Science.gov

Sample records for laser-induced surface nanostructuring

  1. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  2. Nanosecond laser-induced nanostructuring of thin metal layers and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Klöppel, M.; Ehrhardt, M.; Zimmer, K.; Schwaller, P.

    2015-03-01

    Nanostructuring of dielectric surfaces has a widespread field of applications. In this work the recently introduced laser method validates this novel concept for complex nanostructuring of dielectric surfaces. This concept combines the mechanism of self-assembly of metal films due to laser irradiation with the concept of laser-assisted transfer of these patterns into the underlying material. The present work focuses on pattern formation in fused silica near the border of the laser spot, where distorted nested ring-like patterns were found in contrast to concentric ring patterns at homogeneous laser irradiation. For the experiments a lateral homogeneous spot of a KrF excimer laser (λ = 248 nm) and a Gaussian beam Yb fiber laser (λ = 1064 nm) was used for irradiation of a thin chromium layer onto fused silica resulting in the formation of different ring structures into the fused silica surface. The obtained structures were analysed by AFM and SEM. It is found that the mechanism comprises laser-induced metal film melting, contraction of the molten metal, and successive transfer of the metal hole geometry to the fused silica. Simulations taking into account the heat and the Navier-Stokes equations were compared with the experimental results. A good agreement of simulation results with experimental data was found. These first results demonstrate that the variation of the laser beam profile allows the local control of the melt dynamics which causes changes of the shape and the size of the ring patterns. Hence, a light-controlled self-assembly is feasible.

  3. Femtosecond laser-induced periodic nanostructure creation on PET surface for controlling of cell spreading

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Shinonaga, Togo; Kawa, Takuya

    2016-03-01

    A new method of periodic nanostructure formation on a polyethylene terephthalate (PET) surface has been developed, employing a femtosecond laser with a wavelength of 1045 nm. To generate structured films, the PET was placed in contact with a silicon (Si) wafer, followed by irradiation with the laser focused on the Si wafer, passing through the PET film. In order to evaluate the surface morphology, atomic force microscopy analysis was conducted on both treated and untreated PET surfaces. From the results, nanostructures with a period of 600 nm and height of 100 nm were formed on the PET film surface by laser treatment. A cell cultivation test was carried out on PET films with and without periodic nanostructures, showing that for nanostructured films, the cells (MG-63) were spread along the periodic grooves; in contrast, random cell spreading was observed for cultures grown on the untreated PET film.

  4. F2-laser-induced micro/nanostructuring and surface modification of iron thin film to realize hydrophobic and corrosion resistant

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Awaihara, Yuta; Yamashita, Tsugito; Inoue, Narumi

    2014-11-01

    Nanoswellings of 60 nm height and 500 nm diameter on average of an iron thin film deposited on a silica glass substrate at regular intervals of 2.5 µm were fabricated by the irradiation of a 157 nm F2 laser. The F2 laser was focused on the iron thin film by each microsphere made of silica glass of 2.5 µm diameter, which covered the entire surface of the films. The surface of the silica glass substrate underneath the F2-laser-irradiated iron thin film selectively swelled to push up the film. After the laser-induced micro/nanostructuring, the F2 laser was again irradiated onto the entire surface of the periodic micro/nanostructured iron thin film to form an approximately 2-nm-thick Fe3O4 modified layer. As a result, the samples showed hydrophobicity and high corrosion resistance to 3 wt % NaCl aqueous solution (quasi-seawater). No rust was observed on the samples after the immersion test in the quasi-seawater for 24 h.

  5. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals

    NASA Astrophysics Data System (ADS)

    Hwang, Taek Yong; Vorobyev, A. Y.; Guo, Chunlei

    2009-09-01

    We perform a comparison study on femtosecond laser-induced nanostructures on three noble metals, Cu, Ag, and Au. Under identical experimental conditions, the three metals each gain a different amount of surface area increase resulting from nanostructuring. We show that the different surface area increase from nanostructuring directly relates to the competition of two ultrafast processes, electron-phonon coupling and hot electron diffusion, following femtosecond laser heating of metals.

  6. Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Rosenfeld, A.; Bock, M.; Pfuch, A.; Seeber, W.; Grunwald, R.

    2011-03-01

    The formation of laser induced periodic surface structures (LIPSS) is to a large extent of self-organizing nature and in its early stages essentially influenced by optical scattering. The evolution of related mechanisms, however, has still to be studied in detail and strongly depends on materials and laser parameters. Excitation with highly intense ultrashort pulses leads to the creation of nanoripple structures with periods far below the fundamental wavelength because of opening multiphoton excitation channels. Because of the drastically reduced spatial scale of such laser induced periodic nanostructures (LIPNS), a particular influence of scattering is expected in this special case. Here we report on first investigations of femtosecond-laser induced nanostructuring of sputtered titanium dioxide (TiO2) layers in comparison to bulk material. The crucial role of the optical film quality for the morphology of the resulting LIPNS was worked out. Typical periods of nanoripples were found to be within the range of 80-180 nm for an excitation wavelength of 800 nm. Unlike our previously reported results on bulk TiO2, LIPNS in thin films appeared preferentially at low pulse numbers (N=5-20). This observation was explained by a higher number of scattering centers caused by the thin film structure and interfaces. The basic assumptions are further supported by supplementary experiments with polished and unpolished surfaces of bulk TiO2 single crystals.

  7. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  8. Laser-induced circular nanostructures in fused silica assisted by a self-assembling chromium layer

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Klöppel, Michael; Frost, Frank; Ehrhardt, Martin; Zimmer, Klaus; Li, Pu

    2013-09-01

    Nanostructures have a widespread field of applications and are of growing industrial importance. However, the economic fabrication of nanostructures poses a critical challenge. In this work, a fundamental research of a laser-induced surface nanostructuring of fused silica using the dynamic self-assembling structure formation in metal layers is presented. This method may offer promising opportunities for nanostructuring of dielectrics. This new approach is demonstrated by the formation of randomly distributed concentric nanostructures into fused silica. The irradiation of chromium-covered fused silica samples with a KrF excimer laser results in melting, partial ablation, restructuring, and resolidification of both the metal layer and the dielectric surface. In this way, concentric circular structures into the dielectric were formed with dimensions that can be controlled by the laser fluence Φ and by the pulse number N. The distance of the concentric rings increases with increasing laser fluence. The experimental results were compared with simulated structure dimensions taking into account the heat equation and the Navier-Stokes equation. Despite the currently applied decoupled approach for the simulations, i.e. separating the heat equation and the fluid flow, a good agreement of simulation results with experimental data was achieved.

  9. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  10. Efficiency enhancement using ArF laser induced micro/nanostructures on the polymeric layer of solar cell

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Reyhani, A.; Mehrabi, M.; Refahizadeh, M.; Mortazavi, S. Z.; Ranjbar, A.

    2017-02-01

    Here, the solar cell surface is irradiated with ArF excimer laser at 193 nm. This process forms regular micro/nanostructures on the samples, most likely due to the surface resonance phenomena. Laser induced surface rippling in the form of the conical micro/nanostructures or micro/nano-pillars are strongly dependent on the energy dose which induces a great number of micro/nano cavities on the surface. Despite the reflection events are taken into account as the major source of the optical losses, however the laser induced self-micro/nano structuring significantly reduces the spectral reflectivity. It leads to enhance the efficiency of solar cell accordingly. The effect of laser fluence is also investigated as to several forms of the micro/nanostructures are created at various UV doses. Finally, the electrical characterization is carried out based on the current-voltage plots. The surface morphology is analyzed using SEM and the spectral reflectivity is measured by the spectrophotometry, indicating that the current density rises due to the light trapping in micro/nano-cavities.

  11. Laser-induced forward transfer of hybrid carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Filipescu, M.; Vizireanu, S.; Vogt, L.; Antohe, S.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2016-06-01

    Chemically functionalized carbon nanowalls (CNWs) are promising materials for a wide range of applications, i.e. gas sensors, membranes for fuel cells, or as supports for catalysts. However, the difficulty of manipulation of these materials hinders their integration into devices. In this manuscript a procedure for rapid prototyping of CNWs and functionalized CNWs (i.e. decorated with SnO2 nanoparticles) is described. This procedure enables the use of laser-induced forward transfer (LIFT) as a powerful technique for printing CNWs and CNW:SnO2 pixels onto rigid and flexible substrates. A morphological study shows that for a large range of laser fluences i.e. 500-700 mJ/cm2 it is possible to transfer thick (4 μm) CNW and CNW:SnO2 pixels. Micro-Raman investigation of the transferred pixels reveals that the chemical composition of the CNWs and functionalized CNWs does not change as a result of the laser transfer. Following these results one can envision that CNWs and CNW:SnO2 pixels obtained by LIFT can be ultimately applied in technological applications.

  12. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  13. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  14. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  15. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  16. Laser-induced thermal desorption of aniline from silica surfaces

    NASA Astrophysics Data System (ADS)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  17. Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization

    PubMed Central

    Xu, Haitian; Hajisalem, Ghazal; Steeves, Geoffrey M.; Gordon, Reuven; Choi, Byoung C.

    2015-01-01

    Ultrafast laser-induced magnetization dynamics in ferromagnetic thin films were measured using a femtosecond Ti:sapphire laser in a pump-probe magneto-optic Kerr effect setup. The effect of plasmon resonance on the transient magnetization was investigated by drop-coating the ferromagnetic films with dimensionally-tuned gold nanorods supporting longitudinal surface plasmon resonance near the central wavelength of the pump laser. With ~4% nanorod areal coverage, we observe a >50% increase in demagnetization signal in nanorod-coated samples at pump fluences on the order of 0.1 mJ/cm2 due to surface plasmon-mediated localized electric-field enhancement, an effect which becomes more significant at higher laser fluences. We were able to qualitatively reproduce the experimental observations using finite-difference time-domain simulations and mean-field theory. This dramatic enhancement of ultrafast laser-induced demagnetization points to possible applications of nanorod-coated thin films in heat-assisted magnetic recording. PMID:26515296

  18. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution.

    PubMed

    Bavali, A; Parvin, P; Mortazavi, S Z; Nourazar, S S

    2015-05-01

    The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers.

  19. Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution

    PubMed Central

    Bavali, A.; Parvin, P.; Mortazavi, S. Z.; Nourazar, S. S.

    2015-01-01

    The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers. PMID:26137372

  20. Laser-induced periodic surface structures: Fingerprints of light localization

    NASA Astrophysics Data System (ADS)

    Skolski, J. Z. P.; Römer, G. R. B. E.; Obona, J. V.; Ocelik, V.; Huis in't Veld, A. J.; de Hosson, J. Th. M.

    2012-02-01

    The finite-difference time-domain (FDTD) method is used to study the inhomogeneous absorption of linearly polarized laser radiation below a rough surface. The results are first analyzed in the frequency domain and compared to the efficacy factor theory of Sipe and coworkers. Both approaches show that the absorbed energy shows a periodic nature, not only in the direction orthogonal to the laser polarization, but also in the direction parallel to it. It is shown that the periodicity is not always close to the laser wavelength for the perpendicular direction. In the parallel direction, the periodicity is about λ/Re(ñ), with ñ being the complex refractive index of the medium. The space-domain FDTD results show a periodicity in the inhomogeneous energy absorption similar to the periodicity of the low- and high-spatial-frequency laser-induced periodic surface structures depending on the material's excitation.

  1. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    NASA Astrophysics Data System (ADS)

    Gokhale, R. R.; Thakare, V. P.; Warule, S.; Lefez, B.; Hannoyer, B.; Jog, J. P.; Ogale, S. B.

    2012-06-01

    A novel route employing UV laser pulses (KrF Excimer, 248 nm) to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS) process when applied to routine laboratory solvents (or toxic chemical wastes when discarded) Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs) comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  2. Laser-induced periodic surface structures, modeling, experiments, and applications

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Ocelík, V.; de Hosson, J. T. M.; Huis in't Veld, A. J.

    2014-03-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures, or ripples, with amplitudes and periodicity in the sub-micrometer range. A summary of experimentally observed LIPSSs is presented, as well as our model explaining their possible origin. Linearly polarized continuous wave (cw) or pulsed laser light, at normal incidence, can produce LIPSSs with a periodicity close to the laser wavelength, and direction orthogonal to the polarization on the surface of the material. Ripples with a periodicity (much) smaller than the laser wavelength develop when applying laser pulses with ultra-short durations in the femtosecond and picosecond regime. The direction of these ripples is either parallel or orthogonal to the polarization direction. Finally, when applying numerous pulses, structures with periodicity larger than the laser wavelength can form, which are referred to as "grooves". The physical origin of LIPSSs is still under debate. The strong correlation of the ripple periodicity to the laser wavelength, suggests that their formation can be explained by an electromagnetic approach. Recent results from a numerical electromagnetic model, predicting the spatially modulated absorbed laser energy, are discussed. This model can explain the origin of several characteristics of LIPSSs. Finally, applications of LIPSSs will be discussed.

  3. Sub-Diffraction Limited Writing based on Laser Induced Periodic Surface Structures (LIPSS)

    PubMed Central

    He, Xiaolong; Datta, Anurup; Nam, Woongsik; Traverso, Luis M.; Xu, Xianfan

    2016-01-01

    Controlled fabrication of single and multiple nanostructures far below the diffraction limit using a method based on laser induced periodic surface structure (LIPSS) is presented. In typical LIPSS, multiple lines with a certain spatial periodicity, but often not well-aligned, were produced. In this work, well-controlled and aligned nanowires and nanogrooves with widths as small as 40 nm and 60 nm with desired orientation and length are fabricated. Moreover, single nanowire and nanogroove were fabricated based on the same mechanism for forming multiple, periodic structures. Combining numerical modeling and AFM/SEM analyses, it was found these nanostructures were formed through the interference between the incident laser radiation and the surface plasmons, the mechanism for forming LIPSS on a dielectric surface using a high power femtosecond laser. We expect that our method, in particular, the fabrication of single nanowires and nanogrooves could be a promising alternative for fabrication of nanoscale devices due to its simplicity, flexibility, and versatility. PMID:27721428

  4. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    SciTech Connect

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  5. Coherence in ultrafast laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Colombier, Jean-Philippe; Li, Chen; Faure, Nicolas; Cheng, Guanghua; Stoian, Razvan

    2015-11-01

    Ultrafast laser irradiation can trigger anisotropically structured nanoscaled gratinglike arrangements of matter, the laser-induced periodic surface structures (LIPSSs). We demonstrate here that the formation of LIPSS is intrinsically related to the coherence of the laser field. Employing several test materials that allow large optical excursions, we observe the effect of randomizing spatial phase in generating finite domains of ripples. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface and show that modulated pattern, i.e., a spatially ordered electromagnetic solution, results from the coherent superposition of waves. By separating the field scattered from a surface rough topography from the total field, the inhomogeneous energy absorption problem is reduced to a simple interference equation. We further distinguish the contribution of the scattered near field and scattered far field on various types of inhomogeneous energy absorption features. It is found that the inhomogeneous energy absorption which could trigger the low-spatial-frequency LIPSSs (LSFLs) and high-spatial-frequency LIPSSs (HSFLs) of periodicity Λ >λ /Re(n ˜) are due to coherent superposition between the scattered far field (propagation) and the refracted field, while HSFLs of Λ <λ /Re(n ˜) are triggered by coherent superposition between the scattered near field (evanescent) and the refracted field. This is a general scenario that involves a topography-induced scattering phenomenon and stationary evanescent fields, being applied to two model case materials that exhibit large optical excursions upon excitation (W, Si) and nonplasmonic to plasmonic transitions. We indicate the occurrence of a general light interference phenomenon that does not necessarily involve wavelike surface plasmonic excitation. Finally, we discuss the role of interference field and scattered field on the enhancement of LIPSSs by

  6. Measurement of high viscosity with laser induced surface deformation technique

    SciTech Connect

    Yoshitake, Y.; Mitani, S.; Sakai, K.; Takagi, K.

    2005-01-15

    A technique for viscosity measurement was developed based on the principle of laser-induced surface deformation. Light incident into liquids increases its momentum due to the difference in refractive index and gives the surface an upward force as a reaction. The plane surface thus swells up and deforms, and the shape is determined so that the force is balanced with the surface tension and the gravity. On sudden laser irradiation, the deformation inevitably accompanies a viscous flow and exhibits a relaxational behavior with a delay time, which gives the viscosity. Theoretical prediction of the step-response function was given that takes surface tension waves excited by the laser into consideration. Nd-yttritium-aluminum-garnet laser with 0.6 W output was focused to {approx}200 {mu}m beam waist and used for the pumping. The deformation process was observed sensitively with another probe laser illuminating the activated area. This system was tested with the standard liquids for viscosity ranging from 1 to 10{sup 6} cSt. The results demonstrated the validity of this technique, though a correction for the inertia effect was needed in the range lower than 10 cSt. Further, effect of the thermal expansion by a slight optical absorption was discussed. This technique is especially useful at high viscosities since the measurement takes only a few seconds even in the specimen with 10{sup 6} cSt. Besides the rapidity, it has a great advantage of a noncontact feature and is appropriate for measuring the liquids that strongly dislike contamination. It has also potential applications in industries, measurement of liquids isolated in a production line, for instance.

  7. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  8. Femtosecond laser induced periodic nanostructures on titanium dioxide film for improving biocompatibility

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Horiguchi, N.; Tsukamoto, M.; Nagai, A.; Yamashita, K.; Hanawa, T.; Matsushita, N.; Guoqiang, X.; Abe, N.

    2013-03-01

    Periodic nanostructures formation on Titanium dioxide (TiO2) film by scanning of femtosecond laser beam spot at fundamental and second harmonic wave is reported. Titanium (Ti) is one of the most widely used for biomaterials, because of its excellent anti-corrosion and high mechanical properties. However, Ti implant is typically artificial materials and has no biofunction. Hence, it is necessary for improving the bioactivity of Ti. Recently, coating of TiO2 film on Ti plate surface is useful methods to improve biocompatibility of Ti plate. Then, if periodic nanostructures were formed on the film surface, cell spreading might be controlled at one direction. We propose periodic nanostructures formation on TiO2 film by femtosecond laser irradiation. Cell spread could be controlled along the grooves of periodic nanostructures. In the experiments, the film was formed on Ti plate with an aerosol beam. A commercial femtosecond Ti : sapphire laser system was employed in our experiments. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film at fundamental and second harmonic wave. Periodic nanostructures were also produced on Ti plate with femtosecond laser. The period of periodic nanostructures on the film was much shorter than that on Ti plate. By cell test, there was a region of cell spreading along the grooves of periodic nanostructures on the film formed with femtosecond laser at fundamental wave. On bare film surface, cell spreading was observed at all direction. These results suggest that direction of cell spread could be controlled by periodic nanostructures formation on the film.

  9. Laser induced periodic surface structures on pyrolytic carbon prosthetic heart valve

    NASA Astrophysics Data System (ADS)

    Stepak, Bogusz D.; Łecka, Katarzyna M.; Płonek, Tomasz; Antończak, Arkadiusz J.

    2016-12-01

    Laser-induced periodic surface structures (LIPSS) can appear in different forms such as ripples, grooves or cones. Those highly periodic wavy surface features which are frequently smaller than incident light wavelength bring possibility of nanostructuring of many different materials. Furthermore, by changing laser parameters one can obtain wide spectrum of periodicities and geometries. The aim of this research was to determine possibility of nanostructuring pyrolytic carbon (PyC) heart valve leaflets using different irradiation conditions. The study was performed using two laser sources with different pulse duration (15 ps, 450 fs) as well as different wavelengths (1064, 532, 355 nm). Both low and high spatial frequency LIPSS were observed for each set of irradiation parameters. In case femtosecond laser pulses we obtained deep subwavelength ripple period which was even ten times smaller than applied wavelength. Obtained ripple period was ranging from 90 up to 860 nm. Raman spectra revealed the increase of disorder after laser irradiation which was comparable for both pico- and femtosecond laser.

  10. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  11. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  12. Diamond detectors with laser induced surface graphite electrodes

    NASA Astrophysics Data System (ADS)

    Komlenok, M.; Bolshakov, A.; Ralchenko, V.; Konov, V.; Conte, G.; Girolami, M.; Oliva, P.; Salvatori, S.

    2016-11-01

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm2 pixels was realized on one side of a 10.0×10.0×0.5 mm3 polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 μm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  13. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  14. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  15. The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass.

    PubMed

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheng; Xu, Zhizhan

    2010-11-08

    We systematically study the morphological and optical characteristics of the large-area micro/nanostructures produced by femtosecond laser irradiation on GaAs, Si, and brass. The experimental results demonstrate that along with the increase of laser fluence, significant changes in the surface morphology can be observed, and the most prominent phenomenon is the enlarging of the feature size of formed structures. Interestingly, by the fourier analysis of the treated areas, a peculiar phenomenon can be revealed: as laser fluence increases, the spatial frequencies of the structures change following a specific law--the allowed main frequencies are discrete, and appear to be a sequence of 2f, f, f/2, f/4, and f/8 (f is the fundamental frequency corresponding to the near-subwavelength ripples). In our opinion, the new frequency components of f/2, f/4, and f/8 originate in the 2-order, 4-order, and 8-order grating coupling. The law can offer us new insights for the evolving mechanisms of a variety of laser-induced micro/nanostructures in different scales. Furthermore, the optical characteristics of the treated surface are strongly dependent on the morphological characteristics that are mainly determined by laser fluence, such as the feature size of the micro/nanostructures, the topology of the surface morphology, the surface roughness, and the irregular degree of the formed structures. In general, as laser fluence increases in a moderate range, the specular reflectance of the structured surface would be significantly reduced. However, if laser fluence is excessive, the anti-specular-reflection effect would be much weakened. In ideal laser fluence, the micro/nanostructures produced by the near-infrared laser can achieve an ultra-low specular reflectance in the visible and near-infrared spectral region, which exhibits an attracting application prospect in the field of utilizing solar energy.

  16. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films

    NASA Astrophysics Data System (ADS)

    Nikov, Ru. G.; Nedyalkov, N. N.; Atanasov, P. A.; Hirsch, D.; Rauschenbach, B.; Grochowska, K.; Sliwinski, G.

    2016-06-01

    The paper presents results on laser nanostructuring of Ag thin films. The thin films are deposited on glass substrates by pulsed laser deposition technology. The as fabricated films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. The film modification is studied as a function of the film thickness and the parameters of the laser irradiation as pulse number and laser fluence. In order to estimate the influence of the environment on the characteristics of the fabricated structures the Ag films are annealed in different surrounding media: water, air and vacuum. It is found that at certain conditions the laser treatment may lead to decomposition of the films into a monolayer of nanoparticles with narrow size distribution. The optical properties of the fabricated nanostructures are investigated on the basis of transmission spectra taken by optical spectrometer. In the measured spectra plasmon resonance band is observed as its shape and position vary depending on the processing conditions. The fabricated structures are covered with Rhodamine 6G and tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).

  17. Laser-induced transformation of supramolecular complexes: approach to controlled formation of hybrid multi-yolk-shell Au-Ag@a-C:H nanostructures

    PubMed Central

    Manshina, A. A.; Grachova, E. V.; Povolotskiy, A. V.; Povolotckaia, A. V.; Petrov, Y. V.; Koshevoy, I. O.; Makarova, A. A.; Vyalikh, D. V.; Tunik, S. P.

    2015-01-01

    In the present work an efficient approach of the controlled formation of hybrid Au–Ag–C nanostructures based on laser-induced transformation of organometallic supramolecular cluster compound is suggested. Herein the one-step process of the laser-induced synthesis of hybrid multi-yolk-shell Au-Ag@a-C:H nanoparticles which are bimetallic gold-silver subnanoclusters dispersed in nanospheres of amorphous hydrogenated a-C:H carbon is reported in details. It has been demonstrated that variation of the experimental parameters such as type of the organometallic precursor, solvent, deposition geometry and duration of laser irradiation allows directed control of nanoparticles’ dimension and morphology. The mechanism of Au-Ag@a-C:H nanoparticles formation is suggested: the photo-excitation of the precursor molecule through metal-to-ligand charge transfer followed by rupture of metallophilic bonds, transformation of the cluster core including red-ox intramolecular reaction and aggregation of heterometallic species that results in the hybrid metal/carbon nanoparticles with multi-yolk-shell architecture formation. It has been found that the nanoparticles obtained can be efficiently used for the Surface-Enhanced Raman Spectroscopy label-free detection of human serum albumin in low concentration solution. PMID:26153347

  18. Time resolved EUV pump-probe microscopy of fs-LASER induced nanostructure formation

    NASA Astrophysics Data System (ADS)

    Freiberger, R.; Hauck, J.; Reininghaus, M.; Wortmann, D.; Juschkin, L.

    2011-05-01

    We report on our efforts in design and construction of a compact Extreme Ultraviolet (EUV)-pump-probe microscope. The goal is the observation of formation of nanostructures, induced by a femtosecond (fs)-laser pulse. The unique interaction processes of fs-laser radiation with matter open up new markets in laser material processing and, therefore, are actively investigated in the last decade. The resulting "sub 100 nm"-structures offer vast potential benefits in photonics, biotechnology, tribological surface design, plasmonic applications and production of nanoparticles. Focused fs-laser radiation causes a local modification resulting in nanostructures of high precision and reproducibility. However the formation dynamics is not well understood. Research in this field requires high temporal and spatial resolution. A combination of fs-laser and EUV-microscope provides a tool for "in situ"-observation of the formation dynamics. As exemplary structures to be investigated, we use nanojets on thin gold films and periodic surface structures (ripples) on dielectrics. In the future, the EUV-pump-probe microscope can become a versatile tool to observe physical or biological processes. Microscopy using EUV-light is capable of detecting structures on a scale down to several tens of nanometers. For detailed investigations a compact EUV-microscope has been realized utilizing OVI Balmer-alpha radiation at 17.3 nm coming from a discharge produced oxygen plasma. As optical elements a grazing incidence elliptical collector and a zone plate with a width of outermost zone of 50 nm and a spectral filter to avoid chromatic aberrations are used. The detector is a fast gated microchannel plate with a pore size of 2 microns contacted by a low impedance transmission line. The expected spatial resolution of the setup is better than 100 nm and the time resolution is better than 1 ns. The newly developed EUV-microscope is a powerful tool for a wide field of investigations that need high time

  19. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  20. Laser Induced Temperature Field on Surfaces: Application to SAM Patterning

    NASA Astrophysics Data System (ADS)

    Shadnam, Mohammad Reza; Amirfazli, Alidad

    2004-03-01

    Laser is used to thermally desorb a self assembeled monolayer (SAM) from a gold substrate. This process is a key step in making patterned surfaces. In many applications making curvilinear features is useful. Heating of a surface by a CW laser along a nonlinear trajectory is considered using Green's functions. Temperature profiles are calculated for heating along circular-arc trajectories of different curvatures. The effect of heating trajectory's radius of curvature and heating spot's velocity (Laser scanning rate) on resulting surface temperature is studied. It is shown that within the range of parameters considered, the induced surface temperature profiles are symmetric. It is also shown that change of heating trajectory's radius of curvature by one order of magnitude at heating velocity of 0.1 mm/s changes the induced surface temperatures by 12 K; this temperature increase will be 36 K at 1 mm/s. The effect of such temperature increases are discussed in terms of laser processing of SAM coated surfaces. For a case of heating along straight line, the kinetics of SAM desorption is coupled with heat diffusion equation to predict the percentage of SAM desorped and determine the feature size. The resulting surface chemical composition profiles are compared with experimental measurements and good agreement is reported.

  1. Fabrication of "petal effect" surfaces by femtosecond laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Li, Hong-Jin; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Cheng-Wei; Qian, Jing; Zhao, Quan-Zhong

    2017-01-01

    Superhydrophobic adhesive glass surfaces with polystyrene has been obtained via femtosecond laser induced forward transfer (LIFT). Using this facile method, we obtained composite structures on the glass surface, achieving the transformation from hydrophilicity to superhydrophobicity with contact angle from 36.22° on the glass surface to 159.19° on the LIFT modified glass surface. Analogous to the ;petal effect;, the obtained superhydrophobic surface also shows high adhesion. Furthermore, the wettability of LIFT modified glass surface can be tuned by changing the interval width of laser scanning, which can be explained by the Cassie impregnating wetting model.

  2. Analytical treatment of ultrafast laser-induced spin-flipping Λ processes on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Lefkidis, Georgios; Hübner, Wolfgang

    2013-01-01

    In this paper, we analytically treat ultrafast, laser-induced, spin-flipping processes based on Λ model systems with triplet ground state. After obtaining the wave functions, we give analytical solutions for the induced material polarization in the time domain. Compact summation formulas for the time-dependent (windowed) induced polarization of the material in the frequency domain, as well as its helicity (fourth Stokes parameter), are given. These solutions compare excellently with numerical results obtained for realistic systems (i.e., systems that can or have been synthesized and were treated with high-level quantum chemical methods including electron correlations and relativistic effects). We thus analytically show that laser-induced spin flip is possible and can be detected from the helicity of the emitted light during the process. Additionally, we analyze the effects of a finite temperature and the time window of a measuring apparatus on the signal detected. These are very crucial steps not only for verifying the validity of previous numerical results, but also for the deeper understanding of the physical mechanisms involved.

  3. Tuning micropillar cavity birefringence by laser induced surface defects

    SciTech Connect

    Bonato, Cristian; Ding Dapeng; Gudat, Jan; Exter, Martin P. van; Thon, Susanna; Kim, Hyochul; Petroff, Pierre M.; Bouwmeester, Dirk

    2009-12-21

    We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.

  4. Excimer laser induced surface chemical modification of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Révész, K.; Hopp, B.; Bor, Z.

    1997-02-01

    Polytetrafluoroethylene has a notoriously non adhesive and non reactive character. Its successful surface photochemical modification was performed by irradiating the polytetrafluoroethylene/liquid triethylamine interface with an ArF excimer laser (λ=193 nm). Due to the photochemical treatment the polytetrafluoroethylene surface became more hydrophilic. The water receding contact angle decreased from 94° to 43°. The reaction cross section was determined from the decrease of the contact angles. It was found to be as high as 6.4×10-18 cm2. XPS measurements evidenced the removal of fluorine from the polytetrafluoroethylene, incorporation of alkyl carbon and nitrogen. Photochemical dissociation path of the triethylamine makes probable that it bonded to the fluoropolymer backbone via the α-carbon atom of an ethyl group. A radical, or a photoinduced electron transfer mechanism was suggested to describe this reaction. A selective area electroless plating of silver was performed after pretreating the sample with patterned photomodification. The increased adhesion of the sample was proved by gluing with epoxy resin. As a result of the surface modification the tensile strength of gluing increased by 210× and reached 24% of the value characteristic for the bulk material.

  5. Inexpensive laser-induced surface modification in bismuth thin films

    NASA Astrophysics Data System (ADS)

    Contreras, A. Reyes; Hautefeuille, M.; García, A. Esparza; Mejia, O. Olea; López, M. A. Camacho

    2015-05-01

    In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD-DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  6. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.

    PubMed

    Chang, Han-Wei; Tsai, Yu-Chen; Cheng, Chung-Wei; Lin, Cen-Ying; Lin, Yen-Wen; Wu, Tzong-Ming

    2011-08-01

    Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.

  7. Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes

    NASA Astrophysics Data System (ADS)

    Arakelian, S.; Kutrovskaya, S.; Kucherik, A.; Osipov, A.; Povolotckaia, A.; Povolotskiy, A.; Manshina, A.

    2016-04-01

    Synthesis of nanotructured metal-carbon materials by laser irradiation is an actual branch of laser physics and nanotechnology. Laser sources with different pulse duration allow changing the heating rate with realization of different transition scenarios and synthesis materials with various physical properties. We study the process of the formation of nanostructured metal-clusters and complexes using laser irradiation of colloidal systems which were consisted of carbon micro- nanoparticles and nanoparticles of noble metals. For carbon nanoparticles synthesis we use the method of laser ablation in liquid. For the realization of different regimes of laser surface modification of the target (glassycarbon and shungite) and the formation of micro- nanoparticles in a liquid the YAG:Nd laser with a pulse duration from 0.5 ms up to 20 ms (pulse energy up to 50J) was applied. We have used the CW-laser with moderate intensity in liquid (water or ethanol) for nanoparticle of noble metals synthesis. Thus, colloidal systems were obtained by using CW-laser with λ = 1.06 μm, I ~ 105-6 W/cm2, and t = 10 min. The average size of resulting particles was approximately about 10 to 100 nm. The nanoparticle obtaining was provided in the colloidal solution with different laser parameters. In this work we have investigated the mechanism of the metal-carbon cluster formation during the process of irradiation of colloidal system which were consisted of separate carbon, silver and gold nanoparticles. This system was irradiated by nanosecond laser (100 ns) with average power up to 50W.

  8. Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Vikas; Gupta, Shradhey; Mishra, Narendra Kumar; Singh, Ramesh; Yadav, Santosh K. S.; Ballabh Joshi, Khashti

    2017-03-01

    This study demonstrates the synthesis of a new class of peptide amphiphiles derived from aleuritic acid. The aleuritic acid was extracted and purified from the natural source shellac, which was later conjugated with tryptophan, leading to a new class of very short peptide amphiphiles. The self-assembling behavior of this compound was studied using spectroscopic and microscopic tools. This shellac-driven peptide was further used to cultivate gold nanoparticles (AuNPs) with the help of continuous wave (CW) laser light, where the AuNPs were encapsulated by peptide nanostructures. Laser irradiation caused nanoscopically confined heating in the AuNPs-peptide hybrid nanostructures. Such confined heating is mainly the result of scattering and simultaneous absorption of subwavelength power which is subjected to enhanced plasmonic resonances of the metal nanostructures. Hence, the generated heat power/photothermal effect of these AuNPs leads to disruption of the AuNP–peptide hybrids. Such light-induced prototype nano-structure hydrid devices have a wide range of thermal-plasmonic applications in the morphological modification of soft metal hybrid nanostructures for photothermal therapy and drug release.

  9. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  10. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  11. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    NASA Astrophysics Data System (ADS)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  12. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  13. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films

    SciTech Connect

    Rebollar, Esther; Castillejo, Marta; Vazquez de Aldana, Javier R.; Moreno, Pablo

    2012-01-23

    This work demonstrates the formation of femtosecond laser induced periodic surface structures (LIPSS) by multipulse irradiation with the fundamental and 3rd harmonic of a linearly polarized Ti:sapphire laser (795 and 265 nm) on thin films of the polymers poly (ethylene terephthalate), poly (trimethylene terephthalate), and poly (carbonate bisphenol A) prepared by spin-coating. LIPSS, inspected by atomic force microscopy, are formed upon multiple pulse UV and IR irradiation with wavelength-sized period in a narrow range of fluences below the ablation threshold. Control and tunability of the size and morphology of the periodic structures become thus possible ensuring photochemical integrity of polymer films.

  14. Light scattering from laser-induced shallow pits on silica exit surfaces

    NASA Astrophysics Data System (ADS)

    Feigenbaum, E.; Raman, R. N.; Nielsen, N.; Matthews, M. J.

    2015-11-01

    We study the formation of laser-induced shallow pits (LSPs) on silica output surfaces and relate these features to optical performance as a function of incident laser fluence. Typical characteristics of the LSPs morphology are presented. Closed-form expressions for the scattered power and far-field angular distribution are derived and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell's equations. The model predictions agree well with the measurements for precise profile micro-machined shallow pits on glass, and for pitting caused by laser cleaning of bound metal micro-particles at different fluences.

