. The result sample was also subject to different post-examinations to evaluate the feasibility of the application of LIBS in this laser ablation process. It was demonstrated that, monitoring of the emission intensity of cobalt lines could be used as a control parameter for selective removal of cobalt from surface layer of hardmetal by pulsed UV laser. The on-line implementation of the spectroscopic technique LIBS to the surface-ablation process provided important information about the optimal-ablation parameters.

  11. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    NASA Astrophysics Data System (ADS)

    Antończak, Arkadiusz J.; Skowroński, Łukasz; Trzcinski, Marek; Kinzhybalo, Vasyl V.; Łazarek, Łukasz K.; Abramski, Krzysztof M.

    2015-01-01

    This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO2 as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar+ ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  12. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser.

    PubMed

    Ruiz de la Cruz, A; Lahoz, R; Siegel, J; de la Fuente, G F; Solis, J

    2014-04-15

    We report on the fabrication of laser-induced periodic surface structures in Cr films upon high repetition rate fs laser irradiation (up to 1 MHz, 500 fs, 1030 nm), employing beam scanning. Highly regular large-area (9  cm2) gratings with a relative diffraction efficiency of 42% can be produced within less than 6 min. The ripple period at moderate and high fluences is 0.9 μm, with a small period of 0.5 μm appearing at lower energies. The role of the irradiation parameters on the characteristics of the laser-induced periodic surface structures (LIPSS) is studied and discussed in the frame of the models presently used. We have identified the polarization vector orientation with respect to the scan direction as a key parameter for the fabrication of high-quality, large-area LIPSS, which, for perpendicular orientation, allows the coherent extension of the sub-wavelength structure over macroscopic distances. The processing strategy is robust in terms of broad parameter windows and applicable to other materials featuring LIPSS.

  13. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  14. Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation

    NASA Astrophysics Data System (ADS)

    Dostovalov, A. V.; Korolkov, V. P.; Terentyev, V. S.; Okotrub, K. A.; Dultsev, F. N.; Babin, S. A.

    2017-07-01

    The formation of femtosecond laser-induced periodic surface structures (LIPSS's) on Cr, Ti, Ni and NiCr films (with different Cr contents) is investigated. It is established that thermochemical LIPSS's with periods of 950, 930 and 980 nm are formed, respectively, on the surfaces of titanium, chromium, and nichrome (with a chromium content of 20%); however, thermochemical LIPSS's are not formed on the surfaces of nickel and nichrome with a low chromium content, although Raman data indicate that oxidation occurs in all cases. A weakly ordered ablated structure with a period of 250-300 nm is found to be formed on oxidised areas of thermochemical LIPSS's in the case of chromium and nichrome (80/20). Experimental data on selective etching of thermochemical LIPSS's on titanium and chromium films are presented.

  15. XPS Analysis of Nanostructured Materials and Biological Surfaces

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.

    2010-05-01

    This paper examines the types of information that XPS can provide about a variety of nano-structured materials. Although it is sometimes not considered a “nano-scale analysis method” XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for samples types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structure of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

  16. Strength Improvement of Glass Substrates by Using Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-12-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  17. Study of Surface Damage caused by Laser Irradiation for Quantitative Hydrogen Analysis in Zircaloy using Laser-induced Plasma Breakdown Spectrometry

    SciTech Connect

    Fukumoto, K.; Yamada, N.; Niki, H.; Maruyama, T.; Kagawa, K.

    2009-03-17

    The surface damage caused by laser irradiation is studied to investigate the possibility of performing a depth-profile analysis of the hydrogen concentration in zircaloy-4 alloys using laser-induced plasma breakdown spectrometry. After laser irradiation, a heat-affected zone extending about 3 {mu}m down from the top surface can be seen. The depth of this heat-affected zone is independent of the laser power density in the range 10{sup 8} to 10{sup 9} W/cm{sup 2}. In order to obtain the depth profile of the hydrogen concentration in zircaloy-4 alloys, the power density of laser shots must be greater than 1.3x10{sup 9} W/cm{sup 2}.

  18. Modeling surface imperfections in thin films and nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Hansen, P.-E.; Madsen, J. S.; Jensen, S. A.; Madsen, M. H.; Karamehmedovic, M.

    2017-06-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surface. Combining measurement data from several instruments increases the knowledge of non-perfect surfaces. In this paper we investigate how to incorporate this knowledge of surface imperfection into inverse methods used in scatterometry and ellipsometry using the Rigorous Coupled Wave Analysis. Three classes of imperfections are examined. The imperfections are introduced as periodic structures with a super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers can severely change the reflective response on silicon gratings. Inverse scatterometry analyses of gratings with imperfection using simulated data with white noise have been performed. The results show that scatterometry is a robust technology that is able to characterize grating imperfections provided that the imperfection class is known.

  19. Towards design rules for covalent nanostructures on metal surfaces.

    PubMed

    Björk, Jonas; Hanke, Felix

    2014-01-20

    The covalent molecular assembly on metal surfaces is explored, outlining the different types of applicable reactions. Density functional calculations for on-surface reactions are shown to yield valuable insights into specific reaction mechanisms and trends across the periodic table. Finally, it is shown how design rules could be derived for nanostructures on metal surfaces.

  20. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    NASA Astrophysics Data System (ADS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  1. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    SciTech Connect

    Pruna, R. Palacio, F.; López, M.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  2. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  3. Surface Nano-Structuring by Adsorption and Chemical Reactions

    PubMed Central

    Tanaka, Ken-ichi

    2010-01-01

    Nano-structuring of the surface caused by adsorption of molecules or atoms and by the reaction of surface atoms with adsorbed species is reviewed from a chemistry viewpoint. Self-assembly of adsorbed species is markedly influenced by weak mutual interactions and the local strain of the surface induced by the adsorption. Nano-structuring taking place on the surface is well explained by the notion of a quasi-molecule provided by the reaction of surface atoms with adsorbed species. Self-assembly of quasi-molecules by weak internal bonding provides quasi-compounds on a specific surface. Various nano-structuring phenomena are discussed: (i) self-assembly of adsorbed molecules and atoms; (ii) self-assembly of quasi-compounds; (iii) formation of nano-composite surfaces; (iv) controlled growth of nano-materials on composite surfaces. Nano-structuring processes are not always controlled by energetic feasibility, that is, the formation of nano-composite surface and the growth of nano-particles on surfaces are often controlled by the kinetics. The idea of the “kinetic controlled molding” might be valuable to design nano-materials on surfaces. PMID:28883340

  4. Controlling the surface properties of nanostructures for studies of polymerases

    NASA Astrophysics Data System (ADS)

    Crut, Aurélien; Koster, Daniel A.; Huang, Zhuangxiong; Hage, Susanne; Dekker, Nynke H.

    2008-11-01

    We report the successful functionalization of optically accessible nanostructures, suitable for single-molecule experiments at physiological substrate concentrations, with polyethylene glycol. Characterization of the coating in terms of roughness, protein repellence, and specific immobilization of DNA is described. We present an application of this technique in the detection of polymerase activity within nanostructures, which demonstrates the opportunities made possible through the integration of nanofabricated structures with surface functionalization.

  5. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  6. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    SciTech Connect

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin; Liu, Lei; Huang, Xi; Lu, Yongfeng

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  7. Surface effects on shape and topology optimization of nanostructures

    NASA Astrophysics Data System (ADS)

    Nanthakumar, S. S.; Valizadeh, Navid; Park, Harold S.; Rabczuk, Timon

    2015-07-01

    We present a computational method for the optimization of nanostructures, where our specific interest is in capturing and elucidating surface stress and surface elastic effects on the optimal nanodesign. XFEM is used to solve the nanomechanical boundary value problem, which involves a discontinuity in the strain field and the presence of surface effects along the interface. The boundary of the nano-structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. We present results of optimal topologies of a nanobeam subject to cantilever and fixed boundary conditions. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.

  8. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  9. Crystalline nanostructures on Ge surfaces induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Ou, Xin; Facsko, Stefan

    2014-12-01

    Besides conventional low efficiency lithographic techniques broad ion beam irradiation is a simple and potentially mass productive technique to fabricate nanoscale patterns on various semiconductor surfaces. The main drawback of this method is that the irradiated semiconductor surfaces are amorphized, which strongly limits the potential application of these nanostructures in electronic and optoelectronic devices. In this work we report that high-quality crystalline nanostructure patterns are formed on Ge surfaces via Ar+ irradiation at elevated temperatures. This pattern formation process resembles the pattern formation in homoepitaxy. Therefore, the process is discussed based on a 'reverse epitaxy' mechanism.

  10. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  11. Studying electric field enhancement factor of the nanostructured emission surface

    NASA Astrophysics Data System (ADS)

    Zartdinov, A. N.; Nikiforov, K. A.

    2016-08-01

    Mathematical model of nanostructured field emission surface is proposed. In order to determine geometrical parameters of the surface structure digital processing of scanning electron microscopy images was used. Effective value of local electrical field enhancement factor is defined and calculated within the Fowler-Nordheim theory. It was found effective enhancement factor decreases as the applied electrical field increases for a fixed geometry.

  12. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  13. Thermal and pulsed laser induced surface reactions in Ti/Si(001) interfaces studied by spectromicroscopy with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Larciprete, R.; Danailov, M.; Barinov, A.; Gregoratti, L.; Kiskinova, M.

    2001-11-01

    Thin titanium silicide layers, produced by thermal or ultraviolet (UV) and visible pulsed laser annealing of Ti films deposited on Si substrates, have been studied by synchrotron radiation scanning photoemission spectroscopy (SR-SPEM) with lateral resolution of 0.12 μm. The evolution of the Ti 2p, Si 2p, and valence band spectra were used as fingerprints for the occurring morphological changes and interfacial reactions. For thermal processes the Ti films were deposited through a mask and by performing spectromicroscopy across the edge of the Ti patch the influence of the film thickness on the interface reaction was probed. The advancement of the interfacial reaction as a function of the annealing temperature was studied as well. The three components in the Si 2p spectra with chemical shift of -0.76, -0.50 and -0.18 eV, observed after thermal annealing at 650 and 850 °C were attributed to TiSi, C49 TiSi2, and C54 TiSi2, respectively. For the laser treated Ti/Si interfaces SPEM was successfully used to map the lateral distribution of these silicide phases formed within the laser irradiated region. In all cases the laser beams were focused and the photon density values were chosen to limit the temperature rise below the Si and Ti melting thresholds. We found that in the external region of the laser spots where the local temperature does not exceed 500 °C the dominating C49 TiSi2 phase coexists with some TiSi, whereas in the hottest central region the formation of C54 TiSi2 is favored. The similarity of the lateral distribution and the chemical phases formed within the laser spots obtained using UV and visible radiation confirmed that the local laser-induced temperature rise controls the interfacial processes, whereas the radiation wavelength plays a negligible role.

  14. Curvature-dependent surface energy and implications for nanostructures

    NASA Astrophysics Data System (ADS)

    Chhapadia, P.; Mohammadi, P.; Sharma, P.

    2011-10-01

    At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.

  15. Effect of annealing on the laser induced damage of polished and CO{sub 2} laser-processed fused silica surfaces

    SciTech Connect

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-07

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700–1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO{sub 2} laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO{sub 2} laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330–1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the

  16. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  17. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  18. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  19. Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space.

    PubMed

    Rebollar, Esther; Pérez, Susana; Hernández, Jaime J; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Castillejo, Marta

    2011-05-03

    In this work we evaluate the potential of grazing incidence X-ray scattering techniques in the investigation of laser-induced periodic surface structures (LIPSSs) in a series of strongly absorbing model spin-coated polymer films which are amorphous, such as poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(carbonate bisphenol A), and in a weaker absorbing polymer, such as semicrystalline poly(vinylidene fluoride), over a narrow range of fluences. Irradiation was performed with pulses of 6 ns at 266 nm, and LIPSSs with period lengths similar to the laser wavelength and parallel to the laser polarization direction are formed by devitrification of the film surface at temperatures above the characteristic glass transition temperature of the polymers. No crystallization of the surface is induced by laser irradiation, and crystallinity of the material prevents LIPSS formation. The structural information obtained by both atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS) correlates satisfactorily. Comparison of experimental and simulated GISAXS patterns suggests that LIPSSs can be well described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice.

  20. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  1. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Petefish, Joseph W.

    's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are

  2. Localized surface plasmons of a single ambichiral nanostructure

    NASA Astrophysics Data System (ADS)

    Azarian, Abas; Babaei, Ferydon

    2015-03-01

    Localized surface plasmons (SPs) of single ambichiral nanostructures (ACNs) were investigated using the discrete-dipole approximation. The extinction, absorption cross sections, and local electric filed magnitudes of a single ACN were calculated and compared with those obtained from the single chiral nanostructure (CN) as reference structure. The results showed that two localized SP peaks appear in ACN, while exist only one peak in CN. We found that the optical properties of ACNs are same as CN at low angular displacements, where the morphology of ACNs is closed to CN.

  3. Laser-induced thermal desorption facilitates postsource decay of peptide ions.

    PubMed

    Kim, Shin Hye; Lee, Aera; Song, Jae Yong; Han, Sang Yun

    2012-05-01

    We investigated the thermal mechanism involved in laser desorption/ionization (LDI) of thermally labile molecules from the flat surfaces of amorphous Si (a-Si) and crystalline Si (c-Si). a-Si was selected for this study because of its thermal property, such as low thermal conductivity; thus, it was predicted to be highly susceptible to laser-induced surface heating. By virtue of lack of surface nanostructures, the flat surfaces offer a simple model system to focus on the thermal mechanism, avoiding other effects, including possible non-thermal contributions that can arise from the physical existence of surface nanostructures. For the energetics study, the internal energies of substituted benzylpyridinium ions produced by LDI on the bare and coated surfaces of a-Si and c-Si were obtained using the survival yield method. The results, including LDI thresholds, ion yields, and internal energies all suggested that the LDI mechanism would be indeed thermal, which is most likely promoted by thermal desorption caused by laser-induced surface heating. In addition, the LDI process driven by laser-induced thermal desorption (LITD) was also found to be capable of depositing an excessive internal energy in resulting LDI ions, which underwent a dissociation. It exhibited the essentially same features as in postsource decay (PSD) in MALDI-TOF/TOF mass spectrometry. We report that the LDI process by LITD offers not only a way of intact ionization but also a facile means for PSD of peptide ions, which this work demonstrates is well suited to peptide sequencing using TOF/TOF mass spectrometry.

  4. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  5. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  6. Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy.

    PubMed

    Yang, X Y; Hao, Z Q; Li, C M; Li, J M; Yi, R X; Shen, M; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2016-06-13

    In this study, chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy (CR-SENLIBS) was for the first time applied to improve the detection sensitivities of trace heavy metal elements in aqueous solutions. Utilizing chemical replacement effect, heavy metal ions in aqueous solution were enriched on the magnesium alloy surface as a solid replacement layer through reacting with the high chemical activity metallic magnesium (Mg) within 1 minute. Unitary and mixed solutions with Cu, Pb, Cd, and Cr elements were prepared to construct calibration curves, respectively. The CR-SENLIBS showed a much better detection sensitivity and accuracy for both unitary and mixed solutions. The coefficients of determination R2 of the calibration curves were above 0.96, and the LoDs were of the same order of magnitude, i.e., in the range of 0.016-0.386 μg/mL for the unitary solution, and in the range of 0.025-0.420 μg/mL for the mixed solution. These results show that CR-SENLIBS is a feasible method for improving the detection sensitivity of trace element in liquid sample, which definitely provides a way for wider application of LIBS in water quality monitoring.

  7. Intrinsic instability of thin liquid films on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Sun, L.; Hu, H.; Rokoni, A. A.; Sun, Y.

    2016-09-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on the minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability, and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for a stable thin film evaporation on a given nanostructure.

  8. Intrinsic instability of thin liquid films on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Rokoni, Arif; Hu, Han; Sun, Liyong; Sun, Ying

    2016-11-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for stable thin film evaporation on a given nanostructure.

  9. Surface-enhanced Raman spectroscopy of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Sveshnikova, L. L.; Duda, T. A.; Yeryukov, N. A.; Rodyakina, E. E.; Gutakovskii, A. K.; Batsanov, S. A.; Latyshev, A. V.; Zahn, D. R. T.