  15. Glycine crystallization in solution by CW laser-induced microbubble on gold thin film surface.

    PubMed

    Uwada, Takayuki; Fujii, Sho; Sugiyama, Teruki; Usman, Anwar; Miura, Atsushi; Masuhara, Hiroshi; Kanaizuka, Katsuhiko; Haga, Masa-aki

    2012-03-01

    We have developed a novel laser-induced crystallization method utilizing local heat-induced bubble/water interface. Continuous laser beam of 1064 nm is focused on a gold nanoparticles thin film surface covered with glycine supersaturated aqueous solution. Light absorption of the film due to localized plasmon resonance caused local heating at the focal position and produced a single thermal vapor microbubble, which generated thermal gradient followed by convection flow around the bubble and eventually induced glycine crystallization and growth. The crystallization mechanism is discussed by considering gathering and accumulating molecules around the bubble/water interface assisted by convection flow and temperature jump.

  16. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    SciTech Connect

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-23

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  17. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser.

    PubMed

    Huang, Min; Zhao, Fuli; Cheng, Ya; Xu, Ningsheng; Xu, Zhizhan

    2009-12-22

    We show that short-pulse laser-induced classical ripples on dielectrics, semiconductors, and conductors exhibit a prominent "non-classical" characteristic-in normal incidence the periods are definitely smaller than laser wavelengths, which indicates that the simplified scattering model should be revised. Taking into account the surface plasmons (SPs), we consider that the ripples result from the initial direct SP-laser interference and the subsequent grating-assisted SP-laser coupling. With the model, the period-decreasing phenomenon originates in the admixture of the field-distribution effect and the grating-coupling effect. Further, we propose an approach for obtaining the dielectric constant, electron density, and electron collision time of the high-excited surface. With the derived parameters, the numerical simulations are in good agreement with the experimental results. On the other hand, our results confirm that the surface irradiated by short-pulse laser with damage-threshold fluence should behave metallic, no matter for metal, semiconductor, or dielectric, and the short-pulse laser-induced subwavelength structures should be ascribed to a phenomenon of nano-optics.

  18. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  19. The influence of laser-induced surface modifications on the backside etching process

    NASA Astrophysics Data System (ADS)

    Zimmer, K.; Böhme, R.; Ruthe, D.; Rauschenbach, B.

    2007-05-01

    Spectroscopic measurements in the UV/VIS region show reduced transmission through laser-induced backside wet etching (LIBWE) of fused silica. Absorption coefficients of up to 10 5 cm -1 were calculated from the transmission measurements for a solid surface layer of about 50 nm. The temperatures near the interface caused by laser pulse absorption, which were analytically calculated using a new thermal model considering interface and liquid volume absorption, can reach 10 4 K at typical laser fluences. The high absorption coefficients and the extreme temperatures give evidence for an ablation-like process that is involved in the LIBWE process causing the etching of the modified near-surface region. The confinement of the ablation/etching process to the modified near-surface material region can account for the low etch rates observed in comparison to front-side ablation.

  20. [Application progress of laser-induced breakdown spectroscopy for surface analysis in materials science field].

    PubMed

    Zhang, Yong; Jia, Yun-Hai; Chen, Ji-Wen; Liu, Ying; Shen, Xue-Jing; Zhao, Lei; Wang, Shu-Ming; Yu, Hong; Han, Peng-Cheng; Qu, Hua-Yang; Liu, Shao-Zun

    2012-06-01

    As a truly surface analytical tool, laser-induced breakdown spectroscopy (LIBS) was developed in recent ten years, and in this paper, fundamental theory, instrumentation and it's applications in material science are reviewed in detail. Application progress of elemental distribution and depth profile analysis are mainly discussed in the field of metallurgy, semiconductor and electronical materials at home and abroad. It is pointed out that the pulse energy, ambient gas and it's pressure, and energy distribution of laser beam strongly influence spatial and depth resolution, and meanwhile a approach to improving resolution considering analytical sensitivity is provided. Compared with traditional surface analytical methods, the advantage of LIBS is very large scanning area, high analytical speed, and that conducting materials or non-conducting materials both can be analyzed. It becomes a powerful complement of traditional surface analytical tool.

  1. Laser-induced periodic surface structure in nickel-fullerene composites

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Lavrentiev, V.; Havranek, V.; Horak, P.; Hnatowicz, V.; Fajgar, R.

    2016-02-01

    The phase separation of a thin film of the binary composite of Ni and C60 has been studied using laser illumination of the sample through an array of pinholes (with a diameter of 10-µm and 60-µm × 80-µm spacing). The mesh with pinholes enabled splitting of the probing beam into an array of close-spaced laser micro-beams. The simultaneous illumination of the composite, with a set of micro-beams, resulted in a fast phase separation of the hybrid matter and an occurrence of unusual laser-induced periodic surface structures - a net of complex Ni and C allotropes (C60 and amorphous C) concentric rings and a fine array of the C60 - based islands, regularly distributed over the Ni + C60 thin film matrix. The results confirmed the high proclivity of the hybrid Ni + C60 composites to a correlated separation of the Ni and C-allotrope phases.

  2. Molecular dynamics simulations of laser induced surface melting in orthorhombic Al13Co4

    NASA Astrophysics Data System (ADS)

    Sonntag, S.; Roth, J.; Trebin, H.-R.

    2010-10-01

    Laser induced surface melting of the aluminum-cobalt alloy Al13Co4 is investigated. For the simulations of the lattice ions we use molecular dynamics, while for the time evolution of the electron temperature a generalized heat-conduction equation is solved. Energy transfer between the sub-systems is allowed by an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well-known two-temperature model [Anisimov et al. in JETP Lett. 39(2), 1974]. The alloy shows large structural affinity to decagonal quasicrystals, which have an in-plane five-fold symmetry,while in perpendicular direction the planes are stacked periodically. As a consequence we observe slight anisotropic melting behavior.

  3. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R2 ∼ 0.84) and transverse (R2 ∼ 0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  4. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy.

    PubMed

    Washburn, Kathryn E; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R(2)∼0.84) and transverse (R(2)∼0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  5. Analysis of metal surfaces coated with europium-doped titanium dioxide by laser induced breakdown spectroscopy.

    PubMed

    Głogocka, Daria; Noculak, Agnieszka; Pucińska, Joanna; Jopek, Wojciech; Podbielska, Halina; Langner, Marek; Przybyło, Magdalena

    2015-01-01

    The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.

  6. Surface element-mapping of three dimensional structures by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Beresko, Christian; Kohns, Peter; Ankerhold, Georg

    2014-09-01

    During lateral mapping with laser-induced breakdown spectroscopy (LIBS) the focal position of the plasma-generating laser needs to be kept stable on the sample surface area to be probed. Therefore, three-dimensional structures like edged surfaces require a permanent re-focusing. We describe a new auto-focusing technique to perform surface elemental mapping with LIBS by correcting the focusing lens-to-sample distance using a direct monitoring of the LIBS signal intensity. This method allows the scanning of surfaces with strong height fluctuations of several millimeters without the need of any additional devices. The auto-focusing method is valuable for LIBS applications made on complex-shaped samples or simply to improve the measurement reproducibility. Applications are LIBS analyses of samples exhibiting drill holes or steep edges. Our procedure does not need a constant focal plane and follows the topographic profile of the sample surface. Impurities and material inclusions are well detected. From the topographic information additionally obtained, a three-dimensional image of the sample can be deduced. Depth resolution is limited by the Rayleigh range of the LIBS laser light. The method is best suited for low energy laser pulses with high repetition rate and infrared emission.

  7. Finite-difference Time-domain Modeling of Laser-induced Periodic Surface Structures

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Skolski, J. Z. P.; Oboňa, J. Vincenc; Veld, A. J. Huis in't.

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures with amplitudes the (sub)micrometer range and periodicities in the (sub)wavelength range. It is thought that periodically modulated absorbed laser energy is initiating the growth of LIPSSs. The "Sipe theory" (or "Efficacy factor theory") provides an analytical model of the interaction of laser radiation with a rough surface of the material, predicting modulated absorption just below the surface of the material. To address some limitations of this model, the finite-difference time-domain (FDTD) method was employed to numerically solve the two coupled Maxwell's curl equations, for linear, isotropic, dispersive materials with no magnetic losses. It was found that the numerical model predicts the periodicity and orientation of various types of LIPSSs which might occur on the surface of the material sample. However, it should be noted that the numerical FDTD model predicts the signature or "fingerprints" of several types of LIPSSs, at different depths, based on the inhomogeneously absorbed laser energy at those depths. Whether these types of (combinations of) LIPSSs will actually form on a material will also depend on other physical phenomena, such as the excitation of the material, as well as thermal-mechanical phenomena, such as the state and transport of the material.

  8. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    NASA Astrophysics Data System (ADS)

    Afshar, Maziar; Leber, Moritz; Poppendieck, Wigand; König, Karsten; Seidel, Helmut; Feili, Dara

    2016-01-01

    In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  9. Laser-induced surface alloying in nanosized Ni/Ti multilayer structures

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Radak, B.; Peruško, D.; Pelicon, P.; Kovač, J.; Mitrić, M.; Gaković, B.; Trtica, M.

    2013-01-01

    Laser-induced alloying effects on the composition and structure of different Ni/Ti multilayer structures were studied. Thin films composed of one, five, and ten (Ni/Ti) bilayers were deposited by DC ion sputtering on (1 0 0) Si wafers. Laser irradiations were performed by 150 ps pulses of a Nd:YAG laser operating at 1064 nm. The samples were characterized by Rutherford backscattering spectrometry (RBS), Auger electron spectroscopy (AES), X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). At a laser fluence of 0.9 J cm-2, interaction between Ni and Ti layers was initiated, and NiTi alloy formed in 5- and 10-bilayered samples. Progressed alloying was achieved at a laser fluence of 1.2 J cm-2. The alloy was formed mostly within the heat affected zone (HAZ) of the sample. Surface segregation of titanium was followed by formation of a 25 nm thin TiO2 film on the surface of the multilayered structures. In addition, parallel periodic surface structures on the surfaces of the 5- and 10-bilayered samples were clearly recorded. Their period in the case of the 5-bilayered system (0.77 μm) agrees very well with the predictions of the common theory, whereas, in the case of the 10-bilayered system, two periods of such structures are observed (1.43 μm and 0.4 μm), and none of them coincides with the prediction.

  10. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    SciTech Connect

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana E-mail: dnr-laserlab@yahoo.com; Deepak, K. L. N.

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  11. Structuring of glass fibre surfaces by laser-induced front side etching

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    2014-05-01

    The fabrication of sub-μm structures on glass fibre surfaces poses a big challenge for the laser processing. However, the laser-induced front side etching (LIFE) method has a great potential for the fast, nm-precision, and cost-effective production of surface structures. LIFE is a method for laser etching of transparent materials using thin absorber layers with a high absorption coefficient like metal layers. The LIFE process of the front surface of a fused silica wafer as well as of a glass fibre is studied in dependence on the laser parameters. A KrF excimer laser with a wavelength of 248 nm and a pulse duration of 25 ns was used. The resultant structures were analysed with microscopic methods (white light interferometry, scanning electron microscopy (SEM)). The analysing of the surface structures presented that the LIFE methods allow the fabrication of well-defined periodic sub-μm structures. Furthermore, the structuring process was simulated by a thermodynamic equation including an approach of the laser-plasma interaction. The theoretically predicted results presented a good agreement with the experimental results.

  12. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    NASA Astrophysics Data System (ADS)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Deepak, K. L. N.; Rao, D. Narayana

    2014-09-01

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C2H5OH) and water (H2O) using linearly polarized Ti:sapphire fs laser pulses of ˜110 fs pulse duration and ˜800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  13. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  14. Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures

    SciTech Connect

    Nürnberger, P.; Reinhardt, H.; Kim, H-C.; Yang, F.; Peppler, K.; Janek, J.; Hampp, N.

    2015-10-07

    The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grain size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.

  15. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect

    Petrović, Suzana M.; Gaković, B.; Peruško, D.; Stratakis, E.; Bogdanović-Radović, I.; Čekada, M.; Fotakis, C.; Jelenković, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  16. Laser-Induced Breakdown Spectroscopy on Solution Samples Using Surface Excitation

    DTIC Science & Technology

    1996-12-01

    and R. Kellner, "New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water," Applied Spectroscopy 47 (9), 1484...34Quantitative Elemental Analysis of Iron Ore by Laser-Induced Breakdown Spectroscopy," Applied Spectroscopy 45 (4), 701-705 (1991). 7. D.A. Cremers...to 950 nm," Applied Spectroscopy 49 (10), 1490-1499 (1995). 17. J. Belliveau, L. Cadwell, K. Coleman, L. Huwel, and H. Griffin, "Laser- Induced

  17. Plasma-edge studies in ISX-B and EBT-S using surface probes and laser-induced fluorescence

    SciTech Connect

    Roberto, J.B.

    1982-08-01

    Surface probe and laser-induced fluorescence measurements in ISX-B and EBT-S have made significant contributions to the understanding of plasma edge characteristics and plasma-surface interactions in these devices. Where comparison is possible, these techniques have led to results which are consistent with plasma diagnostics. Charge-exchange neutral sputtering and self-ion sputtering have been identified as the dominent heavy impurity release mechanisms in ISX-B and EBT-S, respectively.

  18. Measurements of deuterium retention and surface elemental composition with double pulse laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Krawczyk, Natalia; Czarnecka, Agata; Gasior, Pawel; Kubkowska, Monica; Lepek, Michal

    2016-02-01

    Estimating the tritium amount retained in the plasma facing components and their surface layer composition is of crucial importance for ITER. Laser-induced breakdown spectroscopy (LIBS) is an analytical technique suitable for in situ measurements of both these quantities. For improving its sensitivity, the double pulse (DP) variant can be used, instead of the standard single pulse (SP). In this work Mo samples coated with 1.5-1.8 μm thick W-Al (as a proxy for Be) mixed layer, with co-deposited deuterium were analyzed under vacuum (˜5 × 10-5 mbar) by SP and DP LIBS, showing enhancement of the spectral intensity for the latter. Calibration free method was applied to the LIBS data for getting the elemental concentration of W and Al. Results are in satisfactory agreement with those obtained from preliminary, ion beam analysis measurements. Deuterium concentration was tentatively estimated by accounting for the intensity ratio between Dα and nearby WI lines.

  19. Real-time specific surface area measurements via laser-induced breakdown spectroscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Howard, James E.

    2017-01-01

    From healthcare to cosmetics to environmental science, the specific surface area (SSA) of micro- and mesoporous materials or products can greatly affect their chemical and physical properties. SSA results are also widely used to examine source rocks in conventional and unconventional petroleum resource plays. Despite its importance, current methods to measure SSA are often cumbersome, time-consuming, or require cryogenic consumables (e.g., liquid nitrogen). These methods are not amenable to high-throughput environments, have stringent sample preparation requirements, and are not practical for use in the field. We present a new application of laser-induced breakdown spectroscopy for rapid measurement of SSA. This study evaluates geological samples, specifically organic-rich oil shales, but the approach is expected to be applicable to many other types of materials. The method uses optical emission spectroscopy to examine laser-generated plasma and quantify the amount of argon adsorbed to a sample during an inert gas purge. The technique can accommodate a wide range of sample sizes and geometries and has the potential for field use. These advantages for SSA measurement combined with the simultaneous acquisition of composition information make this a promising new approach for characterizing geologic samples and other materials.

  20. Thermal, anisotropic microhardness and laser induced surface damage studies on certain metal complexes of thiourea

    NASA Astrophysics Data System (ADS)

    Dhanuskodi, S.; Sabari Girisun, T. C.

    2011-09-01

    Single crystals of thiourea metal complexes with selected group II metal ions, zinc and cadmium, have been grown by solvent evaporation technique and characterized by XRD studies. The thermal, mechanical and laser induced surface damage properties of thiourea and its metal complexes in (1 0 0) plane were studied. From the improved photopyroelectric technique the thermal properties of the metal complexes were evaluated. Due to larger heat capacity ZTS (382.4 J kg -1 K -1) has better thermal stability than BTCC (304.09 J kg -1 K -1), TTCS (293.5 J kg -1 K -1) and BTZC (255.24 J kg -1 K -1). Vickers hardness studies reveal that the materials have reverse indentation size effect and belong to soft material type. Elastic stiffness was found to be very large for ZTS (8.05) than TTCS (5.38), BTCC (1.57 GPa) and BTZC (0.76 GPa). Multi-shot laser damage studies reveal that ZTS (40 GW/cm 2) has higher laser damage threshold and the roles of the group II metal ions in improving the mechanical and thermal stability of the metal complexes are discussed.

  1. Laser-induced patterns on metals and polymers for biomimetic surface engineering

    NASA Astrophysics Data System (ADS)

    Kietzig, Anne-Marie; Lehr, Jorge; Matus, Luke; Liang, Fang

    2014-03-01

    One common feature of many functional surfaces found in nature is their modular composition often exhibiting several length scales. Prominent natural examples for extreme behaviors can be named in various plant leaf (rose, peanut, lotus) or animal toe surfaces (Gecko, tree frog). Influence factors of interest are the surface's chemical composition, its microstructure, its organized or random roughness and hence the resulting surface wetting and adhesion character. Femtosecond (fs) laser micromachining offers a possibility to render all these factors in one single processing step on metallic and polymeric surfaces. Exemplarily, studies on Titanium and PTFE are shown, where the dependence of the resulting feature sizes on lasing intensity is investigated. While Ti surfaces show rigid surface patterns of micrometer scaled features with superimposed nanostructures, PTFE exhibits elastic hairy structures of nanometric diameter, which upon a certain threshold tend to bundle to larger features. Both surface patterns can be adjusted to mimic specific wetting and flow behaviour as seen on natural examples. Therefore, fs-laser micromachining is suggested as an interesting industrially scalable technique to pattern and fine-tune the surface wettability of a surface to the desired extends in one process step. Possible applications can be seen with surfaces, which require specific wetting, fouling, icing, friction or cell adhesion behaviour.

  2. Characterization of Si Nanostructured Surfaces

    SciTech Connect

    Brueck, S.R.J.; Gee, James M.; Ruby, Douglas S.; Zaidi, Saleem H.

    1999-07-20

    Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

  3. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring

    NASA Astrophysics Data System (ADS)

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V.; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M.; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C.; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-01

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser

  4. Multi-elemental surface mapping and analysis of carbonaceous shale by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Liu, Jie; Shi, Qi; He, Yi; Niu, Guanghui; Duan, Yixiang

    2016-01-01

    Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and redox sensitive trace elements, has been proved as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements for the shale composition, especially those with spatial resolution, will reveal rich information for the understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy as an effective technique to perform spectrochemical analysis for shale samples. In case of the bulk analysis of pressed shale pellet, spectral analysis of the plasma emission revealed high sensitivity of LIBS for major, minor and even trace elements. More than 356 lines emitted by 19 different elements can be found. Among these species, redox sensitive trace elements such as V, Cr, and Ni were detected with high signal-to-ratios. Two-dimensional surface micro-analysis for the concerned major or minor elements with strong emissions was then applied to the smoothed shale slab. Local thermodynamic equilibrium for the plasma was first verified with a line profile point-by-point on the sample surface, the matrix effect was then assessed as negligible by the extracted electron density and temperature of the plasmas induced at each position on the same profile. Concentration mappings for the major elements of Si, Al, Fe, Ca, Mg, Na and K were finally constructed with their measured relative variations of line emission intensities. The distribution and correlations of these elements in concentration may reflect changes of shale mineral components with respected to the variations of the depositional environments and provide an important clue in identifying sedimentary processes when combined with other geological or geochemical evidences. These results well

  5. Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring.

    PubMed

    Kalfagiannis, Nikolaos; Siozios, Anastasios; Bellas, Dimitris V; Toliopoulos, Dimosthenis; Bowen, Leon; Pliatsikas, Nikolaos; Cranton, Wayne M; Kosmidis, Constantinos; Koutsogeorgis, Demosthenes C; Lidorikis, Elefterios; Patsalas, Panos

    2016-04-21

    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technological challenge calls for the development of ultra-fast, high-throughput and low-cost fabrication techniques. Laser processing, accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nanostructures, with an extra advantage: the ease of scalability. In the present work we take advantage of the ability to tune the laser wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, and demonstrate the utilization of different optical absorption mechanisms that are size-selective and enable the fabrication of pre-determined patterns of metal nanostructures. Thus, we overcome the greatest challenge of Laser Induced Self Assembly by combining simultaneously large-scale character with atomic-scale precision. The proposed process can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices.

  6. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    NASA Astrophysics Data System (ADS)

    Wu, Taotao; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-01

    Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm2. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the "positive feedback" effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. The oxide films were thin, orientated and badly crystallized. The oxidation process was influenced by the grain orientation of the metal substrate. These results made the mechanism of laser-induced oxidation of iron clear and provided available experimental data for accurate modeling of the oxidation kinetics.

  7. Tailored magnetic nanostructures on surfaces

    NASA Astrophysics Data System (ADS)

    Pierce, John Philip

    Nanostructuring has introduced us to a new world of tunable, artificially structured materials. An exciting aspect of this new world is that we control where the atoms, or layers of atoms, are arranged in materials and have learned that this can awaken new properties in them. But, we are only at the beginning stages in developing this control and an understanding of what can be done with it. This dissertation is about an important part of finding our way in this new world; learning to tailor magnetic nanostructures on surfaces. We begin by showing ways in which the magnetic properties of ultrathin films, nanostripes, and isolated nanoclusters can be systematically varied in order to teach us about their behavior. The ultrathin films are from the historically challenging Fe/Cu(100) system. We use small fractions of a single layer of cobalt capping atoms to control their magnetization direction and find a completely new way to cause the magnetization direction to reorient. The nanostripes are made of alloys of iron and cobalt on a tungsten surface. We explore how the magnetic ordering in these stripes is affected by variation of their composition. We then show how changing the size and spacing of isolated Fe dots on a copper surface can teach us about magnetic interactions between them. Finally, we show how our ability to synthesize the dots represented the last piece in an important puzzle. This work enables us to make the first direct observation of how the magnetic properties of a particular amount of a single material change as it is prepared in the form of an ultrathin film, wire array, or dot assembly on a common template.

  8. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    SciTech Connect

    Sedao, Xxx; Garrelie, Florence Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent; Maurice, Claire; Quey, Romain

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  9. Effects of chemical etching on the surface quality and the laser induced damage threshold of fused silica optics

    NASA Astrophysics Data System (ADS)

    Pfiffer, Mathilde; Cormont, Philippe; Néauport, Jérôme; Lambert, Sébastien; Fargin, Evelyne; Bousquet, Bruno; Dussauze, Marc

    2016-12-01

    Effects of deep wet etching on the surface quality and the laser induced damage probability have been studied on fused silica samples. Results obtained with a HF/HNO3 solution and a KOH solution were compared on both polished pristine surface and scratched surfaces. The hydrofluoric solution radically deteriorated the surface quality creating a haze on the whole surface and increasing considerably the roughness. For both solutions, neither improvement nor deterioration of the laser damage performances has been observed on the etched surfaces while the laser damage resistance of scratches has been increased to the level of the surface. We conclude that laser damage performances are equivalent with both solutions but an acid etching induces surface degradation that is not experienced with basic etching.

  10. Optical monitoring of surface adlayers by laser-induced thermal desorption during the plasma etching of semiconductors

    NASA Astrophysics Data System (ADS)

    Choe, Jae Young

    1999-11-01

    Laser induced thermal desorption with optical detection by laser induced fluorescence and transient plasma induced emission is used to analyze the surface adlayer during plasma etching of semiconductors, including Si, Ge, and InP. In the investigation of Si etching in a Cl2 inductively coupled plasma (ICP), 308 nm radiation from a XeCl excimer laser heats the surface to desorb the surface species (LD) and excites laser induced fluorescence (LIF) in the desorbing SiCl. This measured LD-LIF optical signal indicates the adlayer chlorine content during steady-state plasma etching. The LD-LIF of SiCl increases with dc substrate bias voltage indicating that the adlayer chlorine content increases with increasing substrate bias. The SiCl LD-LIF signal is almost independent of rf power, while the ion density and etch rate increase by an order of magnitude over the range of rf power studied. In the investigation of Ge etching in a Cl2 ICP, 308 nm radiation from a XeCl excimer laser is used for LD-LIF of GeCl. The LD-LIF of GeCl is also independent of rf power, as for Si etching, but the rate of chlorination is faster than that during Si etching. The GeCl LD-LIF signal remains almost constant as dc substrate bias is increased from 0 V to over -100 V. The transient increase in plasma-induced emission following laser-induced thermal desorption (LD-PIE) is also used to analyze the surface adlayer during Si and InP etching by a Cl2 plasma. Several different species are monitored during Si etching by a Cl2 plasma, including Si, SiCl and SiCl2. The LD-PIE intensities from all of these species increase with rf power. In order to properly interpret the LD-PIE signal to determine the level of surface chlorination, the LD-PIE signal is normalized by the electron density. The LD-PIE intensities during Si etching increase with the dc substrate bias as in the LD-LIF study. Both the LD-LIF and LD-PIE measurements of Si etching are consistent with each other for determining the adlayer

  11. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Cheung, Hoi Ching; Zheng, Ronger; Ma, Qianli; Chen, Yanping; Delepine-Gilon, Nicole; Yu, Jin

    2016-10-01

    We have developed in this work a method of elemental analysis of powdered materials with laser-induced breakdown spectroscopy (LIBS). This method requires simple sample preparation. Powders are first mixed into a 75 cSt base oil to obtain a paste which is then smeared onto the polished surface of a solid state substrate, aluminum plate for instance, in the form of a uniform thin film. The prepared sample is ablated by a high energy infrared (IR at 1064 nm) nanosecond laser pulse. The laser beam transmits through the coating layer of the material to be analyzed and induces a strong plasma from the substrate. The initial plasma interacts in turn with the coating layer, leading to the vaporization and excitation of the incorporated powder particles. The subsequent emission from the plasma includes emission lines of the elements contained in the powder, which is preferentially captured by a suitable detection system. The analysis of the recorded spectrum allows the concentration determination of the targeted elements in the powder. We first applied the method on a cellulose powder of 20 μm typical particle size. The powder was spiked with titanium dioxide (TiO2) nanoparticles for Ti concentrations ranging from 25 ppm to 5000 ppm by weight. Calibration graphs were thus built to deduce figures-of-merit parameters such as the coefficient of determination (R2) and the limits of detection and quantification (LoD and LoQ). We optimized especially the choice of reference line for spectrum normalization, which resulted in better analytical performances. In the second step, two sets of powders, the aforementioned cellulose powder and an alumina powder with average particle size of ≤ 10 μm, were spiked with TiO2 nanoparticles. We then assessed the matrix effect between these two different powders for the determination of Ti by comparing their calibration curves. Our results show universal calibration curve in Ti determination in the two tested matrices. The results are

  12. The formation mechanism and evolution of ps-laser-induced high-spatial-frequency periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.

    2017-01-01

    We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.

  13. Laser-Induced Transfer of Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Koch, Jürgen; Chichkov, Boris N.

    2010-10-01

    A novel approach for the fabrication of metallic micro- and nanostructures based on femtosecond laser-induced transfer of metallic nanodroplets is developed. The size of the transferred droplets depends on the volume of laser-molten metal and can be varied by changing the laser beam focus on the sample surface and the metal film thickness. Controllable fabrication of high quality spherical gold micro- and nanoparticles with sizes between 170 nm and 1500 nm is realized. Fabrication of miscellaneous structures consisting of gold particles as elementary building blocks is demonstrated.

  14. Observation of particle ejection behavior following laser-induced breakdown on the rear surface of a sodium chloride optical window

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Cheng, Xiang'ai; Xu, Zhongjie; Wei, Ke; Jiang, Tian

    2017-01-01

    Laser-induced rear surface breakdown process of sodium chloride (NaCl) optical window was investigated based on the time-resolved shadowgraphy and interferometry. Violent particle ejection behavior lasting from tens of nanoseconds to tens of microseconds after the breakdown was observed. Classified by the particle velocity and propagating direction, the ejection process can be divided into three phases: (1) high-speed ejection of liquid particles during the first 100-ns delay; (2) micron-sized material clusters ejection from ˜100-ns to ˜1-μs delay; (3) larger and slower solid-state particles ejection from ˜1 μs to tens of microseconds delay. The moving directions of particles in the first and third phases are both perpendicular to the sample surface while particles ejected in the second phase exhibits angular ejection and present a V-like particle pattern. Mechanisms include explosive boiling, impact ejection, and shockwave ejection are discussed to explain this multiple phase ejection behavior. Our results highlight the significance of impact ejection induced by recoil pressure and backward propagating internal shockwave for laser-induced rear surface breakdown events of optical materials with low melting point.

  15. Laser induced projectile impact test (LIPIT): A micron-scale ballistic test for high-strain rate mechanical study of nano-structures

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Nelson, Keith; Thomas, Edwin

    2012-02-01

    We present a method to apply a highly localized deformation at a high-strain-rate for the study of mechanical characteristics of micro- and nano-structures. In the technique, Laser Induced Projectile Impact Test (LIPIT), micro-projectiles (solid silica spheres of 3.7μm diameter) are accelerated to a supersonic speed (up to 4 km/s) in air by a micro-explosion created by laser ablation of polystyrene and impact a sample target. The velocity information of the micro-projectiles is explicitly determined by two consecutive high-speed images during the flight of the projectiles. For demonstration, a glassy-rubbery nanocomposite consisting of a periodic self-assembled stack of 20 nm thick layers of polystyrene and polydimethylsiloxane blocks (PS-b-PDMS) is tested by LIPIT at the extremely high-strain rate of 10^8 s-1. The polymer nanocomposite demonstrates new orientation dependent deformation and failure mechanisms including a surprising order to disorder transition fluidization, and the energy absorbing ability of a layered nanocomposite through plastic deformation leading to a melting of the layered structure.

  16. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Nathala, Chandra S. R.; Ajami, Ali; Husinsky, Wolfgang

    2015-05-01

    The effect of fluence and pulse duration on the growth of nanostructures on chromium (Cr) surfaces has been investigated upon irradiation of femtosecond (fs) laser pulses in a liquid confined environment of ethanol. In order to explore the effect of fluence, targets were exposed to 1000 pulses at various peak fluences ranging from 4.7 to 11.8 J cm-2 for pulse duration of ∼25 fs. In order to explore the effect of pulse duration, targets were exposed to fs laser pulses of various pulse durations ranging from 25 to 100 fs, for a constant fluence of 11.8 J cm-2. Surface morphology and structural transformations have been analyzed by scanning electron microscopy and Raman spectroscopy, respectively. After laser irradiation, disordered sputtered surface with intense melting and cracking is obtained at the central ablated areas, which are augmented with increasing laser fluence due to enhanced thermal effects. At the peripheral ablated areas, where local fluence is approximately in the range of 1.4-4 mJ cm-2, very well-defined laser-induced periodic surface structures (LIPSS) with periodicity ranging from 270 to 370 nm along with dot-like structures are formed. As far as the pulse duration is concerned, a significant effect on the surface modification of Cr has been revealed. In the central ablated areas, for the shortest pulse duration (25 fs), only melting has been observed. However, LIPSS with dot-like structures and droplets have been grown for longer pulse durations. The periodicity of LIPSS increases and density of dot-like structures decreases with increasing pulse duration. The chemical and structural modifications of irradiated Cr have been revealed by Raman spectroscopy. It confirms the formation of new bands of chromium oxides and enol complexes or Cr-carbonyl compounds. The peak intensities of identified bands are dependent upon laser fluence and pulse duration.

  17. Nanostructured surfaces for bone biotemplating applications.

    PubMed

    Popat, Ketul C; Daniels, R Hugh; Dubrow, Robert S; Hardev, Veeral; Desai, Tejal A

    2006-04-01

    A major goal of orthopedic biomaterials research is to design better surface chemistries and configurations to control behavior of bone cells such as osteoblasts. Nanostructured architecture significantly affects the response of several cell lines. In this work, nanostructured surfaces were prepared by vapor liquid solid growth of silicon nanowires from size-controlled gold colloid catalysts deposited on fused silica substrates. The lengths and surface densities of the nanowires were varied to assess the effect of these parameters on bone cell response. Osteoblasts were seeded on nanowire surfaces to investigate both short-term adhesion and proliferation and long-term functionality and matrix production. Cell adhesion and proliferation were characterized using a standard 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay and cell counting for up to 4 days of culture. The total protein content, alkaline phosphatase activity, and matrix production were quantified using standard colorimetric assays for up to 4 weeks of culture. Matrix production was also characterized by measuring surface concentrations of calcium and phosphorus using X-ray photoelectron spectroscopy. Further, scanning electron microscopy was used to investigate osteoblast morphology on nanostructured surfaces. Over the 4-week study, the nanostructured surfaces demonstrated improved osteoblast adhesion and proliferation and increased alkaline phosphatase activity and matrix production compared to non-nanostructured control surfaces.

  18. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning.

    PubMed

    Hendrikson, Wim; Masman-Bakker, Wendy; van Bochove, Bas; Skolski, Johann; Eichstädt, Justus; Koopman, Bart; van Blitterswijk, Clemens; Grijpma, Dirk; Römer, Gert-Willem; Moroni, Lorenzo; Rouwkema, Jeroen

    2016-01-01

    Laser-induced periodic surface structures (LIPSS) are highly regular, but at the same time contain a certain level of disorder. The application of LIPSS is a promising method to functionalize biomaterials. However, the absorption of laser energy of most polymer biomaterials is insufficient for the direct application of LIPSS. Here, we report the application of LIPSS to relevant biomaterials using a two-step approach. First, LIPSS are fabricated on a stainless steel surface. Then, the structures are replicated onto biomaterials using the steel as a mold. Results show that LIPSS can be transferred successfully using this approach, and that human mesenchymal stromal cells respond to the transferred structures. With this approach, the range of biomaterials that can be supplied with LIPSS increases dramatically.

  19. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  20. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  1. Remote laser-induced breakdown spectroscopy for the detection and removal of salt on metal and polymeric surfaces.

    PubMed

    Bengtsson, M; Grönlund, R; Lundqvist, M; Larsson, A; Kröll, S; Svanberg, S

    2006-10-01

    The detection of contamination such as salt in outdoor high-voltage insulator systems and its subsequent removal are vital for a reliable transmission of electric power. Remote detection of salt on a copper metal surface was carried out by using a mobile laser-induced breakdown spectroscopy (LIBS) Lidar system with a laser wavelength of 355 nm. Detection of salt on a polymeric high-voltage insulator was obtained when an additional lens was inserted into the beam path, and the number of photons that was detected could be calculated by using a calibrated white light source. Ablative cleaning could readily be carried out with LIBS and was verified by observing the disappearance of the sodium D-line emission.

  2. Laser-induced processes on the back side of dielectric surfaces using a CuSO4-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Zehnder, Sarah; Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Micro-structured dielectric surfaces in combination with electrode structures are promising in the field of rapid prototyping of micro-sensors. In this work laser-induced back side etching and back side deposition using aqueous copper sulfate in form of a tartrate complex with formaldehyde as absorber liquid has been investigated regarding this aim. Results obtained with different laser systems ranging from UV to Near-IR and with pulse lengths from femtoseconds to nanoseconds will be presented, in order to give a wide-spread overview of the different observable effects. Depending on the specific setup and laser parameters, either well-defined compact Cu deposits, micro- or nanoscaled Cu droplets or ablation of the dielectric substrate was observed. Best quality crystalline and conducting Cu structures were achieved using ns pulses at 532 nm wavelength. Droplet formation with UV excimer laser was observed. Parameters influencing each configuration will be discussed.