    2016-01-01

    We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of nanostructures having different morphology located in the vicinity of metal nanoclusters (Ag, Au, and Pt). Assignment of surface optical modes is based on calculations performed in the frame of the dielectric continuum model. It is established that SERS by phonons has a resonant character. A maximal enhancement by optical phonons as high as 730 is achieved for CdS nanocrystals in double resonant conditions at the coincidence of laser energy with that of electronic transitions in semiconductor nanocrystals and localized surface plasmon resonance in metal nanoclusters. Even a higher enhancement is observed for SERS by surface optical modes in ZnO nanocrystals (above 104). Surface enhanced Raman scattering is used for studying phonon spectrum in nanocrystal ensembles with an ultra-low areal density on metal plasmonic nanostructures.

  10. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn

    2013-03-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface, as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations. This work not only shows significant condensation heat transfer enhancement, but promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  11. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas; Sack, Jean; Wang, Evelyn N

    2013-01-09

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  12. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2013-01-09

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  13. Nanostructured surfaces for microfluidics and sensing applications.

    SciTech Connect

    Picraux, Samuel Thomas; Piech, Marcin; Schneider, John F.; Vail, Sean; Hayes, Mark A.; Garcia, Anthony A.; Bell, Nelson Simmons; Gust, D; Yang, Dongqing

    2007-01-01

    The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.

  14. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.

    PubMed

    Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Stepien, Milena; Mäkelä, Jyrki M; Saarinen, Jarkko J; Toivakka, Martti; Kuusipalo, Jurkka

    2012-02-14

    Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in

  15. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  16. Universal dispersion of surface plasmons in flat nanostructures

    NASA Astrophysics Data System (ADS)

    Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R.

    2014-04-01

    Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks.

  17. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper

    NASA Astrophysics Data System (ADS)

    Ahmmed, K. M. Tanvir; Ling, Edwin Jee Yang; Servio, Phillip; Kietzig, Anne-Marie

    2015-03-01

    The surface micro- and nano-scale features produced by femtosecond laser irradiation on titanium, stainless steel, aluminum and copper are reported in this work. Each observed surface microstructure, which was fabricated from a particular combination of four adjustable parameters, can be characterized by the fluence and pulses-per-spot (F-PPS) and accumulated fluence profile (AFP) models. By performing a wide screening of the experimental space, we have successfully mapped the evolution of microstructures as a function of two variables per model. We have also shown that these two models, in conjunction with one another and the data that we have presented, can be used as an optimization tool for scientists and engineers to quickly fine-tune the laser processing settings necessary for a desired surface topography. In addition, the electron-phonon coupling strength and thermal conductivity have been identified as the material properties that have the largest influence over the achievable surface patterns on metallic substrates.

  18. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  19. Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties

    NASA Astrophysics Data System (ADS)

    Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.

    2017-01-01

    The formation of thermochemical laser-induced periodic surface structures (TLIPSS) on 400-nm Ti films deposited onto a glass substrate is investigated under irradiation by a femtosecond laser with a wavelength of 1026 nm, pulse duration of 232 fs, repetition rate of 200 kHz, and with different spot sizes of 4-21 μm. The optimal fluence for TLIPSS formation reduces monotonously with increasing the spot diameter in the range. It is found that the standard deviation of the TLIPSS period depends significantly on the beam size and reaches approximately 2% when the beam diameter is in the range of 10-21 μm. In addition to TLIPSS formation with the main period slightly smaller than the laser wavelength, an effect of TLIPSS spatial frequency doubling is detected. The optical properties of TLIPSS (reflection spectrum and diffraction efficiency at different incident angles and polarizations) are investigated and compared with theoretical ones to give a basis for the development of an optical inspecting method. The refractive index and absorption coefficient of oxidized ridges of the TLIPSS are theoretically estimated by simulation of the experimental reflection spectrum in the zeroth diffraction order.

  20. Crack suppression of silica glass formed by zoned F2 laser-induced photochemical surface modification of hard silicone thin film coating on polycarbonate

    NASA Astrophysics Data System (ADS)

    Nojiri, Hidetoshi; Okoshi, Masayuki

    2016-12-01

    The surface layer of a hard silicone thin film coating on polycarbonate was modified to silica glass (SiO2) through F2-laser-induced photochemical reactions. To obtain samples with higher abrasion resistances, SiO2 films of 1 µm thickness and over were successfully formed without cracking, by zoning the laser-irradiated area of micrometer order. With the conversion of silicone to SiO2, the volumetric shrinkage of the sample was induced, which simply depended on the number of photons, by varying the single-pulse fluence and irradiation time of a F2 laser. The ratio of volumetric shrinkage to the original silicone was estimated to be approximately 0.85, generating tensile stress in SiO2. The stress could be suppressed to be lower than 48 MPa for typical SiO2 by reducing the laser-irradiated area to be of micrometer order. Also, when the length of one side of the irradiated area is 1 mm, the thickness of the SiO2 film is expected to increase to approximately 5 µm.

  1. Surface nanostructures by single highly charged ions.

    PubMed

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  2. Water-collecting behavior of nanostructured surfaces with special wettability

    NASA Astrophysics Data System (ADS)

    Choo, Soyoung; Choi, Hak-Jong; Lee, Heon

    2015-01-01

    Dew is commonly formed even in dry regions, and we examined the suitability of surfaces with superhydrophilic patterns on a superhydrophobic background as a dew-harvesting system. Nanostructured surfaces with mixed wettability were fabricated by ZnO and TiO2 nanorods. The condensation properties were investigated by environmental scanning electron microscopy (ESEM), and the water-collecting function of the patterned surfaces in an artificial environment was confirmed. Condensation and water-collecting behavior were evaluated as a function of surface inclination angle and pattern shape. We examined the collecting efficiency among the different wettabilities at various inclination angles and observed the condensation behavior for various superhydrophilic shapes.

  3. On the use of CO 2 laser induced surface patterns to modify the wettability of poly(methyl methacrylate) (PMMA)

    NASA Astrophysics Data System (ADS)

    Waugh, David Garreth; Lawrence, Jonathan

    2010-06-01

    CO 2 lasers can be seen to lend themselves to materials processing applications and have been used extensively in both research and industry. This work investigated the surface modification of PMMA with a CO 2 laser in order to vary the wettability characteristics. The wettability characteristics of the PMMA were modified by generating a number of patterns of various topographies on the surface using the CO 2 laser. These induced patterns were trench and hatch with scan dimensions of 50 and 100 μm. Through white light interferometry, it was found that for all laser patterned samples, the surface roughness had significantly increased by up to 3.1 μm. The chemical composition of selected samples was explored using X-ray photoelectron spectroscopy and found that the surface oxygen content had risen by approximately 4 at%. By using a sessile drop device it was found that, in comparison to the as-received sample, 50 μm dimensions gave rise to a more hydrophilic surface; whereas 100 μm dimensions gave rise to either no change in contact angle or an increase making the PMMA hydrophobic. This can be explained by combinations of surface roughness and γp contributing to the observed contact angle, in addition to the possibility of different wetting regimes taking place owed to the variation of topographies over the as-received and laser patterned samples.

  4. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect

    Pennington, D.M.

    1992-04-01

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  5. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  6. Effect of surface nanostructure on temperature programmed reaction spectroscopy

    NASA Astrophysics Data System (ADS)

    Rieger, Michael; Rogal, Jutta; Reuter, Karsten

    2008-03-01

    Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction (TPR) spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can cause inhomogeneities that cannot be grasped by prevalent mean-field data analysis procedures, which thus lead to wrong conclusions on the reactivity of the different surface species. The RuO2(110) surface studied here exhibits only two prominent active sites, arranged in simple alternating rows. Yet, the mere neglection of this still quite trivial nanostructure leads mean-field TPR data analysis [1] to extract kinetic parameters that are in error by several orders of magnitude and that do not even reflect the relative reactivity of the different surface species correctly [2].[1] S. Wendt, M. Knapp, and H. Over, JACS 126, 1537 (2004).[2] M. Rieger, J. Rogal, and K. Reuter, Phys. Rev. Lett (in press).

  7. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    SciTech Connect

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  8. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  9. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    SciTech Connect

    Jia, X.; Jia, T. Q. Peng, N. N.; Feng, D. H.; Zhang, S. A.; Sun, Z. R.

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. The results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.

  10. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Doppler backscattered-signal diagnostics of laser-induced surface hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.

    1995-02-01

    A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.

  11. Laser-Induced Thermal Desorption and Fourier Transform Mass Spectrometry for the Analysis of Molecular Adsorbates on Surfaces.

    NASA Astrophysics Data System (ADS)

    Land, Donald Paul

    The field of surface science is growing rapidly, fueled by the needs to refine petroleum more efficiently, to clean up automobile exhaust, to protect against corrosion and wear, and to shrink the size of electronic components and information storage systems. These are important aspects of daily life, all of which could benefit from a better understanding of the fundamental processes that occur at the interfaces between different phases of matter. For the technologies mentioned, the most important interface is that between the gas and the solid phases. The technique described in this dissertation merges several recently established methods into a powerful instrument for the analysis of the solid-gas interface, yielding information on the chemical nature of species at this interface, relative concentrations, and even reactivities and intermediates. Details of the design and construction of the instrument are followed by a performance evaluation and a presentation of characterization studies for postionization methods, including electron impact ionization, resonance -enhanced multiphoton ionization, and chemical ionization. The use of the technique for the analysis of unknowns on surfaces is then detailed, highlighting the ability to obtain accurate mass measurement using the high resolution capabilities of FTMS. The use of ion storage techniques results in further unique analysis methods via gas-phase charge exchange reactions. This technique opens the door to the study of more complex molecules on surfaces, as well as mixtures of surface species, because FT mass spectrometry is well suited for such analyses. In this dissertation, data is presented for desorption of tens of molecular species encompassing nearly every organic functional group and including species as widely varying as cyanogen, ethylene, cyclohexane, methanol, and even a tetra-peptide. In-depth analyses of the kinetics of ethylene dehydrogenation and the identification of cyclohexene and 1,6-hexa

  12. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    NASA Astrophysics Data System (ADS)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  13. [Perspectives of use of polytetrafluoroethylene with nanostructured surface in dentistry].

    PubMed

    Grigor'ian, A S; Shtanskiĭ, D V; Selezneva, I I; Arkhipov, A V

    2012-01-01

    The perspectives of use of porous polytetrafluorethilen (PTPE) with modified surface combined with mesenchymal stem cells for tissue-engineering constructions were studied. The paper also describes the mode of PTPE surface modification consisting in nanostructured metallic or ceramic layer application resulting in biocompatibility and surface adhesion rates increase. The magnetic atomizing of Ti and Ti-Ca-P-C-O-N nanolayers enhances the material integration potential as well as adhesion rates thus making it perspective when combined with mesenchymal stem cells for bone defects plasty.

  14. Arc tracks on nanostructured surfaces after microbreakdowns

    NASA Astrophysics Data System (ADS)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  15. Disentangling magnetic order on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Erb, D.; Schlage, K.; Bocklage, L.; Hübner, R.; Merkel, D. G.; Rüffer, R.; Wille, H.-C.; Röhlsberger, R.

    2017-07-01

    We present a synchrotron-based x-ray scattering technique which allows disentangling magnetic properties of heterogeneous systems with nanopatterned surfaces. This technique combines the nanometer-range spatial resolution of surface morphology features provided by grazing incidence small angle x-ray scattering and the high sensitivity of nuclear resonant scattering to magnetic order. A single experiment thus allows attributing magnetic properties to structural features of the sample; chemical and structural properties may be correlated analogously. We demonstrate how this technique shows the correlation between structural growth and evolution of magnetic properties for the case of a remarkable magnetization reversal in a structurally and magnetically nanopatterned sample system.

  16. Surface characterization of excimer laser induced deposition of W on GaAs from WF 6 and H 2

    NASA Astrophysics Data System (ADS)

    Tabbal, Malek; Izquierdo, Ricardo; Meunier, Michel; Pépin, Corinne; Yelon, Arthur

    1997-04-01

    Deposition of W thin films has been induced by a KrF excimer laser incident perpendicularly on a GaAs substrate placed in an ambient containing WF 6, H 2 and Ar. In-situ X-Ray Photoelectron Spectroscopy (XPS) shows evidence of a surface interaction between WF 6 and GaAs under laser irradiation. At 50 mJ/cm 2, fluorinated W species adsorbed on the GaAs substrate are partially dissociated by the laser beam, leading to a loss in stoichiometry and the formation of GaF 3 on the surface. The generation of stable, non-volatile, GaF 3 has been identified as a possible obstacle to the nucleation of metallic tungsten films on GaAs in CVD processes using WF 6. At 67 mJ/cm 2, the gas-substrate interaction is further enhanced, but the dissociation of WF 6 into metallic W is achieved. However, at such laser energy densities, the substrate appears to be damaged. By using H 2 as a reducing gas for WF 6, 0.2 μm thick W deposits were obtained but the process was difficult to reproduce. Two competing phenomena, the fluorination of the GaAs surface and the nucleation of the metallic W films taking place simultaneously explain the difficulty in controlling the process. The Auger profiles show limited, but noticeable, As incorporation in the films resulting from the interaction between WF 6 and GaAs under laser irradiation.

  17. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-06-01

    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  18. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  19. Droplet growth and coalescence on nanostructured surfaces during condensation

    NASA Astrophysics Data System (ADS)

    Enright, Ryan; McCarthy, Matthew; Hatton, Benjamin; Wang, Evelyn

    2010-11-01

    In this work, we investigated the condensation behavior of water on nanostructured surfaces fabricated using a self-assembled virus template resulting in typical feature dimensions of 40 nm. These surfaces were first functionalized with a hydrophobic silane coating and, subsequently, some of the surfaces were selectively coated with hydrophilic PVA to create a chemically heterogeneous surface. The condensation process of water on these surfaces was characterized by microscopic imaging of the droplet growth behavior. The dynamics of energetic droplet coalescence events were obtained using high-speed imaging. Condensation on both the chemically homogenous and heterogeneous surfaces showed a preference for the unpinned Cassie droplet wetting mode. However, observed differences between the chemically homogenous and heterogeneous surfaces in both droplet growth and coalescence behavior demonstrate the effects of locally lowered nucleation energy barriers and increased droplet adhesion.

  20. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  1. Tunable reflection minima of nanostructured antireflective surfaces

    NASA Astrophysics Data System (ADS)

    Boden, S. A.; Bagnall, D. M.

    2008-09-01

    Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application.

  2. CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation.

    PubMed

    Setoura, Kenji; Okada, Yudai; Hashimoto, Shuichi

    2014-12-28

    Pulsed-laser heating of colloidal noble-metal nanoparticles in an aqueous solution induces morphological changes such as size reduction. However, the technique suffers disadvantages through polydispersed products. Here, we show that continuous-wave (CW) laser heating of single gold nanoparticles is capable of generating particles of smaller diameters with superb control in terms of exposure time and intensity. We show, based on calculations of particle temperatures under illumination, that surface evaporation below the boiling point of bulk gold occurs, resulting in a gradual diameter decrease in air. In our experiment, a focused illumination of Au NPs through an objective lens of a microscope provided peak-power densities (10(6)-10(7) W cm(-2)) equivalent to that of a typical nanosecond laser. Nevertheless the heating rate under CW laser illumination is much lower than that under pulsed-laser illumination, resulting in better control over nanoparticle heating and related morphological changes. Furthermore, the single-particle study of such heating helps us to clarify the evolution of such changes to a given particle.

  3. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties.

    PubMed

    Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena

    2017-04-28

    In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

  4. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena

    2017-04-01

    In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

  5. Strong emission of terahertz radiation from nanostructured Ge surfaces

    NASA Astrophysics Data System (ADS)

    Kang, Chul; Leem, Jung Woo; Maeng, Inhee; Kim, Tae Heon; Lee, Jong Seok; Yu, Jae Su; Kee, Chul-Sik

    2015-06-01

    Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAs for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.

  6. Strong emission of terahertz radiation from nanostructured Ge surfaces

    SciTech Connect

    Kang, Chul; Maeng, Inhee; Kee, Chul-Sik; Leem, Jung Woo; Yu, Jae Su; Kim, Tae Heon; Lee, Jong Seok

    2015-06-29

    Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAs for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.

  7. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  8. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  9. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    NASA Astrophysics Data System (ADS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-12-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  10. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  11. Diffusion and surface alloying of gradient nanostructured metals

    PubMed Central

    Lu, Ke

    2017-01-01

    Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244

  12. Photocatalytic properties of nanostructured TiO2 surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Lauren; Luttrell, Timothy; Batzill, Matthias

    2012-02-01

    Photocatalytic chemical reactions are actively explored for direct production of chemical fuels from sun light through electrolysis or for the clean-up of organic pollutants through photocatalysis. Titanium dioxide is a prototypical photocatalyst which has been studied extensively. However, there are still unanswered questions regarding the relationship between surface morphology and photocatalytic properties. In this study, we used ion beam assisted surface nanopatterning and UV-catalysis to investigate the dependence of photoreactivity on surface nanostructures. Energetic argon gas ions were used to induce self-formation of nanopatterns on TiO2 surfaces and the structure formation was characterized by atomic force microscopy. The influence of the surface structure on the photochemical properties was assessed through photocatalytic degradation of methyl orange in aqueous solution with a flat sample and a nanopatterned sample of TiO2, respectively. The resulting absorbance spectrums were then compared.