  3. Laser-Induced Periodic Surface Structures on P3HT and on Its Photovoltaic Blend with PC71BM.

    PubMed

    Cui, Jing; Rodríguez-Rodríguez, Álvaro; Hernández, Margarita; García-Gutiérrez, Mari-Cruz; Nogales, Aurora; Castillejo, Marta; Moseguí González, Daniel; Müller-Buschbaum, Peter; Ezquerra, Tiberio A; Rebollar, Esther

    2016-11-23

    We describe the conditions for optimal formation of laser-induced periodic surface structures (LIPSS) over poly(3-hexylthiophene) (P3HT) spin-coated films. Optimal LIPSS on P3HT are observed within a particular range of thicknesses and laser fluences. These conditions can be translated to the photovoltaic blend formed by the 1:1 mixture of P3HT and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) when deposited on an indium tin oxide (ITO) electrode coated with (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). Solar cells formed by using either a bilayer of P3HT structured by LIPSS covered by PC71BM or a bulk heterojunction with a P3HT:PC71BM blend structured by LIPSS exhibit generation of electrical photocurrent under light illumination. These results suggest that LIPSS could be a compatible technology with organic photovoltaic devices.

  4. An Integrated Laser-Induced Piezoelectric/Differential Confocal Surface Acoustic Wave System for Measurement of Thin Film Young's Modulus

    PubMed Central

    Yang, Fei; Dorantes-Gonzalez, Dante J.; Chen, Kun; Lu, Zimo; Jin, Baoyin; Li, Yanning; Chen, Zhi; Hu, Xiaotang

    2012-01-01

    The present paper presents the design and development results of a system setup for measuring Young's modulus of thin films by laser-induced surface acoustic waves based on the integration of two detection methods, namely, piezoelectric transducer detection and differential confocal detection, which may be used for conducting consecutive or simultaneous measurements. After demonstrating the capabilities of each detection approach, it is shown how, depending on a wider range of applications, sample materials and measurement environments, the developed integrated system inherits and harnesses the main characteristics of its detection channels, resulting in an more practical and flexible equipment for determining Young's modulus than traditional nanoindentation equipment, and also suitable for cross-validation purposes.

  5. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  6. Laser-induced oxidation kinetics of bismuth surface microdroplets on GaAsBi studied in situ by Raman microprobe analysis.

    PubMed

    Steele, J A; Lewis, R A

    2014-12-29

    We report the cw-laser-induced oxidation of molecular-beam-epitaxy grown GaAsBi bismuth surface microdroplets investigated in situ by micro-Raman spectroscopy under ambient conditions as a function of irradiation power and time. Our results reveal the surface droplets are high-purity crystalline bismuth and the resultant Bi2O3 transformation to be β-phase and stable at room temperature. A detailed Raman study of Bi microdroplet oxidation kinetics yields insights into the laser-induced oxidation process and offers useful real-time diagnostics. The temporal evolution of new β-Bi2O3 Raman modes is shown to be well described by Johnson-Mehl-Avrami-Kolmogorov kinetic transformation theory and while this study limits itself to the laser-induced oxidation of GaAsBi bismuth surface droplets, the results will find application within the wider context of bismuth laser-induced oxidation and direct Raman laser processing.

  7. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample

  8. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  9. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    NASA Astrophysics Data System (ADS)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  10. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2016-03-01

    Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz) was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200) is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS), Ultimate Tensile Strength (UTS) and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  11. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2017-03-01

    In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation.

  12. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  13. Characterization and antibacterial functions of Ag-TiO2 and W-TiO2 nanostructured thin films prepared by sol-gel/laser-induced technique

    NASA Astrophysics Data System (ADS)

    Joya, Y. F.; Liu, Z.; Wang, T.

    2011-11-01

    A novel sol-gel/laser-induced technique (SGLIT) has been developed to form nanocrystalline titanium dioxide (TiO2) based thin films with an improved antibacterial performance. TiO2 precursor films loaded with W+6 and Ag+2 ions (W-TiO2, Ag-TiO2) were prepared separately by sol-gel method and spin-coated on microscopic glass slides. As-dried films were subjected to KrF excimer laser pulses at optimized parameters to generate mesoporous anatase and rutile phases at room temperature. The anatase phase was obtained after irradiation with 10 laser pulses only at 75-85 mJ/cm2 fluence in W-TiO2 films. However, higher number of laser pulses and higher W+6 content favored the formation of rutile. Whereas Ag-TiO2 films exhibited anatase up to 200 laser pulses at the same fluence. The films were characterized by using XRD, FEG-SEM, TEM and UV-Vis spectrophotometer to investigate the crystallographic structure, phase transformation, surface morphology, film thickness and the optical properties. A crystallite size of approximately 20 nm was achieved from the anatase prepared by SGLIT. The films exhibited an enhanced antibacterial function against E-Coli cells under the UV excitation.

  14. Femtosecond laser induced surface deformation in multi-dimensional data storage

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Chen, Yuhang; Li, Jiawen; Hu, Daqiao; Chu, Jiaru; Zhang, Qijin; Huang, Wenhao

    2012-12-01

    We investigate the surface deformation in two-photon induced multi-dimensional data storage. Both experimental evidence and theoretical analysis are presented to demonstrate the surface characteristics and formation mechanism in azo-containing material. The deformation reveals strong polarization dependence and has a topographic effect on multi-dimensional encoding. Different stages of data storage process are finally discussed taking into consideration the surface deformation formation.

  15. Scanning electron microscopic study of laser-induced morphologic changes of a coated enamel surface

    SciTech Connect

    Hess, J.A. )

    1990-01-01

    A low-energy Nd:YAG laser was used to irradiate extracted human teeth coated with a black energy-absorbent laser initiator in a study to determine the extent of the morphologic changes produced in the enamel surface. The laser initiator was applied to a cleaned enamel surface and irradiated at an energy output of 30 mJ or 75 mJ. Both energy levels produced morphologic changes of the surface. There was a sharp line of demarcation between the coated, irradiated area and the surrounding noncoated enamel surface. The scanning electron microscope view at the lower energy level showed that the surface had melted and reformed with numerous small, bubble-like inclusions. The 75 mJ energy level showed individual impact craters with shallow centers and raised edges containing numerous pores and large, bubble-like inclusions. Etching is a dental procedure in which an acid is normally used to remove a thin outer layer of the tooth structure. This is necessary to create a roughened, irregular surface in order to provide mechanical retention for dental restorative materials. The changes produced by the laser in this study suggest a simple, effective, and controlled method of etching the enamel surface of a tooth by altering its surface characteristics.

  16. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    NASA Astrophysics Data System (ADS)

    Çelen, Serap; Özden, Hüseyin

    2012-12-01

    Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200-250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  17. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    SciTech Connect

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  18. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; Legnaioli, S.; Almodóvar, F.; Hidalgo, M.; Palleschi, V.; Canals, A.

    2013-01-01

    In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid-liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g- 1 of Mn.

  19. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    SciTech Connect

    Huynh, T. T. D.; Petit, A.; Semmar, N.

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  20. Geochemical mapping of the lunar surface using laser-induced ion mass spectrometry from landers and rovers

    NASA Astrophysics Data System (ADS)

    Funsten, H. O.; Elphic, R. C.; Blacic, J. D.; Borovsky, J. E.; McComas, D. J.; Nordholt, J. E.

    In-situ lunar geochemical assessment is essential when remotely prospecting for lunar resources or characterizing the mineralogy of a lunar site. We discuss a technique for lunar geochemical mapping from landed platforms using Laser-induced Ion Mass Spectrometry (LIMS). In this technique, a focused diode-pumped Nd:YAG laser on an lunar lander or rover vaporizes a thin layer of a soil or rock target located at a range of 1 to 100 m. The vapor is ionized through electron heating by inverse Bremsstrahlung, and the expanding plasma cloud contains information about the target composition. Ions in this plasma are analyzed using specialized time-of-flight ion mass spectrometry, providing detailed composition analysis of the lunar surface. In considering this technique, we discuss the effects on the ion trajectories of ambient electric and magnetic fields and present a high sensitivity, high mass-resolution mass spectrometer that is capable of detecting low atomic mass abundances, trace elements, and isotopic variations.

  1. Ultrafast laser-induced reproducible nano-gratings on a molybdenum surface

    NASA Astrophysics Data System (ADS)

    Dar, Mudasir H.; Saad, Nabil A.; Sahoo, Chakradhar; Naraharisetty, Sri Ram G.; Rao Desai, Narayana

    2017-02-01

    Wavelength-dependent reproducible nano-gratings were produced on a bulk molybdenum surface upon irradiation with femtosecond laser pulses at near normal incidence in ambient air and water environments. The surface morphology of the irradiated surfaces was characterized by field emission scanning electron microscopy. The ripple spacing was observed to decrease by half when the surface was irradiated with the second harmonic of the fundamental 800 nm radiation. Careful choice of the laser parameters such as fluence, scanning speed, polarization and wavelength were observed to be important for the formation of smooth periodic ripples. The mechanism of formation of polarization-dependent periodic ripples is explained based on the interference model. We also demonstrated the use of a laser direct writing technique for the fabrication of periodic subwavelength structures that have potential applications in photonic devices.

  2. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    SciTech Connect

    Han, Weina; Jiang, Lan; Li, Xiaowei Liu, Yang

    2015-12-21

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence of the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.

  3. Laser Induced-Plasma Ion Mass Spectrometry for Characterization of Lunar and Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Blacic, J. D.; Cremers, D. A.; Ritzau, S. M.; Nordholt, J. E.; Funsten, H. O.

    1999-03-01

    LIMS is being developed to perform isotopic and elemental analysis of lunar and planetary surfaces at standoff distances. It uses an advanced ion mass spectrometer to obtain mass and energy spectra from the ionized plume produced by a laser.

  4. Laser-induced damage initiated on the surface of particle contamination fused silica at 1064nm

    SciTech Connect

    Michlitsch, K.J.

    1998-06-01

    An experimental study was undertaken to quantify the effects of contamination particles on the damage threshold of laser-illuminated fused silica optics and set cleanliness requirements for optics on the beam line of the National Ignition Facility at Lawrence Livermore National Laboratory. Circular contamination particles were sputter-deposited onto fused silica windows which were then illuminated repetitively using a 1064nm laser. A variety of contaminants were tested including metals, oxides, and organics. Tests were conducted with particles on the input and output surfaces of the window, and the morphological features of the damage were very reproducible. A plasma often ignited at the contamination particle; its intensity was dependent upon the mass of the contaminant. Input surface damage was characteristically more severe than output surface damage. The size of the damaged area scaled with the size of the particle. On a few occasions, catastrophic damage (cracking or ablation of the substrate) initiated on the output surface due to contamination particles on either the input or output surface. From damage growth plots, predictions can be made about the severity of damage expected from contamination particles of known size and material.

  5. Optical Deflection Technique for Investigation of Laser-Induced Oscillating Bubble on Metal Surface

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Qing; Chen, Xiao; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2004-08-01

    The oscillation of a laser-generated single cavitation bubble on a metal surface is investigated by a fiber-optic diagnostic technique based on an optical beam deflection (OBD). The sequence of waveforms induced by the bubble pulsation is obtained with respect to detection distance. The maximum and minimum bubble radii for each oscillation cycle are determined from the experimental results. Furthermore, by tracking the arrival time of a bubble wall during its expanding and collapsing stages, the temporal development of a cavitation bubble on the metal surface is obtained.

  6. Theory of Laser-Induced Surface Chemistry with Applications to Microelectronics and Heterogeneous Catalysis.

    DTIC Science & Technology

    1984-05-01

    electronic transition from state II to I’, P2 is the Landau - Zener -type curve-crossing probability from state I to I’, and P3(wj) is the probability...review see: Goodman, F. 0.; Wachman, H. Y. "Dynamics of Gas-Surface Scattering", Academic Press: New York, 1976. 9. Landau , L. D.; Lifshitz, E. M

  7. Elemental mass spectroscopy of remote surfaces from laser-induced plasmas

    NASA Technical Reports Server (NTRS)

    Situ, W.; DeYoung, R. J.

    1994-01-01

    The elemental mass analysis of laser-produced ions from Al, Cu, Ge, Ag, and a lunar simulant target when irradiated by a 400-mJ, 8-ns, Nd: YAG laser at 1 x 10(exp 9) W/cm(exp 2), is reported. Ions traveled down a 11.1-m evacuated tube to an ion-trap 1-m time-of-flight (TOF) mass spectrometer where an elemental mass spectrum was recorded. The amount of target material removed per laser pulse and the ionization fraction were measured. The ion spatial distribution was measured at 11.1-m distance and found to be near a fourth-power cosine distribution. These results indicate the ability to mass analyze a surface over a distance of many kilometers for lunar and asteroid surface elemental mass analysis by a remote satellite or lunar rover.

  8. Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Huang, Zhulin; Zhou, Fei; Lei, Xing; Yao, Bo; Meng, Guowen; Mao, Qinghe

    2016-05-01

    Fibre surface-enhanced Raman scattering (SERS) probes have the advantages of flexibility, compactness, remote sensing capability and good repeatability in SERS detection and thus have a range of different applications. However, it is difficult to realize simple, low-cost and high-throughput preparations of fibre SERS probes with high sensitivity and desirable repeatability using the currently available fabrication techniques, which restricts their practical applications. We report here a simple, low-cost method using laser-induced self-assembly to realize the fast fabrication of fibre SERS probes with high sensitivity and excellent reproducibility. By lifting the fibre facet above a pre-synthesized nanoparticle colloid, a meniscus can be formed with the help of the surface tension of the liquid. Using irradiation from an induced laser guided by the fibre, localized thermal effects on the nanoparticles in the meniscus control the growth of the fibre probes and the electromagnetic interactions among the closely spaced nanoparticles assist the arrangement of nanoparticle clusters on the fibre facet. The prepared fibre probes showed a very high SERS sensitivity of 10-10 M for p-aminothiophenol using a portable commericial Raman spectrometer with a short integration time of 2 s. They also showed excellent repeatability with relative standard deviations <2.8% in the SERS peak intensities for different detections with the same probe and 7.8% for different fibre probes fabricated under the same conditions.Fibre surface-enhanced Raman scattering (SERS) probes have the advantages of flexibility, compactness, remote sensing capability and good repeatability in SERS detection and thus have a range of different applications. However, it is difficult to realize simple, low-cost and high-throughput preparations of fibre SERS probes with high sensitivity and desirable repeatability using the currently available fabrication techniques, which restricts their practical applications

  9. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  10. Laser-induced actuation of individual microsize liquid metal droplets on an open solid surface

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Chunqing; Dou, Guangbin; Tian, Yanhong; Yang, Lei

    2017-01-01

    The actuation of microsize liquid metal droplets on an open solid surface with laser offset heating is reported in this work. The process allows the droplets to move towards the laser beam center. The analysis of the actuations showed that the droplets were predominantly driven by the thermally induced wettability alteration on the solid; in contrast, Marangoni flow and vapor recoil weakened the motion of the droplets. This indicates that a localized thermal gradient was the driving force for droplet motion and suggests that it may be an alternative actuation technique in manipulating liquid metal droplets for microsystems.

  11. Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Luo, Li; Zhang, Yubo; Hu, Ruifeng; Feng, Guoying

    2016-09-01

    Particles can be removed from a silicon surface by means of irradiation and a laser plasma shock wave. The particles and silicon are heated by the irradiation and they will expand differently due to their different expansion coefficients, making the particles easier to be removed. Laser plasma can ionize and even vaporize particles more significantly than an incident laser and, therefore, it can remove the particles more efficiently. The laser plasma shock wave plays a dominant role in removing particles, which is attributed to its strong burst force. The pressure of the laser plasma shock wave is determined by the laser pulse energy and the gap between the focus of laser and substrate surface. In order to obtain the working conditions for particle removal, the removal mechanism, as well as the temporal and spatial characteristics of velocity, propagation distance and pressure of shock wave have been researched. On the basis of our results, the conditions for nano-particle removal are achieved. Project supported by the National Natural Science Foundation of China (Grant No. 11574221).

  12. Surface nanostructures in manganite films.

    PubMed

    Gambardella, A; Graziosi, P; Bergenti, I; Prezioso, M; Pullini, D; Milita, S; Biscarini, F; Dediu, V A

    2014-06-19

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications.

  13. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  14. Surface plasmon polaritons in artificial metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  15. Generation of laser-induced periodic surface structures in indium-tin-oxide thin films and two-photon lithography of ma-N photoresist by sub-15 femtosecond laser microscopy for liquid crystal cell application

    NASA Astrophysics Data System (ADS)

    Klötzer, Madlen; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten; Straub, Martin

    2015-03-01

    Indium-tin-oxide (ITO) is a widely used electrode material for liquid crystal cell applications because of its transparency in the visible spectral range and its high electrical conductivity. Important examples of applications are displays and optical phase modulators. We report on subwavelength periodic structuring and precise laser cutting of 150 nm thick indium-tin-oxide films on glass substrates, which were deposited by magnetron reactive DC-sputtering from an indiumtin target in a low-pressure oxygen atmosphere. In order to obtain nanostructured electrodes laser-induced periodic surface structures with a period of approximately 100 nm were generated using tightly focused high-repetition rate sub-15 femtosecond pulsed Ti:sapphire laser light, which was scanned across the sample by galvanometric mirrors. Three-dimensional spacers were produced by multiphoton photopolymerization in ma-N 2410 negative-tone photoresist spin-coated on top of the ITO layers. The nanostructured electrodes were aligned in parallel to set up an electrically switchable nematic liquid crystal cell.

  16. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  17. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Rosenfeld, A.; Krüger, J.

    2011-04-01

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed.

  18. Computational characterization of ordered nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  19. In situ diagnosis of pulsed UV laser surface ablation of tungsten carbide hardmetal by using laser-induced optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-12-01

    Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.

  20. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.

    PubMed

    Morikawa, Kyojiro; Tsukahara, Takehiko

    2016-01-01

    In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics.

  1. Neutralization of H- at Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Obreshkov, Boyan; Thumm, Uwe

    2006-05-01

    The charge transfer rates and the neutralization probabilities for hydrogen anions colliding with nanostructured (vicinal) surfaces are obtained by direct numerical integration of the time-dependent Schroedinger equation for the motion of the active electron in the field of the projectile-surface compound. The electronic structure of the surface is calculated from a Thomas-Fermi - von Weizsaecker statistical model with local density approximation for the exchange-correlation energy. In fixed-ion approximation, the decay rate of the electronic state of the anion in front of the surface is obtained by projecting the density of states of the collision system onto the unperturbed projectile level. The ion neutralization probability is calculated from this static width within a rate equation approach for a set of broken-straight-line collision trajectories for kinetic energies of 1 keV. The dependence of decay rates and neutralization probabilities on the surface morphology and the scattering trajectories, and a comparison of our numerical results with the experiments will be discussed.

  2. Surface Plasmon Propagation in Nanostructured Metallic Waveguides

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Rose, A. H.; Nesbitt, N. T.; Boyce, A. M.; McMahon, G.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    2015-03-01

    Visible frequencies of light can be routed on subwavelength scales with nanostructured, metallic waveguides by coupling optical energy to surface plasmon (SP) modes at a metal-insulator interface. Epitaxially-grown Ag nanowires and nanocoaxes provide a low-loss, ``model'' system to characterize the propagation of SP waves. We have studied these structures by electron, focused ion, scanning probe, and optical microscopies, and have observed propagation lengths exceeding 15λvac with confinement on the order of 0 . 07(λvac) 2 . Experimental efforts towards lithographically-fabricated metal-insulator-metal waveguides are discussed. Finally, an architecture for a nanocoax-based optical microscope, which extracts near-field (evanescent) information and propagates it into the far-field, is presented. Supported by the W.M. Keck Foundation.

  3. All-optical characterization of fs-laser induced refractive index changes in bulk and at the surface of zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Hernandez-Rueda, J.; Semenov, V.; Troy, N.; Smith, C. E.; Brow, R. K.; Krol, D. M.

    2015-03-01

    The permanent refractive index change induced by ultrashort laser pulses in zinc phosphate glasses has been investigated both at the surface and in bulk. At the sample surface, irradiations have been performed by using loosely focused single fs-laser pulses at different energies. Optical microscopy images of the irradiations illustrate an interferometric pattern in form of concentric Newton rings due to the laser induced multilayer system (unmodified glass, thin laser-modified layer, air). This experimental reflectivity modulation along with simulations based on Abeles theory for multilayer optical systems allows retrieving laser-induced refractive index changes on the order of Δns= -10-3. In bulk, fs-laser written waveguides have been generated by translating the sample with respect to a tightly focused laser beam. The so-produced waveguides have been characterized by studying the optical near field of the TEM00 guided mode at 660 nm and using white light microscopy. The optical changes linked to the inscribed waveguides have been characterized by measuring the far field output profiles yielding values of approximately Δnb= +3·10-4. The laser-modified optical properties in bulk and at the surface will be linked to the glass structural changes as well as discussed in terms of the role of the incubation effects for multi-pulse processing.

  4. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  5. Landau damping of surface plasmons in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Shahbazyan, Tigran V.

    2016-12-01

    We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal nanostructures of arbitrary shape. We show that the electron surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated into the metal dielectric function on par with phonon and impurity scattering. The derived surface scattering rate is determined by the local field polarization relative to the metal-dielectric interface and is highly sensitive to the system geometry. We illustrate our model by providing analytical results for surface scattering rate in some common shape nanostructures. Our results can be used for calculations of hot carrier generation rates in photovoltaics and photochemistry applications.

  6. Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-09-01

    Laser-induced breakdown spectroscopy (LIBS) was successfully used in on-line control of selective removal of cobalt from tungsten carbide hardmetal by pulsed UV laser surface ablation. The dependence of LIBS on number of laser shots was investigated at different laser fluences. The optimal laser fluence of 2.5 J/cm 2 suited for selective removal of cobalt from surface layer of hardmetal was confirmed. The result sample was also subject to different post-examinations to evaluate the feasibility of the application of LIBS in this laser ablation process. It was demonstrated that, monitoring of the emission intensity of cobalt lines could be used as a control parameter for selective removal of cobalt from surface layer of hardmetal by pulsed UV laser. The on-line implementation of the spectroscopic technique LIBS to the surface-ablation process provided important information about the optimal-ablation parameters.

  7. Surface analysis of nanostructured carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Wepasnick, Kevin Andrew

    The characterization of surfaces is central to understanding its interaction with other materials. Current ground-breaking research in interfacial science is focusing on surfaces which have a nanoscopic-size to their structuring. In particular, carbon nanotubes (CNTs) have been explored extensively. However, to utilize these materials in commercial and scientific applications, the surfaces are often modified to tailor specific properties, such as dispersion, sorption, and reactivity. The focus of this thesis is to apply surface analytical techniques to explore the chemical and structural characteristics of modified nanostructured surfaces. Specifically studied are the covalent surface modifications of CNTs by strategies that involve the direct incorporation of specific elements into the graphene sidewalls by commonly used wet chemical oxidants. These resulting CNTs are then evaluated in terms of their change in surface chemistry and structure. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface oxidation, while chemical derivatization techniques in conjunction with XPS afforded the concentration of carboxyl, carbonyl, and hydroxyl groups on the CNT surface. Transmission electron microscopy (TEM) was able to provide detailed structural information on the modified CNT, including the extent of sidewall damage. Results indicate that the distribution of oxygen-containing functional groups was insensitive to the reaction conditions, but was dependent upon the identity of the oxidant. These trends in functional group concentration were then applied to determining environmental properties, specifically divalent metal cation sorption. Consistently, the increases in COOH functional groups result in an increase in sorption capacity of divalent metal cations, such as Zn2+ and Cd2+. Furthermore, the interactions of size-selected metal and metal-oxide nanoclusters with graphite surfaces were studied by atomic force microscopy (AFM), scanning tunneling

  8. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  9. Strength Improvement of Glass Substrates by Using Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-12-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  10. The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces

    SciTech Connect

    Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

    2009-10-29

    Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

  11. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  12. Towards design rules for covalent nanostructures on metal surfaces.

    PubMed

    Björk, Jonas; Hanke, Felix

    2014-01-20

    The covalent molecular assembly on metal surfaces is explored, outlining the different types of applicable reactions. Density functional calculations for on-surface reactions are shown to yield valuable insights into specific reaction mechanisms and trends across the periodic table. Finally, it is shown how design rules could be derived for nanostructures on metal surfaces.

  13. Surface-enhanced Raman scattering on colloidal nanostructures.

    PubMed

    Aroca, R F; Alvarez-Puebla, R A; Pieczonka, N; Sanchez-Cortez, S; Garcia-Ramos, J V

    2005-11-30

    Surface-enhanced Raman scattering combines extremely high sensitivity, due to enhanced Raman cross-sections comparable or even better than fluorescence, with the observation of vibrational spectra of adsorbed species, providing one of the most incisive analytical methods for chemical and biochemical detection and analysis. SERS spectra are observed from a molecule-nanostructure enhancing system. This symbiosis molecule-nanostructure is a fertile ground for theoretical developments and a realm of applications from single molecule detection to biomedical diagnostic and techniques for nanostructure characterization.

  14. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    NASA Astrophysics Data System (ADS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  15. Controlling the surface properties of nanostructures for studies of polymerases

    NASA Astrophysics Data System (ADS)

    Crut, Aurélien; Koster, Daniel A.; Huang, Zhuangxiong; Hage, Susanne; Dekker, Nynke H.

    2008-11-01

    We report the successful functionalization of optically accessible nanostructures, suitable for single-molecule experiments at physiological substrate concentrations, with polyethylene glycol. Characterization of the coating in terms of roughness, protein repellence, and specific immobilization of DNA is described. We present an application of this technique in the detection of polymerase activity within nanostructures, which demonstrates the opportunities made possible through the integration of nanofabricated structures with surface functionalization.

  16. Surface effects on shape and topology optimization of nanostructures

    NASA Astrophysics Data System (ADS)

    Nanthakumar, S. S.; Valizadeh, Navid; Park, Harold S.; Rabczuk, Timon

    2015-07-01

    We present a computational method for the optimization of nanostructures, where our specific interest is in capturing and elucidating surface stress and surface elastic effects on the optimal nanodesign. XFEM is used to solve the nanomechanical boundary value problem, which involves a discontinuity in the strain field and the presence of surface effects along the interface. The boundary of the nano-structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target displacement, are chosen for the numerical examples. We present results of optimal topologies of a nanobeam subject to cantilever and fixed boundary conditions. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.

  17. Studying electric field enhancement factor of the nanostructured emission surface

    NASA Astrophysics Data System (ADS)

    Zartdinov, A. N.; Nikiforov, K. A.

    2016-08-01

    Mathematical model of nanostructured field emission surface is proposed. In order to determine geometrical parameters of the surface structure digital processing of scanning electron microscopy images was used. Effective value of local electrical field enhancement factor is defined and calculated within the Fowler-Nordheim theory. It was found effective enhancement factor decreases as the applied electrical field increases for a fixed geometry.

  18. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  19. Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Yonemori, Seiya; Ono, Ryo

    2014-03-01

    The atmospheric-pressure helium plasma jet is of emerging interest as a cutting-edge biomedical device for cancer treatment, wound healing and sterilization. Reactive oxygen species such as OH and O radicals are considered to be major factors in the application of biological plasma. In this study, density distribution, temporal behaviour and flux of OH and O radicals on a surface are measured using laser-induced fluorescence. A helium plasma jet is generated by applying pulsed high voltage of 8 kV with 10 kHz using a quartz tube with an inner diameter of 4 mm. To evaluate the relation between the surface condition and active species production, three surfaces are used: dry, wet and rat skin. When the helium flow rate is 1.5 l min-1, radial distribution of OH density on the rat skin surface shows a maximum density of 1.2 × 1013 cm-3 at the centre of the plasma-mediated area, while O atom density shows a maximum of 1.0 × 1015 cm-3 at 2.0 mm radius from the centre of the plasma-mediated area. Their densities in the effluent of the plasma jet are almost constant during the intervals of the discharge pulses because their lifetimes are longer than the pulse interval. Their density distribution depends on the helium flow rate and the surface humidity. With these results, OH and O production mechanisms in the plasma jet and their flux onto the surface are discussed.

  20. Laser-induced thermal desorption facilitates postsource decay of peptide ions.

    PubMed

    Kim, Shin Hye; Lee, Aera; Song, Jae Yong; Han, Sang Yun

    2012-05-01

    We investigated the thermal mechanism involved in laser desorption/ionization (LDI) of thermally labile molecules from the flat surfaces of amorphous Si (a-Si) and crystalline Si (c-Si). a-Si was selected for this study because of its thermal property, such as low thermal conductivity; thus, it was predicted to be highly susceptible to laser-induced surface heating. By virtue of lack of surface nanostructures, the flat surfaces offer a simple model system to focus on the thermal mechanism, avoiding other effects, including possible non-thermal contributions that can arise from the physical existence of surface nanostructures. For the energetics study, the internal energies of substituted benzylpyridinium ions produced by LDI on the bare and coated surfaces of a-Si and c-Si were obtained using the survival yield method. The results, including LDI thresholds, ion yields, and internal energies all suggested that the LDI mechanism would be indeed thermal, which is most likely promoted by thermal desorption caused by laser-induced surface heating. In addition, the LDI process driven by laser-induced thermal desorption (LITD) was also found to be capable of depositing an excessive internal energy in resulting LDI ions, which underwent a dissociation. It exhibited the essentially same features as in postsource decay (PSD) in MALDI-TOF/TOF mass spectrometry. We report that the LDI process by LITD offers not only a way of intact ionization but also a facile means for PSD of peptide ions, which this work demonstrates is well suited to peptide sequencing using TOF/TOF mass spectrometry.

  1. Curvature-dependent surface energy and implications for nanostructures

    NASA Astrophysics Data System (ADS)

    Chhapadia, P.; Mohammadi, P.; Sharma, P.

    2011-10-01

    At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.

  2. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  3. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  4. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Petefish, Joseph W.

    's mirror interferometer to perform multiple exposures at multiple angles before developing. Precise control of the resonance position is shown by locating three SPR dips at predetermined wavenumbers of 5000, 4000, and 3000 cm-1, respectively. A set of three gratings, each having four closely spaced resonances is employed to show how the sensor response could be broadened. The work in Chapter 3 shows potential for simultaneous enhancement of multiple vibrational modes; the multiband approach might find application for modes at disparate locations within the IR spectrum, while the broadband approach may allow concurrent probing of broad single modes or clusters of narrow modes within a particular neighborhood of the spectrum. Chapter 4 uses the rigorous coupled-wave analysis (RCWA) method to numerically explore another facet of the nanostructure-based tunability of grating-baed SPR sensing. The work in this chapter illustrates how infrared signal enhancement could be tailored by through adjustment of the grating amplitude. Modeled infrared reflection absorption (IRRAS) spectra and electric field distributions were generated for several nanostructured grating configurations. It was found that there exists a critical amplitude value for a given grating pitch where the plasmon response achieves a maximum. Amplitudes greater than this critical value produce a broader and attenuated plasmon peak, while smaller amplitudes produce a plasmon resonance that is not as intense. Field simulations show how amplitudes nearer the critical amplitude resulted in large increases in the electric field within an analyte film atop the sensor surface, and the relative strength of the increased field is predictable based on the appearance of the IRRAS spectra. It is believed that these larger fields are the cause of observed enhanced absorption. Published reports pertaining to interactions of SPs with molecular resonance and to diffraction-based tracking of plasmons without a spectrometer are

  5. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions.

    PubMed

    Kim, H-S; Kim, Y-J; Jang, J-H; Park, J-W

    2016-05-01

    Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.

  6. Crack suppression of silica glass formed by zoned F2 laser-induced photochemical surface modification of hard silicone thin film coating on polycarbonate

    NASA Astrophysics Data System (ADS)

    Nojiri, Hidetoshi; Okoshi, Masayuki

    2016-12-01

    The surface layer of a hard silicone thin film coating on polycarbonate was modified to silica glass (SiO2) through F2-laser-induced photochemical reactions. To obtain samples with higher abrasion resistances, SiO2 films of 1 µm thickness and over were successfully formed without cracking, by zoning the laser-irradiated area of micrometer order. With the conversion of silicone to SiO2, the volumetric shrinkage of the sample was induced, which simply depended on the number of photons, by varying the single-pulse fluence and irradiation time of a F2 laser. The ratio of volumetric shrinkage to the original silicone was estimated to be approximately 0.85, generating tensile stress in SiO2. The stress could be suppressed to be lower than 48 MPa for typical SiO2 by reducing the laser-irradiated area to be of micrometer order. Also, when the length of one side of the irradiated area is 1 mm, the thickness of the SiO2 film is expected to increase to approximately 5 µm.

  7. Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties

    NASA Astrophysics Data System (ADS)

    Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.

    2017-01-01

    The formation of thermochemical laser-induced periodic surface structures (TLIPSS) on 400-nm Ti films deposited onto a glass substrate is investigated under irradiation by a femtosecond laser with a wavelength of 1026 nm, pulse duration of 232 fs, repetition rate of 200 kHz, and with different spot sizes of 4-21 μm. The optimal fluence for TLIPSS formation reduces monotonously with increasing the spot diameter in the range. It is found that the standard deviation of the TLIPSS period depends significantly on the beam size and reaches approximately 2% when the beam diameter is in the range of 10-21 μm. In addition to TLIPSS formation with the main period slightly smaller than the laser wavelength, an effect of TLIPSS spatial frequency doubling is detected. The optical properties of TLIPSS (reflection spectrum and diffraction efficiency at different incident angles and polarizations) are investigated and compared with theoretical ones to give a basis for the development of an optical inspecting method. The refractive index and absorption coefficient of oxidized ridges of the TLIPSS are theoretically estimated by simulation of the experimental reflection spectrum in the zeroth diffraction order.

  8. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper

    NASA Astrophysics Data System (ADS)

    Ahmmed, K. M. Tanvir; Ling, Edwin Jee Yang; Servio, Phillip; Kietzig, Anne-Marie

    2015-03-01

    The surface micro- and nano-scale features produced by femtosecond laser irradiation on titanium, stainless steel, aluminum and copper are reported in this work. Each observed surface microstructure, which was fabricated from a particular combination of four adjustable parameters, can be characterized by the fluence and pulses-per-spot (F-PPS) and accumulated fluence profile (AFP) models. By performing a wide screening of the experimental space, we have successfully mapped the evolution of microstructures as a function of two variables per model. We have also shown that these two models, in conjunction with one another and the data that we have presented, can be used as an optimization tool for scientists and engineers to quickly fine-tune the laser processing settings necessary for a desired surface topography. In addition, the electron-phonon coupling strength and thermal conductivity have been identified as the material properties that have the largest influence over the achievable surface patterns on metallic substrates.