  13. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.

    PubMed

    Mazumder, Prantik; Jiang, Yongdong; Baker, David; Carrilero, Albert; Tulli, Domenico; Infante, Daniel; Hunt, Andrew T; Pruneri, Valerio

    2014-08-13

    Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ∼ 100-200 nm superposed with secondary branching nanostructures made of nanoparticles of length scale ∼ 10-30 nm, we have achieved static contact angles of more than 170° and 160° for water and oil, respectively, while the sliding angles were lower than 4°. At the same time, with respect to the initial flat bare glass, the nanotextured surface presented significantly reduced reflection (<0.5%), increased transmission (93.8% average over the 400 to 700 nm wavelength range), and very low scattering values (about 1% haze). To the authors' knowledge, these are the highest optical performances in conjunction with superomniphobicity reported to date in the literature. The primary nanopillars are monolithically integrated in the glass surface using lithography-free metal dewetting followed by reactive ion etching,1 while the smaller and higher surface area branching structure made of secondary nanoparticles are deposited by the NanoSpray2 combustion chemical vapor deposition (CCVD).

  14. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-12-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex-concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex-concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing.

  15. Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence.

    PubMed

    Lui, Siu L; Godwal, Yogesh; Taschuk, Michael T; Tsui, Ying Y; Fedosejevs, Robert

    2008-03-15

    Laser-induced breakdown spectroscopy (LIBS) is a well-known technique for fast, stand-off, and nondestructive analysis of the elemental composition of a sample. We have been investigating micro-LIBS for the past few years and demonstrating its application to microanalysis of surfaces. Recently, we have integrated micro-LIBS with laser-induced fluorescence (LIF), and this combination, laser ablation laser-induced fluorescence (LA-LIF), allows one to achieve much higher sensitivity than traditional LIBS. In this study, we use a 170 microJ laser pulse to ablate a liquid sample in order to measure the lead content. The plasma created was re-excited by a 10 microJ laser pulse tuned to one of the lead resonant lines. Upon optimization, the 3sigma limit of detection was found to be 35 +/- 7 ppb, which is close to the EPA standard for the level of lead allowed in drinking water.

  16. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    SciTech Connect

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  17. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    SciTech Connect

    El-Said, A. S. E-mail: a.s.el-said@hzdr.de; Moslem, W. M.; Djebli, M.

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  18. Magnetically induced decrease in droplet contact angle on nanostructured surfaces.

    PubMed

    Zhou, Qian; Ristenpart, William D; Stroeve, Pieter

    2011-10-04

    We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.

  19. Surface characterization of nanostructured 'black silicon' using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work, we utilize electrochemical impedance spectroscopy (EIS) to study the electronic characteristics of nanostructured silicon (Si) fabricated using the metal-assisted chemical etched (MACE) process. The nanostructured Si fabricated using the MACE process results in a density graded surface that reduces the broadband surface reflection of Si making it appear almost black, which coins it the name `black Si' (bSi). We study two bSi samples prepared using varying MACE times (20s and 40s) and a reference bare silicon sample using EIS between 1 MHz and 1 Hz frequencies. At an illumination intensity created with the use of a tungsten lamp source calibrated to output an intensity of 1-Sun (1000 W/m2), the impedance behavior at bias potentials in both the forward and reverse bias ranging between -1 V and 1 V are studied. We also study the effect of illumination wavelength by using bandpass filters at 400 nm and 800 nm. The results indicate that the charge transfer resistance (Rct) decreases as the surface roughness of the electrodes increases and as the illumination wavelength increases. We also find that the constant phase element (CPE) impedance of the electrodes increases with increasing surface roughness. These results will guide our future work on high efficiency bSi solar cells.

  20. Fast and Slow Wetting Dynamics on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  1. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  2. Intrusion and extrusion of a liquid on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Giacomello, A.; Meloni, S.; Casciola, C. M.

    2017-01-01

    Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this ‘suspended’ state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.

  3. Fabrication of large area nanostructures with surface modified silica spheres

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2014-03-01

    Surface modification of silica spheres with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) has been performed at ambient condition. However, the FTIR spectra and field emission scanning electron microscope (FESEM) images show no evidence of the surface modification. The reaction temperatures were varied from 60 to 80 °C with various reaction periods. Small absorption shoulder of the CO stretching vibration was at 1700 cm-1, and slightly increased with the increase of the reaction time at 60 °C. The clear absorption peak appeared at 1698 cm-1 for the spheres reacted for 80 min at 70 °C and shifted toward 1720 cm-1 with the increase the reaction time. Strong absorption peak showed at 1698 cm-1 and shifted toward 1725 cm-1 with the increase of the reaction time at 80 °C. The spheres were dispersed to methanol and added photoinitiator (Irgacure-184). The solution was poured to a patterned glass substrate and exposed to the 254 nm UV-light during a self-assembly process. A large area and crack-free silica sphere film was formed. To increase the mechanical stability, a cellulose acetate solution was spin-coated to the film. The film was lift-off from the glass substrate to analyze the surface nanostructures. The surface nanostructures were maintained, and the film is stable enough to use as a mold to duplicate the nanopattern and flexible.

  4. Curved surface effect and emission on silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Yin, Jun; Zhou, Nian-Jie; Huang, Zhong-Mei; Miao, Xin-Jian; Cheng, Han-Qiong; Su, Qin; Liu, Shi-Rong; Qin, Chao-Jian

    2013-10-01

    The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, LO1, and LO2 lines in PL spectra due to Si—N, Si—NO, Si=O, and Si—O—Si bonds on curved surface, respectively. Si—Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the LYb line of electroluminescence (EL) emission.

  5. Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Piredda, Giovanni; Stroj, Sandra; Fasching, Gernot; Bodea, Marius; Schwarz, Elisabeth

    2016-11-01

    High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20-30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about

  6. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  7. Manipulating Surface Energy to form Compound Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    DeJarld, Matthew T.

    Nanostructures have been lauded for their quantum confinement capabilities and potential applications in future devices. Compound semiconductor nanostructures are being integrated into the next generation of photovoltaic and light emitting devices to take advantage of their unique optical characteristics. Despite their promise, adoption of nanostructure based devices has been slow. This is due in large part to difficulties in effective fabrication and processing steps. By manipulating the surface energy of various components during growth, we can control the final structure and corresponding optoelectronic characteristics. Specifically I will present on GaSb quantum dots embedded in GaAs and GaAs nanowires using novel substrate and catalyst materials. GaSb quantum dots embedded in a GaAs matrix are ideal for devices that require capture of minority carriers as they exhibit a type II band offset with carrier concentration in the valence band. However, during GaAs capping, there is a strong driving force for the dot to demolish into a distribution of intact dots, rings, and GaSb material clusters. We demonstrate the ability to mitigate this effect using both chemical and kinetic means: we alter the surface chemistry via the addition of aluminum, and use droplet epitaxy as an alternative quantum dot formation method. Secondly, the growth of high quality GaAs on silicon has always been restricted due to material incompatibilities. With the emergence of increasingly smaller low power electronics, there is a demand to integrate optoelectronic devices directly on the surface of CMOS sensor stacks. Utilizing the vapor-liquid-solid growth mechanism we are able to demonstrate the growth of high quality GaAs nanowires on polycrystalline substrates at low temperatures. This allows for the growth of III-V nanowire based devices directly on the metal pads of pre-packaged CMOS chips. We also investigate the potential use of bismuth as an alternative to gold for catalyzing

  8. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  9. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  10. Strong Casimir force reduction through metallic surface nanostructuring

    PubMed Central

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  11. Laser Nanostructurization of the Metal and Alloy Surfaces

    NASA Astrophysics Data System (ADS)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  12. Strong Casimir force reduction through metallic surface nanostructuring.

    PubMed

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A Alec; Davids, Paul S; Decca, Ricardo S; Aksyuk, Vladimir A; Dalvit, Diego A R; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.

  13. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  14. Photophysical aspects of molecular probes near nanostructured gold surfaces.

    PubMed

    Ghosh, Sujit Kumar; Pal, Tarasankar

    2009-05-28

    Highly ordered, self-organized assemblies of organic molecules at surfaces of metal particles with sizes in the nanometer regime have been a subject of immense interest in recent years. Amongst the metal nanoparticles, considering the nobility of gold, organic fluoroprobes have often been attached to the surfaces of gold nanoparticles to form an extended network for potential technological applications. These organic-inorganic hybrid nanoassemblies offer an efficient route for the patterning of surfaces with functional nanometer-scale architectures utilizing several non-covalent intermolecular bonding interactions, e.g., hydrogen bonding, coordination bonding, etc. There is a growing recognition of fluorescence spectroscopy to achieve a molecular level understanding of the physical and chemical aspects of the molecule-surface interactions. The fluorophore-bound gold nanoparticles provide a convenient way to examine the mechanistic details of various deactivation pathways of the photoexcited fluoroprobes, such as energy and electron transfer to the particles as well as different types of intermolecular interactions involved in producing the bottom-up assembly of tailored nanostructures with a wide variety of structures and properties. The understanding of electronic absorption and dynamics in nanoparticulate systems is essential before assembling them into devices, which is essentially the future goal of the use of nanostructured systems. It is, therefore, important to elucidate the particle size and distance dependence on the interaction between excited molecular probes and the gold nanoparticles. The potential impact of the derived nanopatterned surfaces ranges from applications in molecular electronics to selective sensors to diagnostic devices. The greatest promise of these systems lies in the potential to tune functional aspects of the supramolecular assemblies at surfaces by manipulation of the interactions governing the derivation of supramolecular function

  15. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  16. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-06-17

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  17. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions

    NASA Astrophysics Data System (ADS)

    Di Martino, G.; Turek, V. A.; Braeuninger-Weimer, P.; Hofmann, S.; Baumberg, J. J.

    2017-02-01

    Copper (Cu) can provide an alternative to gold (Au) for the development of efficient, low-cost and low-loss plasmonic nanoparticles (NPs), as well as selective nanocatalysts. Unlike Au, the surface oxidation of Cu NPs can be an issue restricting their applicability. Here, we selectively reduce the Cu NPs by low power laser illumination in vacuum and use dark-field scattering to reveal in real time the optical signatures of the reduction process and its influence on the Cu NP plasmonic resonance. We then study reactive processes at the single particle level, using individual Cu catalyst nanoparticles for the selective laser-induced chemical vapour deposition of germanium nanostructures.

  19. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions

    SciTech Connect

    De Temmerman, Gregory; Bystrov, Kirill; Zielinski, Jakub J.; Balden, Martin; Matern, Gabriele; Arnas, Cecile; Marot, Laurent

    2012-07-15

    The formation of metallic nanostructures by exposure of molybdenum and tungsten surfaces to high fluxes of low energy helium ions is studied as a function of the ion energy, plasma exposure time, and surface temperature. Helium plasma exposure leads to the formation of nanoscopic filaments on the surface of both metals. The size of the helium-induced nanostructure increases with increasing surface temperature while the thickness of the modified layer increases with time. In addition, the growth rate of the nanostructured layer also depends on the surface temperature. The size of the nanostructure appears linked with the size of the near-surface voids induced by the low energy ions. The results presented here thus demonstrate that surface processing by low-energy helium ions provides an efficient route for the formation of porous metallic nanostructures.

  20. Nanostructured N-polar GaN surfaces and their wetting behaviors

    NASA Astrophysics Data System (ADS)

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Yan, Weishan; Zhang, Ling; Liu, Duo

    2017-08-01

    We report here the wetting behaviors of nanostructured N-polar GaN wafers. The nanostructured GaN samples were obtained by wet photochemical etching under UV illumination. It is confirmed that the wetting behavior of the nanostructured N-polar GaN surfaces follows the Wenzel model. Both surface roughening and decoration with Au nanoparticles will reduce the contact angle (CA), while modification with lauric acid will increase hydrophobility with CAs that change from 42.1° to 129.5°. Besides, the nanostructured surface shows high contact angle hysteresis due to strong static friction that can reach ∼15 mJ/m2.

  1. Light trapping by direction-dependent light transmission in front-surface photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Kishimoto, Yuko; Hoshi, Yusuke; Usami, Noritaka

    2014-12-01

    Front-surface photonic nanostructures contribute both reduced reflection loss and light trapping to increase optical absorption in solar cells. We investigated the effect of sub-wavelength photonic nanostructures on light trapping in thin-film crystalline silicon solar cells. We clarified that, even though the angle distribution of scattered light is small compared with that in the case of Lambertian scattering, light trapping enhances with increasing depth of the surface photonic nanostructure, which originates from the direction-dependent light transmission in the surface photonic nanostructure. Our findings indicate that this direction-dependent light transmission contributes to the advanced photon management in thin-film solar cells.

  2. Engineering aperiodic nanostructured surfaces for scattering-based optical devices

    NASA Astrophysics Data System (ADS)

    Lee, Yuk Kwan Sylvanus

    Novel optical devices such as biosensors, color displays and authentication devices can be obtained from the distinctive light scattering properties of resonant nanoparticles and nanostructured arrays. These arrays can be optimized through the choice of material, particle morphology and array geometry. In this thesis, by engineering the multi-frequency colorimetric responses of deterministic aperiodic nanostructured surfaces (DANS) with various spectral Fourier properties, I designed, fabricated and characterized scattering-based devices for optical biosensing and structural coloration applications. In particular, using analytical and numerical optimization, colorimetric biosensors are designed and fabricated with conventional electron beam lithography, and characterized using dark-field scattering imaging as well as image autocorrelation analysis of scattered intensity in the visible spectral range. These sensors, which consist of aperiodic surfaces ranging from quasi-periodic to pseudo-random structures with flat Fourier spectra, sustain highly complex structural resonances that enable a novel optical sensing approach beyond the traditional Bragg scattering. To this end, I have experimentally demonstrated that DANS with engineered structural colors are capable of detecting nanoscale protein monolayers with significantly enhanced sensitivity over periodic structures. In addition, different aperiodic arrays of gold (Au) nanoparticles are integrated with polydimethylsiloxane (PDMS) microfluidic structures by soft-lithographic micro-imprint techniques. Distinctive scattering spectral shifts and spatial modifications of structural color patterns in response to refractive index variations were simultaneously measured. The successful integration of DANS with microfluidics technology has introduced a novel opto-fluidic sensing platform for label-free and multiplexed lab-on-a-chip applications. Moreover, by studying the isotropic scattering properties of homogenized

  3. Surface integral formulations for the design of plasmonic nanostructures.

    PubMed

    Forestiere, Carlo; Iadarola, Giovanni; Rubinacci, Guglielmo; Tamburrino, Antonello; Dal Negro, Luca; Miano, Giovanni

    2012-11-01

    Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N-combined region integral equations, the T-combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations and their limitations can have a high impact on the engineering of numerous nano-scale optical devices such as plasmon-enhanced light emitters, biosensors, photodetectors, and nanoantennas.

  4. First Principles Studies of ABO3 Perovskite Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam

    Perovskite-type complex oxides, with general formula ABO 3, constitute one of the most prominent classes of metal oxides which finds key applications in diverse technological fields. In recent years, properties of perovskites at reduced dimensions have aroused considerable interest. However, a complete atomic-level understanding of various phenomena is yet to emerge. To fully exploit the materials opportunities provided by nano-structured perovskites, it is important to characterize and understand their bulk and near-surface electronic structure along with the electric, magnetic, elastic and chemical properties of these materials in the nano-regime, where surface and interface effects naturally play a dominant role. In this thesis, state-of-the-art first principles computations are employed to systematically study properties of one- and two-dimensional perovskite systems which are of direct technological significance. Specifically, our bifocal study targets (1) polarization behavior and dielectric response of ABO3 ferroelectric nanowires, and (2) oxygen chemistry relevant for catalytic properties of ABO3 surfaces. In the first strand, we identify presence of novel closure or vortex-like polarization domains in PbTIO3 and BaTiO3 ferroelectric nanowires and explore ways to control the polarization configurations by means of strain and surface chemistry in these prototypical model systems. The intrinsic tendency towards vortex polarization at reduced dimensions and the underlying driving forces are discussed and previously unknown strain induced phase transitions are identified. Furthermore, to compute the dielectric permittivity of nanostructures, a new multiscale model is developed and applied to the PbTiO3 nanowires with conventional and vortex-like polarization configurations. The second part of the work undertaken in this thesis is comprised of a number of ab initio surface studies, targeted to investigate the effects of surface terminations, prevailing chemical

  5. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    NASA Astrophysics Data System (ADS)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  6. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.

    PubMed

    Gunawidjaja, Ray; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V

    2009-11-01

    It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.

  7. Mixed role of surface on intrinsic losses in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    De, Subhadeep; Kunal, K.; Aluru, N. R.

    2016-03-01

    We utilize molecular dynamics simulations and show opposing roles of surface on dissipation in nanostructures. While the surface defects always aid in the entropy generation process, the scattering of phonons from rough surfaces can suppress Akhiezer damping. For the case of a silicon (2 × 1) reconstructed surface, the former dominates and Q-1 (Q is the quality factor) is found to increase with the decrease in size. However, different scaling trends are observed in the case of a hydrogen (H) terminated silicon surface with no defects and dimers. Particularly, in the case of a H-terminated silicon, if the resonator is operated with a frequency Ω such that Ωτph<1 , where τph is the phonon relaxation time and Q-1 is found to decrease with the decrease in size. The opposite scaling is observed for Ωτph>1 . A simplified model, based on two phonon groups (with positive and negative Grüneisen parameters), is considered to explain the observed trend. We show that the equilibration time between the two mode groups decreases with the decrease in size for the H-terminated structure. We also study the scaling of Q-1 factor with frequency for these cases.

  8. Drop impact dynamics on oil-infused nanostructured surfaces.

    PubMed

    Lee, Choongyeop; Kim, Hyunsik; Nam, Youngsuk

    2014-07-22

    We experimentally investigated the impact dynamics of a water drop on oil-infused nanostructured surfaces using high-speed microscopy and scalable metal oxide nano surfaces. The effects of physical properties of the oil and impact velocity on complex fluid dynamics during drop impact were investigated. We show that the oil viscosity does not have significant effects on the maximal spreading radius of the water drop, while it moderately affects the retraction dynamics. The oil viscosity also determines the stability of the infused lubricant oil during the drop impact; i.e., the low viscosity oil layer is easily displaced by the impacting drop, which is manifested by a residual mark on the impact region and earlier initiation of prompt splashing. Also, because of the liquid (water)-liquid (oil) interaction on oil-infused surfaces, various instabilities are developed at the rim during impact under certain conditions, resulting in the flower-like pattern during retraction or elongated filaments during spreading. We believe that our findings will contribute to the rational design of oil-infused surfaces under drop impact conditions by illuminating the complex fluid phenomena on oil-infused surfaces during drop impact.

  9. Development of Methods for Surface Modification of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  10. Surface texturing effect on crack suppression of SiO2 film formed by F2 laser-induced photochemical surface modification of silicone on polycarbonate under heat resistance test

    NASA Astrophysics Data System (ADS)

    Nojiri, Hidetoshi; Okoshi, Masayuki

    2017-08-01

    A crack-free SiO2 film was successfully fabricated on silicone-coated polycarbonate (PC) even under heat resistance tests at 100 and 120 °C for 3 h by an additional rubbing treatment with steel wool for use as an automobile window material. The SiO2 film was formed by 157 nm F2 laser-induced photochemical surface modification of silicone on PC. The modified SiO2 layer was also zoned with a mesh mask during the laser irradiation. The zoned SiO2 layer was effective for suppressing cracks during laser irradiation. However, even the zoned layer caused cracks under heat resistance tests. A mechanism of the cracking was analyzed on the basis of observations of sample surfaces by confocal laser microscopy. The rubbed samples showed high heat resistance. By atomic force microscopy, the surface of the modified SiO2 layer was clearly observed to be textured, which reduced the large difference in the thermal expansion coefficient between SiO2 and silicone on PC, thus maintaining optical transparency.

  11. Enhancement of antireflection property of silicon using nanostructured surface combined with a polymer deposition

    PubMed Central

    2014-01-01

    Silicon (Si) nanostructures that exhibit a significantly low reflectance in ultraviolet (UV) and visible light wavelength regions are fabricated using a hydrogen etching process. The fabricated Si nanostructures have aperiodic subwavelength structures with pyramid-like morphologies. The detailed morphologies of the nanostructures can be controlled by changing the etching condition. The nanostructured Si exhibited much more reduced reflectance than a flat Si surface: an average reflectance of the nanostructured Si was approximately 6.8% in visible light region and a slight high reflectance of approximately 17% in UV region. The reflectance was further reduced in both UV and visible light region through the deposition of a poly(dimethylsiloxane) layer with a rough surface on the Si nanostructure: the reflectance can be decreased down to 2.5%. The enhancement of the antireflection properties was analyzed with a finite difference time domain simulation method. PMID:24397945

  12. Measuring H, O, li, B, and BE on Planetary Surfaces: Calibration of Laser-Induced Breakdown Spectroscopy (libs) Data Under Air, Vacuum, and CO2

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Nelms, M.; Breves, E. A.

    2012-12-01

    Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and

  13. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.

    PubMed

    Li, Siwei; Xu, Ping; Ren, Ziqiu; Zhang, Bin; Du, Yunchen; Han, Xijiang; Mack, Nathan H; Wang, Hsing-Lin

    2013-01-01

    Here we demonstrate, for the first time, the fabrication of Au nanostructures on polyaniline (PANI) membrane surfaces for surface enhanced Raman spectroscopy (SERS) applications, through a direct chemical reduction by PANI. Introduction of acids into the HAuCl(4) solution leads to homogeneous Au structures on the PANI surfaces, which show only sub-ppm detection levels toward the target analyte, 4-mercaptobenzoic acid (4-MBA), because of limited surface area and lack of surface roughness. Thorny Au nanostructures can be obtained through controlled reaction conditions and the addition of a capping agent poly (vinyl pyrrolidone) (PVP) in the HAuCl(4) solution and the temperature kept at 80 °C in an oven. Those thorny Au nanostructures, with higher surface areas and unique geometric feature, show a SERS detection sensitivity of 1 × 10(-9) M (sub-ppb level) toward two different analyte molecules, 4-MBA and Rhodamine B, demonstrating their generality for SERS applications. These highly sensitive SERS-active substrates offer novel robust structures for trace detection of chemical and biological analytes.

  14. Transient and self-limited nanostructures on patterned surfaces

    NASA Astrophysics Data System (ADS)

    Dimastrodonato, V.; Pelucchi, E.; Zestanakis, P. A.; Vvedensky, D. D.

    2013-05-01

    Site-controlled quantum dots formed during the deposition of (Al)GaAs layers by metal-organic vapor-phase epitaxy on GaAs(111)B substrates patterned with inverted pyramids result in geometric and compositional self-ordering along the vertical axis of the template. We describe a theoretical scheme that reproduces the experimentally observed time-dependent behavior of this process, including the evolution of the recess and the increase of Ga incorporation along the base of the template to stationary values determined by alloy composition and other growth parameters. Our work clarifies the interplay between kinetics and geometry for the development of self-ordered nanostructures on patterned surfaces, which is essential for the reliable on-demand design of confined systems for applications to quantum optics.

  15. Self-assembly of metal nanostructures on binary alloy surfaces.

    PubMed

    Duguet, T; Han, Yong; Yuen, Chad; Jing, Dapeng; Unal, Barış; Evans, J W; Thiel, P A

    2011-01-18

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems.

  16. Self-assembly of metal nanostructures on binary alloy surfaces

    PubMed Central

    Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.

    2011-01-01

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706

  17. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  18. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    NASA Astrophysics Data System (ADS)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  19. Colour centres and nanostructures on the surface of laser crystals

    NASA Astrophysics Data System (ADS)

    Kulagin, N. A.

    2012-11-01

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10-10 to 10-7 m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Men+ : [O2-]k clusters.

  20. Colour centres and nanostructures on the surface of laser crystals

    SciTech Connect

    Kulagin, N A

    2012-11-30

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)

  1. Experimental Analysis of Nano-structures on Anode Metal Surfaces in Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kovach, Yao; Foster, John

    2016-10-01

    Nano-structures were observed on the metal (tungsten, molybdenum) surface with helium plasma under fusion relevant plasma condition. It could bring serious problems for fusion reactors such as material erosion, dust formation and divertor lifetime etc. However, In order to solve these problems, further studies on topic of finding more unknown conditions of Nano-structure formation will be indispensable. This work focuses on the investigations of Nano-structures with its formation factors in atmospheric pressure. An electron microscopy is used to assess anode metal surface morphological changes. In particular, various Nano-structures are observed on both tungsten and stainless steel anode surfaces by the exposure to helium plasma. The characteristics of Nano-structures are documented in terms of type and size. Furthermore, material composition spectrum and mapping are used to define the status of extra growth and local area on anode metal surface with and without helium plasma effect.

  2. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals.

    PubMed

    Liu, Yi; Zhang, Zhanping; Wells, Matthew C; Beebe, Thomas P

    2005-09-13

    Surface-templated nanostructures on the highly oriented pyrolytic graphite (HOPG) basal plane were created by controlled Cs+- or Ga+)ion bombardment, followed by subsequent oxidation at high temperature, forming molecule corrals. The corrals were then used for template growth of SiOx/Si nanostructures. We demonstrate here that, for SiOx/Si nanostructures formed in controlled molecule corrals, the amount of silicon deposited on the surface is directly correlated with the corral density, making it possible to generate patterned SiOx/Si nanostructures on HOPG. Since the size, depth, position, and surface density of the nanostructures can be controlled on the HOPG, it is possible to produce surfaces with patterned or gradient functionalities for applications in fields such as biosensors, microelectronics, and biomaterials (e.g., neuron pathfinding). If desired, the SiOx structures can be reduced in size by etching in dilute HF, and further oxidation of the nanostructures is slow enough to provide plenty of time to functionalize them using ambient and solution reactions and to perform surface analysis. Organosilane monolayers on surface-templated SiOx/Si nanostructures were examined by X-ray photoelectron spectroscopy, time-of-flight secondary ion mas spectrometry, and atomic force microscopy. Silanes with long alkyl chains such as n-octadecyltrichlorosilane (C18) were found to both react on SiOx/Si nanostructures and to condense on the HOPG basal plane. Shorter-chain silanes, such as 11-bromoundicyltrimethoxysilane (C11) and 3-mercaptopropyltrimethoxysilane (C3) were found to react preferentially with SiOx/Si nanostructures, not HOPG. The SiOx/Si nanostructures were also found to be stable toward multiple chemical reactions. Selective modification of SiOx/Si nanostructures on the HOPG basal plane is thus achievable.

  3. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    PubMed

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  4. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  5. An atomic force microscopy statistical analysis of laser-induced azo-polyimide periodic tridimensional nanogrooves.

    PubMed

    Stoica, Iuliana; Epure, Luiza; Sava, Ion; Damian, Victor; Hurduc, Nicolae

    2013-09-01

    The surface morphology of azo-polyimide films was investigated after 355 nm Nd: YAG laser irradiation with two different incident fluencies. Atomic force microscopy (AFM) was employed to correlate the laser-induced tridimensional nanogrooved surface relief with the incident fluence and the number of irradiation pulses. The height images revealed that the grooves depth increased even tens of times by increasing the incident fluence, using the same numbers of irradiation pulses. For low incident fluence, the films were uniformly patterned till 100 pulses of irradiation. Instead, when using higher fluence, after 15 pulses of irradiation the accuracy of the surface relief definition was reduced. This behavior could be explained by means of two different mechanisms, one that suppose the film photo-fluidization due to the cis-trans isomerization processes of the azo-groups and the second one responsible for the directional mass displacement. The dominant surface direction and parameters like isotropy, periodicity, and period were evaluated from the polar representation for texture analysis, revealing the appearance of ordered and directionated nanostructures for most of the experimental conditions. Also, the graphical studies of the functional volume parameters have evidenced the improvement of the relief structuration during surface nanostructuration. The correlation of these statistical texture parameters with the irradiation characteristics is important in controlling the alignment of either the liquid crystals or the cells/tissues on patterned azo-polyimide surfaces for optoelectronic devices and implantable biomaterials, respectively. Copyright © 2013 Wiley Periodicals, Inc.

  6. Zinc oxide nanostructures with metal particles based on surface plasmons for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Yu, Jae Su; Ko, Yeong Hwan; Lee, Hee Kwan; Leem, Jung Woo

    2011-02-01

    We fabricate various ZnO (zinc oxide) nanostructures, such as nanorods, nanotips and nanoflowers, as well as ZnO subwavelength grating structures for applications in optoelectronic devices such as solar cells, light emitting diodes, and biosensors. The optical properties are theoretically analyzed using the rigorous coupled-wave analysis method. The fabricated ZnO nanostructures are of wurzite crystal structure. The reflection and absorption characteristics depend strongly on the shape and geometry of Zn nanostructures. The ZnO nanostructures with Au (or Ag) particles, based on surface plasmons, are also investigated.

  7. Laser Induced Breakdown Spectroscopy (LIBS)

    DTIC Science & Technology

    2010-03-31

    Gold Bond Powder Allopurinol (PIM 020F, French) Aluminum ophorite explosive. Methanol Aspirin Alphaprodine (PIM 878) Amatex. Aluminum Phosphide...can, directly or indirectly, change the electric charges of atoms or molecules . It is produced when radionuclides decay. LASER-INDUCED BREAKDOWN

  8. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  9. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area

    PubMed Central

    Sotiriou, Georgios A.; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E.

    2013-01-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  10. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  11. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.

    PubMed

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-03-03

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system includes a nanostructured Au surface that serves dual roles as the electrochemical working electrode (WE) and SERS substrate, a microfabricated Pt counter electrode (CE), and an external Ag/AgCl reference electrode (RE). The nanostructured Au WE enables highly sensitive in situ SERS spectroscopy through large and reproducible SERS enhancements, which eliminates the need for resonant wavelength matching of the laser excitation source with the electronic absorption of the target molecule. The new SEC analysis system has the merits of wide applicability to target molecules, small sample volume, and a low detection limit. We demonstrate in situ SERS spectroelectrochemistry measurements of the metalloporphyrin hemin showing shifts of the iron oxidation marker band ν4 with the nanostructured Au working electrode under precise potential control.

  12. Design and Development of Nanostructured Surfaces for Enhanced Optical Sensing

    NASA Astrophysics Data System (ADS)

    Santiago Cordoba, Miguel A.

    At smaller size regimes, materials' physicochemical properties change with respect to bulk analogs. In the case of metal nanoparticles like gold or silver, specific wavelengths of light can induce a coherent oscillation of their conduction electrons, generating an optical field confined to the nanoparticle surface. This phenomenon is termed surface plasmon, and has been used as an enhancing mechanism in optical sensing, allowing the detection of foreign materials at small concentrations. The goal of this dissertation is to develop nanostructured materials relying on surface plasmons that can be combined with different optical sensing platforms in order to enhance current detection limits. Initially, we focus on the development of surfactant free, stimuli responsive nanoparticle thin films, which undergo an active release when exposed to a stimulus such as a change in pH. These nanoparticle thin films provide faster analyte particle transport and direct electronic coupling with the analyte molecule, all without attenuating the evanescent wave from the optical transducer to the particle. These stimuli responsive nanostructured substrates are tested within a surface enhanced Raman platform for the detection of biomolecular probes at sub-nanomolar concentrations and microL sample sizes. Furthermore, the developed nanosubstrates can be patterned, providing a versatile nanoparticle thin film for multiplexing analysis, offering a substantial advantage over conventional surface based nanoparticle detection methods. Our results encouraged further optimization of light-matter interactions in optical detection platforms. It is for that reason that this dissertation evolves towards confined optical systems. Particularly, whispering gallery microcavities confine electromagnetic waves - at high volumes - at the boundary of a dielectric resonator. In this dissertation, we examined the sensitivity of whispering gallery modes combining optical microcavities with plasmonic

  13. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  14. Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface

    SciTech Connect

    Qiu, Jingjing; Wu, Yung-Chen; Wang, Yi-Chung; Engelhard, Mark H.; McElwee-White, Lisa; Wei, Wei

    2013-01-01

    Utilizing intrinsic surface properties to direct and control nanostructure growth on a large-scale surface is fundamentally interesting and holds great technological promise. Reported here is a novel "bottom-up" approach to fabricating sub-15 nm Au nanoparticles on a nanostructured Ag surface via a liquid-phase chemical deposition by using localized surface plasmon resonance (SPR) excitation. A molecular thermometry strategy was employed to investigate the SPR-mediated photothermal heating of the Ag film on nanosphere (AgFON) substrate and measured the surface temperature to be above 230 °C, which led to an efficient decomposition of CH3AuPPh3 to form Au nanoparticles on the Ag surface. Particle sizes were tunable between 3 to 10 nm by adjusting the deposition time. Moreover, investigation of the deposition kinetics revealed that the Au nanoparticle deposition was surface-limited by the Ag substrate. This SPR-mediated chemical solution deposition (SPMCSD) strategy should be extendable to the deposition of many other materials for various applications.