  9. On the use of CO 2 laser induced surface patterns to modify the wettability of poly(methyl methacrylate) (PMMA)

    NASA Astrophysics Data System (ADS)

    Waugh, David Garreth; Lawrence, Jonathan

    2010-06-01

    CO 2 lasers can be seen to lend themselves to materials processing applications and have been used extensively in both research and industry. This work investigated the surface modification of PMMA with a CO 2 laser in order to vary the wettability characteristics. The wettability characteristics of the PMMA were modified by generating a number of patterns of various topographies on the surface using the CO 2 laser. These induced patterns were trench and hatch with scan dimensions of 50 and 100 μm. Through white light interferometry, it was found that for all laser patterned samples, the surface roughness had significantly increased by up to 3.1 μm. The chemical composition of selected samples was explored using X-ray photoelectron spectroscopy and found that the surface oxygen content had risen by approximately 4 at%. By using a sessile drop device it was found that, in comparison to the as-received sample, 50 μm dimensions gave rise to a more hydrophilic surface; whereas 100 μm dimensions gave rise to either no change in contact angle or an increase making the PMMA hydrophobic. This can be explained by combinations of surface roughness and γp contributing to the observed contact angle, in addition to the possibility of different wetting regimes taking place owed to the variation of topographies over the as-received and laser patterned samples.

  10. Localized surface plasmons of a single ambichiral nanostructure

    NASA Astrophysics Data System (ADS)

    Azarian, Abas; Babaei, Ferydon

    2015-03-01

    Localized surface plasmons (SPs) of single ambichiral nanostructures (ACNs) were investigated using the discrete-dipole approximation. The extinction, absorption cross sections, and local electric filed magnitudes of a single ACN were calculated and compared with those obtained from the single chiral nanostructure (CN) as reference structure. The results showed that two localized SP peaks appear in ACN, while exist only one peak in CN. We found that the optical properties of ACNs are same as CN at low angular displacements, where the morphology of ACNs is closed to CN.

  11. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect

    Pennington, D.M.

    1992-04-01

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  12. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  13. Intrinsic instability of thin liquid films on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Rokoni, Arif; Hu, Han; Sun, Liyong; Sun, Ying

    2016-11-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for stable thin film evaporation on a given nanostructure.

  14. Intrinsic instability of thin liquid films on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Sun, L.; Hu, H.; Rokoni, A. A.; Sun, Y.

    2016-09-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on the minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability, and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for a stable thin film evaporation on a given nanostructure.

  15. Surface-enhanced Raman spectroscopy of semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Sveshnikova, L. L.; Duda, T. A.; Yeryukov, N. A.; Rodyakina, E. E.; Gutakovskii, A. K.; Batsanov, S. A.; Latyshev, A. V.; Zahn, D. R. T.

    2016-01-01

    We review our recent results concerning surface-enhanced Raman scattering (SERS) by confined optical and surface optical phonons in semiconductor nanostructures including CdS, CuS, GaN, and ZnO nanocrystals, GaN and ZnO nanorods, and AlN nanowires. Enhancement of Raman scattering by confined optical phonons as well as appearance of new Raman modes with the frequencies different from those in ZnO bulk attributed to surface optical modes is observed in a series of nanostructures having different morphology located in the vicinity of metal nanoclusters (Ag, Au, and Pt). Assignment of surface optical modes is based on calculations performed in the frame of the dielectric continuum model. It is established that SERS by phonons has a resonant character. A maximal enhancement by optical phonons as high as 730 is achieved for CdS nanocrystals in double resonant conditions at the coincidence of laser energy with that of electronic transitions in semiconductor nanocrystals and localized surface plasmon resonance in metal nanoclusters. Even a higher enhancement is observed for SERS by surface optical modes in ZnO nanocrystals (above 104). Surface enhanced Raman scattering is used for studying phonon spectrum in nanocrystal ensembles with an ultra-low areal density on metal plasmonic nanostructures.

  16. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2013-01-09

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  17. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    SciTech Connect

    Jia, X.; Jia, T. Q. Peng, N. N.; Feng, D. H.; Zhang, S. A.; Sun, Z. R.

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. The results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.

  18. Laser-Induced Thermal Desorption and Fourier Transform Mass Spectrometry for the Analysis of Molecular Adsorbates on Surfaces.

    NASA Astrophysics Data System (ADS)

    Land, Donald Paul

    The field of surface science is growing rapidly, fueled by the needs to refine petroleum more efficiently, to clean up automobile exhaust, to protect against corrosion and wear, and to shrink the size of electronic components and information storage systems. These are important aspects of daily life, all of which could benefit from a better understanding of the fundamental processes that occur at the interfaces between different phases of matter. For the technologies mentioned, the most important interface is that between the gas and the solid phases. The technique described in this dissertation merges several recently established methods into a powerful instrument for the analysis of the solid-gas interface, yielding information on the chemical nature of species at this interface, relative concentrations, and even reactivities and intermediates. Details of the design and construction of the instrument are followed by a performance evaluation and a presentation of characterization studies for postionization methods, including electron impact ionization, resonance -enhanced multiphoton ionization, and chemical ionization. The use of the technique for the analysis of unknowns on surfaces is then detailed, highlighting the ability to obtain accurate mass measurement using the high resolution capabilities of FTMS. The use of ion storage techniques results in further unique analysis methods via gas-phase charge exchange reactions. This technique opens the door to the study of more complex molecules on surfaces, as well as mixtures of surface species, because FT mass spectrometry is well suited for such analyses. In this dissertation, data is presented for desorption of tens of molecular species encompassing nearly every organic functional group and including species as widely varying as cyanogen, ethylene, cyclohexane, methanol, and even a tetra-peptide. In-depth analyses of the kinetics of ethylene dehydrogenation and the identification of cyclohexene and 1,6-hexa

  19. Nanostructured surfaces for microfluidics and sensing applications.

    SciTech Connect

    Picraux, Samuel Thomas; Piech, Marcin; Schneider, John F.; Vail, Sean; Hayes, Mark A.; Garcia, Anthony A.; Bell, Nelson Simmons; Gust, D; Yang, Dongqing

    2007-01-01

    The present work demonstrates the use of light to move liquids on a photoresponsive monolayer, providing a new method for delivering analyses in lab-on-chip environments for microfluidic systems. The light-driven motion of liquids was achieved on photoresponsive azobenzene modified surfaces. The surface energy components of azobenzene modified surfaces were calculated by Van Oss theory. The motion of the liquid was achieved by generation of a surface tension gradient by isomerization of azobenzene monolayers using UV and Visible light, thereby establishing a surface energy heterogeneity on the edge of the droplet. Contact angle measurements of various solvents were used to demonstrate the requirement for fluid motion.

  20. Theoretical Study of the Effect of Enamel Parameters on Laser-Induced Surface Acoustic Waves in Human Incisor

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Sun, Kaihua; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-06-01

    The laser ultrasound technique has great potential for clinical diagnosis of teeth because of its many advantages. To study laser surface acoustic wave (LSAW) propagation in human teeth, two theoretical methods, the finite element method (FEM) and Laguerre polynomial extension method (LPEM), are presented. The full field temperature values and SAW displacements in an incisor can be obtained by the FEM. The SAW phase velocity in a healthy incisor and dental caries is obtained by the LPEM. The methods and results of this work can provide a theoretical basis for nondestructive evaluation of human teeth with LSAWs.

  1. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  2. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  3. Universal dispersion of surface plasmons in flat nanostructures

    NASA Astrophysics Data System (ADS)

    Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R.

    2014-04-01

    Dimensionality has a significant impact on the optical properties of solid-state nanostructures. For example, dimensionality-dependent carrier confinement in semiconductors leads to the formation of quantum wells, quantum wires and quantum dots. While semiconductor properties are governed by excitonic effects, the optical response of metal nanostructures is dominated by surface plasmons. Here we find that, in contrast to excitonic systems, the mode dispersions in plasmonic structures of different dimensionality are related by simple scaling rules. Employing electron energy loss spectroscopy, we show that the modes of silver nanodisks can be scaled to the surface and edge modes of extended silver thin films. We thereby introduce a general and intuitive ordering scheme for plasmonic excitations with edge and surface modes as the elementary building blocks.

  4. Surface nanostructures by single highly charged ions.

    PubMed

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  5. CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation.

    PubMed

    Setoura, Kenji; Okada, Yudai; Hashimoto, Shuichi

    2014-12-28

    Pulsed-laser heating of colloidal noble-metal nanoparticles in an aqueous solution induces morphological changes such as size reduction. However, the technique suffers disadvantages through polydispersed products. Here, we show that continuous-wave (CW) laser heating of single gold nanoparticles is capable of generating particles of smaller diameters with superb control in terms of exposure time and intensity. We show, based on calculations of particle temperatures under illumination, that surface evaporation below the boiling point of bulk gold occurs, resulting in a gradual diameter decrease in air. In our experiment, a focused illumination of Au NPs through an objective lens of a microscope provided peak-power densities (10(6)-10(7) W cm(-2)) equivalent to that of a typical nanosecond laser. Nevertheless the heating rate under CW laser illumination is much lower than that under pulsed-laser illumination, resulting in better control over nanoparticle heating and related morphological changes. Furthermore, the single-particle study of such heating helps us to clarify the evolution of such changes to a given particle.

  6. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    SciTech Connect

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  7. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  8. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  9. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties.

    PubMed

    Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena

    2017-04-28

    In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

  10. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    NASA Astrophysics Data System (ADS)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  11. [Perspectives of use of polytetrafluoroethylene with nanostructured surface in dentistry].

    PubMed

    Grigor'ian, A S; Shtanskiĭ, D V; Selezneva, I I; Arkhipov, A V

    2012-01-01

    The perspectives of use of porous polytetrafluorethilen (PTPE) with modified surface combined with mesenchymal stem cells for tissue-engineering constructions were studied. The paper also describes the mode of PTPE surface modification consisting in nanostructured metallic or ceramic layer application resulting in biocompatibility and surface adhesion rates increase. The magnetic atomizing of Ti and Ti-Ca-P-C-O-N nanolayers enhances the material integration potential as well as adhesion rates thus making it perspective when combined with mesenchymal stem cells for bone defects plasty.

  12. Arc tracks on nanostructured surfaces after microbreakdowns

    NASA Astrophysics Data System (ADS)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  13. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-12-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex-concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex-concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing.

  14. Laser Induced Surface Chemical Epitaxy

    DTIC Science & Technology

    1990-03-01

    eV was observed in this study for DMTe adlay ,,;s annealed at 423 K, a condition which is likely to produce a metallic Te adlayer , the Cd 3d5 /2...processes were studied by irradiating the adlayer with ultraviolet photons produced by a Questek excimer laser. These were introduced into the deposition...binding energy observed for similarly annealed DMCd adlayers was 405.1 eV. Based on room temperature measurements and ligand shift and electronegativity

  15. Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Piredda, Giovanni; Stroj, Sandra; Fasching, Gernot; Bodea, Marius; Schwarz, Elisabeth

    2016-11-01

    High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20-30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about

  16. Titanium nanostructural surface processing for improved biocompatibility

    SciTech Connect

    Cheng, H.-C.; Lee, S.-Y.; Chen, C.-C.; Shyng, Y.-C.; Ou, K.-L.

    2006-10-23

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO{sub 2} on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO{sub 2} by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration.

  17. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  18. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  19. Strong emission of terahertz radiation from nanostructured Ge surfaces

    SciTech Connect

    Kang, Chul; Maeng, Inhee; Kee, Chul-Sik; Leem, Jung Woo; Yu, Jae Su; Kim, Tae Heon; Lee, Jong Seok

    2015-06-29

    Indirect band gap semiconductors are not efficient emitters of terahertz radiation. Here, we report strong emission of terahertz radiation from germanium wafers with nanostructured surfaces. The amplitude of THz radiation from an array of nano-bullets (nano-cones) is more than five (three) times larger than that from a bare-Ge wafer. The power of the terahertz radiation from a Ge wafer with an array of nano-bullets is comparable to that from n-GaAs wafers, which have been widely used as a terahertz source. We find that the THz radiation from Ge wafers with the nano-bullets is even more powerful than that from n-GaAs for frequencies below 0.6 THz. Our results suggest that introducing properly designed nanostructures on indirect band gap semiconductor wafers is a simple and cheap method to improve the terahertz emission efficiency of the wafers significantly.

  20. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  1. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  2. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  3. Photocatalytic properties of nanostructured TiO2 surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Lauren; Luttrell, Timothy; Batzill, Matthias

    2012-02-01

    Photocatalytic chemical reactions are actively explored for direct production of chemical fuels from sun light through electrolysis or for the clean-up of organic pollutants through photocatalysis. Titanium dioxide is a prototypical photocatalyst which has been studied extensively. However, there are still unanswered questions regarding the relationship between surface morphology and photocatalytic properties. In this study, we used ion beam assisted surface nanopatterning and UV-catalysis to investigate the dependence of photoreactivity on surface nanostructures. Energetic argon gas ions were used to induce self-formation of nanopatterns on TiO2 surfaces and the structure formation was characterized by atomic force microscopy. The influence of the surface structure on the photochemical properties was assessed through photocatalytic degradation of methyl orange in aqueous solution with a flat sample and a nanopatterned sample of TiO2, respectively. The resulting absorbance spectrums were then compared.

  4. Diffusion and surface alloying of gradient nanostructured metals

    PubMed Central

    Lu, Ke

    2017-01-01

    Gradient nanostructures (GNSs) have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed. PMID:28382244

  5. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.

    PubMed

    Mazumder, Prantik; Jiang, Yongdong; Baker, David; Carrilero, Albert; Tulli, Domenico; Infante, Daniel; Hunt, Andrew T; Pruneri, Valerio

    2014-08-13

    Optical surfaces that can repel both water and oil have much potential for applications in a diverse array of technologies including self-cleaning solar panels, anti-icing windows and windshields for automobiles and aircrafts, low-drag surfaces, and antismudge touch screens. By exploiting a hierarchical geometry made of two-tier nanostructures, primary nanopillars of length scale ∼ 100-200 nm superposed with secondary branching nanostructures made of nanoparticles of length scale ∼ 10-30 nm, we have achieved static contact angles of more than 170° and 160° for water and oil, respectively, while the sliding angles were lower than 4°. At the same time, with respect to the initial flat bare glass, the nanotextured surface presented significantly reduced reflection (<0.5%), increased transmission (93.8% average over the 400 to 700 nm wavelength range), and very low scattering values (about 1% haze). To the authors' knowledge, these are the highest optical performances in conjunction with superomniphobicity reported to date in the literature. The primary nanopillars are monolithically integrated in the glass surface using lithography-free metal dewetting followed by reactive ion etching,1 while the smaller and higher surface area branching structure made of secondary nanoparticles are deposited by the NanoSpray2 combustion chemical vapor deposition (CCVD).

  6. Laser-induced shockwave propagation from ablation in a cavity

    SciTech Connect

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-02-06

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements.

  7. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    SciTech Connect

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  8. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    SciTech Connect

    El-Said, A. S. E-mail: a.s.el-said@hzdr.de; Moslem, W. M.; Djebli, M.

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  9. Magnetically induced decrease in droplet contact angle on nanostructured surfaces.

    PubMed

    Zhou, Qian; Ristenpart, William D; Stroeve, Pieter

    2011-10-04

    We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.

  10. Intrusion and extrusion of a liquid on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Giacomello, A.; Meloni, S.; Casciola, C. M.

    2017-01-01

    Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this ‘suspended’ state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.

  11. Fast and Slow Wetting Dynamics on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  12. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  13. Surface characterization of nanostructured 'black silicon' using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Wenqi; Toor, Fatima

    2016-09-01

    In this work, we utilize electrochemical impedance spectroscopy (EIS) to study the electronic characteristics of nanostructured silicon (Si) fabricated using the metal-assisted chemical etched (MACE) process. The nanostructured Si fabricated using the MACE process results in a density graded surface that reduces the broadband surface reflection of Si making it appear almost black, which coins it the name `black Si' (bSi). We study two bSi samples prepared using varying MACE times (20s and 40s) and a reference bare silicon sample using EIS between 1 MHz and 1 Hz frequencies. At an illumination intensity created with the use of a tungsten lamp source calibrated to output an intensity of 1-Sun (1000 W/m2), the impedance behavior at bias potentials in both the forward and reverse bias ranging between -1 V and 1 V are studied. We also study the effect of illumination wavelength by using bandpass filters at 400 nm and 800 nm. The results indicate that the charge transfer resistance (Rct) decreases as the surface roughness of the electrodes increases and as the illumination wavelength increases. We also find that the constant phase element (CPE) impedance of the electrodes increases with increasing surface roughness. These results will guide our future work on high efficiency bSi solar cells.

  14. Fabrication of large area nanostructures with surface modified silica spheres

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2014-03-01

    Surface modification of silica spheres with 3-(trimethoxysilyl)propylmethacrylate (TMSPM) has been performed at ambient condition. However, the FTIR spectra and field emission scanning electron microscope (FESEM) images show no evidence of the surface modification. The reaction temperatures were varied from 60 to 80 °C with various reaction periods. Small absorption shoulder of the CO stretching vibration was at 1700 cm-1, and slightly increased with the increase of the reaction time at 60 °C. The clear absorption peak appeared at 1698 cm-1 for the spheres reacted for 80 min at 70 °C and shifted toward 1720 cm-1 with the increase the reaction time. Strong absorption peak showed at 1698 cm-1 and shifted toward 1725 cm-1 with the increase of the reaction time at 80 °C. The spheres were dispersed to methanol and added photoinitiator (Irgacure-184). The solution was poured to a patterned glass substrate and exposed to the 254 nm UV-light during a self-assembly process. A large area and crack-free silica sphere film was formed. To increase the mechanical stability, a cellulose acetate solution was spin-coated to the film. The film was lift-off from the glass substrate to analyze the surface nanostructures. The surface nanostructures were maintained, and the film is stable enough to use as a mold to duplicate the nanopattern and flexible.

  15. Curved surface effect and emission on silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Yin, Jun; Zhou, Nian-Jie; Huang, Zhong-Mei; Miao, Xin-Jian; Cheng, Han-Qiong; Su, Qin; Liu, Shi-Rong; Qin, Chao-Jian

    2013-10-01

    The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, LO1, and LO2 lines in PL spectra due to Si—N, Si—NO, Si=O, and Si—O—Si bonds on curved surface, respectively. Si—Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the LYb line of electroluminescence (EL) emission.

  16. Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions

    NASA Astrophysics Data System (ADS)

    Di Martino, G.; Turek, V. A.; Braeuninger-Weimer, P.; Hofmann, S.; Baumberg, J. J.

    2017-02-01

    Copper (Cu) can provide an alternative to gold (Au) for the development of efficient, low-cost and low-loss plasmonic nanoparticles (NPs), as well as selective nanocatalysts. Unlike Au, the surface oxidation of Cu NPs can be an issue restricting their applicability. Here, we selectively reduce the Cu NPs by low power laser illumination in vacuum and use dark-field scattering to reveal in real time the optical signatures of the reduction process and its influence on the Cu NP plasmonic resonance. We then study reactive processes at the single particle level, using individual Cu catalyst nanoparticles for the selective laser-induced chemical vapour deposition of germanium nanostructures.

  17. Laser Nanostructurization of the Metal and Alloy Surfaces

    NASA Astrophysics Data System (ADS)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  18. Strong Casimir force reduction through metallic surface nanostructuring

    PubMed Central

    Intravaia, Francesco; Koev, Stephan; Jung, Il Woong; Talin, A. Alec; Davids, Paul S.; Decca, Ricardo S.; Aksyuk, Vladimir A.; Dalvit, Diego A. R.; López, Daniel

    2013-01-01

    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. PMID:24071657

  19. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  20. Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions

    SciTech Connect

    De Temmerman, Gregory; Bystrov, Kirill; Zielinski, Jakub J.; Balden, Martin; Matern, Gabriele; Arnas, Cecile; Marot, Laurent

    2012-07-15

    The formation of metallic nanostructures by exposure of molybdenum and tungsten surfaces to high fluxes of low energy helium ions is studied as a function of the ion energy, plasma exposure time, and surface temperature. Helium plasma exposure leads to the formation of nanoscopic filaments on the surface of both metals. The size of the helium-induced nanostructure increases with increasing surface temperature while the thickness of the modified layer increases with time. In addition, the growth rate of the nanostructured layer also depends on the surface temperature. The size of the nanostructure appears linked with the size of the near-surface voids induced by the low energy ions. The results presented here thus demonstrate that surface processing by low-energy helium ions provides an efficient route for the formation of porous metallic nanostructures.

  1. Laser Induced Chemical Liquid Phase Deposition (LCLD)

    SciTech Connect

    Nanai, Laszlo; Balint, Agneta M.

    2012-08-17

    Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

  2. Measuring H, O, li, B, and BE on Planetary Surfaces: Calibration of Laser-Induced Breakdown Spectroscopy (libs) Data Under Air, Vacuum, and CO2

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Nelms, M.; Breves, E. A.

    2012-12-01

    Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and

  3. Engineering aperiodic nanostructured surfaces for scattering-based optical devices

    NASA Astrophysics Data System (ADS)

    Lee, Yuk Kwan Sylvanus

    Novel optical devices such as biosensors, color displays and authentication devices can be obtained from the distinctive light scattering properties of resonant nanoparticles and nanostructured arrays. These arrays can be optimized through the choice of material, particle morphology and array geometry. In this thesis, by engineering the multi-frequency colorimetric responses of deterministic aperiodic nanostructured surfaces (DANS) with various spectral Fourier properties, I designed, fabricated and characterized scattering-based devices for optical biosensing and structural coloration applications. In particular, using analytical and numerical optimization, colorimetric biosensors are designed and fabricated with conventional electron beam lithography, and characterized using dark-field scattering imaging as well as image autocorrelation analysis of scattered intensity in the visible spectral range. These sensors, which consist of aperiodic surfaces ranging from quasi-periodic to pseudo-random structures with flat Fourier spectra, sustain highly complex structural resonances that enable a novel optical sensing approach beyond the traditional Bragg scattering. To this end, I have experimentally demonstrated that DANS with engineered structural colors are capable of detecting nanoscale protein monolayers with significantly enhanced sensitivity over periodic structures. In addition, different aperiodic arrays of gold (Au) nanoparticles are integrated with polydimethylsiloxane (PDMS) microfluidic structures by soft-lithographic micro-imprint techniques. Distinctive scattering spectral shifts and spatial modifications of structural color patterns in response to refractive index variations were simultaneously measured. The successful integration of DANS with microfluidics technology has introduced a novel opto-fluidic sensing platform for label-free and multiplexed lab-on-a-chip applications. Moreover, by studying the isotropic scattering properties of homogenized

  4. Surface integral formulations for the design of plasmonic nanostructures.

    PubMed

    Forestiere, Carlo; Iadarola, Giovanni; Rubinacci, Guglielmo; Tamburrino, Antonello; Dal Negro, Luca; Miano, Giovanni

    2012-11-01

    Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N-combined region integral equations, the T-combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations and their limitations can have a high impact on the engineering of numerous nano-scale optical devices such as plasmon-enhanced light emitters, biosensors, photodetectors, and nanoantennas.

  5. First Principles Studies of ABO3 Perovskite Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam

    Perovskite-type complex oxides, with general formula ABO 3, constitute one of the most prominent classes of metal oxides which finds key applications in diverse technological fields. In recent years, properties of perovskites at reduced dimensions have aroused considerable interest. However, a complete atomic-level understanding of various phenomena is yet to emerge. To fully exploit the materials opportunities provided by nano-structured perovskites, it is important to characterize and understand their bulk and near-surface electronic structure along with the electric, magnetic, elastic and chemical properties of these materials in the nano-regime, where surface and interface effects naturally play a dominant role. In this thesis, state-of-the-art first principles computations are employed to systematically study properties of one- and two-dimensional perovskite systems which are of direct technological significance. Specifically, our bifocal study targets (1) polarization behavior and dielectric response of ABO3 ferroelectric nanowires, and (2) oxygen chemistry relevant for catalytic properties of ABO3 surfaces. In the first strand, we identify presence of novel closure or vortex-like polarization domains in PbTIO3 and BaTiO3 ferroelectric nanowires and explore ways to control the polarization configurations by means of strain and surface chemistry in these prototypical model systems. The intrinsic tendency towards vortex polarization at reduced dimensions and the underlying driving forces are discussed and previously unknown strain induced phase transitions are identified. Furthermore, to compute the dielectric permittivity of nanostructures, a new multiscale model is developed and applied to the PbTiO3 nanowires with conventional and vortex-like polarization configurations. The second part of the work undertaken in this thesis is comprised of a number of ab initio surface studies, targeted to investigate the effects of surface terminations, prevailing chemical

  6. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.

    PubMed

    Gunawidjaja, Ray; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V

    2009-11-01

    It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.

  7. Development of Methods for Surface Modification of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Marsh, David A.

    The surfaces of a material become increasingly more influential when the dimensions are reduced, because a larger percentage of the atoms are exposed on the surface. The surface environment of nanostructured materials dictates both physical properties and function, but is synthetically challenging to control. Although the desired functionality is commonly introduced via post-synthetic modification, it would be advantageous to minimize the number of synthetic steps by having specific function installed in the precursor. This work describes efforts to investigate new precursor complexes for the synthesis of nanoparticles, in addition to electrochemical studies on single monolayer films for electrocatalysis. Chapter 2 focuses on the preparation of magnetic nanoaparticles, and the synthesis of a polymerizable surfactant, stacac, to be used to generate composite materials. Although an iron complex of stacac could be used as a precursor for magnetic nanoparticles, favorable composite materials could only be produced by introduction of stacac after isolation of magnetic nanoparticles. Chapter 3 describes the synthesis of Au(I) complexes with various thiourea-based ligands, to be used as precursors for gold nanoparticles. The experimental conditions were varied and parameters were found where addition of a reducing agent generated solution-stable gold nanoparticles in a reproducible manner. It was determined that only aggregated gold nanoparticles were produced when Au(I) complexes were generated in situ and the use of crystalline precursors resulted in soluble gold nanoparticles. Chapter 4 discusses the preparation of electrocatalysts for the oxidation of water with a focus on accurately determining the active surface area. A monolayer of cobalt was prepared on a gold electrode by underpotential deposition and used as an electrocatalyst for water oxidation. Because the surface area of gold can be measured directly, deposition of a single monolayer produced negligible

  8. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  9. An atomic force microscopy statistical analysis of laser-induced azo-polyimide periodic tridimensional nanogrooves.

    PubMed

    Stoica, Iuliana; Epure, Luiza; Sava, Ion; Damian, Victor; Hurduc, Nicolae

    2013-09-01

    The surface morphology of azo-polyimide films was investigated after 355 nm Nd: YAG laser irradiation with two different incident fluencies. Atomic force microscopy (AFM) was employed to correlate the laser-induced tridimensional nanogrooved surface relief with the incident fluence and the number of irradiation pulses. The height images revealed that the grooves depth increased even tens of times by increasing the incident fluence, using the same numbers of irradiation pulses. For low incident fluence, the films were uniformly patterned till 100 pulses of irradiation. Instead, when using higher fluence, after 15 pulses of irradiation the accuracy of the surface relief definition was reduced. This behavior could be explained by means of two different mechanisms, one that suppose the film photo-fluidization due to the cis-trans isomerization processes of the azo-groups and the second one responsible for the directional mass displacement. The dominant surface direction and parameters like isotropy, periodicity, and period were evaluated from the polar representation for texture analysis, revealing the appearance of ordered and directionated nanostructures for most of the experimental conditions. Also, the graphical studies of the functional volume parameters have evidenced the improvement of the relief structuration during surface nanostructuration. The correlation of these statistical texture parameters with the irradiation characteristics is important in controlling the alignment of either the liquid crystals or the cells/tissues on patterned azo-polyimide surfaces for optoelectronic devices and implantable biomaterials, respectively.

  10. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.

    PubMed

    Li, Siwei; Xu, Ping; Ren, Ziqiu; Zhang, Bin; Du, Yunchen; Han, Xijiang; Mack, Nathan H; Wang, Hsing-Lin

    2013-01-01

    Here we demonstrate, for the first time, the fabrication of Au nanostructures on polyaniline (PANI) membrane surfaces for surface enhanced Raman spectroscopy (SERS) applications, through a direct chemical reduction by PANI. Introduction of acids into the HAuCl(4) solution leads to homogeneous Au structures on the PANI surfaces, which show only sub-ppm detection levels toward the target analyte, 4-mercaptobenzoic acid (4-MBA), because of limited surface area and lack of surface roughness. Thorny Au nanostructures can be obtained through controlled reaction conditions and the addition of a capping agent poly (vinyl pyrrolidone) (PVP) in the HAuCl(4) solution and the temperature kept at 80 °C in an oven. Those thorny Au nanostructures, with higher surface areas and unique geometric feature, show a SERS detection sensitivity of 1 × 10(-9) M (sub-ppb level) toward two different analyte molecules, 4-MBA and Rhodamine B, demonstrating their generality for SERS applications. These highly sensitive SERS-active substrates offer novel robust structures for trace detection of chemical and biological analytes.

  11. Self-assembly of metal nanostructures on binary alloy surfaces.

    PubMed

    Duguet, T; Han, Yong; Yuen, Chad; Jing, Dapeng; Unal, Barış; Evans, J W; Thiel, P A

    2011-01-18

    Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems.

  12. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  13. Colour centres and nanostructures on the surface of laser crystals

    NASA Astrophysics Data System (ADS)

    Kulagin, N. A.

    2012-11-01

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10-10 to 10-7 m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Men+ : [O2-]k clusters.

  14. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    NASA Astrophysics Data System (ADS)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  15. Colour centres and nanostructures on the surface of laser crystals

    SciTech Connect

    Kulagin, N A

    2012-11-30

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)

  16. Experimental Analysis of Nano-structures on Anode Metal Surfaces in Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kovach, Yao; Foster, John

    2016-10-01

    Nano-structures were observed on the metal (tungsten, molybdenum) surface with helium plasma under fusion relevant plasma condition. It could bring serious problems for fusion reactors such as material erosion, dust formation and divertor lifetime etc. However, In order to solve these problems, further studies on topic of finding more unknown conditions of Nano-structure formation will be indispensable. This work focuses on the investigations of Nano-structures with its formation factors in atmospheric pressure. An electron microscopy is used to assess anode metal surface morphological changes. In particular, various Nano-structures are observed on both tungsten and stainless steel anode surfaces by the exposure to helium plasma. The characteristics of Nano-structures are documented in terms of type and size. Furthermore, material composition spectrum and mapping are used to define the status of extra growth and local area on anode metal surface with and without helium plasma effect.

  17. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals.

    PubMed

    Liu, Yi; Zhang, Zhanping; Wells, Matthew C; Beebe, Thomas P

    2005-09-13

    Surface-templated nanostructures on the highly oriented pyrolytic graphite (HOPG) basal plane were created by controlled Cs+- or Ga+)ion bombardment, followed by subsequent oxidation at high temperature, forming molecule corrals. The corrals were then used for template growth of SiOx/Si nanostructures. We demonstrate here that, for SiOx/Si nanostructures formed in controlled molecule corrals, the amount of silicon deposited on the surface is directly correlated with the corral density, making it possible to generate patterned SiOx/Si nanostructures on HOPG. Since the size, depth, position, and surface density of the nanostructures can be controlled on the HOPG, it is possible to produce surfaces with patterned or gradient functionalities for applications in fields such as biosensors, microelectronics, and biomaterials (e.g., neuron pathfinding). If desired, the SiOx structures can be reduced in size by etching in dilute HF, and further oxidation of the nanostructures is slow enough to provide plenty of time to functionalize them using ambient and solution reactions and to perform surface analysis. Organosilane monolayers on surface-templated SiOx/Si nanostructures were examined by X-ray photoelectron spectroscopy, time-of-flight secondary ion mas spectrometry, and atomic force microscopy. Silanes with long alkyl chains such as n-octadecyltrichlorosilane (C18) were found to both react on SiOx/Si nanostructures and to condense on the HOPG basal plane. Shorter-chain silanes, such as 11-bromoundicyltrimethoxysilane (C11) and 3-mercaptopropyltrimethoxysilane (C3) were found to react preferentially with SiOx/Si nanostructures, not HOPG. The SiOx/Si nanostructures were also found to be stable toward multiple chemical reactions. Selective modification of SiOx/Si nanostructures on the HOPG basal plane is thus achievable.

  18. Intrinsic laser-induced breakdown of silicate glasses

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid B.

    2002-03-01

    This paper is a survey of experimental results in laser- induced damage observed mainly at State Optical Institute (St. Petersburg, Russia; at School of Optics/CREOL (Orlando, FL) which expounds conditions of observation of an intrinsic breakdown of high-purity silicate glasses and proposes the general idea of its mechanism. It is shown that the surface laser-induced breakdown of dielectrics is resulted from photo- and thermo-ionization of surface defects but not from interaction of laser radiation with dielectric material itself. Conditions of thermal ionization of the volume of dielectric materials are determined in dependence on features of absorption of material and temporal features of laser radiation. Statistical properties of laser-induced breakdown of high-purity glasses are caused by statistical properties of laser radiation while the breakdown itself is a deterministic process. Elimination of impact of self-focusing on the results of the breakdown threshold measurements is observed if the spot size of laser radiation in focal plane is less than the wavelength. No photoionization of glass matrix is detected before laser- induced breakdown, and there is no effect of photoionization of impurities and defects on intrinsic breakdown. A mechanism of intrinsic laser-induced breakdown is proposed which is a spasmodic transformation of the electronic level structure in a wide-bandgap dielectric caused by the electric field of laser radiation. This is a collective process converting a transparent material to the opaque state but not an individual process of any type of ionization.

  19. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    PubMed

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  20. Zinc oxide nanostructures with metal particles based on surface plasmons for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Yu, Jae Su; Ko, Yeong Hwan; Lee, Hee Kwan; Leem, Jung Woo

    2011-02-01

    We fabricate various ZnO (zinc oxide) nanostructures, such as nanorods, nanotips and nanoflowers, as well as ZnO subwavelength grating structures for applications in optoelectronic devices such as solar cells, light emitting diodes, and biosensors. The optical properties are theoretically analyzed using the rigorous coupled-wave analysis method. The fabricated ZnO nanostructures are of wurzite crystal structure. The reflection and absorption characteristics depend strongly on the shape and geometry of Zn nanostructures. The ZnO nanostructures with Au (or Ag) particles, based on surface plasmons, are also investigated.

  1. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area

    PubMed Central

    Sotiriou, Georgios A.; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E.

    2013-01-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  2. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  3. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.

    PubMed

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-03-03

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system includes a nanostructured Au surface that serves dual roles as the electrochemical working electrode (WE) and SERS substrate, a microfabricated Pt counter electrode (CE), and an external Ag/AgCl reference electrode (RE). The nanostructured Au WE enables highly sensitive in situ SERS spectroscopy through large and reproducible SERS enhancements, which eliminates the need for resonant wavelength matching of the laser excitation source with the electronic absorption of the target molecule. The new SEC analysis system has the merits of wide applicability to target molecules, small sample volume, and a low detection limit. We demonstrate in situ SERS spectroelectrochemistry measurements of the metalloporphyrin hemin showing shifts of the iron oxidation marker band ν4 with the nanostructured Au working electrode under precise potential control.