  15. Intrinsic laser-induced breakdown of silicate glasses

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid B.

    2002-03-01

    This paper is a survey of experimental results in laser- induced damage observed mainly at State Optical Institute (St. Petersburg, Russia; at School of Optics/CREOL (Orlando, FL) which expounds conditions of observation of an intrinsic breakdown of high-purity silicate glasses and proposes the general idea of its mechanism. It is shown that the surface laser-induced breakdown of dielectrics is resulted from photo- and thermo-ionization of surface defects but not from interaction of laser radiation with dielectric material itself. Conditions of thermal ionization of the volume of dielectric materials are determined in dependence on features of absorption of material and temporal features of laser radiation. Statistical properties of laser-induced breakdown of high-purity glasses are caused by statistical properties of laser radiation while the breakdown itself is a deterministic process. Elimination of impact of self-focusing on the results of the breakdown threshold measurements is observed if the spot size of laser radiation in focal plane is less than the wavelength. No photoionization of glass matrix is detected before laser- induced breakdown, and there is no effect of photoionization of impurities and defects on intrinsic breakdown. A mechanism of intrinsic laser-induced breakdown is proposed which is a spasmodic transformation of the electronic level structure in a wide-bandgap dielectric caused by the electric field of laser radiation. This is a collective process converting a transparent material to the opaque state but not an individual process of any type of ionization.

  16. Research on laser induced acoustic source based underwater communication system

    NASA Astrophysics Data System (ADS)

    Lei, Lihua; Zhou, Ju; Zhang, Lei; Wan, Xiaoyun

    2016-10-01

    Acoustic transducers are traditionally used to generate underwater acoustical energy with the device physically immersed in water. Novel methods are required for communicating from an in-air platform or surface vessel to a submerged vessel. One possible noncontact downlink communication system involves the use of laser induced acoustic source. The most common mechanisms of opto-acoustic energy conversion are, by order of increasing laser energy density and efficiency, thermal expansion, surface evaporation and optical breakdown. The laser induced acoustic source inherently bears the obvious advantage of not requiring any physical transducer in the medium. At the same time, acoustic energy propagation is efficient in water, whereas optical energy propagate well in air, leading to a more efficiency opto-acoustic communication method. In this paper, an opto-acoustic underwater Communication system is described, aiming to study and analysis whether laser induced sound could achieve good performance for effective communication in practical application.

  17. Surface effects and gold-nanostructure surface coating of whispering-gallery microresonators

    NASA Astrophysics Data System (ADS)

    Ganta, Deepak

    Scope and method of study. The purpose of this study is to explore the surface effects of high-quality-factor optical microsphere resonators and thin-film-coated microresonators in various ambient gases. In this work, we present a systematic study of the assembly and characterization of gold nanostructures. We employ a wet-chemical synthesis method for growing gold nanorods and a directed electrochemical method for assembly of gold nanowires. The adhesion methods of gold nanostructures on high-quality-factor optical microsphere resonators are also investigated. Findings and conclusions. A novel method is employed for measuring thermal accommodation coefficients of various gases like nitrogen, helium and ambient air on several coated and uncoated surfaces of fused-silica microresonators, operating at room temperature. This method is further extended to measure the absorption coefficient of a surface film or water layer on a fused-silica microresonator, and provides a novel method to find the water layer desorption and adsorption rates on the surface of a microresonator in the presence of gases like ambient air and nitrogen. We have adapted methods for growing gold nanorods of different aspect ratios (AR), and developed a novel method of growing high-AR (20-400) gold nanowires from low-AR gold nanorods. Various methods were discovered to coat these gold nanostructures and carbon nanotubes on the fused-silica surface. The most successful method involves surface modification with MPMDMS (i.e., silanization) before coating with gold nanorods. These coating methods have made microresonators useful for plasmonic sensing applications.

  18. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  19. Process flow to integrate nanostructures on silicon grass in surface micromachined systems

    NASA Astrophysics Data System (ADS)

    Mehner, H.; Müller, L.; Biermann, S.; Hänschke, F.; Hoffmann, M.

    2016-10-01

    The process flow to integrate metallic nanostructures in surface micromachining processes is presented. The nanostructures are generated by evaporation of microstructured silicon grass with metal. The process flow is based on the lift-off of a thin amorphous silicon layer deposited using a CVD process. All steps feature a low temperature load beneath 120 °C and high compatibility with many materials as only well-established chemicals are used. As a result metallic nanostructures usable for optical applications can be generated as part of multilayered microsystems fabricated in surface micromachining.

  20. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures

    PubMed Central

    Fabbri, F.; Villani, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T.; Salviati, G.

    2014-01-01

    Although generally ascribed to the presence of defects, an ultimate assignment of the different contributions to the emission spectrum in terms of surface states and deep levels in ZnO nanostructures is still lacking. In this work we unambiguously give first evidence that zinc vacancies at the (1010) nonpolar surfaces are responsible for the green luminescence of ZnO nanostructures. The result is obtained by performing an exhaustive comparison between spatially resolved cathodoluminescence spectroscopy and imaging and ab initio simulations. Our findings are crucial to control undesired recombinations in nanostructured devices. PMID:24894901

  1. Growth of individual carbon composite nanostructures on the faceted TiC( 1 1 1 ) surface

    NASA Astrophysics Data System (ADS)

    Günster, J.; Baxendale, M.; Otani, S.; Souda, R.

    2001-11-01

    We report here the thermally activated growth of carbon composite nanostructures on the faceted TiC(1 1 1) single crystal surface. As a result of a high temperature anneal over 2500 K complex structures are growing from well defined nucleation sites at the cusps of the faceted surface. The growth of the complex shaped nanostructures is initialized by the formation of Ti nanodroplets and is fed by the thermal decomposition of TiC. The shape of the nanostructures is determined by the minimum energy configuration of their encapsulating carbon shell.

  2. Functional surface chemistry of carbon-based nanostructures

    NASA Astrophysics Data System (ADS)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  3. Mesoporous SnO2 nanostructures of ultrahigh surface areas by novel anodization.

    PubMed

    Bian, Haidong; Tian, Yayuan; Lee, Chris; Yuen, Muk Fung; Zhang, WenJun; Li, Yang Yang

    2016-10-04

    Here we report a novel type of hierarchical mesoporous SnO2 nanostructures fabricated by a facile anodization method in a novel electrolyte system (an ethylene glycol solution of H2C2O4/NH4F) followed by thermal annealing at a low temperature. The SnO2 nanostructures thus obtained feature highly porous nanosheets with mesoporous pores well below 10 nm, enabling a remarkably high surface area of 202.8 m2/g which represents one of the highest values reported to date on SnO2 nanostructures. The formation of this novel type of SnO2 nanostructures is ascribed to an interesting self-assembly mechanism of the anodic tin oxalate, which was found to be heavily impacted by the anodization voltage and water content in the electrolyte. The electrochemical measurements of the mesoporous SnO2 nanostructures indicate their promising applications as lithium-ion battery and supercapacitor electrode materials.

  4. Effects of surface morphology randomness on optical properties of Si-based photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yasuyoshi; Aonuma, Osamu; Tayagaki, Takeshi; Takahashi, Isao; Usami, Noritaka

    2017-08-01

    We have fabricated Si-based photonic nanostructures with submicron sizes by the maskless wet etching of Ge quantum dot (QD) multilayers and demonstrated that the photonic nanostructures result in the enhanced optical absorption in the near-infrared light owing to light trapping. In this study, the optical properties of Si-based photonic nanostructures with surface morphology randomness were calculated by the finite-difference time-domain (FDTD) method. The obtained results indicate that as the degree of randomness increased, the absorption in a near-infrared light range enhanced, suggesting that the enhancement of optical absorption in the near-infrared light by photonic nanostructures is due to the randomness of the nanostructures.

  5. Surface enhanced Raman scattering of light by ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-01

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  6. Surface enhanced Raman scattering of light by ZnO nanostructures

    SciTech Connect

    Milekhin, A. G. Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-15

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E{sub 2}(high) and A{sub 1}(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 10{sup 3}) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  7. Engineered nanostructured thin films for enhanced surface acoustic wave sensors

    NASA Astrophysics Data System (ADS)

    Kwan, Jonathan Kwok Wah

    Sensor technologies profoundly impact all aspects of our everyday lives. Advances have led to smaller devices, faster response times, reduced costs, higher specificity and sensitivity, and even new sensing technologies. Surface acoustic wave (SAW) technology, which has been around for many decades already, is an example of a newer sensing technology that has begun to be studied for sensing applications. Many advantages of SAW sensors have been identified, in particular the high sensitivity, low cost and wireless capability. However, as the technology is still in its infancy for sensing applications, many improvements and refinements on the platform have yet to be explored. With the arrival of nanotechnology, many existing technologies have benefited from integrating with the new findings that nanotechnology has brought forth. This thesis investigates the enhancement of existing SAW sensors using nanostructured films fabricated by a thin film deposition process known as glancing angle deposition (GLAD). The GLAD technique is a highly flexible and precise thin film fabrication method that is able to create high-surface-area thin films. This high-surface-area characteristic of these films is the driving motivation in their utilization to enhance the performance of SAW sensors. This thesis first demonstrates that dense, extremely high surface area films can be deposited on SAW sensors without adversely affecting device performance. These modified sensors were then studied as humidity sensors to demonstrate improved sensitivity with the addition of the GLAD films. Before the sensors with GLAD films could be tested in a liquid environment, ion-milling was investigated as a method of eliminating the clustering of the individual structures typically seen after exposure to liquids. These modified films were extended for use on the SAW sensors to investigate liquid sensing performance. The performance of SAW devices with clustered films was also studied for comparison. Both

  8. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  9. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  10. A nanostructured surface increases friction exponentially at the solid-gas interface

    PubMed Central

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-01-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media. PMID:27596851

  11. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    NASA Astrophysics Data System (ADS)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  12. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  13. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  14. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.; Hess, W.P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl.

  15. Interaction of Wide-Band-Gap Single Crystals with 248-nm Excimer Laser Irradiation: X. Laser-Induced Near-Surface Absorption in Single-Crystal NaCl

    SciTech Connect

    Nwe, K H.; Langford, Stephen C.; Dickinson, J T.; Hess, Wayne P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand Kelvin, even in the absence of visible surface damage. The origin of the laser required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. Diffuse reflectance spectra acquired after exposure suggest that near surface V-type centers are responsible for most of the absorption at 248 nm in single crystal NaCl.

  16. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.

    PubMed

    Malic, Lidija; Veres, Teodor; Tabrizian, Maryam

    2011-01-15

    The advances in genomics and proteomics have unveiled an exhaustive catalogue of biomarkers that can potentially be used as diagnostic and prognostic indicators of genetic and infectious diseases. Current thrust in biosensor development is towards rapid, real-time, label-free and highly sensitive detection of the indicative biomarkers. While surface plasmon resonance imaging (SPRi) biosensors could potentially be the best suited candidate for biomarker-based diagnosis, important milestones need to be reached. Commercially available SPRi instrumentation is currently limited by the flow-cell technology to serial-sample processing and has limited sensitivity for the detection of markers present at low concentration. In this paper, we have implemented an approach to enhance sample handling and increase the sensitivity of the SPRi detection technique. We have developed a digital microfluidic platform with an integrated nanostructured biosensor interface that allows for rapid, ultra-low volume, sensitive, and automated on-chip SPRi detection of DNA hybridization reactions. Through the exploitation of electromagnetic properties of nanofabricated periodic gold nanoposts, SPRi signal was increased by 200% with the estimated limit of detection of 500 pM (90 attomoles). Using the versatile fluidic manipulation provided by the digital microfluidics, rapid and parallel target identification was achieved on multiple array elements within 1 min using 180 nL sample volume. By delivering multiple target analytes in individually addressable low volume droplets, without external pumps and fluidic interconnects, the overall assay time, cost and complexity was reduced. The proposed platform allows extreme versatility in the manipulation of precious low volume samples which makes this technology very suitable for diagnostic applications.

  17. Laser-induced incandescence from laser-heated silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Menser, Jan; Daun, Kyle; Dreier, Thomas; Schulz, Christof

    2016-11-01

    This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

  18. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  19. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  20. Laser-induced copper deposition with weak reducing agents

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Fateev, S. A.; Logunov, L. S.; Tumkin, I. I.; Safonov, S. V.; Khairullina, E. M.

    2013-11-01

    The study showed that organic alcohols with 1,2,3,5,6 hydroxyl groups can be used as reducing agents for laser-induced copper deposition from solutions (LCLD).Multiatomic alcohols, sorbitol, xylitol, and glycerol, are shown to be effective reducing agents for performing LCLD at glass-ceramic surfaces. High-conductivity copper tracks with good topology were synthesized.

  1. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    DTIC Science & Technology

    2010-07-01

    Pyrotech. 2010. 43. Samuels, A. C.; DeLucia, F. C., Jr.; McNesby, K. L.; Miziolek, A. W. Laser-Induced Breakdown Spectroscopy of Bacterial Spores , Molds ...surfaces and complex print job definition through scripting. It is currently being used to determine limits of detection for explosive residues using LIBS

  2. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    PubMed Central

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-01-01

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276

  3. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  4. Surface nanostructuring of Ni/Cu foils by femtosecond laser pulses

    SciTech Connect

    Korol'kov, V P; Ionin, Andrei A; Kudryashov, Sergei I; Seleznev, L V; Sinitsyn, D V; Samsonov, R V; Maslii, A I; Medvedev, A Zh; Gol'denberg, B G

    2011-04-30

    This work examines the effect of high-power femtosecond laser pulses on Ni/Cu bilayer foils produced by electrodeposition. We consider nanostructures formed at different laser beam parameters and under different ambient conditions. The surface nanostructures obtained in air and water have mostly the form of quasi-periodic ripples with a characteristic period of 400 - 450 and 370 - 390 nm, respectively, at a laser wavelength of 744 nm, whereas the nanostructures produced in ethanol and benzine have the form of spikes, typically spaced 400 - 700 nm apart. Femtosecond laser nanostructuring of metals is for the first time proposed, and experimentally tested, as a viable approach to producing anti-reflective coatings on the surface of polymer replicas. (laser nanotechnologies)

  5. Surface and interface magnetism in nanostructures and thin films

    NASA Astrophysics Data System (ADS)

    Frey, Natalie A.

    Nanostructured systems composed of two or more technologically important materials are useful for device applications and intriguing for the new fundamental physics they may display. Magnetism at the nanoscale is dominated by size and surface effects which combined with other media lead to new spin dynamics and interfacial coupling phenomena. These new properties may prove to be useful for optimizing sensors and devices, increasing storage density for magnetic media, as well as for biomedical applications such as drug delivery, MRI contrast enhancement, and hyperthermia treatment for cancer. In this project we have examined the surface and interface magnetism of composite nanoparticles and multilayer thin films by using conventional DC magnetization and AC susceptibility as well as transverse susceptibility, a method for directly probing the magnetic anisotropy of materials. Au and Fe3O4 synthesized together into three different nanoparticle configurations and ranging in size for 60 nm down to 9nm are used to study how the size, shape, and interfaces affect the most fundamental properties of magnetism in the Au-Fe3O 4 system. The findings have revealed ways in which the magnetic properties can be enhanced by tuning these parameters. We have shown that by changing the configurations of the Au and Fe3O4 particles, exotic behavior can be observed such as a large increase in anisotropy field (H K ranging from 435 Oe to 1650 Oe) and the presence of exchange bias. Multilayer thin films have been studied as well which combine the important classes of ferromagnetic and ferroelectric materials. In one case, barium hexaferrite/barium strontium titanate thin films, the anisotropic behavior of the ferromagnet is shown to change due to the introduction of the secondary material. In the other example, CrO2/Cr2O3 bilayers, exchange coupling is observed as Cr2O3 is an antiferromagnet as well as a ferroelectric. This coupling is manifest as a uniaxial anisotropy rather than the

  6. Unstable Growth and Decay of Nanostructures on Crystalline Surfaces

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.