  4. Surface Plasmon Mediated Chemical Solution Deposition of Gold Nanoparticles on a Nanostructured Silver Surface

    SciTech Connect

    Qiu, Jingjing; Wu, Yung-Chen; Wang, Yi-Chung; Engelhard, Mark H.; McElwee-White, Lisa; Wei, Wei

    2013-01-01

    Utilizing intrinsic surface properties to direct and control nanostructure growth on a large-scale surface is fundamentally interesting and holds great technological promise. Reported here is a novel "bottom-up" approach to fabricating sub-15 nm Au nanoparticles on a nanostructured Ag surface via a liquid-phase chemical deposition by using localized surface plasmon resonance (SPR) excitation. A molecular thermometry strategy was employed to investigate the SPR-mediated photothermal heating of the Ag film on nanosphere (AgFON) substrate and measured the surface temperature to be above 230 °C, which led to an efficient decomposition of CH3AuPPh3 to form Au nanoparticles on the Ag surface. Particle sizes were tunable between 3 to 10 nm by adjusting the deposition time. Moreover, investigation of the deposition kinetics revealed that the Au nanoparticle deposition was surface-limited by the Ag substrate. This SPR-mediated chemical solution deposition (SPMCSD) strategy should be extendable to the deposition of many other materials for various applications.

  5. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  6. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  7. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  8. Surface effects and gold-nanostructure surface coating of whispering-gallery microresonators

    NASA Astrophysics Data System (ADS)

    Ganta, Deepak

    Scope and method of study. The purpose of this study is to explore the surface effects of high-quality-factor optical microsphere resonators and thin-film-coated microresonators in various ambient gases. In this work, we present a systematic study of the assembly and characterization of gold nanostructures. We employ a wet-chemical synthesis method for growing gold nanorods and a directed electrochemical method for assembly of gold nanowires. The adhesion methods of gold nanostructures on high-quality-factor optical microsphere resonators are also investigated. Findings and conclusions. A novel method is employed for measuring thermal accommodation coefficients of various gases like nitrogen, helium and ambient air on several coated and uncoated surfaces of fused-silica microresonators, operating at room temperature. This method is further extended to measure the absorption coefficient of a surface film or water layer on a fused-silica microresonator, and provides a novel method to find the water layer desorption and adsorption rates on the surface of a microresonator in the presence of gases like ambient air and nitrogen. We have adapted methods for growing gold nanorods of different aspect ratios (AR), and developed a novel method of growing high-AR (20-400) gold nanowires from low-AR gold nanorods. Various methods were discovered to coat these gold nanostructures and carbon nanotubes on the fused-silica surface. The most successful method involves surface modification with MPMDMS (i.e., silanization) before coating with gold nanorods. These coating methods have made microresonators useful for plasmonic sensing applications.

  9. Nanostructures and dynamics of macromolecules bound to attractive filler surfaces

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi

    We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  10. Laser-induced copper deposition with weak reducing agents

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, V. A.; Fateev, S. A.; Logunov, L. S.; Tumkin, I. I.; Safonov, S. V.; Khairullina, E. M.

    2013-11-01

    The study showed that organic alcohols with 1,2,3,5,6 hydroxyl groups can be used as reducing agents for laser-induced copper deposition from solutions (LCLD).Multiatomic alcohols, sorbitol, xylitol, and glycerol, are shown to be effective reducing agents for performing LCLD at glass-ceramic surfaces. High-conductivity copper tracks with good topology were synthesized.

  11. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  12. Laser-induced incandescence from laser-heated silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Menser, Jan; Daun, Kyle; Dreier, Thomas; Schulz, Christof

    2016-11-01

    This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

  13. Process flow to integrate nanostructures on silicon grass in surface micromachined systems

    NASA Astrophysics Data System (ADS)

    Mehner, H.; Müller, L.; Biermann, S.; Hänschke, F.; Hoffmann, M.

    2016-10-01

    The process flow to integrate metallic nanostructures in surface micromachining processes is presented. The nanostructures are generated by evaporation of microstructured silicon grass with metal. The process flow is based on the lift-off of a thin amorphous silicon layer deposited using a CVD process. All steps feature a low temperature load beneath 120 °C and high compatibility with many materials as only well-established chemicals are used. As a result metallic nanostructures usable for optical applications can be generated as part of multilayered microsystems fabricated in surface micromachining.

  14. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures

    PubMed Central

    Fabbri, F.; Villani, M.; Catellani, A.; Calzolari, A.; Cicero, G.; Calestani, D.; Calestani, G.; Zappettini, A.; Dierre, B.; Sekiguchi, T.; Salviati, G.

    2014-01-01

    Although generally ascribed to the presence of defects, an ultimate assignment of the different contributions to the emission spectrum in terms of surface states and deep levels in ZnO nanostructures is still lacking. In this work we unambiguously give first evidence that zinc vacancies at the (1010) nonpolar surfaces are responsible for the green luminescence of ZnO nanostructures. The result is obtained by performing an exhaustive comparison between spatially resolved cathodoluminescence spectroscopy and imaging and ab initio simulations. Our findings are crucial to control undesired recombinations in nanostructured devices. PMID:24894901

  15. Functional surface chemistry of carbon-based nanostructures

    NASA Astrophysics Data System (ADS)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  16. Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Chen, Haiping Matthew; Pang, Lin; Kher, Aditya; Fainman, Yeshaiahu

    2009-02-01

    The authors simulated, fabricated, and characterized a mushroomlike composite metallodielectric nanostructure that shows improved characteristics for surface plasmon resonance sensing applications with an enhancement in the normal electric field compared to the conventional nanohole structure. A fabrication method is introduced to give controllable linewidth by an oblique metal deposition process. A sensor built with the composite nanostructure was then used to determine the hydrophilicity of its surface by monitoring the resonant wavelength shift and computing the corresponding adsorption thickness.

  17. Mesoporous SnO2 nanostructures of ultrahigh surface areas by novel anodization.

    PubMed

    Bian, Haidong; Tian, Yayuan; Lee, Chris; Yuen, Muk Fung; Zhang, WenJun; Li, Yang Yang

    2016-10-04

    Here we report a novel type of hierarchical mesoporous SnO2 nanostructures fabricated by a facile anodization method in a novel electrolyte system (an ethylene glycol solution of H2C2O4/NH4F) followed by thermal annealing at a low temperature. The SnO2 nanostructures thus obtained feature highly porous nanosheets with mesoporous pores well below 10 nm, enabling a remarkably high surface area of 202.8 m2/g which represents one of the highest values reported to date on SnO2 nanostructures. The formation of this novel type of SnO2 nanostructures is ascribed to an interesting self-assembly mechanism of the anodic tin oxalate, which was found to be heavily impacted by the anodization voltage and water content in the electrolyte. The electrochemical measurements of the mesoporous SnO2 nanostructures indicate their promising applications as lithium-ion battery and supercapacitor electrode materials.

  18. Surface enhanced Raman scattering of light by ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-01

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  19. A nanostructured surface increases friction exponentially at the solid-gas interface

    PubMed Central

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-01-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media. PMID:27596851

  20. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  1. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    NASA Astrophysics Data System (ADS)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  2. High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K-Ar dating of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Sugita, Seiji; Kameda, Shingo; Miura, Yayoi N.; Ishibashi, Ko; Ohno, Sohsuke; Kamata, Shunichi; Arai, Tomoko; Morota, Tomokatsu; Namiki, Noriyuki; Matsui, Takafumi

    2015-04-01

    We conducted a series of laser induced breakdown spectroscopy (LIBS) experiments for K measurements under high vacuum conditions (10- 6 Pa) for the purpose of developing in-situ isochron type K-Ar dating instruments for planetary missions. Unlike whole rock measurement methods, isochron measurements require LIBS experiments in a vacuum chamber because simultaneous Ar isotopic measurements are necessary. However, detailed examination of detection limits and accuracy of this method at low pressures has not been examined extensively before. In this study, the capability of K measurements under high vacuum conditions was examined using LIBS. A compact Czerny-Turner type spectrometer equipped with a charge-coupled device (CCD) as a detector was employed. Twenty-three geologic standard samples were measured using the LIBS method. The second strongest K emission line at 769.89 nm was used for calibration because the strongest emission line at 766.49 nm may suffer from strong interference from another emission line. A calibration curve was constructed for K using internal normalization with the oxygen line at 777 nm and well fitted by a power-law function. Based on the prediction band method, the detection limit and the quantitation limit were estimated to be 300 and 800 ppm, respectively. The 1σ relative uncertainty of the K calibration was 20% for 1 wt.% K2O and 40% for 3000 ppm K2O. If the amount of Ar is measured with 15% error for the 3.5 billion years rocks containing 1 and 0.3 wt.% K2O, the K-Ar ages would be determined with 10% and 20% 1σ errors, respectively. This level of precision will significantly improve the current Martian chronology, which has uncertainty about a factor of two to four. These results indicate that the concentration of K can be measured quantitatively under high vacuum conditions using a combination of instruments that have previously been carried in planetary missions, which suggests the viability of building in situ isochron K-Ar dating

  3. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.

    PubMed

    Malic, Lidija; Veres, Teodor; Tabrizian, Maryam

    2011-01-15

    The advances in genomics and proteomics have unveiled an exhaustive catalogue of biomarkers that can potentially be used as diagnostic and prognostic indicators of genetic and infectious diseases. Current thrust in biosensor development is towards rapid, real-time, label-free and highly sensitive detection of the indicative biomarkers. While surface plasmon resonance imaging (SPRi) biosensors could potentially be the best suited candidate for biomarker-based diagnosis, important milestones need to be reached. Commercially available SPRi instrumentation is currently limited by the flow-cell technology to serial-sample processing and has limited sensitivity for the detection of markers present at low concentration. In this paper, we have implemented an approach to enhance sample handling and increase the sensitivity of the SPRi detection technique. We have developed a digital microfluidic platform with an integrated nanostructured biosensor interface that allows for rapid, ultra-low volume, sensitive, and automated on-chip SPRi detection of DNA hybridization reactions. Through the exploitation of electromagnetic properties of nanofabricated periodic gold nanoposts, SPRi signal was increased by 200% with the estimated limit of detection of 500 pM (90 attomoles). Using the versatile fluidic manipulation provided by the digital microfluidics, rapid and parallel target identification was achieved on multiple array elements within 1 min using 180 nL sample volume. By delivering multiple target analytes in individually addressable low volume droplets, without external pumps and fluidic interconnects, the overall assay time, cost and complexity was reduced. The proposed platform allows extreme versatility in the manipulation of precious low volume samples which makes this technology very suitable for diagnostic applications.

  4. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  5. Laser-induced plasma generation and evolution in a transient spray.

    PubMed

    Kawahara, Nobuyuki; Tsuboi, Kazuya; Tomita, Eiji

    2014-01-13

    The behaviors of laser-induced plasma and fuel spray were investigated by visualizing images with an ultra-high-speed camera. Time-series images of laser-induced plasma in a transient spray were visualized using a high-speed color camera. The effects of a shockwave generated from the laser-induced plasma on the evaporated spray behavior were investigated. The interaction between a single droplet and the laser-induced plasma was investigated using a single droplet levitated by an ultrasonic levitator. Two main conclusions were drawn from these experiments: (1) the fuel droplets in the spray were dispersed by the shockwave generated from the laser-induced plasma; and (2) the plasma position may have shifted due to breakdown of the droplet surface and the lens effect of droplets.

  6. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    PubMed Central

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-01-01

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276

  7. Unstable Growth and Decay of Nanostructures on Crystalline Surfaces

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.

    2001-03-01

    Instabilities during growth are typically attributed to the venerable [step] Ehrlich-Schwoebel effect (SESE), or closely related asymmetries(J.G. Amar and F. Family, Phys. Rev. Lett. 77), 4584 (1996) for atoms arriving at upper and lower sides of a step. Esp., SESE leads to the well-known Bales-Zangwill (BZ) instability of step edges. We have found(O. Pierre-Louis, M.R. D'Orsogna, and T.L. Einstein, Phys. Rev. Lett. 82), 3661 (1999) that an analogous in-plane asymmetry of the energy barriers at kinks for atoms moving along step edges, the kink Ehrlich-Schwoebel effect (KESE), can produce a new instability that can supplant the BZ instability. (The relevant edge and corner barriers can be calculated semiempirically; moreover, they can theoretically be tuned in electrochemical cells.(M.I. Haftel and T.L. Einstein, Proc. MRS 580), 195 (2000); Proc. ICSFS-10 (Princeton, 2000), Appl. Surface Sci.) We analyze various contributions to the mass current along the step. Monte Carlo simulations on a simple SOS model are used to illustrate behavior and distinguish between strong and weak KESE. The threshold of stable kink-flow growth is analyzed. KESE can induce mound formation, the orientation of which depends on the strength of the kink ES barrier. Such behavior was observed on Ag(100).(G. Costantini ldots U. Valbusa, Proc. ICSFS-10 (Princeton, 2000), Appl. Surf. Sci.; Surface Sci. 459), L487 (2000) Intriguing experiments observe wavelength selection during step-flow growth on vicinal Cu(100).(T. Maroutian, L. Douillard, and H.-J. Ernst, Phys. Rev. Lett. 83), 4353 (1999) KESE also can account for the instability of the Wolf-Villain model, in contrast to the similar Das Sarma-Tamborenea model.(P. Punyindu, Z. Toroczkai, and S. Das Sarma, preprint) At the coarse-grained level, the continuum step model can account for the decay of nanomounds on Si(7x7): the exponents of the decay rate and, more remarkably, the overall rate of these nanostructures (to within a factor of two

  8. Surface and interface magnetism in nanostructures and thin films

    NASA Astrophysics Data System (ADS)

    Frey, Natalie A.

    Nanostructured systems composed of two or more technologically important materials are useful for device applications and intriguing for the new fundamental physics they may display. Magnetism at the nanoscale is dominated by size and surface effects which combined with other media lead to new spin dynamics and interfacial coupling phenomena. These new properties may prove to be useful for optimizing sensors and devices, increasing storage density for magnetic media, as well as for biomedical applications such as drug delivery, MRI contrast enhancement, and hyperthermia treatment for cancer. In this project we have examined the surface and interface magnetism of composite nanoparticles and multilayer thin films by using conventional DC magnetization and AC susceptibility as well as transverse susceptibility, a method for directly probing the magnetic anisotropy of materials. Au and Fe3O4 synthesized together into three different nanoparticle configurations and ranging in size for 60 nm down to 9nm are used to study how the size, shape, and interfaces affect the most fundamental properties of magnetism in the Au-Fe3O 4 system. The findings have revealed ways in which the magnetic properties can be enhanced by tuning these parameters. We have shown that by changing the configurations of the Au and Fe3O4 particles, exotic behavior can be observed such as a large increase in anisotropy field (H K ranging from 435 Oe to 1650 Oe) and the presence of exchange bias. Multilayer thin films have been studied as well which combine the important classes of ferromagnetic and ferroelectric materials. In one case, barium hexaferrite/barium strontium titanate thin films, the anisotropic behavior of the ferromagnet is shown to change due to the introduction of the secondary material. In the other example, CrO2/Cr2O3 bilayers, exchange coupling is observed as Cr2O3 is an antiferromagnet as well as a ferroelectric. This coupling is manifest as a uniaxial anisotropy rather than the

  9. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    and temperature, which is manifested by variations in the diffraction lineshape. The effects of both intrinsic and extrinsic corrugation factors will be discussed. Through a carefully coordinated study I show how these surface morphology measurements can be combined with angle resolved photoemission measurements to understand the role of surface corrugation in the ARPES measurement process. The measurements described here rely on the development of an analytical formulation for relating the crystal corrugation to the photoemission linewidth. I present ARPES measurements that show that, despite significant deviation from planarity of the crystal, the electronic structure of exfoliated suspended graphene is nearly that of ideal, undoped graphene; the Dirac point is measured to be within 25 meV of EF. Further, I show that suspended graphene behaves as a marginal Fermi-liquid, with a quasiparticle lifetime which scales as (E -- EF)--1 ; comparison with other graphene and graphite data is discussed. In contrast to graphene, which must be treated as a flexible membrane with continuous height variation, roughness in clean single crystal surfaces arises from lattice dislocations, which introduce discrete height variations. Such height variations can be exploited to generate a self assembled nano-structured surface. In particular, by making a vicinal cut on a single crystal surface, a nanoscale step array can be formed. A model system for such nanoscale self assembly is Cu(111). Cu(775) is formed by making an 8.5° viscinal cut of Cu(111) along the [112¯] axis. The electronic states formed on the surface of this system, with a nanoscale step array of 14 A terraces, shows markedly different behavior those formed on Cu(111). In this dissertation, I show that the tunability of a femtosecond optical parametric oscillator, combined with its high-repetition rate and short pulse length, provides a powerful tool for resonant band mapping of the sp surface and image states on flat and

  10. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces.

    PubMed

    Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N; Kaminska, Bozena

    2017-03-01

    Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.

  11. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N.; Kaminska, Bozena

    2017-03-01

    Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.

  12. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  13. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    PubMed Central

    Virk, Naunidh; Yazyev, Oleg V.

    2016-01-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures. PMID:26847409

  14. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    PubMed Central

    Svensson, Sara; Forsberg, Magnus; Hulander, Mats; Vazirisani, Forugh; Palmquist, Anders; Lausmaa, Jukka; Thomsen, Peter; Trobos, Margarita

    2014-01-01

    The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth gold and the nanostructured gold displayed a different adhesion pattern and a more rapid oxidative burst than those cultured on polystyrene upon stimulation. We conclude that S. epidermidis decreased its viability initially when adhering to nanostructured surfaces compared with smooth gold surfaces, especially in the bacterial cell layers closest to the surface. In contrast, material surface properties neither strongly

  15. Laser-induced magnetization curve

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Sato, Masahiro; Oka, Takashi

    2014-12-01

    We propose an all optical ultrafast method to highly magnetize general quantum magnets using a circularly polarized terahertz laser. The key idea is to utilize a circularly polarized laser and its chirping. Through this method, one can obtain magnetization curves of a broad class of quantum magnets as a function of time even without any static magnetic field. We numerically demonstrate the laser-induced magnetization process in realistic quantum spin models and find a condition for the realization. The onset of magnetization can be described by a many-body version of Landau-Zener mechanism. In a particular model, we show that a plateau state with topological properties can be realized dynamically.

  16. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  17. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures.

    PubMed

    Didiot, Clement; Pons, Stephane; Kierren, Bertrand; Fagot-Revurat, Yannick; Malterre, Daniel

    2007-10-01

    The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity, as does the shape of the nanoparticles. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics. However, to date, there have been few studies of the electronic properties of self-organized nanostructures. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

  18. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  19. Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary

    NASA Astrophysics Data System (ADS)

    Liu, Xiu Mei; He, Jie; Lu, Jian; Ni, Xiao Wu

    2009-02-01

    The effect of surface tension on the behavior of a liquid-jet is investigated experimentally by means of a fiber-coupled optical beam deflection (OBD) technique. It is found that a target under water is impacted in turn by a laser-plasma ablation force and by a high-speed liquid-jet impulse induced by bubble collapse in the vicinity of a rigid boundary. The liquid-jet impact is found to be the main damage mechanism in cavitation erosion. Furthermore, the liquid-jet increases monotonously with surface tension, so cavitation erosion rises sharply with increasing surface tension. Surface tension also reduces bubble collapse duration. From the experimental results and the modified Rayleigh theory, the maximum bubble radius is obtained and it is found to reduce with increasing surface tension.

  20. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    SciTech Connect

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum; Schroers, Jan; Mukherjee, Sundeep; Taylor, Andre D.

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  1. Laser-induced surface acoustic waves and their detection via diagnostic systems for detecting radiation damage on steel materials of nuclear devices

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-iti; Chiba, Atsuya; Wakai, Eiichi

    2015-06-01

    The development of a non-destructive, non-contact diagnostic system to detect radiation damage is very important for measuring radioactive materials. A system using surface acoustic waves (SAWs) induced and detected by lasers was developed. The propagation velocities of SAWs on stainless steel irradiated by 20 keV He and Ar ions were investigated, and a tendency for the velocity to increase with an increase in ion irradiation was observed. This tendency may be due to surface modification. A non-linear effect on ion irradiation versus normal surface velocity in the vertical direction was confirmed.

  2. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  3. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition.

    PubMed

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S; Schildhauer, Thomas A; Ludwig, Alfred; Köller, Manfred

    2014-05-16

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs).Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  4. Tuning thermal transport ultra-thin silicon membranes: Influence of surface nanostructures

    NASA Astrophysics Data System (ADS)

    Neogi, Sanghamitra; Donadio, Davide

    2015-03-01

    A detailed understanding of the behaviour of phonons in low-dimensional and nanostructured systems provides opportunities for thermal management at the nanoscale, efficient conversion of waste heat into electricity, and exploration of new paradigms in information and communication technologies. We elucidate the interplay between nanoscale surface structures and thermal transport properties in free-standing silicon membranes with thicknesses down to 4 nm. We demonstrate that whereas dimensional reduction affects the phonon dispersion, the surface nanostructures provide the main channel for phonon scattering leading to the dramatic reduction of thermal conductivity in ultra-thin silicon membranes. The presence of surface nanostructures, by means of pattern formation and surface oxidation, leads to a 40-fold reduction in the in-plane thermal conductivity of the thinnest membrane. We also investigate the effect of chemical substitution and the geometry of the nanostructures in the thermal transport properties of the membranes. We show that local strain induced by nanostructuring enables tuning of the thermal conductivity of these nanophononic metamaterials. Acknowledgment: This project is funded by the program FP7-ENERGY-2012-1-2STAGE under Contract Number 309150.

  5. Surface Charge Transfer Doping of Low-Dimensional Nanostructures toward High-Performance Nanodevices.

    PubMed

    Zhang, Xiujuan; Shao, Zhibin; Zhang, Xiaohong; He, Yuanyuan; Jie, Jiansheng

    2016-12-01

    Device applications of low-dimensional semiconductor nanostructures rely on the ability to rationally tune their electronic properties. However, the conventional doping method by introducing impurities into the nanostructures suffers from the low efficiency, poor reliability, and damage to the host lattices. Alternatively, surface charge transfer doping (SCTD) is emerging as a simple yet efficient technique to achieve reliable doping in a nondestructive manner, which can modulate the carrier concentration by injecting or extracting the carrier charges between the surface dopant and semiconductor due to the work-function difference. SCTD is particularly useful for low-dimensional nanostructures that possess high surface area and single-crystalline structure. The high reproducibility, as well as the high spatial selectivity, makes SCTD a promising technique to construct high-performance nanodevices based on low-dimensional nanostructures. Here, recent advances of SCTD are summarized systematically and critically, focusing on its potential applications in one- and two-dimensional nanostructures. Mechanisms as well as characterization techniques for the surface charge transfer are analyzed. We also highlight the progress in the construction of novel nanoelectronic and nano-optoelectronic devices via SCTD. Finally, the challenges and future research opportunities of the SCTD method are prospected.

  6. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Hyun; Kang, Taejoon; Yoo, Seung Min; Lee, Sang Yup; Kim, Bongsoo; Choi, Yang-Kyu

    2009-06-01

    A controllable flower-like Au nanostructure array for surface-enhanced Raman scattering (SERS) was fabricated using the combined technique of the top-down approach of conventional photolithography and the bottom-up approach of electrodeposition. Au nanostructures with a mean roughness ranging from 5.1 to 49.6 nm were obtained by adjusting electrodeposition time from 2 to 60 min. The rougher Au nanostructure provides higher SERS enhancement, while the highest SERS intensity obtained with the Au nanostructure is 29 times stronger than the lowest intensity. The SERS spectra of brilliant cresyl blue (BCB), benzenethiol (BT), adenine and DNA were observed from the Au nanostructure.

  7. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF.

  8. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars.

    PubMed

    Youssef, G; Crum, R; Prikhodko, S V; Seif, D; Po, G; Ghoniem, N; Kodambaka, S; Gupta, V

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10(7) s(-1)), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  9. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    SciTech Connect

    Youssef, G.; Crum, R.; Seif, D.; Po, G.; Prikhodko, S. V.; Kodambaka, S.; Ghoniem, N.; Gupta, V.

    2013-02-28

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>10{sup 7} s{sup -1}), using laser-generated stress waves, are presented. Single-crystalline Cu pillars ({approx}1.20 {mu}m in tall and {approx}0.45 {mu}m in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  10. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    NASA Astrophysics Data System (ADS)

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-02-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s-1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (˜1.20 μm in tall and ˜0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars.

  11. The influence of laser-induced nanosecond rise-time stress waves on the microstructure and surface chemical activity of single crystal Cu nanopillars

    PubMed Central

    Youssef, G.; Crum, R.; Prikhodko, S. V.; Seif, D.; Po, G.; Ghoniem, N.; Kodambaka, S.; Gupta, V.

    2013-01-01

    An apparatus and test procedure for fabrication and loading of single crystal metal nanopillars under extremely high pressures (>1 GPa) and strain rates (>107 s−1), using laser-generated stress waves, are presented. Single-crystalline Cu pillars (∼1.20 μm in tall and ∼0.45 μm in diameter) prepared via focused ion beam milling of Cu(001) substrates are shock-loaded using this approach with the dilatational stress waves propagating along the [001] axis of the pillars. Transmission electron microscopy observations of shock-loaded pillars show that dislocation density decreases and that their orientation changes with increasing stress wave amplitude, indicative of dislocation motion. The shock-loaded pillars exhibit enhanced chemical reactivity when submerged in oil and isopropyl alcohol solutions, due likely to the exposure of clean surfaces via surface spallation and formation of surface steps and nanoscale facets through dislocation motion to the surface of the pillars, resulting in growth of thin oxide films on the surfaces of the pillars. PMID:23526837

  12. Role of specific amine surface configurations for grafted surfaces: implications for nanostructured CO2 adsorbents.

    PubMed

    Shimizu, Steven; Song, Changsik; Strano, Michael

    2011-03-15

    Amine-grafted porous materials that capture CO2 from emission streams have been considered to be potential alternatives to the more energy-intensive liquid amine systems currently employed. An underappreciated fact in the uptake mechanism of these materials is that under dry, anhydrous conditions each CO2 molecule must react with two adjacent amine groups to adsorb onto the surface, which makes the configuration of amine groups on the surface critically important. Using this chemical mechanism, we developed a semiempirical adsorption isotherm equation that allows straightforward computation of the adsorption isotherm from an arbitrary surface configuration of grafted amines for honeycomb, square, and triangular lattices. The model makes use of the fact that the distribution of amines with respect to the number of nearest neighbors, referred to as the z-histogram, along with the amine loading and equilibrium constant, uniquely determine the adsorption characteristics to a very good approximation. This model was used to predict the range of uptakes possible just through surface configuration, and it was used to fit experimental data in the literature to give a meaningful equilibrium constant and show how efficiently amines were utilized. We also demonstrate how the model can be utilized to design more efficient nanostructured adsorbents and polymer-based adsorbents. Recommendations for exploiting the role of surface configuration include the use of linear instead of branched polyamines, higher amine grafting densities, the use of flexible, less bulky, long, and rotationally free amine groups, and increased silanol densities.

  13. In-situ characterization of femtosecond laser-induced crystallization in borosilicate glass using time-resolved surface third-harmonic generation

    SciTech Connect

    Liu, Weimin; Wang, Liang; Han, Fangyuan; Fang, Chong

    2013-11-11

    Coherent phonon dynamics in condensed-phase medium are responsible for important material properties including thermal and electrical conductivities. We report a structural dynamics technique, time-resolved surface third-harmonic generation (TRSTHG) spectroscopy, to capture transient phonon propagation near the surface of polycrystalline CaF{sub 2} and amorphous borosilicate (BK7) glass. Our approach time-resolves the background-free, high-sensitivity third harmonic generation (THG) signal in between the two crossing near-IR pulses. Pronounced intensity quantum beats reveal the impulsively excited low-frequency Raman mode evolution on the femtosecond to picosecond timescale. After amplified laser irradiation, danburite-crystal-like structure units form at the glass surface. This versatile TRSTHG setup paves the way to mechanistically study and design advanced thermoelectrics and photovoltaics.

  14. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Kan; Jia, Xin; Jia, Tianqing; Cheng, Ke; Cao, Kaiqiang; Zhang, Shian; Feng, Donghai; Sun, Zhenrong

    2017-03-01

    In this paper, the influences of surface plasmons and thermal effects on the formation of subwavelength periodic ripples on Au films irradiated by 800 nm femtosecond laser pulses were studied by collinear pump-probe imaging. The spatial and temporal resolutions of the experiment were 300 nm and 1 ps, respectively. No periodic ripples were observed on the Au film during ablation by the first pump pulse, but during ablation by the second pump pulse the appearance of transient ripples was evident from a delay time of hundreds of picoseconds to several nanoseconds. These ripples, however, were not retained after solidification. When the sample was immersed in water during ablation, however, the ripples were retained. It is proposed that, during the second laser pulse irradiation, the surface defects produced by the first pulse induced surface plasmon polaritons on the Au film, which caused a modulated energy deposition and the formation of transient ripples. The weak electron-phonon coupling and significant residual heat erase these ripples after the molten surface was solidified.

  15. Supersonic laser-induced jetting of aluminum micro-droplets

    NASA Astrophysics Data System (ADS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10-100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  16. Supersonic laser-induced jetting of aluminum micro-droplets

    SciTech Connect

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  17. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    NASA Astrophysics Data System (ADS)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  18. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties.

    PubMed

    Palmstrom, Axel F; Santra, Pralay K; Bent, Stacey F

    2015-08-07

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  19. Realization of low power-laser induced thermionic emission from Ag nanoparticle-decorated CNT forest: A consequence of surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Monshipouri, Mahta; Abdi, Yaser; Darbari, Sara

    2016-11-01

    Enhancement of electron emission from Ag nanoparticle-decorated carbon nanotube (CNT) forest, using low power-lasers, is reported in this work. Realization of thermionic emission from CNTs using the low power laser can be achievable when the CNT forest is illuminated by a narrow laser beam which leads to localized heating of the CNT forest surface. For this purpose, CNT forest was decorated with Ag nanoparticles. Surface plasmon resonance of Ag nano-particles led to intense local electric field which is responsible for localized heating and thermionic emission from CNTs. Enhancement of emission current from CNTs depends on the wavelength of the excitation laser, so that matching the wavelength of laser to the wavelength of the plasmon resonance leaded to a maximum enhancement in electron emission.

  20. Laser-induced transient grating setup with continuously tunable period

    SciTech Connect

    Vega-Flick, A.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Khanolkar, A.; Abi Ghanem, M.; Boechler, N.; Alvarado-Gil, J. J.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  1. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  2. Hydrolytic stability of the Si-O-Ti bonds in the chemical assembly of titania nanostructures on silica surfaces

    NASA Astrophysics Data System (ADS)

    Sosnov, Evgeni A.; Malkov, A. A.; Malygin, A. A.

    2010-12-01

    The hydrolytic stability of the Si-O-Ti bonds in titania nanostructures on the surface of silica materials of different genesis is analyzed. The mechanism of hydrolysis is considered and the decisive role of structural and chemical features of silicas in the stability of titania nanostructures on their surface is demonstrated.

  3. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

    PubMed

    Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Divitini, G; Ducati, C; Lenardi, C; Piazzoni, C; Merlini, M; Podestà, A; Milani, P

    2012-11-30

    Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.

  4. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  5. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  6. Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces

    SciTech Connect

    Shen, Jian; Graber, Christof; Liburdy, James; Pence, Deborah; Narayanan, Vinod

    2010-05-15

    This study examines the hydrodynamics and temperature characteristics of distilled deionized water droplets impinging on smooth and nano-structured surfaces using high speed (HS) and infrared (IR) imaging at We = 23.6 and Re = 1593, both based on initial drop impingement parameters. Results for a smooth and nano-structured surface for a range of surface temperatures are compared. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. The near surface average droplet fluid temperatures are evaluated for conditions of evaporative cooling and boiling. Also included are surface temperature results using a gold layered IR opaque surface on silicon. Four stages of the impingement process are identified: impact, boiling, near constant surface diameter evaporation, and final dry-out. For the boiling conditions there is initial nucleation followed by severe boiling, then near constant diameter evaporation resulting in shrinking of the droplet height. When a critical contact angle is reached during evaporation the droplet rapidly retracts to a smaller diameter reducing the contact area with the surface. This continues as a sequence of retractions until final dry out. The basic trends are the same for all surfaces, but the nano-structured surface has a lower dissipated energy during impact and enhances the heat transfer for evaporative cooling with a 20% shorter time to achieve final dry out. (author)

  7. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  8. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    SciTech Connect

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.; Nell, Kara M.; Clubb, Donald C.; Gill, Gary A.; Addleman, Raymond S.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

  9. Gold nanostructures for detection of pesticides, nitrates and drugs using Surface Enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Nikov, Ru.; Nikov, Ro.; Nikolov, A.; Atanasov, P.; Nakajima, Y.; Terakawa, M.; Sawczak, M.; Grochowska, K.; Sliwinski, G.

    2016-01-01

    In this work laser-assisted methods for metal nanostructures formation and their application as active substrates in Surface Enhanced Raman Spectroscopy are presented. The nanostructures are fabricated by laser processing of gold thin films deposited on low cost substrates as glass, ceramic, polymer and paper. The films are deposited by classical PLD technology. The produced films are then processed by nanosecond pulses delivered by nanosecond Nd:YAG laser system. At certain conditions the laser treatment leads to formation of discrete nanostructure on the substrate surface. Femtosecond Pulsed Laser Deposition in air is also applied for direct deposition of gold nanostructure. In another set of experiments gold nanoparticle colloids are fabricated by laser ablation of gold target in chloroform. The fabricated structures are then tested as active systems in SERS, as detection of pesticides (DDT), nitrates (NH4NO3), and drugs (Methylene blue) is demonstrated. The obtained results show that these nanostructures can be efficiently used in the detection and monitoring of materials with a high social impact.

  10. Destructive and constructive routes to prepare nanostructures on surfaces by low-energy ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Rauschenbach, Bernd; Frost, Frank

    2016-10-01

    Various approaches for the preparation of nanostructures with dimension on macroscopic areas are known. In contrast to cost-intensive top-down lithographic techniques, various bottom-up methods based on ion beam technologies to form large arrays of nanostructured surfaces are well established. In principle, it can be distinguished between two routes at the preparation of nanostructures by low-energy ion bombardment sputtering. The destructive route is characterized that under certain conditions, given by the self-organization processes, the ion beam induced erosion process can lead to the formation of e.g. well-ordered Si nanostructures like dots or ripples on the surface. Using a constructive route, i.e. glancing angle deposition by ion beam sputtering, sculptured thin films consisting of various nanostructures of several shapes, such as inclined and vertical columns, screws, and spirals, were deposited on Si substrates. It will be shown that morphology, shape, and diameter of the structures are influenced and can thus be controlled by adjusting various deposition parameters, including substrate temperature and ratio of substrate rotational speed to film deposition rate.

  11. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  12. Charge transport across high surface area metal/diamond nanostructured composites.

    PubMed

    Plana, D; Humphrey, J J L; Bradley, K A; Celorrio, V; Fermín, D J

    2013-04-24

    High surface area composites featuring metal nanostructures and diamond particles have generated a lot of interest in the fields of heterogeneous catalysis, electrocatalysis, and sensors. Diamond surfaces provide a chemically robust framework for active nanostructures in comparison with sp(2) carbon supports. The present paper investigates the charge transport properties of high surface area films of high-pressure, high-temperature diamond particles in the presence and absence of metal nanostructures, employing electrochemical field-effect transistors. Oxygen- and hydrogen-terminated surfaces were generated on 500 nm diamond powders. Homogeneously distributed metal nanostructures, with metal volume fractions between ca. 5 and 20%, were either nucleated at the diamond particles by impregnation or incorporated from colloidal solution. Electrochemical field-effect transistor measurements, employing interdigitated electrodes, allowed the determination of composite conductivity as a function of electrode potential, as well as in air. In the absence of metal nanostructures, the lateral conductivity of the diamond assemblies in air is increased by over one order of magnitude upon hydrogenation of the particle surface. This observation is consistent with studies at diamond single crystals, although the somewhat modest change in conductivity suggests that charge transport is not only determined by the intrinsic surface conductivity of individual diamond particles but also by particle-to-particle charge transfer. Interestingly, the latter contribution effectively controls the assembly conductivity in the presence of an electrolyte solution as the difference between hydrogenated and oxygenated particles vanishes. The conductivity in the presence of metal nanoparticles is mainly determined by the metal volume fraction, while diamond surface termination and the presence of electrolyte solutions exert only minor effects. The experimental trends are discussed in terms of the

  13. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    PubMed

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  14. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    SciTech Connect

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-07

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11–54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  15. Picosecond ultrasonic study of surface acoustic waves on titanium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Bjornsson, M. M.; Connolly, A. B.; Mahat, S.; Rachmilowitz, B. E.; Daly, B. C.; Antonelli, G. A.; Myers, A.; Singh, K. J.; Yoo, H. J.; King, S. W.

    2015-03-01

    We have measured surface acoustic waves on nanostructured TiN wires overlaid on multiple thin films on a silicon substrate using the ultrafast pump-probe technique known as picosecond ultrasonics. We find a prominent oscillation in the range of 11-54 GHz for samples with varying pitch ranging from 420 nm down to 168 nm. We find that the observed oscillation increases monotonically in frequency with decrease in pitch, but that the increase is not linear. By comparing our data to two-dimensional mechanical simulations of the nanostructures, we find that the type of surface oscillation to which we are sensitive changes depending on the pitch of the sample. Surface waves on substrates that are loaded by thin films can take multiple forms, including Rayleigh-like waves, Sezawa waves, and radiative (leaky) surface waves. We describe evidence for detection of modes that display characteristics of these three surface wave types.

  16. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  17. Estimating explosive performance from laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer

    2015-06-01

    A laboratory-scale method for predicting explosive performance (e.g., detonation velocity and pressure) based on milligram quantities of material is currently being developed. This technique is based on schlieren imaging of the shock wave generated in air by the formation of a laser-induced plasma on the surface of an energetic material. A large suite of pure and composite conventional energetic materials has been tested. Based on the observed linear correlation between the laser-induced shock velocity and the measured performance from full-scale detonation testing, this method is a potential screening tool for the development of new energetic materials and formulations prior to detonation testing. Recent results on the extension of this method to metal-containing energetic materials will be presented.

  18. Localized surface plasmon of quasi-one-dimensional metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhao

    2007-05-01

    The plasmon resonance of noble metal nanoparticles provides interesting optical properties in the visible and near-infrared region, and is highly tunable by varying the shape and the composition of the nanoparticles. The rod-like gold nanostructures can be synthesized by a seed-mediated method in aqueous surfactant solutions. Starting from different types of gold seeds, either single crystalline gold nanorods or penta-fold twinned gold bipyramids can be synthesized in decent yield with silver(I) added into the growth solution. These nanostructures have pronounced plasmon resonance varying in the 1˜2 eV range. The bipyramids are strikingly monodisperse in shape, which leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions. A mechanism based on the underpotential deposition of silver was thus suggested to explain the essential role of Ag(I) in the growth process. The optical spectra of the gold colloids were simulated with the finite-difference time-domain (FDTD) method. The results show excellent agreement with recent experimental optical spectra. The local field enhancement (|E|/|E0|) was studied at the plasmon resonance. Sharper structural features produce more significant enhancement and the largest enhancement of more than a factor of 200 is seen around the poles of the bipyramid. A large internal field enhancement by more than a factor of 30 is found for the bipyramids, which suggests that they will exhibit very strong optical nonlinearities. The plasmon can be further tuned by introducing the core/shell nanostructures such as metal/metal or metal/semiconductor nanorods. Following a simple procedure, a homogeneous layer of silver with 1-4 nm thickness can be plated onto the gold nanorods, which shifts the longitudinal plasmon mode of the nanorods toward blue. The silver layer can be converted to semiconductors silver sulfide or selenide, with the longitudinal plasmon resonance tuned toward red. The metal

  19. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Tzur, Adi; Krepker, Maksym A; Segal, Ester

    2011-05-01

    An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-Pérot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

  20. Two-color beam improvement of the colloidal particle lens array assisted surface nanostructuring

    SciTech Connect

    Afanasiev, Andrei; Bredikhin, Vladimir; Pikulin, Alexander; Ilyakov, Igor; Shishkin, Boris; Akhmedzhanov, Rinat; Bityurin, Nikita

    2015-05-04

    We consider laser nanostructuring of the material surface by means of a colloidal particle lens array. Here, the monolayer of dielectric micro- or nanospheres placed on the surface acts as an array of near-field lenses that focus the laser radiation into the multitude of distinct spots, allowing the formation of many structures in a single stage. We show that conversion of a small part of the energy of the femtosecond beam into the second harmonic (SH) is an efficient way to increase the surface density of obtained nanostructures. By combining the fundamental frequency and the SH, one benefits both from the power of the former and from the focusing ability of the latter. This combination provides an efficient nanostructuring with sphere diameter close to the wavelength of the second harmonic. The possibility to create arrays of nanostructures with surface density above 5×10{sup 8} cm{sup −2} with femtosecond Ti:sapphire laser operating at 800 nm was demonstrated by employing 0.45 μm spheres.

  1. Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells.

    PubMed

    Da, Yun; Xuan, Yimin

    2013-11-04

    Nanostructured light trapping is a promising way to improve the efficiency in thin-film solar cells recently. In this work, both the optical and electrical properties of thin-film solar cells with 1D periodic grating structure are investigated by using photoelectric coupling model. It is found that surface recombination plays a key role in determining the performance of nanostructured thin-film solar cells. Once the recombination effect is considered, the higher optical absorption does not mean the higher conversion efficiency as most existing publications claimed. Both the surface recombination velocity and geometric parameters of structure have great impact on the efficiency of thin-film solar cells. Our simulation results indicate that nanostructured light trapping will not only improve optical absorption but also boost the surface recombination simultaneously. Therefore, we must get the tradeoffs between optical absorption and surface recombination to obtain the maximum conversion efficiency. Our work makes it clear that both the optical absorption and electrical recombination response should be taken into account simultaneously in designing the nanostructured thin-film solar cells.

  2. Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy.

    PubMed

    Gaona, Inmaculada; Serrano, Jorge; Moros, Javier; Laserna, J Javier

    2014-05-20

    The distance between the sensor and the target is a particularly critical factor for an issue as crucial as explosive residues recognition when a laser-assisted spectroscopic technique operates in a standoff configuration. Particularly for laser ablation, variations in operational range influence the induced plasmas as well as the sensitivity of their ensuing optical emissions, thereby confining the attributes used in sorting methods. Though efficient classification models based on optical emissions gathered under specific conditions have been developed, their successful performance on any variable information is limited. Hence, to test new information by a designed model, data must be acquired under operational conditions totally matching those used during modeling. Otherwise, the new expected scenario needs to be previously modeled. To facing both this restriction and this time-consuming mission, a novel strategy is proposed in this work. On the basis of machine learning methods, the strategy stems from a decision boundary function designed for a defined set of experimental conditions. Next, particular semisupervised models to the envisaged conditions are obtained adaptively on the basis of changes in laser fluence and light emission with variation of the sensor-to-target distance. Hence, the strategy requires only a little prior information, therefore ruling out the tedious and time-consuming process of modeling all the expected distant scenes. Residues of ordinary materials (olive oil, fuel oil, motor oils, gasoline, car wax and hand cream) hardly cause confusion in alerting the presence of an explosive (DNT, TNT, RDX, or PETN) when tested within a range from 30 to 50 m with varying laser irradiance between 8.2 and 1.3 GW cm(-2). With error rates of around 5%, the experimental assessments confirm that this semisupervised model suitably addresses the recognition of organic residues on aluminum surfaces under different operational conditions.

  3. Study of fast laser induced cutting of silicon materials

    NASA Astrophysics Data System (ADS)

    Weinhold, S.; Gruner, A.; Ebert, R.; Schille, J.; Exner, H.

    2014-03-01

    We report on a fast machining process for cutting silicon wafers using laser radiation without melting or ablating and without additional pretreatment. For the laser induced cutting of silicon materials a defocused Gaussian laser beam has been guided over the wafer surface. In the course of this, the laser radiation caused a thermal induced area of tension without affecting the material in any other way. With the beginning of the tension cracking process in the laser induced area of tension emerged a crack, which could be guided by the laser radiation along any direction over the wafer surface. The achieved cutting speed was greater than 1 m/s. We present results for different material modifications and wafer thicknesses. The qualitative assessment is based on SEM images of the cutting edges. With this method it is possible to cut mono- and polycrystalline silicon wafers in a very fast and clean way, without having any waste products. Because the generated cracking edge is also very planar and has only a small roughness, with laser induced tension cracking high quality processing results are easily accessible.

  4. About mechanisms of radiation-induced effect of nanostructurization of near-surface volumes of metals

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    Mechanisms of the radiation-induced development of nanostructures in subsurface metal regions have been analyzed based on field-ion microscopy data. It is concluded that the modification of near-surface metal regions on a nanometer scale as a result of the interaction with Ar+ ion beams proceeds by several mechanisms. In particular, for a fluence of F = 1016 ion/cm2 (at an ion energy of E = 30 keV), the main contribution is due to the ion channeling. A tenfold increase in the ion fluence leads to prevailing deformation mechanism in nanostructure formation in the subsurface metal regions.

  5. Nanostructure formation on silicon surfaces by using low energy helium plasma exposure

    NASA Astrophysics Data System (ADS)

    Takamura, Shuichi; Kikuchi, Yusuke; Yamada, Kohei; Maenaka, Shiro; Fujita, Kazunobu; Uesugi, Yoshihiko

    2016-12-01

    A new technology for obtaining nanostructure on silicon surface for potential applications to optical devices is represented. Scanning electron microscope analysis indicated a grown nanostructure of dense forest consisting of long cylindrical needle cones with a length of approximately 300 nm and a mutual distance of approximately 200 nm. Raman spectroscopy and spectrophotometry showed a good crystallinity and photon trapping, and reduced light reflectance after helium plasma exposure. The present technique consists of a simple maskless process that circumvents the use of chemical etching liquid, and utilizes soft ion bombardment on silicon substrate, keeping a good crystallinity.

  6. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  7. Laser-induced single point nanowelding of silver nanowires

    NASA Astrophysics Data System (ADS)

    Dai, Shuowei; Li, Qiang; Liu, Guoping; Yang, Hangbo; Yang, Yuanqing; Zhao, Ding; Wang, Wei; Qiu, Min

    2016-03-01

    Nanowelding of nanomaterials opens up an emerging set of applications in transparent conductors, thin-film solar cells, nanocatalysis, cancer therapy, and nanoscale patterning. Single point nanowelding (SPNW) is highly demanded for building complex nanostructures. In this letter, the precise control of SPNW of silver nanowires is explored in depth, where the nanowelding is laser-induced through the plasmonic resonance enhanced photothermal effect. It is shown that the illumination position is a critical factor for the nanowelding process. As an example of performance enhancement, output at wire end can be increased by 65% after welding for a plasmonic nanocoupler. Thus, single point nanowelding technique shows great potentials for high-performance electronic and photonic devices based on nanowires, such as nanoelectronic circuits and plasmonic nanodevices.

  8. Tunable plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies

    NASA Astrophysics Data System (ADS)

    Wang, Hui

    In this thesis, I demonstrate the rational design and controllable fabrication of a series of novel plasmonic nanostructures with judiciously tailored optical properties including perfect nanoshells, roughened subwavelength particles, prolate nanoshells known as nanorice, and non-concentric nanoshells known as nanoeggs. All of these nanostructures are very important subwavelength nanoscale optical components that can be utilized to manipulate light in unique ways. The most striking feature of these nanoparticles is their geometrically tunable plasmon resonances, which can be harnessed for widespread applications. I have also utilized these nanostructures as the building blocks to construct self-assembled multinanoparticle systems, such as nanoshell heterodimers, nanosphere arrays and nanoshell arrays. I have further developed multifunctional molecular sensing platforms using these nanoengineered plasmonic structures as substrates for surface-enhanced spectroscopies, realizing integrated analytical chemistry lab-on-a-chip. Applying the Plasmon Hybridization model as design principles to experimentally realizable nanostructures results in a thorough understanding of the origin of the geometry-dependent optical properties observed in these nanosystems. Finite Difference Time Domain (FDTD) method also provides a powerful platform for the numerical simulation of local- and far-field optical properties of these nanostructures.

  9. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  10. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    PubMed

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  11. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  12. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  13. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Cho, In-Sik; Pyun, Young-Sik

    2016-12-01

    A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  14. The formation of a multipeak relief on the surface on nanostructured nickel and field electron emission from it

    NASA Astrophysics Data System (ADS)

    Nazarov, K. S.; Khisamov, R. Kh.; Yumaguzin, Yu. M.; Mulyukov, R. R.

    2015-06-01

    Studies of the relief formed on the surface of nanostructured nickel with nonequilibrium grain boundaries formed upon ion-beam sputtering are presented. It has been shown that the relief on the nano-structured nickel surface differs substantially from the relief formed on the surface of the coarse-grained nickel with equilibrium grain boundaries. In particular, a multipeak relief with submicron dimensionality of the peaks forms on the surface of nanostructured nickel under certain conditions. This relief is advantageous for the field electron emission. For the sample with multipeak relief, a CVC of field electron emission is measured.

  15. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  16. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  17. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    PubMed

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  18. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates.

  19. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Schlücker, Sebastian

    2014-11-01

    Rationally designed multifunctional plasmonic nanostructures efficiently integrate two or more functionalities into a single entity, for example, with both plasmonic and catalytic activity. This review article is focused on their synthesis and use in surface-enhanced Raman scattering (SERS) as a molecular spectroscopic technique with high sensitivity, fingerprint specificity, and surface selectivity. After a short tutorial on the fundamentals of Raman scattering and SERS in particular, applications ranging from chemistry (heterogeneous catalysis) to biology and medicine (diagnostics/imaging, therapy) are summarized.

  20. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review.

    PubMed

    Xie, Wei; Schlücker, Sebastian

    2014-11-01

    Rationally designed multifunctional plasmonic nanostructures efficiently integrate two or more functionalities into a single entity, for example, with both plasmonic and catalytic activity. This review article is focused on their synthesis and use in surface-enhanced Raman scattering (SERS) as a molecular spectroscopic technique with high sensitivity, fingerprint specificity, and surface selectivity. After a short tutorial on the fundamentals of Raman scattering and SERS in particular, applications ranging from chemistry (heterogeneous catalysis) to biology and medicine (diagnostics/imaging, therapy) are summarized.

  1. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  2. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals.

    PubMed

    Baumberg, Jeremy J; Kelf, Timothy A; Sugawara, Yoshihiro; Cintra, Suzanne; Abdelsalam, Mamdouh E; Bartlett, Phillip N; Russell, Andrea E

    2005-11-01

    Surface-enhanced Raman scattering is an ideal tool for identifying molecules from the "fingerprint" of their molecular bonds; unfortunately, this process lacks a full microscopic understanding and, practically, is plagued with irreproducibility. Using nanostructured metal surfaces, we demonstrate strong correlations between plasmon resonances and Raman enhancements. Evidence for simultaneous ingoing and outgoing resonances in wavelength and angle sheds new light on the Raman enhancement process, allowing optimization of a new generation of reproducible Raman substrates.

  3. Aqueous phase deposition of dense tin oxide films with nano-structured surfaces

    SciTech Connect

    Masuda, Yoshitake Ohji, Tatsuki; Kato, Kazumi

    2014-06-01

    Dense tin oxide films were successfully fabricated in an aqueous solution. The pH of the solutions was controlled to pH 1.3 by addition of HCl. Precise control of solution condition and crystal growth allowed us to obtain dense tin oxide films. Concave–convex surface of fluorine-doped tin oxide (FTO) substrates was entirely-covered with the continuous films. The films were about 65 nm in thickness and had nano-structured surfaces. Morphology of the films was strikingly different from our previous reported nano-sheet assembled structures. The films were not removed from the substrates by strong water flow or air blow to show strong adhesion strength. The aqueous solution process can be applied to surface coating of various materials such as nano/micro-structured surfaces, particles, fibers, polymers, metals or biomaterials. - Graphical abstract: Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. They had nano-structured surfaces. Concave-convex substrates were entirely-covered with the continuous films. - Highlights: • Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. • They had nano-structured surfaces. • Concave–convex substrates were entirely-covered with the continuous films.

  4. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    PubMed

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability.

  5. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    PubMed

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  6. Nanostructured sapphire vicinal surfaces as templates for the growth of self-organized oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Thune, E.; Boulle, A.; Babonneau, D.; Pailloux, F.; Hamd, W.; Guinebretière, R.

    2009-11-01

    Vicinal substrates of sapphire with miscut angle of 10° from the (0 0 1) planes towards the [1 1 0] direction have been annealed in air in the range from 1000 to 1500 °C. The behaviour of these surfaces has been characterized as a function of the temperature and the thermal treatment time by Atomic Force Microscopy observations. A thermal treatment at 1250 °C allows to stabilize a surface made of periodically spaced nanosized step-bunches. Such stepped surfaces were used as template to grow self-patterned epitaxial oxide nanoparticles by thermal annealing of yttria-stabilized zirconia thin films produced by sol-gel dip-coating. Grazing Incidence Small Angle X-ray Scattering and High-Resolution Transmission Electron Microscopy were used to study the morphology of the nanoparticles and their epitaxial relationships with the substrate.

  7. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-09

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  8. Wettability control and flow regulation using a nanostructure-embedded surface.

    PubMed

    Tafti, Ehsan Yakhshi; Londe, Ghanashyam; Chunder, Anindarupa; Zhai, Lei; Kumar, Ranganathan; Cho, Hyoung J

    2011-02-01

    This work addresses the synthesis, integration and characterization of a nanostructure-embedded thermoresponsive surface for flow regulation. In order to create a hierarchic structure which consists of microscale texture and nanoscale sub-texture, hybrid multilayers consisting of poly(allylamine hydrochloride) (PAH), poly(acrylic acid) (PAA) and colloidal silica nanoparticles (average diameter = 22 nm and 7 nm) were used. Based on the electrostatic interactions between the polyelectrolytes and nanoparticles, a layer-by-layer deposition technique in combination with photolithography was employed to obtain a localized, conformally-coated patch in a microchannel. Grafted with the thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), wettability of the surface could be tuned upon heating or cooling. The measurement of differential pressure at various stages of device verified the working conditions of the nanostructure-embedded surface for regulating a capillary flow in the microchannel.

  9. Focused ion beam lithography for fabrication of suspended nanostructures on highly corrugated surfaces.

    PubMed

    Erdmanis, M; Sievilä, P; Shah, A; Chekurov, N; Ovchinnikov, V; Tittonen, I

    2014-08-22

    We propose a nanofabrication method that allows for patterning on extremely corrugated surfaces with micrometer-size features. The technique employs focused ion beam nanopatterning of ion-sensitive inorganic resists formed by atomic layer deposition at low temperature. The nanoscale resolution on corrugated surfaces is ensured by inherently large depth of focus of a focused ion beam system and very uniform resist coating. The utilized TiO₂ and Al₂O₃ resists show high selectivity in deep reactive ion etching and enable the release of suspended nanostructures by dry etching. We demonstrate the great flexibility of the process by fabricating suspended nanostructures on flat surfaces, inclined walls, and on the bottom of deep grooves.

  10. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    PubMed

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  11. Si(hhm) surfaces: Templates for developing nanostructures

    SciTech Connect

    Bozhko, S. I. Ionov, A. M.; Chaika, A. N.

    2015-06-15

    The fabrication of ordered low-dimensional structures on clean and metal-atom-decorated stepped Si(557) and Si(556) surfaces is discussed. The formation conditions and atomic structure of regular step systems on clean Si(557) 7 × 7 and Si(556) 7 × 7 surfaces are studied. The atomic structure of stepped Si(hhm), Ag/Si(557), and Gd/Si(557) surfaces is studied using high-resolution scanning tunneling microscopy and low-energy electron diffraction. The possibility of fabricating 1D and 2D structures of gadolinium and silver atoms on the Si(557) surface is demonstrated.

  12. Near-field thermal imaging of nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Kittel, A.; Wischnath, U. F.; Welker, J.; Huth, O.; Rüting, F.; Biehs, S.-A.

    2008-11-01

    We show that a near-field scanning thermal microscope, which essentially detects the local density of states of the thermally excited electromagnetic modes at nanometer distances from some material, can be employed for nanoscale imaging of structures on that material's surface. This finding is explained theoretically by an approach which treats the surface structure perturbatively.

  13. Laser induced local structural and property modifications in semiconductors for electronic and photonic superstructures - Silicon carbide to graphene conversion

    NASA Astrophysics Data System (ADS)

    Yue, Naili

    Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene

  14. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  15. Nano-structuring of polymer surfaces by multi-beam laser interference for application in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Klotzbuecher, T.; Radke, A.; Tunayar, A.; Haverbeck, O.; Weinbender, E.; Wuesten, J.; Toufali, A.; Claussen, J.; Detemple, P.

    2008-02-01

    The interference of three coherent laser beams of a HeCd-laser with a wavelength of 325 nm was used to create a periodic intensity distribution into the photo-resist AZ4562. The beam configuration for the laser beam interference was carefully chosen, so that well defined patterns of two-dimensional periodicity were generated in the photo-resist. Moulding tools were fabricated from the generated nano-structures via electroforming processes, allowing for a fast replication of the nano-structured surfaces via hot embossing. Hot embossed polymers were used to increase the effective surface of micro-fluidic devices like e.g. Polymerase-Chain-Reaction(PCR)-chips. The Nano-structured surfaces were characterized concerning their contact angles when wetted with de-ionized water. It was found that the nano-structures influenced the wetting behaviour of micro-fluidic chip surfaces clearly, especially Polypropylene (PP) surfaces showed a superhydrophobic behaviour.

  16. Oxygen interaction with disordered and nanostructured Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.

    2001-08-01

    We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.

  17. Atomic scale control and understanding of cubic silicon carbide surface reconstructions, nanostructures and nanochemistry

    NASA Astrophysics Data System (ADS)

    Soukiassian, Patrick G.; Enriquez, Hanna B.

    2004-05-01

    The atomic scale ordering and properties of cubic silicon carbide (bgr-SiC) surfaces and nanostructures are investigated by atom-resolved room and high-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS), synchrotron radiation-based valence band and core level photoelectron spectroscopy (VB-PES, CL-PES) and grazing incidence x-ray diffraction (GIXRD). In this paper, we review the latest results on the atomic scale understanding of (i) the structure of bgr-SiC(100) surface reconstructions, (ii) temperature-induced metallic surface phase transition, (iii) one dimensional Si(C) self-organized nanostructures having unprecedented characteristics, and on (iv) nanochemistry at SiC surfaces with hydrogen. The organization of these surface reconstructions as well as the 1D nanostructures' self-organization are primarily driven by surface stress. In this paper, we address such important issues as (i) the structure of the Si-rich 3 × 2, the Si-terminated c (4 × 2), the C-terminated c (2 × 2) reconstructions of the bgr-SiC(100) surface, (ii) the temperature-induced reversible {\\mathrm {c}}(4\\times 2) \\Leftrightarrow 2\\times 1 metallic phase transition, (iii) the formation of highly stable (up to 900 °C) Si atomic and vacancy lines, (iv) the temperature-induced sp to sp3 diamond like surface transformation, and (v) the first example of H-induced semiconductor surface metallization on the bgr-SiC (100) 3 × 2 surface. The results are discussed and compared to other experimental and theoretical investigations.

  18. On the possibility of increasing lifetime of a neutron generator target through laser-induced nanorelief generation at the film – substrate interface

    SciTech Connect

    Emel'yanov, V I; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Saltuganov, P N

    2014-09-30

    The evolution of an ensemble of point defects (vacancies and interstitials) produced by irradiating a tritium-saturated titanium target (sorbent film on substrate) with deuterium is considered. It is shown that when the concentration of defects exceeds a certain critical value, the film undergoes transition into a quasiperiodic bent state with simultaneous clustering of defect aggregates at the relief extrema, spontaneously created at the film – substrate interface and at the film free surface. The aggregation of vacancies leads to the formation of pores. The subsequent deadherence or rapture of the film in the regions of large pores at the film – substrate interface leads to irreversible degradation of the target. We discuss the possibility of suppressing this effect by nanostructuring a laser-induced nanorelief at the substrate surface before the sorbent film deposition. Different types of such a relief are experimentally demonstrated. (interaction of laser radiation with matter)

  19. Laser-induced caesium-137 decay

    SciTech Connect

    Barmina, E V; Simakin, A V; Shafeev, G A

    2014-08-31

    Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)

  20. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  1. Nanostructure modification to carbon nanowall surface employing hydrogen peroxide solution

    NASA Astrophysics Data System (ADS)

    Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2014-04-01

    Carbon nanowalls (CNWs), which are three-dimensional carbon nanomaterials consisting of stacks of graphene sheets vertically standing on substrates, possess a mazelike architecture containing high-density graphene edges and large-area plane surfaces. A selective morphological modification technique for the surfaces of CNWs after their growth has been developed employing hydrogen peroxide (H2O2) solution. It was found that oxidative radicals in H2O2 solution formed characteristic nanometer-scale asperities on the CNW surface without etching from the top edges. Photoelectron spectra indicate that hydroxyl adsorption and subsequent reactions at the edge and plane of graphene contribute to the selective morphological change on the CNW surface.

  2. Antibacterial and bioactive nanostructured titanium surfaces for bone integration

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S.

    2014-08-01

    An effective and physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant. A titanium surface able to actively promote bone bonding and avoid microbial colonization represents an extremely interesting challenge for these purposes. An innovative and patented surface treatment focused on these issues is described in the present paper. It is based on acid etching and subsequent controlled oxidation in hydrogen peroxide, enriched with silver ions. It has been applied to commercially pure titanium (Ti-cp) and alloy Ti6Al4V. The chemistry and morphology of the surfaces are modified by the treatment on a nanoscale: they show a thin oxide layer with porosity on the nanoscale and silver particles (few nanometers in diameter), embedded in it. These features are effective in order to obtain antibacterial and bioactive titanium surfaces.

  3. Nanostructured Anti-Reflecting and Water-Repellent Surface Coatings

    ScienceCinema

    None

    2016-11-23

    A nanotechnology-based surface-texturing method developed at Brookhaven Lab’s Center for Functional Nanomaterials imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics.

  4. Nanostructured Anti-Reflecting and Water-Repellent Surface Coatings

    SciTech Connect

    2016-11-08

    A nanotechnology-based surface-texturing method developed at Brookhaven Lab’s Center for Functional Nanomaterials imparts perfect anti-reflection and robust water-repellency to silicon, glass, and some plastics.

  5. Optical determination of surface density in oriented metalloprotein nanostructures

    SciTech Connect

    Hong, H.G.; Bohn, P.W.; Sligar, S.G. )

    1993-06-01

    In the current work we circumvent a difficulty in estimating surface coverage by noting that iron-porphyrin proteins in solution have been assayed spectrophotometrically after conversion to pyridine hemochromes. By comparing the total adsorbance obtained from direct absorption measurements of oriented metalloprotein layers on SiO[sub 2] at the Soret resonance (410 nm in cytochrome b[sub 5]) to the total number density of surface protein, obtained from subsequent pyridine hemochrome assay (PHCA) analysis, the apparent surface molar absorptivity is obtained directly. In this correspondence we report the use of the PHCA to determine the surface molar absorptivity for oriented arrays of cytochrome b[sub 5] mutants. The heme is completely dissociated from the surface cytochrome b[sub 5] and converted to the reduced pyridine hemochrome in solution. Subsequently, the absorbance of reduced species in solution is determined colorimetrically. From the correlation of the absorbance of reduced hemochrome to the standard curve obtained from pyridine hemochrome assay of solution cytochrome b[sub 5], the surface concentration is estimated. 18 refs., 2 figs., 1 tab.

  6. Formation of nanostructured silicon surfaces by stain etching.

    PubMed

    Ayat, Maha; Belhousse, Samia; Boarino, Luca; Gabouze, Noureddine; Boukherroub, Rabah; Kechouane, Mohamed

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min.

  7. Formation of nanostructured silicon surfaces by stain etching

    PubMed Central

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  8. Development of nanostructured surfaces for ice protection applications

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar

    2012-02-01

    Ice accretion on surfaces of aircrafts, wind turbine blades, oil and gas rigs and heat exchangers, to name a few examples, presents long recognized problems with respect to efficiency and cost of operation. For instance, significant ice accretion on critical surfaces of an aircraft will cause problems during lift off (and will change the aerodynamics of the wings during flight. On the other hand, ice built up on wind turbine blades in cold climates (T < -20 C) drastically reduces the efficiency of power generation. Despite considerable number of studies and significant progress toward development of icephobic coatings, development of robust ice-resistance or anti-icing coatings is still elusive. Several approaches towards development of anti-icing surfaces have recently postulated that the superhydrophobic properties of hierarchically textured coatings, with contact angles > 150 , may lead to a significant reduction and perhaps elimination of snow and ice accretion. However, the exact mechanism of delayed icing on these surfaces is still under debate. Here we present a systematic study of early stages of ice formation upon water droplet impact on a range of hydrophobic, hydrophilic, textured and chemically patterned surfaces. We show that, in addition to a significant reduction in ice-adhesion strength on superhydrophobic surfaces, decreasing the water-substrate contact area plays a dual role in delaying ice nucleation: first by reducing heat-transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. The study presented here also offers a comprehensive perspective on the efficacy of textured surfaces for practical non-icing applications.

  9. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  10. Surface-enhanced Raman scattering from silver nanostructures with different morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.

    2010-07-01

    Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.

  11. Solid-core and hollow magnetic nanostructures: Synthesis, surface modifications and biological applications.

    PubMed

    Nieciecka, Dorota; Nawara, Krzysztof; Kijewska, Krystyna; Nowicka, Anna M; Mazur, Maciej; Krysinski, Pawel

    2013-10-01

    In the need of development of versatile and flexible platforms for sensing, nanostructured particles are one of the systems of choice. Additionally, the state-of-the-art, controlled surface modifications of these structures offer broad possibilities of using such systems for diagnostics and therapy, often referred to as thera(g)nostics. In this brief review we will focus on the synthesis and surface modifications of solid-core magnetic nanostructures and polymeric capsules containing nanoferrites modified with anti-cancer drug--doxorubicin, designed for magnetic field-driven drug delivery for cancer therapy. We will also outline some problems related to the usage of such structures. The encapsulation and distribution of magnetic iron oxide nanoparticles modified with doxorubicin will be demonstrated in the polypyrrole spherical microvessels.

  12. DNA-guided assembly of three-dimensional nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Li-An; Lin, Yu-Ting; Chen, Yih-Fan

    2015-03-01

    Surface enhancement Raman spectroscopy (SERS) has drawn much attention in recent years because its ability to greatly enhance Raman signals to allow for the detection of molecules at low concentration. When using metallic nanoparticles as SERS substrates, many studies have shown that the size of the interparticle gap significantly affects the enhancement of the Raman signals. Given that the optimal interparticle gap is as small as a few nanometers, fabricating sensitive, uniform, and reproducible SERS substrates remains challenging. Here we report a three-dimensional SERS substrate created through the assembly of core-shell nanoparticles using DNA. By using DNA of appropriate sequence and length, DNA-functionalized nanoparticles were assembled into ordered and highly packed nanostructures. The interparticle distance was precisely controlled by adjusting the design of the DNA and the thickness of the silver shell coated on the gold nanoparticles. Compared with randomly aggregated nanoparticles, the interparticle distance in the synthesized nanostructures can be more uniform and better controlled. In addition, the DNA-guided assembly process allows us to create precise nanostructures without using complex and expensive fabrication methods. The study demonstrates that the synthesized nanostructures can be used as effective SERS substrates to successfully measure the Raman signals of malachite green, a toxic compound that is sometimes illegally used on fish, as well as Fluorescein isothiocyanate (FITC) at low concentrations.

  13. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Juan; Dai, Ye; Tao, Wenjun; Gong, Min; Ma, Guohong; Zhao, Quanzhong; Qiu, Jianrong

    2016-02-01

    In this paper, we report the birefringence effect of surface self-assembly periodic nanostructures induced on 6H-SiC by femtosecond laser irradiation. Birefringence characteristic (e.g. cross-polarized image), measured by cross polarized microscopy, was found to be controlled by both single pulse energy and scanning velocity. Comparing birefringence measurement results of nanostructures and morphology characterization by Scanning electron microscopy, it is shown that ∼200 nm-period deep-subwavelength periodic ripples (DSWR) plays a dominating role in the birefringence effect. Raman spectra show that the change of retardance with pulse energy and scanning velocity is most possibly caused by the thickness variation of DSWR. Finally, a light attenuator based on a single layer of DSWR structure on 6H-SiC surface was constructed and tested by light source of 800 nm to have a tunable attenuating ratio of 69-100%.

  14. Insights from simple models for surface states in nanostructures

    NASA Astrophysics Data System (ADS)

    Boykin, Timothy B.; Klimeck, Gerhard

    2017-03-01

    Surface passivation is of great technological importance due to the increasing miniaturisation of electronic devices. It has been known for many years that under certain conditions surface states can form; when they do so in a quantum well (QW) the result is an unbound (i.e., evanescent) state in the QW. Such surface states are generally undesirable, so a good physical understanding of them is important. A simple single-p-orbital valence band model is used with two types of surface passivation to examine surface states in a QW: (1) an energy upshift added to the terminal atoms; and (2) explicit passivation by an s-orbital on each end of the QW. These models show these unbound/evanescent QW states can occur in both models; that in them the wavefunction is bound to the terminal atoms; and that the existence of these states is connected to the effective valence-band offset between the terminal atoms and the bulk QW.

  15. Effect of adhesion transfer on the surface pattern regularity in nanostructuring burnishing

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Viktor P.; Tarasov, Sergey Yu.; Nikonov, Anton Yu.; Filippov, Andrey V.; Voropaev, Vladimir V.; Dmitriev, Andrey I.

    2016-11-01

    In the paper the influence of friction-induced adhesion of metal to the tool on the formation of surface topography under nanostructuring burnishing was studied. A comprehensive approach, including both experimental (optical microscopy and profilometry) and theoretical (computer-aided simulation) methods was used. The results showed a direct connection between values of adhesion strength of materials in contact with the workpiece surface pattern quality caused by the tool movement. Results of the experimental and theoretical study are in good agreement and allow us to identify the reason of regular profile forming during surface burnishing.

  16. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    SciTech Connect

    Moslem, W. M.; El-Said, A. S.

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  17. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    SciTech Connect

    Kolesnikov, S. V. Klavsyuk, A. L.; Saletsky, A. M.

    2015-10-15

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  18. Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings

    NASA Astrophysics Data System (ADS)

    Ünal, Uğur Oral; Ünal, Burcu; Atlar, Mehmet

    2012-06-01

    Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the

  19. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied.

  20. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications.