    2001-03-01

    Instabilities during growth are typically attributed to the venerable [step] Ehrlich-Schwoebel effect (SESE), or closely related asymmetries(J.G. Amar and F. Family, Phys. Rev. Lett. 77), 4584 (1996) for atoms arriving at upper and lower sides of a step. Esp., SESE leads to the well-known Bales-Zangwill (BZ) instability of step edges. We have found(O. Pierre-Louis, M.R. D'Orsogna, and T.L. Einstein, Phys. Rev. Lett. 82), 3661 (1999) that an analogous in-plane asymmetry of the energy barriers at kinks for atoms moving along step edges, the kink Ehrlich-Schwoebel effect (KESE), can produce a new instability that can supplant the BZ instability. (The relevant edge and corner barriers can be calculated semiempirically; moreover, they can theoretically be tuned in electrochemical cells.(M.I. Haftel and T.L. Einstein, Proc. MRS 580), 195 (2000); Proc. ICSFS-10 (Princeton, 2000), Appl. Surface Sci.) We analyze various contributions to the mass current along the step. Monte Carlo simulations on a simple SOS model are used to illustrate behavior and distinguish between strong and weak KESE. The threshold of stable kink-flow growth is analyzed. KESE can induce mound formation, the orientation of which depends on the strength of the kink ES barrier. Such behavior was observed on Ag(100).(G. Costantini ldots U. Valbusa, Proc. ICSFS-10 (Princeton, 2000), Appl. Surf. Sci.; Surface Sci. 459), L487 (2000) Intriguing experiments observe wavelength selection during step-flow growth on vicinal Cu(100).(T. Maroutian, L. Douillard, and H.-J. Ernst, Phys. Rev. Lett. 83), 4353 (1999) KESE also can account for the instability of the Wolf-Villain model, in contrast to the similar Das Sarma-Tamborenea model.(P. Punyindu, Z. Toroczkai, and S. Das Sarma, preprint) At the coarse-grained level, the continuum step model can account for the decay of nanomounds on Si(7x7): the exponents of the decay rate and, more remarkably, the overall rate of these nanostructures (to within a factor of two

  7. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    and temperature, which is manifested by variations in the diffraction lineshape. The effects of both intrinsic and extrinsic corrugation factors will be discussed. Through a carefully coordinated study I show how these surface morphology measurements can be combined with angle resolved photoemission measurements to understand the role of surface corrugation in the ARPES measurement process. The measurements described here rely on the development of an analytical formulation for relating the crystal corrugation to the photoemission linewidth. I present ARPES measurements that show that, despite significant deviation from planarity of the crystal, the electronic structure of exfoliated suspended graphene is nearly that of ideal, undoped graphene; the Dirac point is measured to be within 25 meV of EF. Further, I show that suspended graphene behaves as a marginal Fermi-liquid, with a quasiparticle lifetime which scales as (E -- EF)--1 ; comparison with other graphene and graphite data is discussed. In contrast to graphene, which must be treated as a flexible membrane with continuous height variation, roughness in clean single crystal surfaces arises from lattice dislocations, which introduce discrete height variations. Such height variations can be exploited to generate a self assembled nano-structured surface. In particular, by making a vicinal cut on a single crystal surface, a nanoscale step array can be formed. A model system for such nanoscale self assembly is Cu(111). Cu(775) is formed by making an 8.5° viscinal cut of Cu(111) along the [112¯] axis. The electronic states formed on the surface of this system, with a nanoscale step array of 14 A terraces, shows markedly different behavior those formed on Cu(111). In this dissertation, I show that the tunability of a femtosecond optical parametric oscillator, combined with its high-repetition rate and short pulse length, provides a powerful tool for resonant band mapping of the sp surface and image states on flat and

  8. Titanium Surfaces with Nanostructures Influence on Osteoblasts Proliferation: a Systematic Review

    PubMed Central

    Juodzbalys, Gintaras; Vilkinis, Valdas

    2014-01-01

    ABSTRACT Objectives Nanothechnology found to be increasingly implemented in implantology sphere over the recent years and it shows encouraging effect in this field. The aim of present review is to compare, based on the recent evidence, the influence of various nanostructure surface modifications of titanium for implants, on osteoblasts proliferation. Material and Methods A literature review of English articles was conducted by using MEDLINE database restricted to 2009 - 2014 and constructed according PRISMA guidelines. Search terms included “Titanium implant”, “Titanium surface with nanostructure”, “Osteoblast”. Additional studies were identified in bibliographies. Only in vitro and/or in vivo studies on nano structured implant surfaces plus control sample, with specific evaluation method for osteoblasts proliferation and at least one Ti sample with nanostructure, were included in the review. Results 32 studies with 122 groups of examined samples were selected for present review. Each study conducted in vitro experiment, two studies conducted additional in vivo experiments. All studies were dispensed by type of surface modification into two major groups; “Direct ablative titanium implant surface nano-modifications” with 19 studies and ”Nanocomposite additive implant surface modifications” with 13 studies. Overall 24 studies reporting on positive effect of nanostructured surface, 2 studies found no significant advantage and 6 studies reported on negative effect compared to other structure scales. Conclusions From examination of selected articles we can notice marked advantage in implementation of various nanostructures onto implant surface. Yet for discovering the ultimate implant surface nanostructure, further comparable investigations of Ti surface nanostructures need to be done. PMID:25386228

  9. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N.; Kaminska, Bozena

    2017-03-01

    Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.

  10. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces.

    PubMed

    Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N; Kaminska, Bozena

    2017-03-01

    Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.

  11. High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K-Ar dating of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Sugita, Seiji; Kameda, Shingo; Miura, Yayoi N.; Ishibashi, Ko; Ohno, Sohsuke; Kamata, Shunichi; Arai, Tomoko; Morota, Tomokatsu; Namiki, Noriyuki; Matsui, Takafumi

    2015-04-01

    We conducted a series of laser induced breakdown spectroscopy (LIBS) experiments for K measurements under high vacuum conditions (10- 6 Pa) for the purpose of developing in-situ isochron type K-Ar dating instruments for planetary missions. Unlike whole rock measurement methods, isochron measurements require LIBS experiments in a vacuum chamber because simultaneous Ar isotopic measurements are necessary. However, detailed examination of detection limits and accuracy of this method at low pressures has not been examined extensively before. In this study, the capability of K measurements under high vacuum conditions was examined using LIBS. A compact Czerny-Turner type spectrometer equipped with a charge-coupled device (CCD) as a detector was employed. Twenty-three geologic standard samples were measured using the LIBS method. The second strongest K emission line at 769.89 nm was used for calibration because the strongest emission line at 766.49 nm may suffer from strong interference from another emission line. A calibration curve was constructed for K using internal normalization with the oxygen line at 777 nm and well fitted by a power-law function. Based on the prediction band method, the detection limit and the quantitation limit were estimated to be 300 and 800 ppm, respectively. The 1σ relative uncertainty of the K calibration was 20% for 1 wt.% K2O and 40% for 3000 ppm K2O. If the amount of Ar is measured with 15% error for the 3.5 billion years rocks containing 1 and 0.3 wt.% K2O, the K-Ar ages would be determined with 10% and 20% 1σ errors, respectively. This level of precision will significantly improve the current Martian chronology, which has uncertainty about a factor of two to four. These results indicate that the concentration of K can be measured quantitatively under high vacuum conditions using a combination of instruments that have previously been carried in planetary missions, which suggests the viability of building in situ isochron K-Ar dating

  12. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    PubMed Central

    Virk, Naunidh; Yazyev, Oleg V.

    2016-01-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409

  13. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures.

    PubMed

    Virk, Naunidh; Yazyev, Oleg V

    2016-02-05

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  14. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  15. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    PubMed Central

    Svensson, Sara; Forsberg, Magnus; Hulander, Mats; Vazirisani, Forugh; Palmquist, Anders; Lausmaa, Jukka; Thomsen, Peter; Trobos, Margarita

    2014-01-01

    The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly

  16. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  17. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures.

    PubMed

    Didiot, Clement; Pons, Stephane; Kierren, Bertrand; Fagot-Revurat, Yannick; Malterre, Daniel

    2007-10-01

    The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity, as does the shape of the nanoparticles. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics. However, to date, there have been few studies of the electronic properties of self-organized nanostructures. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

  18. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  19. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    PubMed Central

    Hiramatsu, Mineo; Hori, Masaru

    2010-01-01

    We have developed a method of forming platinum (Pt) nanoparticles using a metal organic chemical fluid deposition (MOCFD) process employing a supercritical fluid (SCF), and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs), two-dimensional carbon nanostructures, and carbon nanotubes (CNTs). By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  20. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

  1. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    DOE PAGES

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; ...

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  2. Formation of Gallium-induced nanostructures on single crystal HOPG surface

    NASA Astrophysics Data System (ADS)

    Sandhu, Jaspreet; Chauhan, Amit Kumar Singh; Govind

    2011-08-01

    The room temperature growth of gallium atoms on the highly oriented pyrolytic graphite (HOPG) surface has been performed. The gallium atoms were deposited by thermal evaporation method in an ultra high vacuum system at a base pressure 5 × 10-10 torr. The X-ray photo electron spectroscopy (XPS) studies had been performed to confirm the presence of gallium atoms on HOPG surface. Scanning tunneling spectroscopy (STM) technique was employed to study the surface morphology of the clean HOPG surface and gallium covered HOPG surfaces which recognize the formation of gallium induced nanostructures. The deconvoluted XPS core level spectra of C (1s) and Ga (3d) demonstrate the possible interaction between substrate and the adsorbate atoms. The STM analysis revealed that the gallium deposition on HOPG led to significant change in the surface morphology. It was observed that the Ga atoms adsorbed as layer structure on HOPG surface for low coverage while quasi one-dimensional chain like nanostructure (1 ± 0.2 nm) has been formed for higher Ga coverage. The nanostructured surfaces induced by Ga deposition are found to be stable and could be used as a template for the growth of metallic nanostructures.

  3. Tuning thermal transport ultra-thin silicon membranes: Influence of surface nanostructures

    NASA Astrophysics Data System (ADS)

    Neogi, Sanghamitra; Donadio, Davide

    2015-03-01

    A detailed understanding of the behaviour of phonons in low-dimensional and nanostructured systems provides opportunities for thermal management at the nanoscale, efficient conversion of waste heat into electricity, and exploration of new paradigms in information and communication technologies. We elucidate the interplay between nanoscale surface structures and thermal transport properties in free-standing silicon membranes with thicknesses down to 4 nm. We demonstrate that whereas dimensional reduction affects the phonon dispersion, the surface nanostructures provide the main channel for phonon scattering leading to the dramatic reduction of thermal conductivity in ultra-thin silicon membranes. The presence of surface nanostructures, by means of pattern formation and surface oxidation, leads to a 40-fold reduction in the in-plane thermal conductivity of the thinnest membrane. We also investigate the effect of chemical substitution and the geometry of the nanostructures in the thermal transport properties of the membranes. We show that local strain induced by nanostructuring enables tuning of the thermal conductivity of these nanophononic metamaterials. Acknowledgment: This project is funded by the program FP7-ENERGY-2012-1-2STAGE under Contract Number 309150.

  4. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  5. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition.

    PubMed

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S; Schildhauer, Thomas A; Ludwig, Alfred; Köller, Manfred

    2014-05-16

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs).Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  6. Surface Charge Transfer Doping of Low-Dimensional Nanostructures toward High-Performance Nanodevices.

    PubMed

    Zhang, Xiujuan; Shao, Zhibin; Zhang, Xiaohong; He, Yuanyuan; Jie, Jiansheng

    2016-12-01

    Device applications of low-dimensional semiconductor nanostructures rely on the ability to rationally tune their electronic properties. However, the conventional doping method by introducing impurities into the nanostructures suffers from the low efficiency, poor reliability, and damage to the host lattices. Alternatively, surface charge transfer doping (SCTD) is emerging as a simple yet efficient technique to achieve reliable doping in a nondestructive manner, which can modulate the carrier concentration by injecting or extracting the carrier charges between the surface dopant and semiconductor due to the work-function difference. SCTD is particularly useful for low-dimensional nanostructures that possess high surface area and single-crystalline structure. The high reproducibility, as well as the high spatial selectivity, makes SCTD a promising technique to construct high-performance nanodevices based on low-dimensional nanostructures. Here, recent advances of SCTD are summarized systematically and critically, focusing on its potential applications in one- and two-dimensional nanostructures. Mechanisms as well as characterization techniques for the surface charge transfer are analyzed. We also highlight the progress in the construction of novel nanoelectronic and nano-optoelectronic devices via SCTD. Finally, the challenges and future research opportunities of the SCTD method are prospected.

  7. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Hyun; Kang, Taejoon; Yoo, Seung Min; Lee, Sang Yup; Kim, Bongsoo; Choi, Yang-Kyu

    2009-06-01

    A controllable flower-like Au nanostructure array for surface-enhanced Raman scattering (SERS) was fabricated using the combined technique of the top-down approach of conventional photolithography and the bottom-up approach of electrodeposition. Au nanostructures with a mean roughness ranging from 5.1 to 49.6 nm were obtained by adjusting electrodeposition time from 2 to 60 min. The rougher Au nanostructure provides higher SERS enhancement, while the highest SERS intensity obtained with the Au nanostructure is 29 times stronger than the lowest intensity. The SERS spectra of brilliant cresyl blue (BCB), benzenethiol (BT), adenine and DNA were observed from the Au nanostructure.

  8. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF.

  9. Role of specific amine surface configurations for grafted surfaces: implications for nanostructured CO2 adsorbents.

    PubMed

    Shimizu, Steven; Song, Changsik; Strano, Michael

    2011-03-15

    Amine-grafted porous materials that capture CO2 from emission streams have been considered to be potential alternatives to the more energy-intensive liquid amine systems currently employed. An underappreciated fact in the uptake mechanism of these materials is that under dry, anhydrous conditions each CO2 molecule must react with two adjacent amine groups to adsorb onto the surface, which makes the configuration of amine groups on the surface critically important. Using this chemical mechanism, we developed a semiempirical adsorption isotherm equation that allows straightforward computation of the adsorption isotherm from an arbitrary surface configuration of grafted amines for honeycomb, square, and triangular lattices. The model makes use of the fact that the distribution of amines with respect to the number of nearest neighbors, referred to as the z-histogram, along with the amine loading and equilibrium constant, uniquely determine the adsorption characteristics to a very good approximation. This model was used to predict the range of uptakes possible just through surface configuration, and it was used to fit experimental data in the literature to give a meaningful equilibrium constant and show how efficiently amines were utilized. We also demonstrate how the model can be utilized to design more efficient nanostructured adsorbents and polymer-based adsorbents. Recommendations for exploiting the role of surface configuration include the use of linear instead of branched polyamines, higher amine grafting densities, the use of flexible, less bulky, long, and rotationally free amine groups, and increased silanol densities.

  10. Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures.

    PubMed

    Li, Dongfang; Lawandy, Nabil M; Zia, Rashid

    2013-09-09

    The enhanced optical forces induced by surface phonon-polariton (SPhP) modes are investigated in different silicon carbide (SiC) nanostructures. Specifically, we calculate optical forces using the Maxwell stress tensor for three different geometries: spherical particles, slab waveguides, and rectangular waveguides. We show that SPhP modes in SiC can produce very large forces, more than one order of magnitude larger than the surface plasmon-polariton (SPP) forces in analogous metal nanostructures. The material and geometric basis for these large optical forces are examined in terms of dispersive permittivity, separation distance, and operating wavelength.

  11. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  12. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    NASA Astrophysics Data System (ADS)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  13. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.

    PubMed

    Palmstrom, Axel F; Santra, Pralay K; Bent, Stacey F

    2015-08-07

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  14. Laser-induced magnetization curve

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Sato, Masahiro; Oka, Takashi

    2014-12-01

    We propose an all optical ultrafast method to highly magnetize general quantum magnets using a circularly polarized terahertz laser. The key idea is to utilize a circularly polarized laser and its chirping. Through this method, one can obtain magnetization curves of a broad class of quantum magnets as a function of time even without any static magnetic field. We numerically demonstrate the laser-induced magnetization process in realistic quantum spin models and find a condition for the realization. The onset of magnetization can be described by a many-body version of Landau-Zener mechanism. In a particular model, we show that a plateau state with topological properties can be realized dynamically.

  15. The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells

    PubMed Central

    Cho, Eun Chul; Au, Leslie; Zhang, Qiang; Xia, Younan

    2010-01-01

    In this study, we examined the effects of size, shape, and surface chemistry of gold nanostructures on their uptake (including both adsorption and internalization) by SK-BR-3 breast cancer cells. We used both spherical and cubic Au nanostructures (nanospheres and nanocages, respectively) of two different sizes, and their surface was modified with poly(ethylene glycol) (PEG), antibody anti-HER2, or poly(allyamine hydrochloride) (PAA). Our results showed that the size of the Au nanostructures influenced their uptake by the cells in a similar way regardless of the surface chemistry, while the shape dependency could vary depending on the surface functional group. In addition, the cells preferred to take up the Au nanostructures covered by different surface groups in the following order: PAA>> anti-HER2> PEG. The fraction of Au nanostructures attached to the cell surface was also dependent on the aforementioned parameters. PMID:20029850

  16. Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary

    NASA Astrophysics Data System (ADS)

    Liu, Xiu Mei; He, Jie; Lu, Jian; Ni, Xiao Wu

    2009-02-01

    The effect of surface tension on the behavior of a liquid-jet is investigated experimentally by means of a fiber-coupled optical beam deflection (OBD) technique. It is found that a target under water is impacted in turn by a laser-plasma ablation force and by a high-speed liquid-jet impulse induced by bubble collapse in the vicinity of a rigid boundary. The liquid-jet impact is found to be the main damage mechanism in cavitation erosion. Furthermore, the liquid-jet increases monotonously with surface tension, so cavitation erosion rises sharply with increasing surface tension. Surface tension also reduces bubble collapse duration. From the experimental results and the modified Rayleigh theory, the maximum bubble radius is obtained and it is found to reduce with increasing surface tension.

  17. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  18. Hydrolytic stability of the Si-O-Ti bonds in the chemical assembly of titania nanostructures on silica surfaces

    NASA Astrophysics Data System (ADS)

    Sosnov, Evgeni A.; Malkov, A. A.; Malygin, A. A.

    2010-12-01

    The hydrolytic stability of the Si-O-Ti bonds in titania nanostructures on the surface of silica materials of different genesis is analyzed. The mechanism of hydrolysis is considered and the decisive role of structural and chemical features of silicas in the stability of titania nanostructures on their surface is demonstrated.

  19. Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review.

    PubMed

    Guduru, Deepak; Niepel, Marcus; Vogel, Jürgen; Groth, Thomas

    2011-10-01

    Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.

  20. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  1. Wettability control of micropore-array films by altering the surface nanostructures.

    PubMed

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  2. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

    PubMed

    Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P

    2012-11-30

    Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.

  3. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  4. Laser-induced surface acoustic waves and their detection via diagnostic systems for detecting radiation damage on steel materials of nuclear devices

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-iti; Chiba, Atsuya; Wakai, Eiichi

    2015-06-01

    The development of a non-destructive, non-contact diagnostic system to detect radiation damage is very important for measuring radioactive materials. A system using surface acoustic waves (SAWs) induced and detected by lasers was developed. The propagation velocities of SAWs on stainless steel irradiated by 20 keV He and Ar ions were investigated, and a tendency for the velocity to increase with an increase in ion irradiation was observed. This tendency may be due to surface modification. A non-linear effect on ion irradiation versus normal surface velocity in the vertical direction was confirmed.

  5. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    SciTech Connect

    Shen, Jian; Graber, Christof; Liburdy, James; Pence, Deborah; Narayanan, Vinod

    2010-05-15

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon. Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)

  6. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    SciTech Connect

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.; Nell, Kara M.; Clubb, Donald C.; Gill, Gary A.; Addleman, Raymond S.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

  7. Self-organized hierarchical structures in polymer surfaces: self-assembled nanostructures within breath figures.

    PubMed

    Muñoz-Bonilla, Alexandra; Ibarboure, Emmanuel; Papon, Eric; Rodriguez-Hernandez, Juan

    2009-06-02

    Herein we report the preparation of hierarchically micro- and nanostructured polymer surfaces in block copolymer/homopolymer blends. The structural order at different length scales was obtained combining two methodologies, e.g., the breath figures method to produce porous microstructures ("top-down" approach) with block copolymer self-assembly to induce microphase separation at the nanometer length scale ("bottom-up" approach). The interplay of the breath figure formation during the spin-coating and self-assembly of the triblock copolymer allowed the preparation of polymer surfaces having micrometer-sized cavities decorated with nanostructured block copolymers. The system described herein possesses unique characteristics. First, the surface chemical composition can be varied by a surface rearrangement upon annealing either to dry or humid air. Moreover, surface rearrangement is accompanied with structural changes, i.e. both topography and nanostructuration can be reversibly modified upon annealing. In terms of topograghy, a transition between holes and hills was obtained upon soft annealing to water vapor and can be recovered upon annealing to dry air. Finally, the pore nanostructure can be modulated from a micellar array to a lamellar phase when the film is exposed either to air or to tetrahydrofuran vapor.

  8. Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface.

    PubMed

    Chen, Ross C C; Yu, Y T; Su, K W; Chen, J F; Chen, Y F

    2013-01-14

    The dynamics of a water jet on a flat free surface are investigated using a nanosecond pulsed laser for creating an oscillating bubble with different depths beneath the free surface. A thin jet is shown to deform a crater surface resulted from surface depression and cause a circular ring-shaped crater on the connection surface between the crater of surface depression and the thin jet. The collapse of this circular ring-shaped crater is proposed to the crown-like formation around a thick jet. The evolution of the bubble depth suggests a classification of four distinctive ranges of the bubble depths: non-crown formation when the parameter of bubble depth over the maximum bubble radius γ ≤ 0.5, unstable crown formation when 0.5 ≤ γ ≤ 0.6, crown-like structure with a complete crown wall when 0.6 ≤ γ ≤ 1.1, and non-crown formation when 1.1 ≤ γ. Furthermore, the orientation of the crown wall gradually turns counterclockwise to vertical direction with increasing γ from 0.5 to 1.1, implying a high correlation between the orientation of the crown wall and the depth of the bubble. This correlation is explained and discussed by the directional change of the jet eruption from the collapse of circular ring-shaped crater.

  9. [The effects of nanostructured titanium fabricated via surface plastic deformation on Saos-2 cell adherence, proliferation and differentiation].

    PubMed

    Wan, Peng-Bo; Chen, Wan-Tao; He, Jie; Zhang, Xiao-Nong; Zhou, Xiao-Jian

    2008-04-01

    To study the effects of nanostructured titanium fabricated via surface plastic deformation on Saos-2 cell adherence, proliferation and differentiation in vitro. Nanostructured titanium surfaces were prepared using plastic deformation and divided into three groups: group I (30 minutes, n=6), group II (60 minutes, n=6) and group III (90 minutes, n=6), according to the time of preparation. The untreated titanium was used as control group. Saos-2 cell line was cultured on different titanium surfaces. The features of titanium surface and the effects of nanostructured titanium surfaces on cell adherence, proliferation and shape were examined using fluorescence microscope, LSCM and MTT tests. RT-PCR was used to assess the alteration of BMP-4 gene expression. The data was analyzed for ANOVA with SAS6.0 software package. The results of SEM showed that plastic deformation for 60 and 90 minutes yielded nanostructured titanium surface. The nanostructured titanium surface significantly promoted Saos-2 cell adherence (P<0.05). Group II (60 minutes) had more extensive spreading on titanium surfaces than the control group. Group II (60 minutes) and group III (90 minutes) had significantly higher BMP-4 gene expression in Saos-2 cells than control group (P<0.05). The biological behavior of Saos-2 cells on nanostructured titanium surface fabricated via plastic deformation for 60 minutes is better than other groups. Surface plastic deformation may be a potential method to yield nanostructured surface of titanium.

  10. Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays

    NASA Astrophysics Data System (ADS)

    Baroni, P.-Y.; Päivänranta, B.; Scharf, T.; Nakagawa, W.; Roussey, M.; Kuittinen, M.; Herzig, H. P.

    2010-01-01

    A subwavelength-scale square lattice optical meta-material is fabricated using an interference photolithography process on the surface of a quartz microlens array. This nanostructuring of the quartz surface introduces an antireflective effect, reducing reflectivity between 10% and 30% and enhancing the transmissivity 3% in the visible spectrum. This approach permits fast fabrication on a 4-inch wafer covered with microlenses (non-flat surface) and produces monolithic devices which are robust to adverse environments such as temperature variations.

  11. Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Chuangqiang; Wu, Chunya; Chen, Mingjun; Zheng, Ting; Chen, Ni; Cummings, Peter T.

    2016-10-01

    To investigate the topographical dependency of protein adsorption, molecular dynamics simulations were employed to describe the adsorption behavior of the tenth type-III module of fibronectin (FN-III10) on nanostructured rutile (110) surfaces. The results indicated that the residence time of adsorbed FN-III10 largely relied on its binding mode (direct or indirect) with the substrate and the region for protein migration on the periphery (protrusion) or in the interior (cavity or groove) of nanostructures. In the direct binding mode, FN-III10 molecules were found to be 'trapped' at the anchoring sites of rutile surface, or even penetrate deep into the interior of nanostructures, regardless of the presented geometrical features. In the indirect binding mode, FN-III10 molecules were indirectly connected to the substrate via a hydrogen-bond network (linking FN-III10 and interfacial hydrations). The facets created by nanostructures, which exerted restraints on protein migration, were suggested to play an important role in the stability of indirect FN-III10-rutile binding. However, a doubly unfavorable situation - indirect FN-III10-rutile connections bridged by a handful of mediating waters and few constraints on movement of protein provided by nanostructures - would result in an early desorption of protein.

  12. Destructive and constructive routes to prepare nanostructures on surfaces by low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Rauschenbach, Bernd; Frost, Frank

    2016-10-01

    Various approaches for the preparation of nanostructures with dimension on macroscopic areas are known. In contrast to cost-intensive top-down lithographic techniques, various bottom-up methods based on ion beam technologies to form large arrays of nanostructured surfaces are well established. In principle, it can be distinguished between two routes at the preparation of nanostructures by low-energy ion bombardment sputtering. The destructive route is characterized that under certain conditions, given by the self-organization processes, the ion beam induced erosion process can lead to the formation of e.g. well-ordered Si nanostructures like dots or ripples on the surface. Using a constructive route, i.e. glancing angle deposition by ion beam sputtering, sculptured thin films consisting of various nanostructures of several shapes, such as inclined and vertical columns, screws, and spirals, were deposited on Si substrates. It will be shown that morphology, shape, and diameter of the structures are influenced and can thus be controlled by adjusting various deposition parameters, including substrate temperature and ratio of substrate rotational speed to film deposition rate.

  13. Gold nanostructures for detection of pesticides, nitrates and drugs using Surface Enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Nikov, Ru.; Nikov, Ro.; Nikolov, A.; Atanasov, P.; Nakajima, Y.; Terakawa, M.; Sawczak, M.; Grochowska, K.; Sliwinski, G.

    2016-01-01

    In this work laser-assisted methods for metal nanostructures formation and their application as active substrates in Surface Enhanced Raman Spectroscopy are presented. The nanostructures are fabricated by laser processing of gold thin films deposited on low cost substrates as glass, ceramic, polymer and paper. The films are deposited by classical PLD technology. The produced films are then processed by nanosecond pulses delivered by nanosecond Nd:YAG laser system. At certain conditions the laser treatment leads to formation of discrete nanostructure on the substrate surface. Femtosecond Pulsed Laser Deposition in air is also applied for direct deposition of gold nanostructure. In another set of experiments gold nanoparticle colloids are fabricated by laser ablation of gold target in chloroform. The fabricated structures are then tested as active systems in SERS, as detection of pesticides (DDT), nitrates (NH4NO3), and drugs (Methylene blue) is demonstrated. The obtained results show that these nanostructures can be efficiently used in the detection and monitoring of materials with a high social impact.

  14. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture

    PubMed Central

    Cheng, Boran; He, Zhaobo; Zhao, Libo; Fang, Yuan; Chen, Yuanyuan; He, Rongxiang; Chen, Fangfang; Song, Haibin; Deng, Yuliang; Zhao, Xingzhong; Xiong, Bin

    2014-01-01

    Circulating tumor cells (CTCs) in the blood which have detached from both the primary tumor and any metastases may be considered as a “liquid biopsy” and are expected to replace tumor biopsies in the monitoring of treatment response and determining patient prognosis. Here, we introduce a facile and efficient CTC detection material made of hydroxyapatite/chitosan (HA/CTS), which is beneficial because of its transparency and excellent biological compatibility. Atomic force microscopy images show that the roughness of the HA/CTS nanofilm (HA/CTSNF) substrates can be controlled by changing the HA:CTS ratio. Enhanced local topographic interactions between nano-components on cancer cell membranes, and the antibody coated nanostructured substrate lead to improved CTC capture and separation. This remarkable nanostructured substrate has the potential for CTC culture in situ and merits further analysis. CTCs captured from artificial blood samples were observed in culture on HA/CTSNF substrates over a period of 14 days by using conventional staining methods (hematoxylin eosin and Wright’s stain). We conclude that these substrates are multifunctional materials capable of isolating and culturing CTCs for subsequent studies. PMID:24904216

  15. Charge transport across high surface area metal/diamond nanostructured composites.

    PubMed

    Plana, D; Humphrey, J J L; Bradley, K A; Celorrio, V; Fermín, D J

    2013-04-24

    High surface area composites featuring metal nanostructures and diamond particles have generated a lot of interest in the fields of heterogeneous catalysis, electrocatalysis, and sensors. Diamond surfaces provide a chemically robust framework for active nanostructures in comparison with sp(2) carbon supports. The present paper investigates the charge transport properties of high surface area films of high-pressure, high-temperature diamond particles in the presence and absence of metal nanostructures, employing electrochemical field-effect transistors. Oxygen- and hydrogen-terminated surfaces were generated on 500 nm diamond powders. Homogeneously distributed metal nanostructures, with metal volume fractions between ca. 5 and 20%, were either nucleated at the diamond particles by impregnation or incorporated from colloidal solution. Electrochemical field-effect transistor measurements, employing interdigitated electrodes, allowed the determination of composite conductivity as a function of electrode potential, as well as in air. In the absence of metal nanostructures, the lateral conductivity of the diamond assemblies in air is increased by over one order of magnitude upon hydrogenation of the particle surface. This observation is consistent with studies at diamond single crystals, although the somewhat modest change in conductivity suggests that charge transport is not only determined by the intrinsic surface conductivity of individual diamond particles but also by particle-to-particle charge transfer. Interestingly, the latter contribution effectively controls the assembly conductivity in the presence of an electrolyte solution as the difference between hydrogenated and oxygenated particles vanishes. The conductivity in the presence of metal nanoparticles is mainly determined by the metal volume fraction, while diamond surface termination and the presence of electrolyte solutions exert only minor effects. The experimental trends are discussed in terms of the

  16. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    PubMed Central

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-01-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s−1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars. PMID:23526837

  17. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars.

    PubMed

    Youssef, G; Crum, R; Prikhodko, S V; Seif, D; Po, G; Ghoniem, N; Kodambaka, S; Gupta, V

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10(7) s(-1)), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  18. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    SciTech Connect

    Youssef, G.; Crum, R.; Seif, D.; Po, G.; Prikhodko, S. V.; Kodambaka, S.; Ghoniem, N.; Gupta, V.

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10{sup 7} s{sup -1}), using laser-generated stress waves, are presented. Single-crystalline Cu pillars ({approx}1.20 {mu}m in tall and {approx}0.45 {mu}m in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  19. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    NASA Astrophysics Data System (ADS)

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-02-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s-1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (˜1.20 μm in tall and ˜0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  20. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    PubMed

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  1. In-situ characterization of femtosecond laser-induced crystallization in borosilicate glass using time-resolved surface third-harmonic generation

    SciTech Connect

    Liu, Weimin; Wang, Liang; Han, Fangyuan; Fang, Chong

    2013-11-11

    Coherent phonon dynamics in condensed-phase medium are responsible for important material properties including thermal and electrical conductivities. We report a structural dynamics technique, time-resolved surface third-harmonic generation (TRSTHG) spectroscopy, to capture transient phonon propagation near the surface of polycrystalline CaF{sub 2} and amorphous borosilicate (BK7) glass. Our approach time-resolves the background-free, high-sensitivity third harmonic generation (THG) signal in between the two crossing near-IR pulses. Pronounced intensity quantum beats reveal the impulsively excited low-frequency Raman mode evolution on the femtosecond to picosecond timescale. After amplified laser irradiation, danburite-crystal-like structure units form at the glass surface. This versatile TRSTHG setup paves the way to mechanistically study and design advanced thermoelectrics and photovoltaics.