    PubMed

    Pareta, Rajesh A; Reising, Alexander B; Miller, Tiffany; Storey, Dan; Webster, Thomas J

    2009-06-15

    Techniques to regenerate the vasculature have risen considerably over the last few decades due to the increased clinical diagnosis of artery narrowing and blood vessel blockage. Although initially re-establishing blood flow, current small diameter vascular regenerative materials often eventually cause thrombosis and restenosis due to a lack of initial endothelial cell coverage on such materials. The objective of this in vitro study was to evaluate commonly used vascular materials (specifically, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, nylon, commercially pure titanium, and a titanium alloy (Ti6Al4V)) modified using an ionic plasma deposition (IPD) process and a nitrogen ion implantation plasma deposition (NIIPD) process. Such surface modifications have been previously shown to create nanostructured surface features which mimic the natural nanostructured surface features of blood vessels. The modified and unmodified surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy measurements. Furthermore, in vitro endothelial cell adhesion tests (a key first step for vascular material endothelialization) demonstrated increased endothelial cell adhesion on many modified (with IPD and NIIPD + IPD) compared to unmodified samples. In general, endothelial cell adhesion increased with nanoroughness and surface energy but demonstrated a decreased endothelial cell adhesion trend after an optimal coating surface energy value was reached. Thus, results from this study provided materials and a versatile surface modification process that can potentially increase endothelialization faster than current unmodified (conventional) polymer and metallic vascular materials.

  1. Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser.

    PubMed

    Long, Jiangyou; Pan, Lin; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2016-02-02

    The Cassie-state stability plays a vital role in the applications of metallic superhydrophobic surfaces. Although a large number of papers have reported the superhydrophobic performance of various surface micro/nanostructures, the knowledge of which kind of micro/nanostructure contributes significantly to the Cassie-state stability especially under low temperature and pressure is still very limited. In this article, we fabricated six kinds of typical micro/nanostructures with different topography features on metal surfaces by a femtosecond laser, and these surfaces were modified by fluoroalkylsilane to generate superhydrophobicity. We then systematically studied the Cassie-state stability of these surfaces by means of condensation and evaporation experiments. The results show that some superhydrophobic surfaces, even with high contact angles and low sliding angles under normal conditions, are unstable under low temperature or external pressure. The Cassie state readily transits to a metastable state or even a Wenzel state under these conditions, which deteriorates their superhydrophobicity. Among the six micro/nanostructures, the densely distributed nanoscale structure is important for a stable Cassie state, and the closely packed micrometer-scale structure can further improve the stability. The dependence of the Cassie-state stability on the fabricated micro/nanostructures and the laser-processing parameters is also discussed. This article clarifies optimized micro/nanostructures for stable and thus more practical metallic superhydrophobic surfaces.

  2. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence.

    PubMed

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T

    2013-04-26

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers.

  3. Facile Phase Transfer and Surface Biofunctionalization of Hydrophobic Nanoparticles Using Janus DNA Tetrahedron Nanostructures.

    PubMed

    Li, Juan; Hong, Cheng-Yi; Wu, Shu-Xian; Liang, Hong; Wang, Li-Ping; Huang, Guoming; Chen, Xian; Yang, Huang-Hao; Shangguan, Dihua; Tan, Weihong

    2015-09-09

    Hydrophobic nanoparticles have shown substantial potential for bioanalysis and biomedical applications. However, their use is hindered by complex phase transfer and inefficient surface modification. This paper reports a facile and universal strategy for phase transfer and surface biofunctionalization of hydrophobic nanomaterials using aptamer-pendant DNA tetrahedron nanostructures (Apt-tet). The Janus DNA tetrahedron nanostructures are constructed by three carboxyl group modified DNA strands and one aptamer sequence. The pendant linear sequence is an aptamer, in this case AS1411, known to specifically bind nucleolin, typically overexpressed on the plasma membranes of tumor cells. The incorporation of the aptamers adds targeting ability and also enhances intracellular uptake. Phase-transfer efficiency using Apt-tet is much higher than that achieved using single-stranded DNA. In addition, the DNA tetrahedron nanostructures can be programmed to permit the incorporation of other functional nucleic acids, such as DNAzymes, siRNA, or antisense DNA, allowing, in turn, the construction of promising theranostic nanoagents for bioanalysis and biomedical applications. Given these unique features, we believe that our strategy of surface modification and functionalization may become a new paradigm in phase-transfer-agent design and further expand biomedical applications of hydrophobic nanomaterials.

  4. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  5. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  6. Laser induced white lighting of graphene foam

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources.

  7. Laser induced white lighting of graphene foam

    PubMed Central

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources. PMID:28112254

  8. Temperature Dependence of Laser Induced Breakdown

    DTIC Science & Technology

    1994-01-01

    consistent dependence on the temperature of the medium. The theory of the temperature dependence of LIB and experimental observations for all pulse...durations and their implications for retinal damage are discussed. Laser Induced Breakdown, Temperature dependence , Threshold valve, Nanosecond, Picosecond, Femtosecond, laser pulses.

  9. Decay of surface nanostructures via long-time-scale dynamics

    SciTech Connect

    Voter, A.F.; Stanciu, N.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool.

  10. Template-imprinted nanostructured surfaces for protein recognition.

    PubMed

    Shi, H; Tsai, W B; Garrison, M D; Ferrari, S; Ratner, B D

    1999-04-15

    Synthetic materials capable of selectively recognizing proteins are important in separations, biosensors and the development of biomedical materials. The technique of molecular imprinting creates specific recognition sites in polymers by using template molecules. Molecular recognition is attributed to binding sites that complement molecules in size, shape and chemical functionality. But attempts to imprint proteins have met with only limited success. Here we report a method for imprinting surfaces with protein-recognition sites. We use radio-frequency glow-discharge plasma deposition to form polymeric thin films around proteins coated with disaccharide molecules. The disaccharides become covalently attached to the polymer film, creating polysaccharide-like cavities that exhibit highly selective recognition for a variety of template proteins, including albumin, immunoglobulin G, lysozyme, ribonuclease and streptavidin. Direct imaging of template recognition is achieved by patterning a surface at the micrometre scale with imprinted regions.

  11. Modeling of nanostructured porous thermoelastic composites with surface effects

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.

    2017-01-01

    The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.

  12. (Theme 2 Quantum Computing) Nanostructured Surface Plasmon Resonators

    DTIC Science & Technology

    2008-04-03

    surface of a dielectric micro -cavity, SERS emissions are efficiently coupled to micro -cavity WGM’s, providing further (multiplicative) gain. The...light in the region beyond. A 50 micron radius glass microsphere is positioned in the evanescent region by an x-y micro -positioning translator...parallel to the hypotenuse face) and by a z nano -positioning translator (perpendicular to the hypotenuse face). For values of z in the few-hundred nm

  13. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  14. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation.

    PubMed

    Lin, Kaili; Xia, Lunguo; Gan, Jingbo; Zhang, Zhiyuan; Chen, Hong; Jiang, Xinquan; Chang, Jiang

    2013-08-28

    To promote and understand the biological responses of the implant via nanostructured surface design is essential for the development of bioactive bone implants. However, the control of the surface topography of the bioceramics in nanoscale is a big challenge because of their brittle property. Herein, the hydroxyapatite (HAp) bioceramics with distinct nanostructured topographies were fabricated via hydrothermal treatment using α-tricalcium phosphate ceramic as hard-template under different reaction conditions. HAp bioceramics with nanosheet, nanorod and micro-nanohybrid structured surface in macroscopical size were obtained by controlling the composition of the reaction media. Comparing with the traditional sample with flat and dense surface, the fabricated HAp bioceramics with hierarchical 3D micro-nanotextured surfaces possessed higher specific surface area, which selectively enhanced adsorption of specific proteins including Fn and Vn in plasma, and stimulated osteoblast adhesion, growth, and osoteogenic differentiation. In particular, the biomimetic features of the hierarchical micro-nanohybrid surface resulted in the best ability for simultaneous enhancement of protein adsorption, osteoblast proliferation, and differentiation. The results suggest that the hierarchical micro-nanohybrid topography might be one of the critical factors to be considered in the design of functional bone grafts.

  15. Fabrication of nanostructured silver substrates for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Muniz-Miranda, Maurizio; Gellini, Cristina; Salvi, Pier Remigio; Innocenti, Massimo; Pagliai, Marco; Schettino, Vincenzo

    2011-11-01

    Four nanostructured Ag substrates have been fabricated with different surface morphologies and tested with surface-enhanced Raman scattering (SERS) experiments by adsorption of adenine. Their SERS efficiency has been compared and related to the surface roughness resulting from atomic force microscopy measurements. Chemical etching of silver by thiourea/Fe(III)nitrate produces homogeneously roughened plates, exhibiting the largest three-dimensional surface and the best SERS enhancement. They mostly exhibit surface protrusions with sizes around 200 nm, thus matching the best condition for obtaining SERS enhancement by laser excitation at 785 nm. This is quite important in the case of biomolecules, whose samples often present strong fluorescence bands, which usually are not observed with red-shifted exciting lines. Moreover, these Ag platforms, owing to their uniform nanostructured surfaces, are suitable for obtaining reproducible results from microRaman investigation. In conclusion, the present nanofabrication of Ag surfaces allows obtaining SERS-active substrates, which combine high reproducibility and sensitivity and can be successfully employed in the molecular recognition of different organic ligands or biomolecules like nucleic acids and proteins.

  16. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology

    NASA Astrophysics Data System (ADS)

    Velmurugan, Ramaiyan; Selvamuthukumar, Subramanian

    2016-02-01

    The research focuses on the development and optimization of ifosfamide nanostructured lipid carriers for oral delivery with the application of response surface methodology. The objectives of the study were to develop a formulation for ifosfamide to be delivered orally, overcome the instability of the drug in acidic environment during oral administration, to sustain the release, drug leakage during storage and low loading capacity. A modified solvent diffusion method in aqueous system was applied to prepare nanostructured lipid nanoparticles. Hydrophilic polymers such as chitosan and sodium alginate were used as coating materials. Glycerol mono oleate and oleic acid were used as solid and liquid lipid, respectively. Poloxamer is used as stabilizers. The central composite rotatable design consisting of three-factored factorial design with three levels was used in this study. The physiochemical characterization included evaluation of surface morphology, particle size and surface charge of the drug in the delivery system. The in vitro drug release, entrapment and drug loading efficiency and as well as the storage stability were evaluated. The results showed that the optimal formulation was composed of drug/lipid ratio of 1:3, organic/aqueous phase ratio of 1:10 and concentration of surfactant of 1 % w/v. Ifosfamide nanostructured lipid carrier under the optimized conditions gave rise to the entrapment efficiency of 77 %, drug loading of 6.14 %, mean diameter of 223 nm and zeta potential value of -25 mV. Transmission electron microscopy analysis showed spherical particles. The in vitro experiment proved that ifosfamide from the delivery system released gradually over the period of 72 h. Sodium alginate cross-linked chitosan nanostructured lipid carrier demonstrated enhanced stability of ifosfamide, high entrapment efficiency and sustained release.

  17. Computer simulations of laser-induced melting of aluminum

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Bai, Mingze; Dou, Yusheng; Ran, Qi; Lo, Glenn V.

    2013-04-01

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2-3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones.

  18. Laser-induced removal of organic contaminants from metal substrates

    NASA Astrophysics Data System (ADS)

    Song, Wen D.; Lu, Yongfeng; Chen, Q.; Low, Tohsiew

    1998-08-01

    Laser-induced removal of organic contaminants, such as grease and wax, on Cr substrate surfaces was studied. The laser cleaning efficiency was analyzed by an optical microscope and an Auger Electron Spectroscopy (AES). It was found that the contaminants in the irradiated area can be effectively removed by pulsed laser irradiation and cleaning efficiency can be reached to 80% above under a certain cleaning condition without damage. The damage threshold of Cr substrates was obtained by numerical simulation, which is in good consistency with the experimental threshold.

  19. Prospects of target nanostructuring for laser proton acceleration

    NASA Astrophysics Data System (ADS)

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-03-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

  20. Prospects of target nanostructuring for laser proton acceleration

    PubMed Central

    Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias

    2017-01-01

    In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479

  1. Dielectric nanostructures with high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  2. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO3, WO3, CrO3, and V2O5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  3. TiO2 nanostructured surfaces for biomedical applications developed by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Strnad, G.; Petrovan, C.; Russu, O.; Jakab-Farkas, L.

    2016-11-01

    Present research demonstrates the formation of self-ordered nanostructured oxide layer on the surface of two phase Ti6Al4V alloy by using electrochemical anodization in H3PO4/HF electrolytes. Our results show that the ordered oxide nanotubes grow on large areas on the samples surface, on both phases of (α+β) Ti6Al4V titanium alloy. We developed nanotubes of 70 nm (internal diameter) using 0.3 wt% HF and of 80 nm using 0.5 wt% HF additions to 1M H3PO4, at an anodization potential of 20 V, and an anodization time of 2 hours. We show that anodization potential has a strong influence on nanostructures morphology. Our results show that nanotubes’ internal diameter is ∼30 nm at 10 V potential, ∼40 nm at 15 V potential, and ∼70-80 nm at 20 V potential in anodization process performed in 1M H3PO4 + 0.5 wt% HF, 2 hours. The thickness of the developed nanostructured oxide layer is in 200-250 nm range.

  4. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly.

    PubMed

    Liu, Jia; Chen, Ting; Deng, Xin; Wang, Dong; Pei, Jian; Wan, Li-Jun

    2011-12-28

    The bottom-up fabrication of surface hierarchical nanostructures is of great importance for the development of molecular nanostructures for chiral molecular recognition and enantioselective catalysis. Herein, we report the construction of a series of 2D chiral hierarchical structures by trinary molecular self-assembly with copper phthalocyanine (CuPc), 2,3,7,8,12,13-hexahexyloxy-truxenone (TrO23), and 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB). A series of flower-like chiral hierarchical molecular architectures with increased generations are formed, and the details of these structures are investigated by high resolution scanning tunneling microscopy (STM). The flower-like hierarchical molecular architectures could be described by a unified configuration in which the lobe of each architecture is composed of a different number of triangular shape building units (TBUs). The off-axis edge-to-edge packing of TBUs confers the organizational chirality of the hierarchical assemblies. On the other hand, the TBUs can tile the surface in a vertex-sharing configuration, resulting in the expansion of chiral unit cells, which thereby further modulate the periodicity of chiral voids in the multilevel hierarchical assemblies. The formation of desired hierarchical structures could be controlled through tuning the molar ratio of each component in liquid phase. The results are significant for the design and fabrication of multicomponent chiral hierarchical molecular nanostructures.

  5. Lithography-free synthesis of nanostructured cobalt on Si (111) surfaces: structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Bounour-Bouzamouche, W.; Chérif, S. M.; Farhat, S.; Roussigné, Y.; Lungu, C. P.; Mazaleyrat, F.; Guerioune, M.

    2014-07-01

    We illustrate the concept of lithography-free synthesis and patterning of magnetic cobalt in the nanometric scale. Our elaboration method allows fabricating 2D architectures of cobalt and cobalt silicide onto silicon (111) surfaces. A continuous cobalt layer of 1, 3 and 10 nm thickness was first deposited by using thermoionic vacuum arc (TVA) technology and then, thermally annealed on vacuum at temperatures from 450° C to 800° C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750° C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the substrate temperature. Magnetic properties were investigated by means of vibrating sample magnetometer (VSM) technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modelled by a series of shapes tending to a fractal curve.

  6. Nanostructured TiO2 Surfaces Promote Human Bone Marrow Mesenchymal Stem Cells Differentiation to Osteoblasts

    PubMed Central

    Vercellino, Marco; Ceccarelli, Gabriele; Cristofaro, Francesco; Balli, Martina; Bertoglio, Federico; Bruni, Gianna; Benedetti, Laura; Avanzini, Maria Antonietta; Imbriani, Marcello; Visai, Livia

    2016-01-01

    Micro- and nano-patterning/modification are emerging strategies to improve surfaces properties that may influence critically cells adherence and differentiation. Aim of this work was to study the in vitro biological reactivity of human bone marrow mesenchymal stem cells (hBMSCs) to a nanostructured titanium dioxide (TiO2) surface in comparison to a coverglass (Glass) in two different culture conditions: with (osteogenic medium (OM)) and without (proliferative medium (PM)) osteogenic factors. To evaluate cell adhesion, hBMSCs phosphorylated focal adhesion kinase (pFAK) foci were analyzed by confocal laser scanning microscopy (CLSM) at 24 h: the TiO2 surface showed a higher number of pFAK foci with respect to Glass. The hBMSCs differentiation to osteoblasts was evaluated in both PM and OM culture conditions by enzyme-linked immunosorbent assay (ELISA), CLSM and real-time quantitative reverse transcription PCR (qRT-PCR) at 28 days. In comparison with Glass, TiO2 surface in combination with OM conditions increased the content of extracellular bone proteins, calcium deposition and alkaline phosphatase activity. The qRT-PCR analysis revealed, both in PM and OM, that TiO2 surface increased at seven and 28 days the expression of osteogenic genes. All together, these results demonstrate the capability of TiO2 nanostructured surface to promote hBMSCs osteoblast differentiation and its potentiality in biomedical applications. PMID:28335251

  7. Effect of Octacalcium-Phosphate-Modified Micro/Nanostructured Titania Surfaces on Osteoblast Response.

    PubMed

    Jiang, Pinliang; Liang, Jianhe; Song, Ran; Zhang, Yanmei; Ren, Lei; Zhang, Lihai; Tang, Peifu; Lin, Changjian

    2015-07-08

    Surface structures and properties of titanium implants play a vital role in successful bone replacement. To mimic the natural bone structure, some strategies have recently focused on the preparation of multiscaled morphology on medical titanium and shown some promising results; however, relatively few efforts have been made for further enhancing the biocompatibility of such a hierarchical hybrid structure without compromising the superior bioactivity of the starting micro/nano roughness. In this study, a thin ribbonlike octacalcium phosphate (OCP) coating was electrodeposited on a hierarchically structured titania surface, maintaining its micro/nanospongelike morphology. It is indicated that the micro/nanostructured surface with deposited OCP showed an improved biomineralization ability, in comparison to that without OCP modification, when immersed in simulated body fluid (SBF). Further evaluations of cellular activities demonstrated that the introduction of OCP to the micro/nano spongelike-structured surface remarkably enhanced MC3T3-E1 cell proliferation, alkaline phosphatase activity, and extracellular matrix mineralization compared to that of cells on the micro/nanospongelike titania surface during 14 days of culturing. Meanwhile, the OCP-deposited micro/nanostructured surface displayed much a smaller passive current density and lower current response to the applied potential, resulting in the improvement of corrosion resistance. All of the evaluations suggested that the modification of the OCP coating on the prepared micro/nanospongelike titania is of superior chemical stability, biomineralization, and osteoblast activities, which indicates a favorable implant microenvironment for osseointegration in vivo.

  8. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna V.; Girel, Kseniya V.; Bondarenko, Vitaly P.; Khodasevich, Inna A.; Panarin, Andrei Yu.; Terekhov, Sergei N.

    2016-05-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10-11 M.

  9. Fabrication and characterization of rare-earth-doped nanostructures on surfaces.

    PubMed

    Mullen, Thomas J; Zhang, Ming; Feng, Wei; El-khouri, Rita J; Sun, Ling-Dong; Yan, Chun-Hua; Patten, Timothy E; Liu, Gang-yu

    2011-08-23

    This article presents a simple and practical means to produce rare-earth-based nanostructures, as well as a combined characterization of structure and optical properties in situ. A nanosphere lithography strategy combined with surface chemistry enables the production of arrays of β-NaYF(4):Yb,Er nanorings inlaid in an octadecyltrichlorosilane matrix. These arrays of nanorings are produced over the entire support, such as a 1 cm(2) glass coverslip. The dimension of nanorings can be varied by changing the deposition conditions. A home-constructed, multifunctional microscope integrating atomic force microscopy, near-field scanning optical microscopy, and far-field optical microscopy and spectroscopy is utilized to characterize the nanostructures. This in situ and combined characterization is important for rare-earth-containing nanomaterials in order to correlate local structure with upconversion photoluminescence. Knowledge gained from the investigation should facilitate materials design and optimization, for instance, in the context of photovoltaic devices and biofluorescent probes.

  10. Surface-enhanced Raman spectroscopy as a tool for characterizing nanostructures containing molecular components

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Abell, Justin; Zhao, Yiping; Qian, Jun; Brenneman, Kimber; Meshik, Xenia; Dutta, Mitra; Stroscio, Michael

    2012-12-01

    Raman spectroscopy, which is based on inelastic scattering of light that interacts with phonons or molecular vibrations in the nanostructure, has been widely used to identify chemical and biological molecules. Surface-Enhanced Raman Spectroscopy (SERS) greatly enhanced the sensitivity of conventional Raman spectroscopy by a factor of >106 through the use of a plasmon-generating substrate [1, 2]. This study investigated the use of Raman spectroscopy/SERS to verify that synthesized nanostructures contain active molecular components critical to their functioning. In particular, this study uses SERS to identify the signature spectrum of Methylene Blue (MB) and uses standard Raman spectroscopy to verify the fictionalization of a DNA aptamer terminated with MB.

  11. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  12. Tip-induced nanostructuring of alloy surfaces with an electrochemical scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Maupai, S.; Dakkouri, A. S.; Schmuki, P.

    2005-12-01

    Tip-induced nanostructuring with an electrochemical scanning tunneling microscope (EC-STM) was applied to alloy surfaces in order to resolve the reasons for the unusual stability of tip-induced metal clusters to anodic oxidation. Therefore Au thin films on glass and AuCu-alloy single crystals of different composition and surface orientation were used as substrates. The experiments give evidence that the three main factors for cluster formation and stability are the attractive interaction between tip and substrate, alloy formation during the cluster formation process as well as additional stabilization by adsorption of an underpotential deposition layer. Experimental results on the three aspects are presented and discussed.

  13. Live cell imaging based on surface plasmon-enhanced fluorescence microscopy using random nanostructures

    NASA Astrophysics Data System (ADS)

    Oh, Youngjin; Lee, Wonju; Son, Taehwang; Kim, Sook Young; Shin, Jeon-Soo; Kim, Donghyun

    2014-02-01

    Localized surface plasmon enhanced microscopy based on nanoislands of random spatial distribution was demonstrated for imaging live cells and molecular interactions. Nanoislands were produced without lithography by high temperature annealing under various processing conditions. The localization of near-field distribution that is associated with localized surface plasmon on metallic random nanoislands was analyzed theoretically and experimentally in comparison with periodic nanostructures. For experimental validation in live cell imaging, mouse macrophage-like cell line stained with Alexa Fluor 488 was prepared on nanoislands. The results suggest the possibility of attaining the imaging resolution on the order of 80 nm.

  14. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  15. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  16. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel

  17. Surface-enhanced Raman scattering: effective optical constants for electric field modelling of nanostructured Ag films

    NASA Astrophysics Data System (ADS)

    Perera, M. Nilusha M. N.; Schmidt, Daniel; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2016-09-01

    Surface-enhanced Raman scattering (SERS) is drawing increasing interest in fields such as chemical and biomolecular sensing, nanoscale plasmonic engineering and surface science. In addition to the electromagnetic and chemical enhancements in SERS, several studies have reported a "back-side" enhancement when nanostructures are excited through a transparent base rather than directly through air. This additional enhancement has been attributed to a local increase in the electric field for propagation from high to low refractive index media. In this study, Mueller matrix ellipsometry was used to derive the effective optical constants of Ag nanostructures fabricated by thermal evaporation at oblique angles. The results confirm that the effective optical constants of the nanostructured Ag film depart substantially from the bulk properties. Detailed analysis suggests that the optical constants of the nano-island Ag structures exhibit uniaxial optical properties with the optical axis inclined from the substrate normal towards the deposition direction of the vapour flux. The substrates were functionalized with thiophenol and used to measure the wavelength dependence of the additional SERS signal. Further, a model based on the Fresnel equations was developed, using the Ag film optical constants and thickness as determined by ellipsometry. Both experimental data and the model show a significant additional enhancement in the back-side SERS, blue shifted from the plasmon resonance of the nanostructures. This information will be useful for a range of applications where it is necessary to understand the effective optical behaviour of thin films and in designing miniaturized optical fibre sensors for remote sensing applications.

  18. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  19. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function.

    PubMed

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration.

  20. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  1. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  2. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    NASA Astrophysics Data System (ADS)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber

  3. Formation of superwetting surface with line-patterned nanostructure on sapphire induced by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yin, Kai; Duan, Ji'an; Sun, Xiaoyan; Wang, Cong; Luo, Zhi

    2015-04-01

    In this study, an effective approach is presented for the fabrication of line-patterned superwetting surface on sapphire by using a femtosecond laser. The fabricated surface shows a powerful capillary action by which water could be rapidly sucked into the as-prepared surface structures and spread even on the vertical surface against gravitation. In addition, the effects of the period and the dimensions of the microgrooves on surface wettability are investigated. It is demonstrated that the wettability can be significantly enhanced in the case when the sizable line-patterned nanostructures exist. This work could provide a facile and promising strategy for enhancing the performance of heat dissipation in the electronic devices substrate.

  4. A new approach to the fabrication of ``smart`` near-surface nanostructure composites

    SciTech Connect

    Gea, L.; Honda, S.; Boatner, L.A.; Haynes, T.E.; Sales, B.C.; Modine, F.A.; Meldrum, A.; Budai, J.D.; Beckers, L.

    1998-01-01

    A new method for the formation of smart near-surface nanoscale composites has been developed. In this approach, small precipitates of active phases are embedded in the near-surface region of the material that is to be modified by a combination of ion implantation and thermal processing. The dispersion, concentration, and microstructure of the nanocrystals formed in the substrate material can be tailored through a careful choice of processing parameters - making this approach well suited to high value added, high technology applications. The applicability of this approach to forming smart surfaces on otherwise inactive materials was established in the case of VO{sup 2} precipitates which were embedded in Al{sub 2}O{sub 3} single crystals to create a medium suitable for optical applications--including optical data storage. Most recently, this concept has been extended to the fabrication of magnetic field sensitive nanostructured surfaces by forming magnetostrictive precipitates of materials such as Ni or RFe{sub 2} (with R = Tm, Tb, Sm) that are embedded in various single crystal oxide hosts. These nanostructured, active surface composites have been characterized using XRD, RBS, TEM, and magneto-optical techniques.

  5. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface.

    PubMed

    Passoni, Luca; Bonvini, Giacomo; Luzio, Alessandro; Facibeni, Anna; Bottani, Carlo E; Di Fonzo, Fabio

    2014-11-18

    In this work, we describe self-assembled surfaces with a peculiar multiscale organization, from the nanoscale to the microscale, exhibiting the Cassie-Baxter wetting regime with extremely low water adhesion: floating drops regime with roll-off angles < 5°. These surfaces comprise bundles of hierarchical, quasi-one-dimensional (1D) TiO2 nanostructures functionalized with a fluorinated molecule (PFNA). While the hierarchical nanostructures are the result of a gas-phase self-assembly process, their bundles are the result of the capillary forces acting between them when the PFNA solvent evaporates. Nanometric features are found to influence the hydrophobic behavior of the surface, which is enhanced by the micrometric structures up to the achievement of the superhydrophobic Cassie-Baxter state (contact angle (CA) ≫ 150°). Thanks to their high total and diffuse transmittance and their self-cleaning properties, these surfaces could be interesting for several applications such as smart windows and photovoltaics where light management and surface cleanliness play a crucial role. Moreover, the multiscale analysis performed in this work contributes to the understanding of the basic mechanisms behind extreme wetting behaviors.

  6. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    PubMed

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.

  7. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    PubMed Central

    Abel, Biebele; Aslan, Kadir

    2013-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

  8. Colonization by Staphylococcus aureus of Nano-Structured Fluorinated Surfaces, Formed by Different Methods of Ion-Plasma Technology.

    PubMed

    Elinson, V M; Didenko, L V; Shevlyagina, N V; Avtandilov, G A; Gaidarova, A Kh; Lyamin, A N

    2016-11-01

    Colonization of fluorinated surfaces produced by ion-plasma technology by Staphylococcus aureus was studied by scanning electron microscopy and surface energy analysis. It was shown that the intensity of colonization was determined by the surface relief and fluorine content. Formation of nanostructured surfaces accompanied by a sharp decrease in the surface energy prevented adhesion of Staphylococcus aureus cells to the fluorine-containing surface.

  9. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    NASA Astrophysics Data System (ADS)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  10. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOEpatents

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  11. Cellular automaton simulation of the diffusive motion of bacteria and their adhesion to nanostructures on a solid surface.

    PubMed

    Yamamoto, Takehiro; Emura, Chie; Oya, Masashi

    2016-12-01

    The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures.

  12. Porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide templates.

    PubMed

    Wei, Tzu-Hui; Chi, Mu-Huan; Tsai, Chia-Chan; Ko, Hao-Wen; Chen, Jiun-Tai

    2013-08-13

    We study the formation of porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide (AAO) templates. Poly(methyl methacrylate) (PMMA) and tetrahydrofuran (THF) are used to investigate the evolution process of the surface-induced phase separation. With the longer immersion time of the AAO template in the polymer solution, the size of the solvent-rich droplet is increased by the coarsening process, resulting in the formation of porous polymer nanostructures. The coarsening mechanism is further evaluated by changing the experimental parameters including the immersion time, the polymer concentration, the polymer molecular weight, and the solvent quality. Under conditions in which polymer solutions have higher viscosities, the coarsening process is slowed down and the formation of the porous nanostructures is prohibited. The prevention of the porous nanostructures can also be realized by adding water to the PMMA/THF solution before the immersion process.

  13. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope.

    PubMed

    Zhao, X S; Geng, Y Q; Li, W B; Yan, Y D; Hu, Z J; Sun, T; Liang, Y C; Dong, S

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  14. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  15. Design of lath-shaped tool in defective nanostructure removal from digital touch-panel surfaces

    NASA Astrophysics Data System (ADS)

    Pa, P. S.

    2009-07-01

    An effective economic viability that uses micro electroremoval as a reclaim system was developed to remove the defective ITO nanostructure coatings from the optical PET surfaces of digital paper. The low yield of ITO thin film deposition is an important factor in semiconductor production. By establishing the reclaim process using the ultra-precise removal of the nanostructure coatings, the optoelectronic semiconductor industry can effectively reclaim defective products, minimizing both production costs and pollution. In the current experiment, a large lath-shaped cathode with a small gap-width between the cathode and the workpiece takes less time for the same amount of ITO removal. A small end radius of the cathode combines with enough electric power to drive fast machining. Pulsed direct current can improve the effect of dreg discharge, and it is advantageous to associate the workpiece with the fast feed rate. However, this improvement can increase the current rating. A high rotational speed of the electrodes, a higher temperature, or a large flow rate of the electrolyte corresponds to a higher removal rate for the ITO nanostructure. The micro electroremoval requires only a short period of time to remove the ITO thin film coatings easily and cleanly.

  16. Application of Ru(bpy) 32+ in control and formation of gold surface nanostructure through oxidation-reduction cycling

    NASA Astrophysics Data System (ADS)

    Bin, Qi; Zheng, Zhikun; Yang, Xiurong

    2007-03-01

    It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy) 32+ with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy) 32+, and the surface roughness was decreasing with the increasing of Ru(bpy) 32+ concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.

  17. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  18. Evolution of nanostructure and specific surface area during thermally driven dehydration of Mg(OH)2

    NASA Astrophysics Data System (ADS)

    Pimminger, H.; Habler, G.; Freiberger, N.; Abart, R.

    2016-01-01

    The thermally induced dehydration of micrometer-sized particles of Mg(OH)2 was investigated experimentally at ambient pressure and temperatures ranging from 350 to 1300 °C. Reaction progress is correlated with the evolution of the specific surface area and of the particle internal nanostructure. The maximum specific surface area of about 320 m2/g corresponding to a 70-fold increase relative to the starting material is obtained after heat treatment at 350 °C for about 2 h. This is due to the formation of a highly porous, particle-internal nanostructure comprised of newly crystallized strictly aligned, cube-shaped and nanometer-sized crystals of MgO and about 50 vol% porosity. Associated with the dehydration, intensive fracturing and defoliation occurs parallel to the (0001) plane of the original Mg(OH)2 or (111) of the topotaxially grown MgO. After heat treatment at increasingly higher temperatures, enhanced coarsening and sintering of the MgO crystals and healing of cracks leads to a successive decrease of the specific surface area. After heat treatment at 1300 °C for 2.5 h, the specific surface area has decreased to 5 m2/g close to the value typical for the original Mg(OH)2.

  19. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    NASA Astrophysics Data System (ADS)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  20. In-plane magnetocrystalline anisotropy observed on Fe/Cu(111) nanostructures grown on stepped surfaces

    NASA Astrophysics Data System (ADS)

    Boeglin, C.; Stanescu, S.; Deville, J. P.; Ohresser, P.; Brookes, N. B.

    2002-07-01

    Magnetic in-plane and out-of-plane anisotropies measured by angle dependent x-ray magnetic circular dichroism (XMCD) on fcc Fe nanostructures are discussed and compared with fcc FeNi nanostructures. All studies were performed using XMCD at the Fe L2,3 edges for Fe grown on a Cu(111) vicinal vic surface. The step induced in-plane anisotropy in the step decoration regime is analyzed by measuring the orbital magnetic moment dependence as a function of the in-plane azimuth and out-of-plane incidence angles. In the one-dimensional limit where the out-of-plane magnetic easy axis dominates, Fe/Cu(111) shows a large in-plane orbital magnetic moment anisotropy leading to a magnetocrystalline anisotropy energy of 0.4 meV/atom and an in-plane magnetic easy axis perpendicular to the steps. In the nanometer scale the aspect ratio of the elongated rectangular Fe stripes are found to be responsible for the in-plane and out-of-plane anisotropy. This is coherent with previous findings where the circular shaped fcc Fe0.65Ni0.35 nanostructures do not show any in-plane anisotropy. The three-dimensional nanostructures are characterized by magnetic orbital moments connected with the number of broken bonds in the direction of the quantization axis defined by the direction of the saturation field. The microscopic origin of the in-plane large orbital magnetic moment anisotropy is attributed to the nanometer size of the structures perpendicular to the steps and to the asymmetry of the number of broken bonds in the plane.

  1. Using Ambient Ion Beams to Write Nanostructured Patterns for Surface Enhanced Raman Spectroscopy

    SciTech Connect

    Li, Anyin; Baird, Zane; Bag, Soumabha; Sarkar, Depanjan; Prabhath, Anupama; Pradeep, Thalappil; Cooks, Robert G.

    2014-11-10

    Electrolytic spray deposition was used to pattern surfaces with 2D metallic nanostructures. Spots that contain silver nanoparticles (AgNP) were created by landing solvated silver ions at desired locations using electrically floated masks to focus the metal ions to an area as little as 20 mm in diameter. The AgNPs formed are unprotected and their aggregates can be used for surface-enhanced Raman spectroscopy (SERS). The morphology and SERS activity of the NP structures were controlled by the surface coverage of landed silver ions. The NP structures created could be used as substrates onto which SERS samples were deposited or prepared directly on top of predeposited samples of interest. The evenly distributed hot spots in the micron-sized aggregates had an average SERS enhancement factor of 108. The surfaces showed SERS activity when using lasers of different wavelengths (532, 633, and 785 nm) and were stable in air.

  2. Synthesis and characterization of large specific surface area nanostructured amorphous silica materials.

    PubMed

    Marquez-Linares, Francisco; Roque-Malherbe, Rolando M A

    2006-04-01

    Large specific surface area materials attract wide attention because of their applications in adsorption, catalysis, and nanotechnology. In the present study, we describe the synthesis and characterization of nanostructured amorphous silica materials. These materials were obtained by means of a modification of the Stobe-Fink-Bohn (SFB) method. The morphology and essential features of the synthesized materials have been studied using an automated surface area and pore size analyzer and scanning electron microscopy. The existence of a micro/mesoporous structure in the obtained materials has been established. It was also found that the obtained particle packing materials show large specific surface area up to 1,600 m2/g. (To our best knowledge, there is no any reported amorphous silica material with such a higher specific surface area.) The obtained materials could be useful in the manufacture of adsorbents, catalyst supports, and other nanotechnological applications.

  3. On laser-induced harpooning reactions

    NASA Astrophysics Data System (ADS)

    Weiner, J.

    1980-05-01

    In the present paper, the switching of chemical reactivity by a nonresonant laser field in simple gas-phase collisions of the type A + BC to AB + C is discussed in terms of a second-order optical/collision perturbation. A simple expression relating laser-induced harpooning cross sections to the laser power density is derived and is applied to Hg/Cl2 collisions.

  4. Kinetics of optically excited charge carriers at the GaN surface: Influence of catalytic Pt nanostructures

    SciTech Connect

    Winnerl, Andrea Pereira, Rui N.; Stutzmann, Martin

    2015-10-21

    In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN covered with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.

  5. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    NASA Astrophysics Data System (ADS)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  6. Surface functionalization of nanostructured LaB6-coated Poly Trilobal fabric by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Zhang, Lin; Min, Guanghui; Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao

    2016-10-01

    Nanostructured LaB6 films were deposited on flexible Poly Trilobal substrates (PET textiles) through direct current magnetron sputtering in order to broaden its applications and realize surface functionalization of polyester fabrics. Characterizations and performances were investigated by employing a scanning electron microscope (SEM), Fourier transformation infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) spectrophotometer. Ultraviolet Protection Factor (UPF) conducted by the integral conversion was employed to measure the ultraviolet protection ability. As expected, the growth of LaB6 film depending on the pressure variation enhanced UV-blocking ability (UPF rating at 30.17) and absorption intensity of the textiles.

  7. Surface-plasmon-polariton assisted modification of spontaneous emission of colloidal quantum dots in metal nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson L.; Jayasundara, Nadeepa; Cho, Sang-Yeon

    2013-01-01

    We experimentally demonstrate extraordinary optical transmission (EOT) assisted photoluminescence (PL) of CdSe/CdS colloidal quantum dots (QDs). The quantum dots were encapsulated between a metallic nanostructure and a Bragg reflector to enhance the interaction of spontaneously emitted photons with a resonant electromagnetic surface wave. The measured PL spectrum of the fabricated sample exhibits spectral narrowing and a shift in peak wavelength of 22 nm and 7 nm, respectively. Furthermore, we tested the angular dependence of the signal to confirm the existence of EOT. This demonstration is a critical step towards realizing plasmonic colloidal QD based coherent emitters.

  8. Terahertz-pulse emission through excitation of surface plasmons in metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Welsh, Gregor H.; Wynne, Klaas

    2008-02-01

    The second-order processes of optical rectification and photoconduction are well known and widely used to produce ultrafast electromagnetic pulses in the terahertz frequency domain. We present a new form of rectification relying on the excitation of surface plasmons (SPs) in metallic nanostructures. Multiphoton ionization and ponderomotive acceleration of electrons in the enhanced evanescent field of the SPs, results in a femtosecond current surge and emission of terahertz electromagnetic radiation. Using gold, this rectification process is third or higher order in the incident field.

  9. Anisotropic quantum confinement effect and electric control of surface states in Dirac semimetal nanostructures.

    PubMed

    Xiao, Xianbo; Yang, Shengyuan A; Liu, Zhengfang; Li, Huili; Zhou, Guanghui

    2015-01-20

    The recent discovery of Dirac semimetals represents a new achievement in our fundamental understanding of topological states of matter. Due to their topological surface states, high mobility, and exotic properties associated with bulk Dirac points, these new materials have attracted significant attention and are believed to hold great promise for fabricating novel topological devices. For nanoscale device applications, effects from finite size usually play an important role. In this report, we theoretically investigate the electronic properties of Dirac semimetal nanostructures. Quantum confinement generally opens a bulk band gap at the Dirac points. We find that confinement along different directions shows strong anisotropic effects. In particular, the gap due to confinement along vertical c-axis shows a periodic modulation, which is absent for confinement along horizontal directions. We demonstrate that the topological surface states could be controlled by lateral electrostatic gating. It is possible to generate Rashba-like spin splitting for the surface states and to shift them relative to the confinement-induced bulk gap. These results will not only facilitate our fundamental understanding of Dirac semimetal nanostructures, but also provide useful guidance for designing all-electrical topological spintronics devices.

  10. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  11. Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces

    PubMed Central

    Nowlin, Kyle; Boseman, Adam; Covell, Alan; LaJeunesse, Dennis

    2015-01-01

    Recent studies have shown that some nanostructured surfaces (NSS), many of which are derived from surfaces found on insect cuticles, rupture and kill adhered prokaryotic microbes. Most important, the nanoscale topography is directly responsible for this effect. Although parameters such as cell adhesion and cell wall rigidity have been suggested to play significant roles in this process, there is little experimental evidence regarding the underlying mechanisms involving NSS-induced microbial rupture. In this work, we report the NSS-induced rupturing of a eukaryotic microorganism, Saccharomyces cerevisiae. We show that the amount of NSS-induced rupture of S. cerevisiae is dependent on both the adhesive qualities of the yeast cell and the nanostructure geometry of the NSS. Thus, we are providing the first empirical evidence that these parameters play a direct role in the rupturing of microbes on NSS. Our observations of this phenomenon with S. cerevisiae, particularly the morphological changes, are strikingly similar to that reported for bacteria despite the differences in the yeast cell wall structure. Consequently, NSS provide a novel approach for the control of microbial growth and development of broad-spectrum microbicidal surfaces. PMID:25551144

  12. In vitro immunogenicity of silicon-based micro- and nanostructured surfaces.

    PubMed

    Ainslie, Kristy M; Tao, Sarah L; Popat, Ketul C; Desai, Tejal A

    2008-05-01

    The increasing use of micro- and nanostructured silicon-based devices for in vivo therapeutic or sensing applications highlights the importance of understanding the immunogenicity of these surfaces. Four silicon surfaces (nanoporous, microstructured, nanochanneled, and flat) were studied for their ability to provoke an immune response in human blood derived monocytes. The monocytes were incubated with the surfaces for 48 h and the immunogenicity was evaluated based on the viability, shape factors, and cytokine expression. Free radical oxygen formation was measured at 18 h to elicit a possible mechanism invoking immunogenicity. Although no cytokines were significantly different comparing the response of monocytes on the tissue culture polystyrene surfaces to those on the micropeaked surfaces, on average all cytokines were elevated on the micropeaked surface. The monocytes on the nanoporous surface also displayed an elevated cytokine response, overall, but not to the degree of those on the micropeaked surface. The nanochanneled surface response was similar to that of flat silicon. Overall, the immunogenicity and biocompatibility of flat, nanochanneled, and nanoporous silicon toward human monocytes are approximately equivalent to tissue culture polystyrene.

  13. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  14. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  15. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    PubMed Central

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-01-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494

  16. Surface structural, morphological, and catalytic studies of homogeneously dispersed anisotropic Ag nanostructures within mesoporous silica

    NASA Astrophysics Data System (ADS)

    Sareen, Shweta; Mutreja, Vishal; Pal, Bonamali; Singh, Satnam

    2016-11-01

    Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1-10 wt.%) of Ag loading followed by calcination at 350 °C under H2 led to change in the morphology of Ag nanoparticles from nanospheres ( 7-8 nm) to nanorods (aspect ratio 12-30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m2/g of SBA-15 to 385 m2/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.

  17. Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass

    NASA Astrophysics Data System (ADS)

    Tsvetkov, M. Yu; Yusupov, V. I.; Minaev, N. V.; Timashev, P. S.; Golant, K. M.; Bagratashvili, V. N.

    2016-10-01

    The thermo-plasmonic effect (heat deposition via absorption of laser light by metal nanoparticles) is applied to substantially enhance the effectiveness and controllability of the microstructure formation by laser-induced backside wet etching (LIBWE). Experiments were carried out with silicate glass plates using a pulsed 527 nm wavelength laser and an aqueous solution of AgNO3 as a precursor of the Ag nanoparticles. Mechanisms of such thermo-plasmonic LIBWE (TP-LIBWE) versions are considered. They involve: laser-induced photo-thermal reducing of silver (Ag) and self-assembling of Ag nanoparticles in water and the water/glass interface; fast laser-induced overheating of a water and glass surface through the thermo-plasmonic effect; formation of highly reactive supercritical water that causes glass etching and crater formation; generation of steam-gas bubbles in a liquid. It is significant that the emergence of the Marangoni convection results in bubble retention in the focal point at the interface and the accumulation of nanoparticles on the surface of the laser-induced crater, as this facilitates the movement of the bubbles with captured Ag particles from the fluid volume in the crater region, and accelerates the formation of the area of strong ‘surface absorption’ of laser energy. All these mechanisms provide a highly efficient and reproducible process for laser microstructure formation on the surface of glass using a novel TP-LIBWE technique.

  18. Theoretical Studies of Laser-Induced Molecular Rate Processes: Topics in Line Broadening and Spectroscopy.

    DTIC Science & Technology

    1985-10-01

    GROUP SU. GRF. MOLECULAR RATE PROCESSES MOLECULAR DYNAMICS LASER-INDUCED LINE BROADENING THEORETICAL STUDIES SPECTROSCOPY 19. ABSI*ACT (Continue On...approaches half the band-gap energy. -q 14 This idea of using a laser to "charge" the surface region has fomed the basis of a semiclassical theory of charge

  19. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces

    NASA Astrophysics Data System (ADS)

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-01

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8–22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  20. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces.

    PubMed

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-10

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  1. Surface-enhanced Raman scattering substrates fabricated using electroless plating on polymer-templated nanostructures.

    PubMed

    Bantz, Kyle C; Haynes, Christy L

    2008-06-03

    Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications.

  2. Surface Plasmon Polaritons in Metallic Nanostructures: Fundamentals and Their Application to Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Rockstuhl, Carsten; Fahr, Stephan; Lederer, Falk

    A surface plasmon polariton is a hybrid excitation where the electromagnetic field is resonantly coupled to a free carrier oscillation in noble metals. Once excited, a large enhancement of the local electromagnetic field and the amount of scattered light can be observed. Since both properties are beneficial for the purpose ofphoton management, in the past several years an increasing share of research was devoted to exploit such effects in solar cells. In this contribution, we review the fundamentals of surface plasmon polaritons and outline different approaches how to incorporate metallic nanostructures into solar cells. We detail to which extent they are useful to enhance the solar cell efficiency and describe different schemes for their experimental implementation. Emphasis is put on thin-film solar cells, since in this class of solar cells metallic nanostructures may have the largest impact. This chapter is written with the intention to make researchers from either the field of plasmonics or the field of photovoltaics familiar with their respective counterpart to foster research in this applied domain.

  3. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    PubMed

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain.

  4. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices.

    PubMed

    Lin, Chia-Cheng; Lin, Hao-Jan; Lin, Yun-Ho; Sugiatno, Erwan; Ruslin, Muhammad; Su, Chen-Yao; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-29

    The purpose of the present study was to examine thermal damage and a sticking problem in the tissue after the use of a minimally invasive electrosurgical device with a nanostructured surface treatment that uses a femtosecond laser pulse (FLP) technique. To safely use an electrosurgical device in clinical surgery, it is important to decrease thermal damage to surrounding tissues. The surface characteristics and morphology of the FLP layer were evaluated using optical microscopy, scanning electron microscopy, and transmission electron microscopy; element analysis was performed using energy-dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, and X-ray photoelectron spectroscopy. In the animal model, monopolar electrosurgical devices were used to create lesions in the legs of 30 adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14, and 28 days postoperatively. Results indicated that the thermal damage and sticking situations were reduced significantly when a minimally invasive electrosurgical instrument with an FLP layer was used. Temperatures decreased while film thickness increased. Thermographic data revealed that surgical temperatures in an animal model were significantly lower in the FLP electrosurgical device compared with that in the untreated one. Furthermore, the FLP device created a relatively small area of thermal damage. As already mentioned, the biomedical nanostructured layer reduced thermal damage and promoted the antisticking property with the use of a minimally invasive electrosurgical device. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  5. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.

    PubMed

    Achilleos, Demetra S; Hatton, T Alan

    2015-06-01

    With the current rising world demand for energy sufficiency, there is an increased necessity for the development of efficient energy storage devices. To address these needs, the scientific community has focused on the improvement of the electrochemical properties of the most well known energy storage devices; the Li-ion batteries and electrochemical capacitors, also called supercapacitors. Despite the fact that supercapacitors exhibit high power densities, good reversibility and long cycle life, they still exhibit lower energy densities than batteries, which limit their practical application. Various strategies have been employed to circumvent this problem, specifically targetting an increase in the specific capacitance and the broadening of the potential window of operation of these systems. In recent years, sophisticated surface design and engineering of hierarchical hybrid nanostructures has facilitated significant improvements in the specific and volumetric storage capabilities of supercapacitors. These nanostructured electrodes exhibit higher surface areas for ion adsorption and reduced ion diffusion lengths for the electrolyte ions. Significant advances have also been achieved in broadening the electrochemical window of operation of these systems, as realized via the development of asymmetric two-electrode cells consisting of nanocomposite positive and negative electrodes with complementary electrochemical windows, which operate in environmentally benign aqueous media. We provide an overview of the diverse approaches, in terms of chemistry and nanoscale architecture, employed recently for the development of asymmetric supercapacitors of improved electrochemical performance.

  6. MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Munuera, Carmen; Varela del Arco, Maria; Soria, Federico; Ocal, Carmen; Ruiz, Ana; Alonso, Maria

    2006-01-01

    Two types of fairly regular distributions of Si nanostructures, of interest as templates to grow spatially controlled ensembles of metal (Co, Fe, Ag, etc.) nanostructures, are presented in this paper. Both of them are achieved by self-assembling processes during Si homoepitaxy. One corresponds to films grown by molecular beam epitaxy (MBE) on Si(0 0 1)-2 x 1 surfaces with low (<1 degree) miscut angles. In this case, arrays of 3D Si-islands displaying well defined pyramid-like shapes can be obtained, as evidenced by Scanning Force Microscopy (SFM) and Scanning Transmission Electron Microscopy (STEM). Such arrays exhibit strong similarities with those reported for Ge and SiGe islands on Si(0 0 1), and may thus serve as a simpler route to produce ordered distributions of metallic nanodots. On the other hand, on Si(1 1 1)-7 x 7 vicinal substrates misoriented 4 degrees toward the View the MathML source direction, step rearrangement during homoepitaxy permits to produce nanopatterned surfaces, the building-blocks of which are triangular (1 1 1) platforms, with lateral dimensions of hundreds of nanometers, bound by step bunches about 30 nm high. Furthermore, different Ag deposition experiments support this spontaneous patterning on Si(1 1 1) as a promising approach to achieve regular distributions of metallic nanocrystals with an overall homogeneity in sizes, shapes and spacing.

  7. Laser-induced phase separation of silicon carbide.

    PubMed

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M; Im, James S; Ruoff, Rodney S; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-30

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  8. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  9. Laser-induced phase separation of silicon carbide

    NASA Astrophysics Data System (ADS)

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-11-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (~2.5 nm) and polycrystalline silicon (~5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.

  10. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  11. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces.

    PubMed

    Siretanu, Igor; Chapel, Jean-Paul; Bastos-González, Delfi; Drummond, Carlos

    2013-06-06

    The effect of surface charges on the ionic distribution in close proximity to an interface has been extensively studied. On the contrary, the influence of ions (from dissolved salts) on deformable interfaces has been barely investigated. Ions can adsorb from aqueous solutions on hydrophobic surfaces, generating forces that can induce long-lasting deformation of glassy polymer films, a process called ion-induced polymer nanostructuration, IPN. We have found that this process is ion-specific; larger surface modifications are observed in the presence of water ions and hydrophobic and amphiphilic ions. Surface structuration is also observed in the presence of certain salts of lithium. We have used streaming potential and atomic force microscopy to study the effect of dissolved ions on the surface properties of polystyrene films, finding a good correlation between ionic adsorption and IPN. Our results also suggest that the presence of strongly hydrated lithium promotes the interaction of anions with polystyrene surfaces and more generally with hydrophobic polymer surfaces, triggering then the IPN process.

  12. Conditions for the formation of nanostructures on electrode surfaces during atomic scale scratching

    NASA Astrophysics Data System (ADS)

    Nielinger, Michael; Berenz, Peter; Xiao, Xiaoyin; Baltruschat, Helmut

    2005-12-01

    A nanoscale place selective electrochemical deposition of foreign metals on different single crystal electrodes induced by a scanning tunnelling microscope (STM) tip was achieved by scanning with the STM tip very closely to an electrode surface which is covered by a monolayer of a foreign metal by underpotential deposition (UPD). Measuring the minimal conductance G, which is necessary for generating nanostructures, shows that a point contact between the STM tip and the UPD covered surface is formed. This is considered to be responsible for the tip-induced deposition. On Au(1 1 1) in Cu 2+ containing solutions at potentials positive of submonolayer formation, nanoscale scratches are achieved in this way, whereas in the absence of any foreign metal ions only large defects are introduced under the same conditions.

  13. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM

    NASA Astrophysics Data System (ADS)

    Wu, Yangzhe; Lu, Hongsong; Cai, Jiye; He, Xianhui; Hu, Yi; Zhao, Hongxia; Wang, Xiaoping

    2009-08-01

    The activation of T lymphocytes plays a very important role in T-cell-mediated immune response. Though there are many related literatures, the changes of membrane surface nanostructures and adhesion property of T lymphocytes at different activation stages have not been reported yet. However, these investigations will help us further understand the biophysical and immunologic function of T lymphocytes in the context of activation. In the present study, the membrane architectures of peripheral blood T lymphocytes were obtained by AFM, and adhesion force of the cell membrane were measured by acquiring force-distance curves. The results indicated that the cell volume increased with the increases of activation time, whereas membrane surface adhesion force decreased, even though the local stiffness for resting and activated cells is similar. The results provided complementary and important data to further understand the variation of biophysical properties of T lymphocytes in the context of in vitro activation.

  14. Nanostructures on La-doped SrTiO3 surfaces.

    PubMed

    Gunhold, A; Gömann, K; Beuermann, L; Kempter, V; Borchardt, G; Maus-Friedrichs, W

    2003-04-01

    SrTiO(3)(100) single crystals with high donor dopant concentrations (5 at% La) were annealed at 1000 degrees C for up to 150 h in ultrahigh vacuum (UHV). By applying scanning tunneling microscopy (STM) nanostructures are observed on top of the surface with typical diameters of 20 nm and typical heights of 8 nm. To characterize their electronic structure and chemical composition, the surface was analyzed by metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling spectroscopy (STS), and depth profiling Auger electron spectroscopy (AES). Investigations of the stoichiometry suggest that the secondary phases consist of LaTiO(3). We present a defect chemistry model which attempts to explain the observed effects.

  15. Fabrication of superhydrophilic nanostructured surface by thermal annealing of titanium thin films in air.

    PubMed

    Klamchuen, A; Pratontep, S

    2009-02-01

    We report on a novel approach to fabricate a superhydrophilic titanium oxynitride surface by dc magnetron sputtering deposition followed by thermal annealing in air. The annealing was conducted in a furnace with no gas control at temperature ranging from 300-700 degrees C. The chemical composition and the morphology of the films have been investigated by contact angle measurements, optical absorption spectroscopy, X-ray photoemission spectroscopy, transmission electron microscopy and atomic force microscopy. The results reveal that the annealed films consist of a 5-10 nm thick capping titanium composite layer on top of a titanium metal layer. The nitrogen and oxygen composition of this capping layer can be tailored with the annealing temperature. The annealing process also produces nanoscale protrusions on the surface, yielding water contact angles of less than five degrees. This annealing approach in air is a simple yet versatile method, capable of producing nanostructure materials with potential applications in photocatalytic coating and semiconductor fabrication.

  16. Localized surface plasmon resonance and refractive index sensitivity of vacuum-evaporated nanostructured gold thin films

    NASA Astrophysics Data System (ADS)

    Rai, V. N.; Srivastava, A. K.; Mukherjee, C.; Deb, S. K.

    2016-01-01

    Plasmonic properties of vacuum-evaporated nanostructured gold thin films having different types of nanoparticles are presented. The films with thickness ≥6 nm show the presence of nanorods having non-cylindrical shape with triangular base. Two characteristic plasmon bands have been recorded in absorption spectra. First one occurs below 500 nm and the other one at higher wavelength side. Both the peaks show dependence on the dielectric property of surroundings. The higher wavelength localized surface plasmon resonance peak shifts to higher wavelength with an increase in the nanoparticle size, surface roughness and refractive index of the surrounding (methylene blue dye coating). This shows that such thin films can be used as sensor for organic molecules with a refractive index sensitivity ranging from 250 to 305 nm/RIU (refractive index unit).

  17. "Zero-transfer" production of large-scale, flexible nanostructured film at water surface for surface enhancement Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Weihai; Zhan, Haoran; Cheng, Fansheng; Tang, Changyu; Mei, Jun; Hui, David; Liu, Yu; Zhou, Qing; Lau, Woon Ming

    2015-05-01

    Reduced complexity in production of large-scale, flexible surface enhancement Raman spectroscopy (SERS) active substrate has been implemented at the water surface, when polydimethylsiloxane (PDMS) solution having lower density than the water meets with self-assembled polystyrene (PS) nanoparticles (NPs). Through tuning its flowability, the PDMS solution could effectively wet PS NPs, wherein the PS NPs can be embedded in the PDMS during the curing process. This technical innovation saves ill-posed transfer steps as present in traditional operations which may cause damaged nanostructures, and it could be beneficial for preparing a large scale, high quality, and flexible SERS active substrate. Field tests demonstrated that the Raman signal enhancement factor could reach up to the order of ˜107 with decent repeatability less than 10%.

  18. Laser-induced breakdown spectroscopy in Asia

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  19. Modeling of Laser-Induced Metal Combustion

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  20. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  1. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  2. Laser induced fluorescence model of human goiter

    NASA Astrophysics Data System (ADS)

    Jaliashvili, Z. V.; Medoidze, T. D.; Mardaleishvili, K. M.; Ramsden, J. J.; Melikishvili, Z. G.

    2008-03-01

    Laser induced fluorescence (LIF) with wide area surveillance for resected thyroid tissue solid chunks is presented. The characteristic LIF spectra of goiter were established. The state of tissue at each point represents a superposition of normal and pathology states. To our knowledge two co-existing pathological effects were observed optically for the first time. It is demonstrated that the LIF spectral functions and their intensities well-labeled such areas and represent a good tool for medical diagnostics of goiter and for the definition of the degree of abnormality and geometrical sizes of these areas.

  3. Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Tian, Xueli; Yin, Jun; Liu, Yu; Dong, Zhanmin; Sun, Jia-Lin; Ma, Wanyun

    2016-04-01

    Silver nanostructured films suitable for use as surface-enhanced Raman scattering (SERS) substrates are prepared in just 2 hours by the solid-state ionics method. By changing the intensity of the external direct current, we can readily control the surface morphology and growth rate of the silver nanostructured films. A detailed investigation of the surface enhancement of the silver nanostructured films using Rhodamine 6G (R6G) as a molecular probe revealed that the enhancement factor of the films was up to 1011. We used the silver nanostructured films as substrates in SERS detection of human red blood cells (RBCs). The SERS spectra of RBCs on the silver nanostructured film could be clearly detected at a laser power of just 0.05 mW. Comparison of the SERS spectra of RBCs obtained from younger and older donors showed that the SERS spectra depended on donor age. A greater proportion of the haemoglobin in the RBCs of older donors was in the deoxygenated state than that of the younger donors. This implies that haemoglobin of older people has lower oxygen-carrying capacity than that of younger people. Overall, the fabricated silver substrates show promise in biomedical SERS spectral detection.

  4. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly.

    PubMed

    Szymanski, John M; Jallerat, Quentin; Feinberg, Adam W

    2014-04-17

    The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer

  5. Topographic characterization of the self-assembled nanostructures of chitosan on mica surface by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wu, Jiafeng; Guo, Yan; Gong, Coucong; Song, Yonghai

    2015-10-01

    In this work, the self-assembled nanostructures of chitosan on mica surface formed from various solvents were investigated by using atomic force microscopy. The effects of various factors on the self-assembled nanostructures of chitosan on mica surface, including solvents, the concentration of chitosan, the pH of solution and the drying temperature, were explored in detail. Our experimental data resulted in the conclusion that chitosan molecules could self-assemble on mica surface to form various nanostructures such as nanoparticles, fibril and film. Nanoparticles were always formed on mica surface from CCl4, C6H6, CH2Cl2 solution, fibril preferred to form on mica surface from CH3CH2OH and CH3OH solution and the optimal solvent to form film was found to be CH3CN. Low concentration, pH and temperature were helpful for the formation of nanoparticles, medium concentration, pH and temperature resulted in fibril and high concentration, pH and temperature were often beneficial to forming chitosan films. The study of self-assembled nanostructures of chitosan on mica surface would provide new insight into the development of chitosan-based load-bearing materials.

  6. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  7. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants.

    PubMed

    Rosenbaum, Jonathan; Versace, Davy Louis; Abbad-Andallousi, Samir; Pires, Remi; Azevedo, Christophe; Cénédese, Pierre; Dubot, Pierre

    2017-02-28

    The influence of copper derived TiO2 surfaces (nCu-nT-TiO2) on the death of nosocomial Staphylococcus aureus (Sa) and Escherichia coli (Ec), was investigated. TiO2 nanotube (nT-TiO2) arrays were fabricated by anodic oxidation of pure titanium sheets in fluorhydric solutions, leading to surface nanostructuration and creation of specific reactive sites. Copper nanocubes with a mean size of 20 nm have been synthesized and deposited on the nT-TiO2 surface by pulsed electrodeposition from a copper sulphate solution. Scanning Electron Microscopy (SEM) reveals that Cu nanocubes are both inserted into the TiO2 nanotubes and on the nanotube edges. X-ray Photoemission Spectroscopy (XPS) and SEM-EDX confirm the metallic nature of copper nanoparticles, covered with a thin mixed CuO-Cu2O thin layer. As the adsorption of proteins is one of the early stages of biomaterial surface interactions with body fluids before bacterial colonization, Infrared Spectroscopy (IR) in reflection-absorption mode, SEM and XPS have been used to follow the evolution of nCu-nT-TiO2 surfaces when exposed to a simulated plasma solution containing Bovine Serum Albumin (BSA). Finally bacterial tests have revealed a high biocide potential of the nCu-nT-TiO2 surface, which leads to the entire death of SA and EC.

  8. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications

    NASA Astrophysics Data System (ADS)

    Chen, Jian-nan; Zhang, Zhen; Ouyang, Xiao-long; Jiang, Pei-xue

    2016-03-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  9. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.

    PubMed

    Chen, Jian-Nan; Zhang, Zhen; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-12-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  10. Quantitative Control of Protein and Cell Interaction with Nanostructured Surfaces by Cluster Assembling.

    PubMed

    Schulte, Carsten; Podestà, Alessandro; Lenardi, Cristina; Tedeschi, Gabriella; Milani, Paolo

    2017-02-21

    The development of smart prosthetics, scaffolds, and biomaterials for tissue engineering and organ-on-a-chip devices heavily depends on the understanding and control of biotic/abiotic interfaces. In recent years, the nanometer scale emerged as the predominant dimension for processes impacting on protein adsorption and cellular responses on surfaces. In this context, the extracellular matrix (ECM) can be seen as the prototype for an intricate natural structure assembled by nanoscale building blocks forming highly variable nanoscale configurations, dictating cellular behavior and fate. How exactly the ECM nanotopography influences mechanotransduction, that is, the cellular capacity to convert information received from the ECM into appropriate responses, remains partially understood due to the complexity of the involved biological structures, limiting also the attempts to artificially reproduce the nanoscale complexity of the ECM. In this Account, we describe and discuss our strategies for the development of an efficient and large-scale bottom-up approach to fabricate surfaces with multiscale controlled disorder as substrates to study quantitatively the effect of nanoscale topography on biological entities. Our method is based on the use of supersonic cluster beam deposition (SCBD) to assemble, on a substrate, neutral clusters produced in the gas phase and accelerated by a supersonic expansion. The assembling of clusters in the ballistic deposition regime follows simple scaling laws, allowing the quantitative control of surface roughness and asperity layout over large areas. Due to their biocompatibility, we focused on transition metal oxide nanostructured surfaces assembled by titania and zirconia clusters. We demonstrated the engineering of structural and functional properties of the cluster-assembled surfaces with high relevance for interactions at the biotic/abiotic interface. We observed that isoelectric point and wettability, crucial parameters for the adhesion

  11. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  12. Fetoprotein Derived Short Peptide Coated Nanostructured Amphiphilic Surfaces for Targeting Mouse Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.

    In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.

  13. Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Ashall, B.; Vohnsen, B.; Berndt, M.; Zerulla, D.

    2009-12-01

    The design and architecture of nanostructures for the purpose of controlling and manipulating surface plasmon polariton (SPP) dynamics is currently a focal point of research. It is driven by the predicted impact that plasmonic components will have on many future technologies. In this paper, we demonstrate the first instance of plasmon-mediated polarization reorientation observed in the far field with no associated re-emission directional change. Specifically, it is demonstrated that, as a result of the interaction between SPPs and tailor-designed nanostructures of threefold symmetry characteristics, a polarization twisting of the SPP-mediated reradiated light is attained. It is shown that the dynamics of such an interaction can be controlled externally, enabling active control of the outgoing polarization orientation. In order to further understand the origin of the processes involved, Green’s function based simulations of the interactions are presented and confirm that the origin of the polarization twisting can be explained via asymmetrical in-plane SPP scattering.

  14. Interaction of extreme ultraviolet laser radiation with solid surface: ablation, desorption, nanostructuring

    NASA Astrophysics Data System (ADS)

    Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Frolov, Oleksandr; Juha, Libor; Chalupsky, Jaromir

    2015-02-01

    The area, where interaction of focused XUV laser radiation with solid surface takes place, can be divided according to local fluency into desorption region (if fluency is larger than zero and smaller than ablation threshold) and ablation region (if fluency is equal or larger than this threshold). It turned out that a direct nanostructuring (e.g. imprinting diffraction pattern created on edges of windows of proximity standing grid) is possible in the desorption region only. While for femtosecond pulses the particle (atom/molecule) removal-efficiency η in the desorption region is very small (η < 10%), and hence, it can be easily distinguished from the ablation region with η ~ 100%, for nanosecond pulses in desorption region this η rises at easily ablated materials from 0% at the periphery up to ~90% at the ablation contour and, therefore, the boundary between these two regions can be found with the help of nanostructuring only. This rise of removal efficiency could be explained by gradually increased penetration depth (due to gradually removed material) during laser pulse. This is a warning against blind using crater shape for fluency mapping in the case of long laser pulses. On the other hand it is a motivation to study an ablation plum (or ablation jet) and to create a knowledge bank to be used at future numerical modeling of this process.

  15. Imaging of sub-surface nanostructures by dielectric planer cavity coupled microsphere lens

    NASA Astrophysics Data System (ADS)

    Guo, Minglei; Ye, Yong-Hong; Hou, Jinglei; Du, Bintao; Wang, Tian

    2017-01-01

    In this paper, a dielectric planar cavity between an object and a microsphere lens is fabricated and its effects on the imaging of sub-surface nanostructures have been studied. Using the dielectric planar cavity combined (DPCC) silica microsphere lens, our experimental results illustrate that the nanostructures of data-recorded Blu-ray disc can be clearly resolved. Optical images of the object with higher contrast and larger field of view (FOV) can be obtained, compared to the case when only a microsphere lens is used. For the 3.4 μm diameter microsphere lens combing a planar cavity with a thickness about 2.2 μm, the FOV is about 2.4 μm and the magnification is about 1.6. With the 3.4 μm diameter microsphere lens only, the FOV and magnification is 1.5 μm and 1.4 respectively. Theoretical analysis of the imaging properties is carried out by the characteristics of electric field distribution of microsphere lenses. The simulated results indicate that the dielectric planar cavity working as a Fabry-Pérot cavity can effectively enhance the coupling of optical information.

  16. Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives.

    PubMed

    Niu, Jia; Liu, Zhihua; Fu, Long; Shi, Feng; Ma, Hongwei; Ozaki, Yukihiro; Zhang, Xi

    2008-10-21

    In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus providing a new approach toward fabrication of nanostructured molecularly imprinted thin films. It involves preassembly of poly(acrylic acid) (PAA) conjugated of the theophylline residue template via a disulfide bridge, denoted as PAAtheo 15, in solution, and layer-by-layer (LbL) assembly of PAAtheo 15 and a positively charged photoreactive diazo resin (DAR) to form multilayer thin film with designed architecture. After photo-cross-linking of the film and template removal, binding sites specific to 7-(beta-hydroxyethyl)theophylline (Theo-ol) molecules are introduced within the film. Binding assay demonstrates that the SMILbL has a high selectivity of SMILbL to Theo-ol over caffeine. A control experiment demonstrates that the selectivity of SMILbL derives from nanostructured recognition sites among the layers. The imprinting amount per unit mass of the film can be 1 order of magnitude larger than that of the conventional bulk molecular imprinting systems. As this concept of construction SMILbL can be easily extended to the other molecules by the following similar protocol: its applications in building many other different molecular recognition systems are greatly anticipated.

  17. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study

    PubMed Central

    Miao, Xinchao; Wang, Donghui; Xu, Lianyi; Wang, Jie; Zeng, Deliang; Lin, Shuxian; Huang, Cui; Liu, Xuanyong; Jiang, Xinquan

    2017-01-01

    Nanotopography modification is a major focus of interest in current titanium surface design; however, the influence of the nanostructured surface on human cell/bacterium behavior has rarely been systematically evaluated. In this study, a homogeneous nanofiber structure was prepared on a titanium surface (Nano) by alkali-hydrothermal treatment, and the effects of this Nano surface on the behaviors of human MG-63 osteoblasts, human gingival epithelial cells (HGECs) and human gingival fibroblasts (HGFs) were evaluated in comparison with a smooth titanium surface (Smooth) by polishing and a micro-rough titanium surface (Micro) by sandblasting and acid etching. In addition, the impacts of these different surface morphologies on human THP-1 macrophage polarization and Streptococcus mutans attachment were also assessed. Our findings showed that the nanostructured surface enhanced the osteogenic activity of MG-63 cells (Nano=Micro>Smooth) at the same time that it improved the attachment of HGECs (Nano>Smooth>Micro) and HGFs (Nano=Micro>Smooth). Furthermore, the surface with nanotexture did not affect macrophage polarization (Nano=Micro=Smooth), but did reduce initial bacterial adhesion (Nanonanostructured titanium surface may promote bone and soft tissue healing, and thereby increase the success and survival of dental implants. PMID:28260888

  18. Laser-induced torques in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  19. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/