  2. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  3. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11-54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  4. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Kan; Jia, Xin; Jia, Tianqing; Cheng, Ke; Cao, Kaiqiang; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2017-03-01

    In this paper, the influences of surface plasmons and thermal effects on the formation of subwavelength periodic ripples on Au films irradiated by 800 nm femtosecond laser pulses were studied by collinear pump-probe imaging. The spatial and temporal resolutions of the experiment were 300 nm and 1 ps, respectively. No periodic ripples were observed on the Au film during ablation by the first pump pulse, but during ablation by the second pump pulse the appearance of transient ripples was evident from a delay time of hundreds of picoseconds to several nanoseconds. These ripples, however, were not retained after solidification. When the sample was immersed in water during ablation, however, the ripples were retained. It is proposed that, during the second laser pulse irradiation, the surface defects produced by the first pulse induced surface plasmon polaritons on the Au film, which caused a modulated energy deposition and the formation of transient ripples. The weak electron-phonon coupling and significant residual heat erase these ripples after the molten surface was solidified.

  5. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring

    SciTech Connect

    Afanasiev, Andrei; Bredikhin, Vladimir; Pikulin, Alexander; Ilyakov, Igor; Shishkin, Boris; Akhmedzhanov, Rinat; Bityurin, Nikita

    2015-05-04

    We consider laser nanostructuring of the material surface by means of a colloidal particle lens array. Here, the monolayer of dielectric micro- or nanospheres placed on the surface acts as an array of near-field lenses that focus the laser radiation into the multitude of distinct spots, allowing the formation of many structures in a single stage. We show that conversion of a small part of the energy of the femtosecond beam into the second harmonic (SH) is an efficient way to increase the surface density of obtained nanostructures. By combining the fundamental frequency and the SH, one benefits both from the power of the former and from the focusing ability of the latter. This combination provides an efficient nanostructuring with sphere diameter close to the wavelength of the second harmonic. The possibility to create arrays of nanostructures with surface density above 5×10{sup 8} cm{sup −2} with femtosecond Ti:sapphire laser operating at 800 nm was demonstrated by employing 0.45 μm spheres.

  6. Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells.

    PubMed

    Da, Yun; Xuan, Yimin

    2013-11-04

    Nanostructured light trapping is a promising way to improve the efficiency in thin-film solar cells recently. In this work, both the optical and electrical properties of thin-film solar cells with 1D periodic grating structure are investigated by using photoelectric coupling model. It is found that surface recombination plays a key role in determining the performance of nanostructured thin-film solar cells. Once the recombination effect is considered, the higher optical absorption does not mean the higher conversion efficiency as most existing publications claimed. Both the surface recombination velocity and geometric parameters of structure have great impact on the efficiency of thin-film solar cells. Our simulation results indicate that nanostructured light trapping will not only improve optical absorption but also boost the surface recombination simultaneously. Therefore, we must get the tradeoffs between optical absorption and surface recombination to obtain the maximum conversion efficiency. Our work makes it clear that both the optical absorption and electrical recombination response should be taken into account simultaneously in designing the nanostructured thin-film solar cells.

  7. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Tzur, Adi; Krepker, Maksym A; Segal, Ester

    2011-05-01

    An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-Pérot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

  8. Localized surface plasmon of quasi-one-dimensional metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhao

    2007-05-01

    The plasmon resonance of noble metal nanoparticles provides interesting optical properties in the visible and near-infrared region, and is highly tunable by varying the shape and the composition of the nanoparticles. The rod-like gold nanostructures can be synthesized by a seed-mediated method in aqueous surfactant solutions. Starting from different types of gold seeds, either single crystalline gold nanorods or penta-fold twinned gold bipyramids can be synthesized in decent yield with silver(I) added into the growth solution. These nanostructures have pronounced plasmon resonance varying in the 1˜2 eV range. The bipyramids are strikingly monodisperse in shape, which leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions. A mechanism based on the underpotential deposition of silver was thus suggested to explain the essential role of Ag(I) in the growth process. The optical spectra of the gold colloids were simulated with the finite-difference time-domain (FDTD) method. The results show excellent agreement with recent experimental optical spectra. The local field enhancement (|E|/|E0|) was studied at the plasmon resonance. Sharper structural features produce more significant enhancement and the largest enhancement of more than a factor of 200 is seen around the poles of the bipyramid. A large internal field enhancement by more than a factor of 30 is found for the bipyramids, which suggests that they will exhibit very strong optical nonlinearities. The plasmon can be further tuned by introducing the core/shell nanostructures such as metal/metal or metal/semiconductor nanorods. Following a simple procedure, a homogeneous layer of silver with 1-4 nm thickness can be plated onto the gold nanorods, which shifts the longitudinal plasmon mode of the nanorods toward blue. The silver layer can be converted to semiconductors silver sulfide or selenide, with the longitudinal plasmon resonance tuned toward red. The metal

  9. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  10. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  11. Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids.

    PubMed

    Yildirim, Adem; Khudiyev, Tural; Daglar, Bihter; Budunoglu, Hulya; Okyay, Ali K; Bayindir, Mehmet

    2013-02-01

    A large-area superhydrophobic and omnidirectional antireflective nanostructured organically modified silica coating has been designed and prepared. The coating mimics the self-cleaning property of superhydrophobic lotus leaves and omnidirectional broad band antireflectivity of moth compound eyes, simultaneously. Water contact and sliding angles of the coating are around 160° and 10°, respectively. Coating improves the transmittance of the glass substrate around 4%, when coated on a single side of a glass, in visible and near-infrared region at normal incidence angles. At oblique incidence angles (up to 60°) improvement in transmission reaches to around 8%. In addition, coatings are mechanically stable against impact of water droplets from considerable heights. We believe that our inexpensive and durable multifunctional coatings are suitable for stepping out of the laboratory to practical outdoor applications.

  12. Nanostructure formation on silicon surfaces by using low energy helium plasma exposure

    NASA Astrophysics Data System (ADS)

    Takamura, Shuichi; Kikuchi, Yusuke; Yamada, Kohei; Maenaka, Shiro; Fujita, Kazunobu; Uesugi, Yoshihiko

    2016-12-01

    A new technology for obtaining nanostructure on silicon surface for potential applications to optical devices is represented. Scanning electron microscope analysis indicated a grown nanostructure of dense forest consisting of long cylindrical needle cones with a length of approximately 300 nm and a mutual distance of approximately 200 nm. Raman spectroscopy and spectrophotometry showed a good crystallinity and photon trapping, and reduced light reflectance after helium plasma exposure. The present technique consists of a simple maskless process that circumvents the use of chemical etching liquid, and utilizes soft ion bombardment on silicon substrate, keeping a good crystallinity.

  13. About mechanisms of radiation-induced effect of nanostructurization of near-surface volumes of metals

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    Mechanisms of the radiation-induced development of nanostructures in subsurface metal regions have been analyzed based on field-ion microscopy data. It is concluded that the modification of near-surface metal regions on a nanometer scale as a result of the interaction with Ar+ ion beams proceeds by several mechanisms. In particular, for a fluence of F = 1016 ion/cm2 (at an ion energy of E = 30 keV), the main contribution is due to the ion channeling. A tenfold increase in the ion fluence leads to prevailing deformation mechanism in nanostructure formation in the subsurface metal regions.

  14. Realization of low power-laser induced thermionic emission from Ag nanoparticle-decorated CNT forest: A consequence of surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Monshipouri, Mahta; Abdi, Yaser; Darbari, Sara

    2016-11-01

    Enhancement of electron emission from Ag nanoparticle-decorated carbon nanotube (CNT) forest, using low power-lasers, is reported in this work. Realization of thermionic emission from CNTs using the low power laser can be achievable when the CNT forest is illuminated by a narrow laser beam which leads to localized heating of the CNT forest surface. For this purpose, CNT forest was decorated with Ag nanoparticles. Surface plasmon resonance of Ag nano-particles led to intense local electric field which is responsible for localized heating and thermionic emission from CNTs. Enhancement of emission current from CNTs depends on the wavelength of the excitation laser, so that matching the wavelength of laser to the wavelength of the plasmon resonance leaded to a maximum enhancement in electron emission.

  15. Laser-induced transient grating setup with continuously tunable period

    SciTech Connect

    Vega-Flick, A.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Khanolkar, A.; Abi Ghanem, M.; Boechler, N.; Alvarado-Gil, J. J.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  16. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  17. Electron Energy Loss Spectroscopy study of surface plasmon resonances in noble metal nanostructures.

    NASA Astrophysics Data System (ADS)

    Aloni, Shaul

    2007-03-01

    Nobel metal nanostructures are of great interest because of their unique optical properties. Their optical properties are determined by the surface plasmon resonance of conduction electrons, the frequency of which is determined not only by the nature of the metal or alloy of which the particle is made but also by the particle's size and shape. Moreover, the properties can be further tailored by forming nanoparticle assemblies and by controlling the surrounding dielectric medium We focus on study of the shape effects of the plasmonic excitation in silver and gold nanostructures.The silver and gold nanostructures were synthesized by solution phase synthesis yielding highly faceted nanocrystals including cubes triangular plates bi-pyramids and rods of aspect rations up to 1:20. The results show that the optical properties of individual metallic nanoparticles, as extracted from the low-loss spectrum, can be correlated with the properties predicted based on the particle size, shape and composition. .

  18. Formation of nanostructures at the glass-carbon surface exposed to laser radiation

    SciTech Connect

    Abramov, D V; Gerke, M N; Kucherik, A O; Kutrovskaya, S V; Prokoshev, V G; Arakelyan, S M

    2007-11-30

    An experimental technique for obtaining nanostructures in the field of high-power laser radiation at the surface of carbon materials is developed. A specific feature of this technique is the formation of liquid carbon inside the region of laser action in the sample exposed to radiation in air at a pressure of {approx}1 atm. Several types of nanostructures (quasi-domains and nanopeaks) are detected in the laser cavern and beyond the range of laser action. Mechanisms of formation of such structures are proposed. The formation of quasi-domains is related to crystallisation of the melt. The nanopeak groups are formed outside the laser action region during the deposition of hot vapours of the material escaping from this region. The dependences of the variation in morphological properties of the nanostructures on the duration of laser action and the radii of typical cavern zones on the laser radiation power are obtained. (interaction of laser radiation with matter. laser plasma)

  19. Tunable plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies

    NASA Astrophysics Data System (ADS)

    Wang, Hui

    In this thesis, I demonstrate the rational design and controllable fabrication of a series of novel plasmonic nanostructures with judiciously tailored optical properties including perfect nanoshells, roughened subwavelength particles, prolate nanoshells known as nanorice, and non-concentric nanoshells known as nanoeggs. All of these nanostructures are very important subwavelength nanoscale optical components that can be utilized to manipulate light in unique ways. The most striking feature of these nanoparticles is their geometrically tunable plasmon resonances, which can be harnessed for widespread applications. I have also utilized these nanostructures as the building blocks to construct self-assembled multinanoparticle systems, such as nanoshell heterodimers, nanosphere arrays and nanoshell arrays. I have further developed multifunctional molecular sensing platforms using these nanoengineered plasmonic structures as substrates for surface-enhanced spectroscopies, realizing integrated analytical chemistry lab-on-a-chip. Applying the Plasmon Hybridization model as design principles to experimentally realizable nanostructures results in a thorough understanding of the origin of the geometry-dependent optical properties observed in these nanosystems. Finite Difference Time Domain (FDTD) method also provides a powerful platform for the numerical simulation of local- and far-field optical properties of these nanostructures.

  20. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    PubMed

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  1. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  2. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  3. The formation of a multipeak relief on the surface on nanostructured nickel and field electron emission from it

    NASA Astrophysics Data System (ADS)

    Nazarov, K. S.; Khisamov, R. Kh.; Yumaguzin, Yu. M.; Mulyukov, R. R.

    2015-06-01

    Studies of the relief formed on the surface of nanostructured nickel with nonequilibrium grain boundaries formed upon ion-beam sputtering are presented. It has been shown that the relief on the nano-structured nickel surface differs substantially from the relief formed on the surface of the coarse-grained nickel with equilibrium grain boundaries. In particular, a multipeak relief with submicron dimensionality of the peaks forms on the surface of nanostructured nickel under certain conditions. This relief is advantageous for the field electron emission. For the sample with multipeak relief, a CVC of field electron emission is measured.

  4. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Cho, In-Sik; Pyun, Young-Sik

    2016-12-01

    A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  5. Neural prosthesis in the wake of nanotechnology: controlled growth of neurons using surface nanostructures.

    PubMed

    Lee, J K; Baac, H; Song, S H; Jang, E; Lee, S D; Park, D; Kim, S J

    2006-01-01

    Neural prosthesis has been successfully applied to patients with motional or sensory disabilities for clinical purpose. To enhance the performance of the neural prosthetic device, the electrodes for the biosignal recording or electrical stimulation should be located in closer proximity to target neurons than they are now. Instead of revising the prior implanting surgery to improve the electrical contact of neurons, we propose a technique that can bring the neurons closer to the electrode sites. A new method is investigated that can control the direction of neural cell growth using surface nanostructures. We successfully guide the neurons to the position of the microelectrodes by providing a surface topographical cue presented by the surface nanostructure on a photoresponsive polymer material. Because the surface structure formed by laser holography is reversible and repeatable, the geometrical positioning of the neurons to microelectrodes can be adjusted by applying laser treatment during the surgery for the purpose of improving the performance of neural prosthetic device.

  6. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  7. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    PubMed

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  8. Thermal evaporated hyperbranched Ag nanostructure as an effective secondary-electron trapping surface coating

    NASA Astrophysics Data System (ADS)

    He, Y. N.; Peng, W. B.; Cui, W. Z.; Ye, M.; Zhao, X. L.; Wang, D.; Hu, T. C.; Wang, R.; Li, Y.

    2016-02-01

    We study secondary electron yield (SEY) suppression of silver using a hyperbranched nanostructure obtained by thermal evaporation. First, we perform thermal evaporation at different residual gas pressures for studying the influence of pressure on surface morphologies. A self-assembled hyperbranched Ag nanostructure has been achieved at 100 Pa. Then, we further investigate the detailed formation process of the self-assembled hyperbranched Ag nanostructure qualitatively and find it to be dominated by "screening effect". Finally, we study the obvious SEY suppression effect of this special structure. We show that 100 Pa is the best process condition within our experimental scope from the SEY suppression point of view. It exhibits maximum SEY (δmax) of ˜0.9. We also show that the combining of this nanostructure with the micro-porous surface we developed before can further improve its SEY suppression effect which leading to a δmax of ˜0.8. We propose a novel 2D rectangular-hemisphere hybrid trap model to perform numerical simulation of secondary electron dynamics for interpretation of the experimental results. In total, this work provides guidance to controllable preparation of low SEY metallic surfaces for potential applications in particle accelerators, RF microwave components and satellite systems.

  9. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  10. Surface Enhanced Raman Spectroscopy Detection of Biomolecules Using EBL Fabricated Nanostructured Substrates

    PubMed Central

    Peters, Robert F.; Gutierrez-Rivera, Luis; Dew, Steven K.; Stepanova, Maria

    2015-01-01

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired. PMID:25867853

  11. Optimization of the optical properties of nanostructured silicon surfaces for solar cell applications

    SciTech Connect

    Zhou, Di; Pennec, Y.; Djafari-Rouhani, B.; Lambert, Y.; Deblock, Y.; Stiévenard, D.; Cristini-Robbe, O.; Xu, T.; Faucher, M.

    2014-04-07

    Surface nanostructuration is an important challenge for the optimization of light trapping in solar cell. We present simulations on both the optical properties and the efficiency of micro pillars—MPs—or nanocones—NCs—silicon based solar cells together with measurements on their associated optical absorption. We address the simulation using the Finite Difference Time Domain method, well-adapted to deal with a periodic set of nanostructures. We study the effect of the period, the bottom diameter, the top diameter, and the height of the MPs or NCs on the efficiency, assuming that one absorbed photon induces one exciton. This allows us to give a kind of abacus involving all the geometrical parameters of the nanostructured surface with regard to the efficiency of the associated solar cell. We also show that for a given ratio of the diameter over the period, the best efficiency is obtained for small diameters. For small lengths, MPs are extended to NCs by changing the angle between the bottom surface and the vertical face of the MPs. The best efficiency is obtained for an angle of the order of 70°. Finally, nanostructures have been processed and allow comparing experimental results with simulations. In every case, a good agreement is found.

  12. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates.

  13. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage.

    PubMed

    Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei

    2016-09-21

    Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.

  14. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless st